
Web Services -Web Services -
OverviewOverview

Recuperación de Información 2007
Lecture 7.

2

ContentsContents
 Motivation
 Concepts:

 Web Services, Service-Oriented Architectures

 Roots: RPC, Distributed Computing
 Basic Architecture
 Standards:

 SOAP
 WSDL

 Conceptual Example
 Real Example

 Build/deploy/call Web services with Apache AXIS

3

MotivationMotivation

4

5

Services on the Web:Services on the Web:
WhatWhat’’s next?s next?

Applications
 E-marketplaces.
 Open, automated B2B e-commerce.
 Business process integration on the Web.
 Resource sharing, distributed computing.

Current approach is ad-hoc on top of existing
standards.
 e.g., application-to-application interactions with HTML

forms, screen scraping/wrapper technologies.

Goal: enabling systematic+standardized
application-to-application interaction on the
Web.

Francisco Curbera - IBM T.J. Watson Research Center – Livermore July 25 2001

6

Concepts: Web ServicesConcepts: Web Services

“Web services” are an effort to build a
distributed computing platform for the Web.

 Yet another one?! (CORBA, RMI, etc.)
NO! Provide a family of standards for
communication and dynamic interactions of
applications just as XML provides for static
data exchange.

Francisco Curbera - IBM T.J. Watson Research Center – Livermore July 25 2001

7

Designing Web Services IDesigning Web Services I

Goals
 Enable universal interoperability.
 Widespread adoption, ubiquity: fast!
 Enable (Internet scale) dynamic binding.

 Support a service oriented architecture (SOA).

 Efficiently support both open (Web) and
more constrained environments (within
enterprise boundaries).

Francisco Curbera - IBM T.J. Watson Research Center – Livermore July 25 2001

8

Designing Web Services IIDesigning Web Services II
Requirements
 Based on standards. Pervasive support is essential (critical

mass!), neither CORBA nor any of its competitors has
made it to an ubiquitous standard

 Minimal amount of required infrastructure is assumed.
 Only a minimal set of standards must be implemented.
 web server, application server,internet access should do…

 Very low level of application integration is expected.
 But may be increased in a flexible way.

 Focus on the messages and documents, not on specific
programming languages or APIs.

Francisco Curbera - IBM T.J. Watson Research Center – Livermore July 25 2001

9

ConceptsConcepts

10

Web Services: DefinitionsWeb Services: Definitions
1) “Loosely coupled, reusable software components that encapsulate discrete

functionality and are distributed and programmatically accessible over standard
Internet protocols”, The Stencil Group

2) Web service applications are encapsulated, loosely coupled Web “components”
that can bind dynamically to each other, F. Curbera

3) “Web Services are a new breed of application. They are self-contained, self-
describing, modular applications that can be published, located, and invoked
across the Web. Web Services perform functions, which can be anything from
simple request to complicated business processes”, The IBM Web Services
tutorial

Common to all definitions:
 Components providing functionality
 Distributed
 Accessible over the Web

11

ScopeScope
Applications are (ideally) to be assembled from a set
of appropriate Web Services and no longer to be
written manually

Web Services are often viewed like Remote
Procedure Calls (RPCs) over the Web…

… but have potential beyond this:
 Open, modular, extensible standards
 Combine e.g. with Semantic Web technologies (SAWSDL)
 Data and control flow to be defined separately (BPEL)

12

RootsRoots –– RPC, RPC,
Distributed applicationsDistributed applications

13

Inter Process Communication (IPC)Inter Process Communication (IPC)

Provide communication between
processes
 To transfer information
 To invoke an action in a remote process

(optionally running in a remote machine)

Taken from Chris Greenhalgh

14

Remote Procedure Call (RPC)Remote Procedure Call (RPC)

High level representation of IPC
remotely
Uses the normal procedure call
metaphor and programming style
Calls a procedure in another process
Hides/abstracts from underlying
communication

Taken from Chris Greenhalgh

15

A local procedure callA local procedure call

Taken from Chris Greenhalgh

16

A Remote procedure callA Remote procedure call

Taken from Chris Greenhalgh

Flow 1 and 3 are identical in both cases
 but each must be a different thread/process

Flow 2: call jumps from process X to Y
Flow 4: return jumps from process Y to X

17

What is a procedure call ??What is a procedure call ??

A general abstraction mechanism in
imperative programming languages
Parameterized “language extension”
Defined by an interface which specifies:
 The type of results to be returned
 The name of the operation
 The arguments to be passed

string translateMessage (string msg, int lang)

Taken from Chris Greenhalgh

18

The procedure call interfaceThe procedure call interface

A procedure call must specify
 procedure name (operation)
 the arguments and
 return types.
 Also it must specify where to locate the procedure

Taken from Chris Greenhalgh

19

Requirements:

A layer of abstraction must hide the
communication protocol to the
programmer

A common interface definition language
must abstract from underlying programming
language, computer (IDL, WSDL)

“Look-and-feel” shall be similar to a local
procedure call!

20

Implementation PrinciplesImplementation Principles

Transparency
Heterogeneity
Concurrency
Binding

Taken from Chris Greenhalgh

21

TransparencyTransparency

Hiding from the programmer whether a
particular procedure call is local or
remote, or which machine it runs on.
 the programmer shouldn’t need to “care”

whether a call was local or remote
 or on which machine it runs

Taken from Chris Greenhalgh

22

HeterogeneityHeterogeneity

Allowing RPCs between processes on
different machines
 Different operating systems
 Different data representations

 Integer and other type sizes and
representations

 Character sets
 Different underlying programming

languages, etc.

Taken from Chris Greenhalgh

23

ConcurrencyConcurrency
An RPC has two threads (flows of control)
 Caller thread
 Callee thread

During RPC the caller thread could either:
 Block, awaiting the result of the RPC

(synchronous)
 Continue with other operations until the result is

returned (asynchronous)
 Need some way to “rejoin” results

Taken from Chris Greenhalgh

24

BindingBinding
A local procedure call is executed in the local
process:
 Linker matches procedure names
 Fills in process-local address of procedure

But: An RPC allows us to call a procedure in
another process:
 How is an appropriate remote procedure located
 How do we specify (i.e. name / context) it?
We distinguish: static and dynamic binding

Taken from Chris Greenhalgh

25

Making a local procedure callMaking a local procedure call

A local procedure call
 Preserves the return address
 Copies the arguments onto the stack
 Allocates space for the return results
 Moves the program counter to the start of the

called function
 Which executes to completion and copies a return value

into registers or onto the stack

 Tidies up afterwards (pop old address from stack
& continue)

Taken from Chris Greenhalgh

26

Making a remote procedure call -Making a remote procedure call -
OverviewOverview

Concepts
The client & server stubs
Results
Flow of control
Distributed objects

Taken from Chris Greenhalgh

27

ConceptsConcepts

Stub is a local object which acts as a proxy for the
remote service. When the stub is created before
runtime, it is usually called a static stub (static
binding)
Dynamic Invocation Interface. Allows a client to
call a remote procedure even if the signature of the
remote procedure or the name of the service are
unknown until runtime (dynamic binding)

Remark: Dynamic binding can be combined with name and directory services which find appropriate
bindings at runtime, e.g. useful for redundancy or load-balancing. There are respective extensions for
RPC, as we’ll see, UDDI provides the web service counterpart for this.

Taken from Chris Greenhalgh

28

Stub-based Remote procedureStub-based Remote procedure
callcall

Taken from Chris Greenhalgh

29

The client stubThe client stub

The caller’s auxiliary operations are gathered
into a client stub (1)
The stub makes the required preparations
and the passes the data to the processes’
communications function (2)
The communication function passes a stream
of bytes to the remote process, which is
listening for them (3)

Taken from Chris Greenhalgh

30

The server stubThe server stub

Server communication function listens
for incoming communications (3)
Collects the incoming data, derives the
procedure being called, and passes the
data to the stub for that procedure (4)
The stub then calls the actual procedure
code with the received arguments (5)

Taken from Chris Greenhalgh

31

ResultsResults

Procedure calls results on the server side are
returned to server stub (6)
The server stub the passes the results to the
server comm (7) which sends them to the
client comm as a byte stream (8)
Client comm returns the values to the waiting
client stub (9) which returns the value to the
calling function (10)

Taken from Chris Greenhalgh

32

Extensions of RPC

 Distributed Objects
 Asynchronous RPC
 Message queues
Transaction processing monitors
(transaction management)
etc.

33

Distributed ObjectsDistributed Objects

Remote procedure call becomes
Remote method invocation (RMI)
 i.e. methods can be invoked on objects which are

in another process

Access and location transparency:
 Local objects references are ultimately obtained

by instantiating an object (or loading a class) in
the local process.

 Remote object references are obtained from the
distributed object system itself.

Taken from Chris Greenhalgh

34

Distributed object systemDistributed object system

Often called “middleware” or “run-time
infrastructure”:
 Provide the glue to link objects in different

process/on different machines
 May provide additional services and support

Examples:
 CORBA
 DCOM
 Java RMI

Taken from Chris Greenhalgh

35

Implementing Distributed objectsImplementing Distributed objects

Like RPCs…
Relies on interface definitions
 e.g. CORBA IDL, Java RMI interface bytecode

 (Web Services: WSDL!)

Defines what a client can ask
 Client-middleware interface (methods signature)

Defines what a server can do
 middleware-server interface

Middleware handles requests in generic,
portable form

Taken from Chris Greenhalgh

36

Requirements & History…
Having a service-oriented architecture and redefining middleware
protocols is not sufficient to address application integration problems
in a general way, unless these languages and protocols become
standardized and widely adopted.
Standards e.g. set by OASIS or W3C
„WEB services“ -> Web = promises high degree of standardization.

Earlier "Standardization" attempts before lack simplicity or generality:

 CORBA is platform- and language independent, but not simple.
 RMI is simple and platform independent, but not language independent

37

Basic ArchitectureBasic Architecture

38

Down to the basics:
What infrastructure do Web Services need?

Standard Protocols
 usually SOAP messages or some other binding (e.g. HTTP get).

An interface definition language (WSDL)
Implementations:
 Can be normal Java classes/programs
 usually deployed in an in the Web container of the Web

Server(application server, e.g. Tomcat)
 special APIs development kits (e.g. AXIS)
 reusing existing Web server infrastructure
 Sometimes counted into the technology stack: directory

infrastructure (e.g. UDDI)

39

Web Service DescriptionWeb Service Description

Taken from Chris Greenhalgh

or other technology…

40

General Structure of Web applications

Databases, File
systems, etc are
accessible through
APIs located in the
middle tier. JDBC,
SQLJ, or JDO API

Web Servers/Application Servers
let you access
Services and applications via
different interfaces (human-
readable HTML, machine-
reradable SOAP, etc.)

41

Web server or containerWeb server or container

A Web application runs within a Web container of a Web server. The Web
container provides the runtime environment through components that
provide naming context and life cycle management.

General Web applications are not only web services but can be composed
of arbitrary web components and other data such as HTML pages.
Web components can be servlets, JSP pages created with the JavaServer
Pages™ technology, web filters, web event listeners, etc. These
components typically execute in a web server and may respond to HTTP
requests from web clients.

Servlets, JSP pages, and filters
 may be used to generate HTML pages that are an application’s user interface.
 may also be used to generate XML or other format data that is consumed by

other application components

We'll see, this is exaclty what Web Service
technology is providing: XML based
Messaging standards  SOAP

42

General Structure of the Web ServerGeneral Structure of the Web Server

43

General Structure of the Web ServerGeneral Structure of the Web Server

Sample Scenario (without web services):
 The client sends an HTTP request to the Web server. A Web

server that implements Java Servlet and JavaServer Pages
technology converts the request into an HTTPServletRequest
object.

 This object is delivered to a Web component which may
interact with JavaBeans components or a database to
generate dynamic content.

 The Web component may then generate an
HTTPServletResponse or it may pass the request to another
Web component.

 Eventually, the response is generated, and Web server
returns it to the client.

44

Web Services TechnologiesWeb Services Technologies……
… instantiate this basic infrastructure for direct app-to-app communication.
Sample scenario:
1. service consumer searches UDDI directory for appropriate

service.
2. Gets WSDL description of service returned
3. WSDL contains all necessary info to bind (dynamic or static) to

particular service/operation.
4. Invocation over agreed protocol (e.g. SOAP over HTTP)

(for instance, over HTTP)

45

StandardsStandards
Requirments:Requirments:

 Transport Standards
(common protocol)

 Message Standards
(common message syntax)

 Description Standards
(common interface descriptions)

 Repository/Discovery Standards
(common registry to find other services)

 Process description standards:
(common standards to describe interaction protocols,

control and data flow, etc.) BPEL4WS, WSCI, etc.

 Further topics standards: Security and Trust, …

46

Transport StandardsTransport Standards

HTTP (HyperText Transfer Protocol).
Specifies the ASCII messages clients may send to
serves and what they get in return. Supports
persistent connections. Port 80.
SMTP (Simple Mail Transfer Protocol).
Simple ASCII based protocol to deliver mail
messages. Error reporting if error occurs. Port
25.
FTP (File Transfer Protocol).
File sharing protocol, based on data transferring
in a reliably and efficiently way, Port 21.

47

Message StandardsMessage Standards

Permits to get data from one place to another
over the network.
Web service need to publish interfaces and
represent data in an abstract way.

SOAP is the most used protocol to access Web
services and interchange information in a Web
environment.

 Idea: a standard XML base format
transferred over HTTP.

48

SOAP (Simple Object Access Protocol)SOAP (Simple Object Access Protocol)
XML Messaging Protocol that allows software
running on disparate operating systems, and
environments to make RPC. Stateless, one-way
message exchange paradigm.

 Envelope: main end-to-end information

 Header: pass information in SOAP messages that is not
application payload.

 Body: main end-to-end information, rely on XSD

49

Description StandardsDescription Standards

Service requestor checks services to choose the
one that fulfills its requirements
Web service must facilitate information regarding
its operational capabilities (functional and non-
functional requirements (e.g. transport and
messaging protocols, network endpoint, price,
time-cost, etc)

50

WSDL (Web Service DescriptionWSDL (Web Service Description
Language)Language)

A WSDL document defines services as collections
of network endpoints (ports)

Interface

endpoint

Port

Service

Binding

Operation

Port Type

Message

Types

Note that:
-This doesn’t say anything about what
services can do, nor how they do it.
- Just defines messages and endpoints in a
machine understandable and
processable way, i.e. how to access the
service

51

Repository/Discovery StandardsRepository/Discovery Standards
UDDI provides a service registry and API to locate
and search web services. A UDDI registry can be
thought of as a DNS for business applications.

Classification of businesses and services
according to standard taxonomies
Can link to WSDL (or any other metadata)

Publication

Inquiry

Authenticated set of operations that
allow organizations to publish
businesses, services, service type
specifications

Non authenticated public set of
operations that allows users to extract
information out of the UDDI registry.

52

SOAPSOAP

53

SOAPSOAP
(Simple Object Access Protocol)(Simple Object Access Protocol)

 SOAP is a simple XML based protocol to let
applications exchange information over HTTP.
Or more simple: SOAP is a protocol for accessing a
Web Service.
Messaging framework for exchanging XML formatted
data over the network
One-way and asynchronous protocol (only a message
format)
W3C recommendation: Version 1.2, June 2003

54

TheThe Web Services Web Services ArchitectureArchitecture::
SOAPSOAP

IPIP
TCPTCP

Internet-Inter ORB protocol (IIOP)Internet-Inter ORB protocol (IIOP)

Remote Method Invocation (RMI) Remote Method Invocation (RMI)

ContainerContainer

Enterprise Java Bean (EJB)

Win32Win32
DCOMDCOM

Common Language RuntimeCommon Language Runtime

.NET classes library.NET classes library

ADO .NET: XML and dataADO .NET: XML and data

VB C++ C# Perl Python …

Access (SOAP)

Exactly speaking, web services build up ON TOP
of all traditional distributed architectures, abstracting from
and linking them together:

55

SOAP Building blocksSOAP Building blocks
A SOAP message is an ordinary XML document containing the
following elements:

 A required Envelope element that identifies the XML document as
a SOAP message. Defines the start and the end of the message

 An optional Header element that contains any optional attributes
of the message, either at an intermediary point or at the ultimate
end point

 A required body element that contains call and response
information. Contains the XML data comprising the message being
sent

 An optional fault element that provides information about errors
that occurred while processing the message

56

SOAP Building blocksSOAP Building blocks

All the elements above are declared in the
default namespace for the SOAP envelope:
 http://www.w3.org/2001/12/soap-envelope

and the default namespace for SOAP
encoding and data types is:
 http://www.w3.org/2001/12/soap-encoding

57

SOAP (Simple Object Access Protocol)SOAP (Simple Object Access Protocol)

A travel booking message
example…

58

SOAP SOAP EnvelopeEnvelope

The envelope
indicates the start and the end of the
message so that the receiver knows
when an entire message has been
received,
is the root element of a SOAP message.
It defines the XML document as a SOAP
message.

59

SOAP SOAP EnvelopeEnvelope :
xmlns:soap Namespace

A SOAP message must always have an
Envelope element associated with the
"http://www.w3.org/2001/12/soap-envelope"
namespace.
If a different namespace is used, the
application must generate an error and
discard the message.

60

SOAP SOAP Envelope: ExampleEnvelope: Example

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=„http://www.w3.org/2001/12/soap-envelope
 SOAP-ENV:encodingstyle="http://www.w3.org/2001/12/soap-

encoding /">
...
Message information goes here
...

</SOAP-ENV:Envelope>

encodingstyle attribute … see below

61

The SOAP Header Element
The optional SOAP Header element contains application specific
information (like authentication, payment, etc) about the SOAP
message.
If the Header element is present, it must be the first child
element of the Envelope element.
It may include information about additional attributes.
Note: All immediate child elements of the Header element must
be namespace-qualified.

62

SOAP Header: ExampleSOAP Header: Example
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">

<soap:Header>
<m:Trans
xmlns:m="http://www.w3schools.com/transaction/"
soap:mustUnderstand="1">234</m:Trans>
</soap:Header>

...

...

</soap:Envelope>

63

SOAP attributes:

soap:encodingStyle="URI" used to define the data types
used in the document. This attribute may appear on any SOAP
element, and it will apply to that element's contents and all child
elements.
soap:mustUnderstand="0|1" indicates whether the
recipient must process some message part or whether it can be
ignored
soap:actor="URI" Not all parts of the SOAP message may
be intended for the ultimate endpoint of the SOAP message but,
instead, may be intended for one or more of the endpoints on
the message path. The SOAP actor attribute may be used to
address the Header element to a particular endpoint. Kind of
routing…

64

The SOAP Body Element
The required SOAP Body element contains the actual
application-defined XML intended for the ultimate endpoint of
the message.
So, elements within the body element are usually not part of the
soap standard.
Immediate child elements of the SOAP Body element may be
namespace-qualified.
SOAP defines one element inside the Body element in the
default namespace ("http://www.w3.org/2001/12/soap-envelope"):
 the SOAP Fault element, which is used to indicate error messages.

65

SOAP Body: ExampleSOAP Body: Example

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">

<soap:Body>
<m:GetPrice xmlns:m="http://www.w3schools.com/prices">

<m:Item>Apples</m:Item>
</m:GetPrice>

</soap:Body>

</soap:Envelope>

66

SOAP Body: Response ExampleSOAP Body: Response Example
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>
<m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">

<m:Price>1.90</m:Price>
 </m:GetPriceResponse>
</soap:Body>

</soap:Envelope>

67

The SOAP Fault Element
optional
An error message from a SOAP message is carried
inside a Fault element.
If a Fault element is present, it must appear as a
child element of the Body element. A Fault element
can only appear once in a SOAP message.

68

The SOAP Fault Element

The SOAP Fault element has the
following sub elements:

<faultcode> A code for identifying the fault
<faultstring> A human readable explanation of the fault
<faultactor> Information about who caused the fault to happen
<detail> Holds application specific error information related to the

Body element

69

The SOAP Fault Codes

The faultcode values defined below
must be used in the faultcode element
when describing faults:

VersionMismatchFound:
an invalid namespace for the SOAP Envelope.

elementMustUnderstand:
An immediate child element of the Header element, with the
mustUnderstand attribute set to "1", was not understood

Client:
The message was incorrectly formed or contained incorrect
information

Server:
There was a problem with the server so the message
could not proceed

70

How SOAP binds to HTTP:

A SOAP method is an HTTP request/response that
complies with the SOAP encoding rules.
HTTP + XML = SOAP
A SOAP request could be an HTTP POST or an HTTP
GET request.
The HTTP POST request specifies at least two HTTP
headers: Content-Type and Content-Length.

71

HTTP headers. Content Type

The Content-Type header for a SOAP request and
response defines the MIME type for the message and
the character encoding (optional) used for the XML
body of the request or response.

Content-Type: MIMEType; charset=character-encoding

POST /item HTTP/1.1 Content-Type: application/soap+xml;
charset=utf-8

Example

72

HTTP headers. Content Length

The Content-Length header for a SOAP request and
response specifies the number of bytes in the body of
the request or response.

Content-Length: bytes

POST /item HTTP/1.1 Content-Type: application/soap+xml;

charset=utf-8 Content-Length: 250

Example

73

SOAP Example

In the example below, a GetStockPrice
request is sent to a server. The request
has a StockName parameter, and a
Price parameter will be returned in the
response. The namespace for the
function is defined in
"http://www.stock.org/stock" address.

74

SOAP Example. Request
POST /InStock HTTP/1.1
Host: www.stock.org
Content-Type: application/soap+xml; charset=utf-8 Content-
Length: nnn

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">
<m:GetStockPrice>

<m:StockName>IBM</m:StockName>
</m:GetStockPrice>

</soap:Body>

</soap:Envelope>

75

SOAP Example. Response
HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">
<m:GetStockPriceResponse>

<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>
</soap:Body>

</soap:Envelope>

76

SOAP in one slide, summary:

A SOAP message MUST be encoded using XML
A SOAP message MUST use the SOAP Envelope namespace
A SOAP message MUST use the SOAP Encoding namespace
A SOAP message must NOT contain a DTD reference
A SOAP message must NOT contain XML Processing Instructions
A SOAP message contains the following elements:
 A required Envelope element that identifies the XML document as a

SOAP message
 An optional Header element that contains header information
 A required Body element that contains call and response information
 An optional Fault element that provides information about errors that

occurred while processing the message

77

Wanna watch a SOAP?
 You can use, e.g. a nice eclipse plugin:

Web Service Console plugin: http://wscep.sourceforge.net/

78

WSDLWSDL

79

Web Services DescriptionWeb Services Description
Language (WSDL)Language (WSDL)

WSDL is an XML-based language for describing
Web services interfaces and how to access them.
What is WSDL?
 WSDL stands for Web Services Description Language
 WSDL is written in XML, ie. a WSDL description is an XML

document
 WSDL is used to

 describe Web services
 locate Web services
 Automatically bind/invoke Web services

 WSDL 1.1 (a W3C Note only!) is current defacto standard
 WSDL 2.0 is a W3C working draft (last version 26 March

2007)

80

Web Services DescriptionWeb Services Description
Language (WSDL)Language (WSDL)

Web services expose a software-oriented view of a business or
consumer function with which applications may interact over the
network
To enable such an interaction, a web service must be described
and advertised to its potential users. Description means:
 What operations it provides
 What data it expects to receive (input)
 Which results should deliver (output)
 What communication protocols or transport it supports (binding)

81

Web Services DescriptionWeb Services Description
Language (WSDL)Language (WSDL)

WSDL elements contain a description of the
messages, typically using one or more XML
Schemas, to be passed to the web service so that
both sender and receiver understand the data being
exchanged
WSDL elements also contain a description of the
operations that the service can perform on that
data, so that the receiver of the message knows how
to process it and a binding to a protocol or transport,
so that the sender knows how to send it.
Typically, WSDL is used with SOAP, and the WSDL
specification includes a SOAP binding, but other
bindings are allowed as well

82

WSDL (Web Service DescriptionWSDL (Web Service Description
Language)Language)

A WSDL document defines services as collections
of network endpoints (ports)

Interface

endpoint

Port

Service

Binding

Operation

Port Type

Message

Types

Note however,
that WSDL doesn’t
say anything about
what services can do,
nor how they do it.

83

WSDL Ports and ServicesWSDL Ports and Services

Ports:
 Ports are used to expose a set of operations

or port types.
 The port types can be grouped for one or

more bindings

Services:
 A service encloses one or more portTypes
 It includes some ports

84

WSDL (Web Service DescriptionWSDL (Web Service Description
Language)Language)

Overall structure of a typical WSDL file:
<definitions>

<types>
definition of types........
</types>

<message>
definition of a message....
</message>

<portType>
definition of a port types (operations).......
</portType>

<binding>
definition of a binding....
</binding>

<service>
relating ports (individual endpoint) and their
bindings....
</service>

</definitions>

85

WSDL Data typesWSDL Data types

You can either use XSD simple types or
optionally define new types using XML
schema syntax in the types element:

<types>
 <schema … >
 <complexType name = "PurchaseOrder">
 <element name="NameofProduct" type="xsd:string"/>
 <element name="Price" type="xsd:integer"/>
 </complexType>
 …
 </schema>
</types>

86

WSDL messageWSDL message

Individual Data Types are mapped into Messages
Messages can be sent and received by the described
web service
Messages consist of one or more parts.

<message name =„PurchaseOrderRequest“ >
<part name=„MyChristmasOrder“

type=„xsd1:PurchaseOrder“>
</message>

Defined in <types>
Side remark: You can alternatively also refer to
elements in the schema defined in types using the
element=URI attribute

87

WSDL operationWSDL operation

Operations perform the actions on the data
Operations are defined so that the web service knows how to
interpret the data and what, if any, data is to be returned on
the reply
Several types:
 One-way: A message is sent without a requirement to return a

reply (only input, or only output)
 Two-way: A message is sent and the receiver must send a

corresponding reply (request-response or solicit-response)

<operation name =„ProcessPurchaseOrder“ >
<input message=„PurchaseOrder“ name=„MyOrder“>
<output message=„PurchaseOrderResult“

name=„ResultofMyOrder“>
</operation>

88

WSDL WSDL portTypeportType

A logical grouping of operations
The <portType> element is the most
important WSDL element.
It defines a web service, the operations that
can be performed, and the messages that are
involved.
The <portType> element can be compared
to a function library (or a module, or a class)
in a traditional programming language.

89

Operation typesOperation types

The request-response type is the most common operation
type, but WSDL defines four types:

One-way:
The operation receives a message but will not return a response

Request-response:
The operation can receive a request and will return a response

Solicit-response:
The operation can send a request and will wait for a response

Notification:
The operation can send a message but will not wait for a response

(not explicit, but implicit by the fact whether input/output are defined)

90

One-way OperationOne-way Operation
A one-way operation example:

<message name="newTermValue">
<part name="term" type="xsd:string"/>
<part name="value" type="xsd:string"/>

</message>

<portType name="glossaryTerms">
<operation name="setTerm">
 <input name="newTerm" message="newTermValue"/>
</operation>

</portType >

91

Request-Response OperationRequest-Response Operation
A request-response operation example:

<message name="HelloRequest">
<part name="term" type="xsd:string"/>

</message>

<message name="HelloResponse">
<part name="value" type="xsd:string"/> </message>

<portType name="glossaryTerms">
<operation name="getTerm">

<input message="getTermRequest"/>
<output message="getTermResponse"/>

</operation>
</portType>

Remark: WSDL provides some default values based on the operation name. If the name attribute
is not specified on a one-way or notification message, it defaults to the name of the operation. If
the name attribute is not specified on the input or output messages of a request-response or
solicit-response operation, the name defaults to the name of the operation with
"Request"/"Solicit" or "Response" appended, respectively.

92

WSDL WSDL portTypeportType

<portType name=„PurchaseOrderPortType“>
<operation name =„ProcessPurchaseOrder“ >
 <input message=„PurchaseOrder“ name=„MyOrder“>
 <output message=„PurchaseOrderResult“

name=„ResultofMyOrder“>
</operation>
<operation name =„CancelPurchaseOrder“ >
 <input message=„CancelPurchaseOrder“

name=„CancelMyOrder“>
 <output message=„CancelPurchaseOrderResult“

name=„CancelResultofMyOrder“>
</operation>

</portType>

A portType groups a set of operations:

93

WSDL BindingWSDL Binding
A binding defines message format and protocol details for operations and messages defined by
a particular PortType.
The <binding> element defines the message format and protocol details for each port.
The soap:binding element has two attributes - the style attribute and the transport attribute.
The style attribute can be "rpc" or "document". In this case we use rpc. The transport attribute
defines the SOAP protocol to use. In this case we use HTTP.

<binding name="StockQuoteSoapBinding“ type="tns:StockQuotePortType">
 <soap:binding style=“rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetTradePrices">
 <soap:operation soapAction="http://example.com/GetTradePrices"/>

 <input>
 <soap:body use="encoded“ namespace="http://example.com/stockquote"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>

 <output>
 <soap:body use="encoded" namespace="http://example.com/stockquote"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>

 </operation>
</binding>

94

Service and Port
A port defines an individual endpoint by specifying a
single address for a binding (Remark: WSDL then not
re-usable for several services)
A service groups a set of related ports together

<wsdl:definitions >
 <wsdl:service >

<wsdl:port name="nmtoken" binding="qname">
<-- extensibility element (1) -->
</wsdl:port>

 </wsdl:service>
</wsdl:definitions>

95

A complete example IA complete example I
<?xml version="1.0"?><definitions
name="StockQuote"targetNamespace="http://bankTyrol.com/balance.wsdl"
xmlns:tns="http://bankTyrol.com/balance"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:xsd1="http://bankTryol.com/schema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="GetBalanceInput">
 <part name="creditCardNumber" element="xsd:string"/>
 </message>
 <message name="GetBalanceOutput">
 <part name="result" type="xsd:String"/>
 </message>

 <portType name="GetBalancePortType">
 <operation name="GetCurrentBalance" parameterOrder="creditCardNumber">
 <input message="tns:GetBalanceInput"/>
 <output message="tns:GetBalanceOutput"/>
 </operation>
 </portType>

96

A complete example IIA complete example II
 <binding name="GetBalanceSoapBinding" type="tns:GetBalancePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetCurrentBalance">
 <soap:operation soapAction="http://bankTyrol.com/GetBalance"/>
 <input>
 <soap:body use="encoded" namespace="http://bankTyrol.com/Balance "

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>

 <soap:body use="encoded" namespace="http://bankTyrol.com/Balance "
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </output>
 </operation>
 </binding>

 <service name="GetBalanceService">
 <documentation>Service used by bankTyrol.com Inc.</documentation>
 <port name="GetBalancePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://bankTyrol.com/balance"/>
 </port>
 </service>
</definitions>

97

WSDL 2.0: work in progress…
still not ready 

We covered WSDL 1.1 so far

http://www.w3.org/TR/wsdl
Namespace: http://schemas.xmlsoap.org/wsdl/

Most recent version at W3C, WSDL 2.0:
http://www.w3.org/TR/wsdl20/
Is a proposed recommendation (last step before “official”
W3C Recommendation) since *yesterday*!

Some changes:
 portTypes have been renamed to interfaces
 ports have been renamed to endpoints
 WSDL 2.0 removes operation overloading
 import other schema languages (DTD, etc.)
 etc.

See also: http://jacek.cz/presentations/2006-05-25-wsdl2.html

98

Real Real ExamplesExamples

99

How where do I find available WS?How where do I find available WS?

100

Amazon.com Amazon.com http://aws.amazon.com/

101

GoogleGoogle

Just removed their Web Service API from
http://www.google.com/apis/ :-(

What does this show us:
 Not everybody wants to have his/her services public!
 … especially if they are commercially successful ;-)

You can still try to fins some Web services using google…

search for filetype:wsdl …
 admittedly, maybe not the best way ;-)

102

Xmethods Xmethods http://www.xmethods.net/

Remarkably, Web Service Technology is currently still
rather used WITHIN companies than that there are really
Many publically available Web Services !

103

ReferencesReferences

[Aolonso et al. 2003] G. Alonso, F. Casati, H. Kuno, V. Machiraju:
Web Services: Concepts, Architectures and Applications
[SOAP 2003] SOAP version 1.2 Part 0: Primer, W3C Recommendation
24 June 2003.
[UDDI 2002] UDDI Version 3.0, published specification 19 July 2002,
available at http://www.uddi.org/specification.html.72-85,
January/February 2003.
[WSDL 2003] Web Services Description Language (WSDL) Version
1.2. W3C Working Draft 3 March 2003.
[W3C 2002] W3C: Web Service description requirements,
http://www.w3.org/TR/ws-desc-reqs/, W3C working draft 28 October
2002.

