Web Services -
Overview

Recuperacidén de Informacidédn 2007
Lecture 7.

Contents

Motivation

¢+ Concepts:
= Web Services, Service-Oriented Architectures

Roots: RPC, Distributed Computing
Basic Architecture

¢+ Standards:
= SOAP
= WSDL

Conceptual Example

¢+ Real Example
= Build/deploy/call Web services with Apache AXIS

2

Motivation

From static to dynamic

fa6nn Amazoe.com: Recommesded for You o
- —’-" /.\ S tern) dwvwen sz on comopvourstoes Jref wtat ¥ ol
AONTM 2102 OB bemgos Swmmdystcichn. Doaglih o Tresch, ba. Deoubsbsilig of Wes .
amazonoom Your four Aooount | \-’ at | Wb Ust | Heo |
a Zoee m(ﬂ wl { i
QDI | st | e

% w«m[&: webswrt{ »

Recommuended for you g rag 0 snin)
Recommendations
Based on Activity Returning customer?
Your Wateh List Sign in to get your per
Recommendations New customer?
by Category lhk Reummended for You)l‘! for you!

1It's free ond eosy and requires no credit cord or personal | Perzonobze now |
I» ™m .|IJI'<

\ Ry Amarican Theocracy : The Perd and Politics of Radical
I \ Reug-on Oil, and Borrowed Money in the 21stCentury
u w. Philligs
9»(LN ﬂ'vncaa e
n Dete: Macch 21, 2006

Our Price: $3 wWAdiped
= Toi Used & new o $95.02 Add 1o Wih st
http:/ /www.renfe.es http: //amazon.com

Current Web pages offer not only static data but also dynamic
services, e.g. bying books, booking hotels, bying train tickets, etc.

» Question: Can we automatize service usage in a similar way as
aggregation/querying of static data?

» Just like data integration, making applications and software
components interoperable/combinable is not a new issue in
the |IT landscape... keyword: “Middleware"!

Services on the Web:
What's next?

@ Applications
= E-marketplaces.
= Open, automated B2B e-commerce.
= Business process integration on the Web.
= Resource sharing, distributed computing.

Current approach is ad-hoc on top of existing
standards.
= e.g., application-to-application interactions with HTML
forms, screen scraping/wrapper technologies.
Goal: enabling systematic+standardized
application-to-application interaction on the
Web.

Francisco Curbera - IBM T.]. Watson Research Center — Livermore July 25 2001 5

Concepts: Web Services

“Web services” are an effort to build a
distributed computing platform for the Web.

Yet another one?! (CORBA, RMI, etc.)

NO! Provide a family of standards for
communication and dynamic interactions of
applications just as XML provides for static
data exchange.

Francisco Curbera - IBM T.]. Watson Research Center — Livermore July 25 2001 6

Designing Web Services I

Goals

= Enable universal interoperability.

= Widespread adoption, ubiquity: fast!

s Enable (Internet scale) dynamic binding.
» Support a service oriented architecture (SOA).

n Efficiently support both open (Web) and
more constrained environments (within
enterprise boundaries).

Francisco Curbera - IBM T.]. Watson Research Center — Livermore July 25 2001 7

Designing Web Services 11

Requirements

s Based on standards. Pervasive support is essential (critical
mass!), neither CORBA nor any of its competitors has
made it to an ubiquitous standard

= Minimal amount of required infrastructure is assumed.
+ Only a minimal set of standards must be implemented.
» web server, application server,internet access should do...
= Very low level of application integration is expected.
+ But may be increased in a flexible way.

= Focus on the messages and documents, not on specific
programming languages or APIs.

Francisco Curbera - IBM T.]. Watson Research Center — Livermore July 25 2001 8

Concepts

Web Services: Definitions

1) “Loosely coupled, reusable software components that encapsulate discrete

functionality and are distributed and programmatically accessible over standard
Internet protocols”, The Stencil Group

2) Web service applications are encapsulated, loosely coupled Web “components”
that can bind dynamically to each other, F. Curbera

3) "Web Services are a new breed of application. They are self-contained, self-
describing, modular applications that can be published, located, and invoked
across the Web. Web Services perform functions, which can be anything from

simple request to complicated business processes”, The IBM Web Services
tutorial

Common to all definitions:

e Components providing functionality
e Distributed

e Accessible over the Web
10

Scope

Applications are (ideally) to be assembled from a set
of appropriate Web Services and no longer to be
written manually

Web Services are often viewed like Remote
Procedure Calls (RPCs) over the Web...

... but have potential beyond this:
= Open, modular, extensible standards
= Combine e.g. with Semantic Web technologies (SAWSDL)
= Data and control flow to be defined separately (BPEL)

11

Roots — RPC,
Distributed applications

12

Inter Process Communication (IPC)

#Provide communication between
Drocesses

m 10 transfer information

= 10 invoke an action in a remote process
(optionally running in a remote machine)

13
Taken from Chris Greenhalgh

Remote Procedure Call (RPC)

#High level representation of IPC
remotely

#Uses the normal procedure call
metaphor and programming style

#(Calls a procedure in another process

#Hides/abstracts from underlying
communication

14
Taken from Chris Greenhalgh

A local procedure call

int main()

‘ int add_numbers

vt (int a, int b)
int a=10; ‘
. _AN. o) 1
mt b=20; 2 7 return a+b;
int result; \
’.
|

result=add_numbers(a,b)

Process X

15
Taken from Chris Greenhalgh

A Remote procedure call

int main()

!
\

int a=10:
int b=20:
int result:

l

\
f

result=add_numbers(a,b)

Process X

[

int add_numbers
(1int a, int b)

return a+b:

Process Y

Flow 1 and 3 are identical in both cases
= but each must be a different thread/process

#® Flow 2: call jumps from process X to Y
#® Flow 4: return jumps from process Y to X

Taken from Chris Greenhalgh

What is a procedure call ??

A general abstraction mechanism in
imperative programming languages

Parameterized “language extension”

Defined by an interface which specifies:

—=a [he type of results to be returned
—a The name of the operation
B The arguments to be passed

|
string translateMessageI string msqg, int lang)

Taken from Chris Greenhalgh

17

The procedure call interface

Interface
—
Caller = Callee
=
-
example (x1,...,xn); %ﬂ example (yl,...,yn)
= ?
(av}
>
L
St t
+~]

A proceaure call must speciry
= procedure name (operation)
n the arguments and
n return types.
= Also it must specify where to locate the procedure

18
Taken from Chris Greenhalgh

Requirements:

A layer of abstraction must hide the
communication protocol to the
programmer

A common interface definition language
must abstract from underlying programming
language, computer (IDL, WSDL)

#®“Look-and-feel” shall be similar to a local
procedure call!

19

Implementation Principles

#Transparency
#Heterogeneity
#Concurrency
#Binding

Taken from Chris Greenhalgh

20

Transparency

#Hiding from the programmer whether a
particular procedure call is local or
remote, or which machine it runs on.

= the programmer shouldnt need to “care”
whether a call was local or remote

s Or on which machine it runs

21
Taken from Chris Greenhalgh

Heterogeneity

#Allowing RPCs between processes on
different machines

» Different operating systems

» Different data representations

» Integer and other type sizes and
representations

+ Character sets

s Different underlying programming
languages, etc.

22
Taken from Chris Greenhalgh

Concurrency

An RPC has two threads (flows of control)
a Caller thread
= Callee thread

During RPC the caller thread could either:

= Block, awaiting the result of the RPC
(synchronous)

= Continue with other operations until the result is
returned (asynchronous)
* Need some way to “rejoin” results

23
Taken from Chris Greenhalgh

Binding
A local procedure call is executed in the local
process:

= Linker matches procedure names
= Fills in process-local address of procedure

But: An RPC allows us to call a procedure in
another process:
= How is an appropriate remote procedure located
= How do we specify (i.e. name / context) it?
We distinguish: static and dynamic binding

24
Taken from Chris Greenhalgh

Making a local procedure call

A local procedure call
= Preserves the return address
= Copies the arguments onto the stack
= Allocates space for the return results

= Moves the program counter to the start of the
called function

+ Which executes to completion and copies a return value
into registers or onto the stack

= Tidies up afterwards (pop old address from stack
& continue)

25
Taken from Chris Greenhalgh

Making a remote procedure call -
Overview

#Concepts

#The client & server stubs
#Results

#Flow of control

Distributed objects

26
Taken from Chris Greenhalgh

Concepts

Stub is a local object which acts as a proxy for the
remote service. When the stub is created before
runtime, it is usually called a static stub (static
binding)

Dynamic Invocation Interface. Allows a client to
call a remote procedure even if the signature of the
remote procedure or the name of the service are
unknown until runtime (dynamic binding)

Remark: Dynamic binding can be combined with name and directory services which find appropriate
bindings at runtime, e.g. useful for redundancy or load-balancing. There are respective extensions for
RPC, as we'll see, UDDI provides the web service counterpart for this.

27
Taken from Chris Greenhalgh

Stub-based Remote procedure

call

Start Call Finish
Aalel Callee
B Client specific > Server
- Stub — generic Stub e—
2 9 7 4
Client Server
— Comms —! Comms -
8
3
Network
*()
28

Taken from Chris Greenhalgh

The client stub

The caller’s auxiliary operations are gathered
into a client stub (1)

The stub makes the required preparations
and the passes the data to the processes’
communications function (2)

The communication function passes a stream
of bytes to the remote process, which is
listening for them (3)

29
Taken from Chris Greenhalgh

The server stub

#®Server communication function listens
for incoming communications (3)

#Collects the incoming data, derives the
procedure being called, and passes the
data to the stub for that procedure (4)

#®The stub then calls the actual procedure
code with the received arguments (5)

30
Taken from Chris Greenhalgh

Results

#® Procedure calls results on the server side are
returned to server stub (6)

The server stub the passes the results to the
server comm (7) which sends them to the
client comm as a byte stream (8)

Client comm returns the values to the waiting
client stub (9) which returns the value to the
calling function (10)

31

Taken from Chris Greenhalgh

Extensions of RPC

Distributed Objects
Asynchronous RPC
Message queues

#Transaction processing monitors
(transaction management)

®etc.

32

Distributed Objects

Remote procedure call becomes

Remote method invocation (RMI)

= i.e. methods can be invoked on objects which are
in another process

Access and location transparency:
= Local objects references are ultimately obtained
by instantiating an object (or loading a class) in
the local process.
= Remote object references are obtained from the
distributed object system itself.

33
Taken from Chris Greenhalgh

Distributed object system

Often called “middleware” or “run-time
infrastructure”:

= Provide the glue to link objects in different
process/on different machines

= May provide additional services and support

Examples:
= CORBA
= DCOM
= Java RMI

34
Taken from Chris Greenhalgh

Implementing Distributed objects

Like RPCs...

Relies on interface definitions

= e.g. CORBA IDL, Java RMI interface bytecode
(Web Services: WSDL!)

Defines what a client can ask
= Client-middleware interface (methods signature)

Defines what a server can do
s Middleware-server interface

Middleware handles requests in generic,
portable form

35
Taken from Chris Greenhalgh

Requirements & History...

&

Having a service-oriented architecture and redefining middleware
protocols is not sufficient to address application integration problems
in @ general way, unless these languages and protocols become
standardized and widely adopted.

Standards e.g. set by OASIS or W3C
~WEB services" -> Web = promises high degree of standardization.

Earlier "Standardization" attempts before lack simplicity or generality:

= CORBA is platform- and language independent, but not simple.
= RMI is simple and platform independent, but not language independent

36

Basic Architecture

37

Down to the basics:
What infrastructure do Web Services need?

Standard Protocols
= usually SOAP messages or some other binding (e.g. HTTP get).

An interface definition language (WSDL)

Implementations:
= Can be normal Java classes/programs

= usually deployed in an in the Web container of the Web
Server(application server, e.g. Tomcat)

= special APIs development kits (e.g. AXIS)
= reusing existing Web server infrastructure

= Sometimes counted into the technology stack: directory
infrastructure (e.g. UDDI)

38

Web Service Description

WSDL
document

Service endpoints/

Senvlet/SOAP
container

Java program

Taken from Chris Greenhalgh

Web service
registry
{UDDI/ebXML)

Servlet/SOAP
container

Java program

or other technology...

39

General Structure of Web applications

=

Client Tier

Middle Tier

EIS Tier

i

Web Servers/Application Servers
let you access

Services and applications via
different interfaces (human-
readable HTML, machine-
reradable SOAP, etc.)

Databases, File
systems, etc are
accessible through
APIs located in the
middle tier. JDBC,
SQLJ, or JDO API

40

Web server or container

®

A Web application runs within a Web container of a Web server. The Web
container provides the runtime environment through components that
provide naming context and life cycle management.

General Web aBpIications are not only web services but can be composed
of arbitrary web components and other data such as HTML pages.

Web components can be servlets, JSP pages created with the JavaServer
Pages™ technology, web filters, web event listeners, etc. These
components typically execute in a web server and may respond to HTTP
requests from web clients.

Servlets, JSP pages, and filters
= may be used to generate HTML pages that are an application’s user interface.
= may also be used to generat¢ pother format data that is consumed by

other application component

We'll see, this is exaclty what Web Service
technology is providing: XML based
Messaging standards > SOAP

41

General Structure of the Web Server

Web
Client

Web Server
" Web
HTTPSerlet " Components
Request \
HTTPServiet
Response ‘5/

* 3!
JavaBeans
Components

JDBC ¥ 4

=

42

General Structure of the Web Server

Sample Scenario (without web services):

The client sends an HTTP request to the Web server. A Web
server that implements Java Servlet and JavaServer Pages

tebchnology converts the request into an HTTPServletRequest
object.

This object is delivered to a Web component which may
interact with JavaBeans components or a database to
generate dynamic content.

The Web component may then generate an

HTTPServletResponse or it may pass the request to another
Web component.

Eventually, the response is generated, and Web server
returns it to the client.

43

Web Services Technologies...

... instantiate this basic infrastructure for direct app-to-app communication.
Sample scenario:

1.

2.
3.

service consumer searches UDDI directory for appropriate
service.

Gets WSDL description of service returned

WSDL contains all necessary info to bind (dynamic or static) to
particular service/operation.

Invocation over agreed protocol (e.g. SOAP over HTTP)

Points to Description
--------------------’

WSDL
-,
&,
(™ A
.~. o”)t |
4 Yo, "t -
a Finds Yo, Yice B Describes
= Service ’Q. = Service
-,
= ‘o 4
(for instance, over HTTP)
Service Web
Consumer Service
Communicates with 44

XML Messages

Standards

Requirments:
Transport Standards

(common protocol)

Message Standards

(common message syntax)

Description Standards

(common interface descriptions)

Repository/Discovery Standards

(common registry to find other services)

&

45

Transport Standards

HTTP (HyperText Transfer Protocol).
Specifies the ASCII messages clients may send to
serves and what they get in return. Supports
persistent connections. Port 80.

SMTP (Simple Mail Transfer Protocol).

Simple ASCII based protocol to deliver mail
messages. Error reporting if error occurs. Port
25.

FTP (File Transfer Protocol).

File sharing protocol, based on data transferring
in a reliably and efficiently way, Port 21.

46

Message Standards

Permits to get data from one place to another
over the network.

Web service need to publish interfaces and
represent data in an abstract way.

SOAP is the most used protocol to access Web
services and interchange information in a Web
environment.

- Idea: a standard XML base format
transferred over HTTP.

47

SOAP (Simple Object Access Protocol)

XML Messaging Protocol that allows software
running on disparate operating systems, and
environments to make RPC. Stateless, one-way
message exchange paradigm.

= Envelope: main end-to-end information

SOAP Header] S]
_ = Header: pass information in SOAP messages that is not
application payload.

_ = Body: main end-to-end information, rely on XSD

SOAP Body

48

Description Standards

Service requestor checks services to choose the
one that fulfills its requirements

Web service must facilitate information regarding
its operational capabilities (functional and non-
functional requirements (e.g. transport and
messaging protocols, network endpoint, price,
time-cost, etc)

49

WSDL (Web Service Description
Language)

¢ A WSDL document defines services as collections
of network endpoints (ports)

\

. Interface

Note that:
-This doesn’t say anything about what
services can do, nor how they do it.

- Just defines messages and endpoints in a
y machine understandable and
processable way, i.e. how to access the
service

endpoint

50

Repository/Discovery Standards

& UDDI provides a service registry and API to locate
and search web services. A UDDI registry can be
® thought of as a DNS for business applications.

Authenticated set of operations that
allow organizations to publish
businesses, services, service type

specifications

Non authenticated public set of
- operations that allows users to extract
information out of the UDDI registry.

Classification of businesses and services
according to standard taxonomies

Can link to WSDL (or any other metadata)

51

SOAP

52

SOAP
(Simple Object Access Protocol)

SOAP is a simple XML based protocol to let
applications exchange information over HTTP.

Or more simple: SOAP is a protocol for accessing a
Web Service.

#® Messaging framework for exchanging XML formatted
data over the network

One-way and asynchronous protocol (only a message
format)

W3C recommendation: Version 1.2, June 2003

53

The Web Services Architecture:
SOAP

Exactly speaking, web services build up ON TOP
of all traditional distributed architectures, abstracting from
and linking them together:

Access (SOAP

Enterprise Java Bean (EJB) VB C++ C# Perl Python
CONLAINES ADOENEENMINERddaTE

Hagota Meitod [nyoesidon (7l NENRCIESSESHIIETY

teretneRORENIoIOCoINIOR) Corinon LaneLzes RuUntins
TGP DGO

P Wins2

54

SOAP Building blocks

#® A SOAP message is an ordinary XML document containing the
following elements:

» A required Envelope element that identifies the XML document as
a SOAP message. Defines the start and the end of the message

= An optional Header element that contains any optional attributes
of the message, either at an intermediary point or at the ultimate
end point

= A required body element that contains call and response
information. Contains the XML data comprising the message being
sent

= An optional fault element that provides information about errors
that occurred while processing the message

55

SOAP Building blocks

#All the elements above are declared in the
default namespace for the SOAP envelope:

= http://www.w3.0rg/2001/12/soap-envelope

#and the default namespace for SOAP
encoding and data types is:

= http://www.w3.0rg/2001/12/soap-encoding

56

SOAP (Simple Object Access Protocol)

A travel booking message SOAP Header

SOAP Body

57

SOAP Envelope

The envelope

#indicates the start and the end of the
message so that the receiver knows
when an entire message has been
received,

#is the root element of a SOAP message.
It defines the XML document as a SOAP
message.

58

SOAP Envelope :
xmlins:soap Namespace

#A SOAP message must always have an
Envelope element associated with the
"http://www.w3.0rg/2001/12/soap-envelope”
namespace.

#If a different namespace is used, the
application must generate an error and
discard the message.

59

SOAP Envelope: Example

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=,http://www.w3.0rg/2001/12/soap-envelope
SOAP-ENV:encodingstyle="http://www.w3.0rg/2001/12/soap-

encoding /">

Message information goes here

</SOAP-ENV:Envelope>

encodingstyle attribute ... see below

60

The SOAP Header Element

&

The optional SOAP Header element contains application specific
information (like authentication, payment, etc) about the SOAP
message.

If the Header element is present, it must be the first child
element of the Envelope element.

It may include information about additional attributes.

Note: All immediate child elements of the Header element must
be namespace-qualified.

61

SOAP Header: Example

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/socap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">

<soap:Header>

<m:Trans
xmlns:m="http://www.w3schools.com/transaction/"
soap:mustUnderstand="1">234</m:Trans>
</soap:Header>

</soap:Envelope>

62

SOAP attributes:

#® soap:encodingStyle="URI" used to define the data types
used in the document. This attribute may appear on any SOAP
element, and it will apply to that element's contents and all child
elements.

#® soap:mustUnderstand="0|1" indicates whether the
recipient must process some message part or whether it can be
ignored

#® soap:actor="URI" Not all parts of the SOAP message may
be intended for the ultimate endpoint of the SOAP message but,
instead, may be intended for one or more of the endpoints on
the message path. The SOAP actor attribute may be used to

address the Header element to a particular endpoint. Kind of
routing...

63

The SOAP Body Element

The required SOAP Body element contains the actual

application-defined XML intended for the ultimate endpoint of
the message.

So, elements within the body element are usually not part of the
soap standard.

#® Immediate child elements of the SOAP Body element may be
namespace-qualified.

SOAP defines one element inside the Body element in the
default namespace ("http://www.w3.0rg/2001/12/soap-envelope"):

= the SOAP Fault element, which is used to indicate error messages.

64

SOAP Body: Example

<?xml version="1.0"?>

<soap:Envelope xmlns:socap="http://www.w3.0rg/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">

<soap:Body>

<m:GetPrice xmlns:m="http://www.w3schools.com/prices">
<m:Item>Apples</m:Item>
</m:GetPrice>

</soap:Body>

</soap:Envelope>

65

SOAP Body: Response Example

<?xml version="1.0"7?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-encoding">

<soap:Body>

<m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">
<m:Price>1.90</m:Price>
</m:GetPriceResponse>

</soap:Body>

</soap:Envelope>

66

The SOAP Fault Element

optional

An error message from a SOAP message is carried
inside a Fault element.

If a Fault element is present, it must appear as a
child element of the Body element. A Fault element
can only appear once in a SOAP message.

67

The SOAP Fault Element

#The SOAP Fault element has the
following sub elements:

<faultcode> A code for identifying the fault

<faultstring>A human readable explanation of the fault

<faultactor> Information about who caused the fault to happen

<detail> Holds application specific error information related to the
Body element

68

The SOAP Fault Codes

#®The faultcode values defined below
must be used in the faultcode element
when describing faults:

VersionMismatchFound:

an invalid namespace for the SOAP Envelope.
elementMustUnderstand:

An immediate child element of the Header element, with the

mustUnderstand attribute set to "1", was not understood
Client:

The message was incorrectly formed or contained incorrect

information
Server:

There was a problem with the server so the message
could not proceed

69

How SOAP binds to HTTP:

#® A SOAP method is an HTTP request/response that
complies with the SOAP encoding rules.

% HTTP + XML = SOAP

A SOAP request could be an HTTP POST or an HTTP
GET request.

#® The HTTP POST request specifies at least two HTTP
headers: Content-Type and Content-Length.

70

HTTP headers. Content Type

The Content-Type header for a SOAP request and
response defines the MIME type for the message and
the character encoding (optional) used for the XML
body of the request or response.

Content-Type: MIMEType; charset=character-encoding

#® Example

POST /item HTTP/1.1 Content-Type: application/socap+xml;
charset=utf-8

/1

HTTP headers. Content Length

The Content-Length header for a SOAP request and
response specifies the number of bytes in the body of
the request or response.

Content-Length: bytes

#® Example

POST /item HTTP/1.1 Content-Type: application/socap+xml;
charset=utf-8 Content-Length: 250

72

SOAP Example

#In the example below, a GetStockPrice
request is sent to a server. The request
has a StockName parameter, and a
Price parameter will be returned in the
response. The namespace for the
function is defined in
"http://www.stock.org/stock” address.

73

SOAP Example. Request

POST /InStock HTTP/1.1

Host: www.stock.org

Content-Type: application/soap+xml; charset=utf-8 Content-
Length: nnn

<?xml version="1.0"7?>

<soap:Envelope xmlns:socap="http://www.w3.0rg/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">

<m:GetStockPrice>
<m:StockName>IBM</m:StockName>

</m:GetStockPrice>

</soap:Body>

</soap:Envelope>

SOAP Example. Response

HTTP/1.1 200 OK
Content-Type: application/socap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"7?>

<soap:Envelope xmlns:socap="http://www.w3.0rg/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">

<m:GetStockPriceResponse>
<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>

</soap:Body>

</soap:Envelope>
75

SOAP in one slide, summary:

A SOAP message MUST be encoded using XML

#® A SOAP message MUST use the SOAP Envelope namespace

#® A SOAP message MUST use the SOAP Encoding namespace

#® A SOAP message must NOT contain a DTD reference

A SOAP message must NOT contain XML Processing Instructions

A SOAP message contains the following elements:

= A required Envelope element that identifies the XML document as a
SOAP message

= An optional Header element that contains header information
= A required Body element that contains call and response information

= An optional Fault element that provides information about errors that
occurred while processing the message

76

Wanna watch a SOAP?

4 You can use, e.g. a nice eclipse plugin:
Web Service Console plugin: http://wscep.sourceforge.net/

Java - HelloWorld. java - Eclipse Platform

File Edit Source Refactor Mavigate Search Project Run Window Help
Jj" J%'O'%'J@%@'J@‘?ﬂJ ‘gJ‘f"r'“ (=18 . @W%Resourc

'Problems‘Javadoc‘Declaration’Console £ Soap Message Console X w f ‘ B oy & l il ‘ R I

http: v, . asmx?WsDL I

Web Service Method | |obalweatherSoap.Getweather Web Service URL | servicex.comfalobalweather.asmx?wsDL S03P Action | http: {fwww.webserviceX NET/GetWeather

WSDL: Request: Response:
<7xml version="1.0" encoding="150-8859-1"7? > A | |=?7xml version="1.0" encoding="150-8859-1"?> <2xml version="1.0" encoding="150-8859-1"?>
<wsdl:definitions xmins:http="http:{/schemas.xmlsoap.orgfwsdl/http/" xmins:soap="http:/fsc | |<SOAP-ENV:Envelope xmins:SOAP-ENY="http://schemas.xmlsoap.org/soap/envelof <soap:Envelope xmins:soap="http:/schemas.xmlsoap.orgfsoapfer
<wsdl:types> <SOAP-ENY:Body > <soap:Body >
<sischema elementFormDefault="qualified" targetMNamespace="http://www . webserviced <GetWeather xmins="http: /v, webserviceX NET" > <GetWeatherResponse xmins="http: {jwww, webserviceX NET'
<s:element name="Get\Weather"> <GetWeatherResult >< 7xml version="1.0" encoding="utf-
<s:icomplexType> <CityName xsi:type="xsd:string" =Innsbruck</CityName > Rt Current'Weather>
<sisequence> &t;Location> Innsbruck-Flughafen, Austria (LOWI) 47-16M 011-
<s:element minOccurs="0" maxOccurs="1" name="CityName" type="s:string"} <CountryMame xsi:type="xsd:string" > <fCountryMName > &t; Time> Jun 07, 2005 - 03:20 PM EDT [2005.06,07 1920 UTCE
<sielement minOccurs="0" maxOccurs="1" name="CountryMame" type="s:stri <jGet\Weather > &t;Windagt; From the NW (320 degrees) at S MPH {4 KT) (direction
<fsisequence <JSOAP-ENV:Body > < visibility&agt; greater than 7 mile(s): 0&dt; /Visibilityqgt;
<JsicomplexType> </SOAP-ENY:Envelope> &Jt; SkyConditions&agt; mostly cloudyadt; jSkyConditionsggt;
<fsielement > < Temperaturefat; 46 F (8 C)&dt;/Temperaturedqgt;
<s:element name="Get\WeatherResponse"> <DewPoint> 42 F (6 C)</DewPointqgt;
<sicomplexType= &t;RelativeHumidity> 87%< fRelativeHumidityaagt;
<sisequence alt;Pressuredat; 30,45 in, Hg (1031 hPa)adt; /Pressuredat;
<sielement minOccurs="0" maxOccurs="1" name="GetWeatherResult" type=" &Jt; Statusgt; Successadt; /Statusagt;
<Jsisequence> glt; jCurrentWeatheriat; </GetWeatherResult >

<JsicomplexType> —
<fsielement >
<s:element name="GetCitiesByCountry" >
<sicomplexType>
<sisequence
<s:element minOccurs="0" maxOccurs="1" name="CountryMame" type="s:stri
<Jsisequence>
</s:icomplexType>
<Jsielement >
<s:element name="GetCitiesByCountryResponse" >
<sicomplexType>
<sisequences
<sielement minOccurs="0" maxOccurs="1" name="GetCitiesByCountryResult"
<[sisequence >
<jsicomplexType=
<fsielement >
<s:element name="string" nillable="true" type="s:string"{>
<fsischema
<fwsdlitypes=
<wsdl:message name="Get\WeatherSoapIn">
<wsdl:part name="parameters" element="tns:GetWeather"} >
<fwsdl:message>
<wsdl:message name="Get\WeatherSoapOut">
<wsdl:part name="parameters" element="tns:GetWeatherResponse"{>
<jwsdl:message>
<wsdl:message name="GetCitiesByCountrySoapIn">
<wsdl:part name="parameters" element="tns:GetCitiesByCountry"{>

</GetWeatherResponse >
</soap:Body >
<[/soap:Envelope>

WSDL

78

Web Services Description
Language (WSDL)

4 WSDL is an XML-based language for describin
Web services interfaces and how to access them.

4 What is WSDL?

= WSDL stands for Web Services Description Language

s WSDL is written in XML, ie. a WSDL description is an XML
document
= WSDL is used to
+ describe Web services
+ |locate Web services
+ Automatically bind/invoke Web services
= WSDL 1.1 (a W3C Note only!) is current defacto standard

¥ \2/\(/)%DI)_ 2.0 is a W3C working draft (last version 26 March
7

79

Web Services Description
Language (WSDL)

#® Web services expose a software-oriented view of a business or
consumer function with which applications may interact over the
network

To enable such an interaction, a web service must be described
and advertised to its potential users. Description means:
= What operations it provides
= What data it expects to receive (input)
= Which results should deliver (output)
= What communication protocols or transport it supports (binding)

80

Web Services Description
Language (WSDL)

#® WSDL elements contain a description of the
messages, typically using one or more XML
Schemas, to be passed to the web service so that
both sender and receiver understand the data being
exchanged

#® WSDL elements also contain a description of the
operations that the service can perform on that
data, so that the receiver of the message knows how
to process it and a binding to a protocol or transport,
so that the sender knows how to send it.

Typically, WSDL is used with SOAP, and the WSDL
specification includes a SOAP binding, but other

bindings are allowed as well
81

WSDL (Web Service Description
Language)

&

% A WSDL document defines services as collections

of network endpoints (ports)
)

} Interface Note however,

that WSDL doesn’t
say anything about

y what services can do,
nor how they do it.

endpoint

82

WSDL Ports and Services

®Ports:

m Ports are used to expose a set of operations
or port types.

= The port types can be grouped for one or
more bindings

#Services:
= A service encloses one or more portTypes
m [t includes some ports

83

WSDL (Web Service Description
Language)
Overall structure of a typical WSDL file:

<definitions>
<types>
definition of types........
</types>

<message>
definition of a message....
</message>

<portType>
definition of a port types (operations).......
</portType>

<binding>
definition of a binding....
</binding>

<service>
relating ports (individual endpoint) and their
bindings. ...
</service>
</definitions>

WSDL Data types

#You can either use XSD simple types or

optionally define new types using XML
schema syntax in the types element:

<types>
<schema .. >
<complexType name = "PurchaseOrder">

<element name="NameofProduct" type="xsd:string"/>
<element name="Price" type="xsd:integer"/>
</complexType>

</schema>
</types>

85

WSDL message

Individual Data Types are mapped into Messages

Messages can be sent and received by the described
web service

#® Messages consist of one or more parts.

<message name =,PurchaseOrderRequest" >
<part name=,MyChristmasOrder"“

<§z§§f§§%dl:Purch§§§§§§§§§>

</message>

Defined in <types>

Side remark: You can alternatively also refer to
elements in the schema defined in types using the
element=URI attribute

86

WSDL operation

QOperations perform the actions on the data

@ Operations are defined so that the web service knows how to
interpret the data and what, if any, data is to be returned on
the reply

Several types:

= One-way: A message is sent without a requirement to return a
reply (only input, or only output)

= Two-way: A message is sent and the receiver must send a
corresponding reply (request-response or solicit-response)

<operation name =, ProcessPurchaseOrder™“ >
<input message=, PurchaseOrder"“ name=,MyOrder™“>
<output message=, PurchaseOrderResult"
name=, ResultofMyOrder"“>
</operation>

87

WSDL portType

A logical grouping of operations

The <portType> element is the most
important WSDL element.

[t defines a web service, the operations that
can be performed, and the messages that are
involved.

The <portType> element can be compared
to a function library (or a module, or a class)
in a traditional programming language.

88

Operation types

The request-response type is the most common operation
type, but WSDL defines four types:

One-way:
The operation receives a message but will not return a response
Request-response:

The operation can receive a request and will return a response
Solicit-response:

The operation can send a request and will wait for a response
Notification:
The operation can send a message but will not wait for a response

(not explicit, but implicit by the fact whether input/output are defined)

89

One-way Operation

A one-way operation example:

<message name="newTermValue">
<part name="term" type="xsd:string"/>
<part name="value" type="xsd:string"/>
</message>

<portType name="glossaryTerms">
<operation name="setTerm">
<input name="newTerm" message="newTermValue"/>
</operation>
</portType >

90

Request-Response Operation

A request-response operation example:

<message name="HelloRequest'">
<part name="term" type="xsd:string"/>
</message>

<message name="HelloResponse">
<part name="value" type="xsd:string"/> </message>

<portType name="glossaryTerms">
<operation name="getTerm">
<input - message="getTermRequest" />
message="getTermResponse" />

Remark: WSDL provides some default values based on the operation name. If the name attribute
is not specified on a one-way or notification message, it defaults to the name of the operation. If
the name attribute is not specified on the input or output messages of a request-response or
solicit-response operation, the name defaults to the name of the operation with
"Request"/"Solicit" or "Response" appended, respectively.

91

WSDL portType

A portType groups a set of operations:

<portType name=, PurchaseOrderPortType“>
<operation name =,ProcessPurchaseOrder™ >
<input message=,PurchaseOrder"“ name=,MyOrder™>
<output message=, PurchaseOrderResult"
name=,ResultofMyOrder™>
</operation>
<operation name =,CancelPurchaseOrder™ >
<input message=,CancelPurchaseOrder"
name=, CancelMyOrder“>
<output message=, CancelPurchaseOrderResult™
name=, CancelResultofMyOrder™>
</operation>
</portType>

92

WSDL Binding

A binding defines message format and protocol details for operations and messages defined by
a particular PortType.

The <binding> element defines the message format and protocol details for each port.
The soap:binding element has two attributes - the style attribute and the transport attribute.

The style attribute can be "rpc" or "document”. In this case we use rpc. The transport attribute
defines the SOAP protocol to use. In this case we use HTTP.

¢ e @

<binding name="StockQuoteSocapBinding"“ type="tns:StockQuotePortType">

<soap:binding style=“rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetTradePrices">
<soap:operation soapAction="http://example.com/GetTradePrices"/>
<input>
<soap:body use="encoded“ namespace="http://example.com/stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded" namespace="http://example.com/stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>

</binding>

Service and Port

A port defines an individual endpoint by specifying a
single address for a binding (Remark: WSDL then not
re-usable for several services)

A service groups a set of related ports together

<wsdl:definitions >
<wsdl:service >
<wsdl:port name="nmtoken" binding="gname">
<-- extensibility element (1) -->
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

94

A complete example I

<?xml version="1.0"?><definitions
name="StockQuote"targetNamespace="http://bankTyrol.com/balance.wsdl"
xmlns:tns="http://bankTyrol.com/balance"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:xsdl="http://bankTryol.com/schema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="GetBalanceInput">
<part name="creditCardNumber" element="xsd:string"/>
</message>
<message name="GetBalanceOutput">
<part name="result" type="xsd:String"/>
</message>

<portType name="GetBalancePortType">
<operation name="GetCurrentBalance" parameterOrder="creditCardNumber">
<input message="tns:GetBalanceInput"/>
<output message="tns:GetBalanceOutput"/>
</operation>
</portType>

95

A complete example 11

<binding name="GetBalanceSoapBinding" type="tns:GetBalancePortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetCurrentBalance">
<soap:operation soapAction="http://bankTyrol.com/GetBalance"/>
<input>
<soap:body use="encoded" namespace="http://bankTyrol.com/Balance "
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>
<output>
<soap:body use="encoded" namespace="http://bankTyrol.com/Balance "
encodingStyle="http://schemas.xmlsoap.orqg/soap/encoding/" />
</output>
</operation>
</binding>

<service name="GetBalanceService">
<documentation>Service used by bankTyrol.com Inc.</documentation>
<port name="GetBalancePort" binding="tns:StockQuoteBinding">
<soap:address location="http://bankTyrol.com/balance"/>
</port>
</service>
</definitions>

96

WSDL 2.0: work in progress...
still not ready ©

We covered WSDL 1.1 so far

http://www.w3.org/TR/wsdl
Namespace: http://schemas.xmlsoap.org/wsdl/

Most recent version at W3C, WSDL 2.0:
http://www.w3.org/TR/wsdI20/

Is a proposed recommendation (last step before “officia
W3C Recommendation) since *yesterday*!

|II

Some changes:
= portTypes have been renamed to interfaces
= ports have been renamed to endpoints
m WSDL 2.0 removes operation overloading
= import other schema languages (DTD, etc.)
m etc.

#® See also: http://jacek.cz/presentations/2006-05-25-wsdI2.html 97

Real Examples

98

How where do I find available WS?

amazon.com.

Google

X METHODS

99

AMmMazon.com htip://aws.amazon.com/

Q Amazon.com - Web Services - Avant Browser

}Flle Edit View MNavigation Groups Favorites Tools Windows Help

BEEESOEE

Back ~

Address: €] http://www.amazon.com/qgp/browse.html/r ~ 6o - || Search:

Download RoboForm Form Filler Plug-in...

F-X-B-% Lo B-48 35 @ - [#EERsock| []New -

v ¥ Search Web ~) Search Site /] Find & Highlight

Amazon Exclusive!!
Order a Segway now!
It's only at Amazon

7/

Getting Started
Download SDK

Apply for Token
EAQ
Licensing Agreement

Web Services for....

Developers
Associates
Sellers and Vendors

Tools
XML Scratch Pad
Seller Pricing Tool

Applications

Featured Developer
Sample Apps

Resources
Discussion Board
Announcements
Articles and Tutorials
Developer Chat

&) dip-a| €] Ar B| € AAA | & BOO| &) soL Iéllnnsl@é-sal@ﬁurolﬁ FIRS| & Artic

VIEW CART WISH LIST I YOUR ACCOUNT I HELP

amazoncom.

m MAKE SEE MORE
MONEY STORES
PROGRAM MARKETPLACE ASSOCIATES

WEB
OVERVIEW ADVANTAGE

PAID
SERVICES PLACEMENTS

Developers: Build Solutions for Amazon Partners

Since launching the first version of Amazon Web Services in July 2002, thousands of developers have applied to our program.
Some of these developers have used our Web Services platform to launch their own software solutions or small businesses.
Most of these solutions fall into two main categories:

e solutions for sellers (inventory management tools, competitive pricing tools, etc.)
e solutions for Associates (dynamic link generators, store-builders, etc.)

Here is an example of a developer who built a product for Amazon sellers:

Web Services Developer: SellerEngine Software

SellerEngine is a software application that enables Amazon Marketplace sellers to load, price and manage their Marketplace
listings directly from their desktop through an easy-to-use and customizable user interface. SellerEngine’s developer, Ioan
Mitrea, originally created the program for himself, but soon realized that he could package up his solution and sell it to other
Amazon Marketplace sellers. Ioan’s product uses Web Services to perform seller-specific queries so that his users have the
pricing and inventory information that they need to move more product.

The SellerEngine program retails for $199. More information can be found at http://www.sellerengine.com.

Tice ¥ | Crock Tia Commnts | MyPeko Amanon's Prce Ratk New UseS Same orbabarcsossc
6 @ ! ¥ EawilosAq. clenbuma $i116 3WIE3 9% @6
T @Y Viaking ARt . clean & uremas $1495 2021785 si55 5708
e) lean & urmar ss0a 8755
a e Aba. los cloth HA 595 11262 250850
0 S.0. 0
1 Fest EszonFe s Fess stcosiea

$2% 178013 $195 1009125
$24%5 1A

Forgetton Man tiade pazartac
acd £

Fine Hae

e R

CRUCRR RS

6660660660

P fem e map s
& Pap | &

LEO

Icwl@ IEEE | &) palm| &) dip-e| &) Sinu | & Esw| & AC2 | &) <ne |

v

[@ sentitems-... | @§pais2003-... [@fLlectures vi.. | % C:\Projects\...

Q@ Avant Browser

|BES® 1]

Google

Just removed their Web Service API from
http://www.google.com/apis/ :-(

What does this show us:

= Not everybody wants to have his/her services public!
m ... especially if they are commercially successful ;-)

You can still try to fins some Web services using google...

search for filetype:wsdl
admittedly, maybe not the best way ;-)

101

Xmethods hitp://www.xmethods.net/

@ www.xmethods.net - Avant Browser

BE

File Edit View Navigation Groups Favorites Tools Windows Help

o1 [[=[X]

& sack - X-B-6 Lo B-A2BS0-
Address: €] http://www.xmethods.com/ ~ @co - | Search: xmethods ~ ¥ Search Web ~) Search Site] Find & Highlight
Download RoboForm Form Filler Plug-i

~
x METHODS Home - Interfaces - Tools !mglementatim:\sb' ﬂ.\\iﬂni\ge-Reg'slu'l'utoria.lsvkiailmg List-
Welcome to XMethods. Updates

Emerging web services standards such as SOAP, WSDL and UDDI will enable
system-to-system integration that is easier than ever before. This site lists publicly
available web services.

2003-09-18 New site feature: TRY IT [Read]
2003-09-03 New tutorial: Systinet - Chat service [Read]
2003-07-01 New tutorial: Strikelron [Read]

XSpace Programmatic Interfaces

XSpace is an experimental shared database "space” that stores keyed SOAP Access XMethods through a variety of interfaces:

envelopes . Now with events and d fle interface.
« UDDIv2 * SO0AP
« WS-Inspection « DISCO
* RBSS

NEW! Read about the TRY IT feature.

Recent Listings [View the FULL LIST]
Publisher Style Service Name Description

Implementation
naginaidu RPC Irylt ZenOuotes Serves up random Zen quotes
lokeuei DOC Irylt Magnum 4D Web Service Beoyides foresfup ffoitste Mo pn) MS NET
2 Results for Malaysian Gamers
Retums location specific data based on
stewillcock DOC Irylt GeoMonster ZIPServe zip/postal code (register for free on MS NET
Inlt http:/www.geomonster.com to get a license
key)
Retum location specific data based on an IP
. § i address (register for free on
stewillcock DOC Irylt GeoMonsterIPServe Bttp e peomonster com/ o get alicense MS NET
key)
Retums a random word in English and first
sfroh RPC Irylt getRandomGoogleSearch corresponding image from Google image
search
. 5 Retums a random quote from George W.
D S gmiavdenSushie Bush. Sample client in PHP also available.
eqimasews DOC Telt CSeach Search engine in french town heraldic NS NET
amass St SSech database. i

€] dip-a| €] Ar B| € AAA | &) BOO| €] SOL | €] Inns | €] E-Ba| €] Euro | €] FIRS| €] Artic | €] Pap | €] LEO | €] ICW | &) IEEE | €] palm| €] dip-e| €] Sinu | &) ESW | €] AC2 | €] <ne
& ww £ DAM

(g

g start [ON _CWUg &4 DAIS 2.

Remarkably, Web Service Technology is currently still
rather used WITHIN companies than that there are really
Many publically available Web Services !

102

References

[Aolonso et al. 2003] G. Alonso, F. Casati, H. Kuno, V. Machiraju:
Web Services: Concepts, Architectures and Applications

[SOAP 2003] SOAP version 1.2 Part 0: Primer, W3C Recommendation
24 June 2003.

[UDDI 2002] UDDI Version 3.0, published specification 19 July 2002,
available at http://www.uddi.org/specification.html.72-85,
January/February 2003.

[WSDL 2003] Web Services Description Language (WSDL) Version
1.2. W3C Working Draft 3 March 2003.

[W3C 2002] W3C: Web Service description requirements,
%tgz://www.WB.org/TR/ws-desc-reqs/, W3C working draft 28 October

103

