
LanguagesLanguages forfor DataData
Integration of Integration of Semi-Semi-
StructuredStructured DataData II II ––

XML Schema, Dom/SAXXML Schema, Dom/SAX

Recuperación de Información 2007
Lecture 3.

2

Overview
XML-schema, a powerful alternative to
DTDs
XML APIs:
 DOM, a data-object Model for XML
 SAX, a simple API for XML
 Validating Parsers based on DOM and SAX

 More XML Companion standards

3

XML Schema

 Another way to describe Structure of an XML
document.

DTDs have very limited typing, missing:
Cardinalities in DTDs hardly expressable…
at least very inconvenient.
Reuse, inheritance of types is missing, etc.
 Typing, Datatypes…
… All this is provided in XML Schema!

4

XML-Schema : Why use XML-
schema?

The allowed structure of an XML
document
The allowed data types contained in
one (or several) XML documents

In order to validate an XML document
you use XML Schema to specify:

5

XML-Schema : Why use
schemas instead of DTDs?

XML Schema Documents (XSDs) themselves are
XML documents and therefore use the same syntax

 and can themselves be validated with schemas!
 (whereas DTDs are somehow SGML “legacy”)

XML-schema has more powerful possibilites to define
custom datatypes

 (regular expressions, inheritance, cardinalities etc.)

 (BTW: Schemas may also be combined with DTDs)

6

XML-Schema : Why use
schemas instead of DTDs?

XML-schema allows to define elements with nil
content
XML-schema allows to reuse element and attribute
definitions (by reference)

XML-schema uses XML namespaces (allows to
refer to and prescribe certain namespaces)

XML-schema allows to define full context-free
grammars for expressing arbitrary XML structures!

7

XML-Schema : A Simple XML-Schema
<?xml version=“1.0” encoding=“UTF-8”?>
<marketing
 xmlns:xsi = “http://www.w3c.org/2001/XMLSchema-Instance”
 xsi:noNameSpaceSchemaLocation = “http://www.Dot.com/mySchema.xsd“>

 <employee>Gustav Sielmann</employee>
 <employee>Arnold Rummer</employee>
 <employee>Johann Neumeier</employee>

</marketing>

<?xml version=“1.0” encoding=“UTF-8”?>
<xsd:schema xmlns:xsd = “http://www.w3c.org/2001/XMLSchema”>

<xsd:element name = “marketing>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name = “employee” type = “xsd:string”
 maxOccurs = “unbounded”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

</xsd:schema> Schema Definition

Instance

8

General features of XSD (XML Schema Definition)

XML Schema is always a separate, i.e. external entity (file)
 No internal Schema within the xml-instance

Schemalink via attribute in Document Element
 schemaLocation attribute (for Schema with a tragetNamespace)
 noNameSpaceSchemaLocation (for schema with no targetNamespace)

Schemata can be embedded:
 <include>, <redefine>, <import>
 import if different namespaces

<xsd:import schemaLocation=" http://www.w3.org/1999/xlink xlink.xsd"/>

with <redefine> single elements can be redefined e.g. a second schema
which redefines the first one:
<xsd:redefine schemaLocation="..."><xsd:complexType/>
which restricts or extends the type with the same name from the original
schema

9

XSD and namespaces:
XML Schema

 uses namespaces itself - to distinguish schema instructions from the language we are describing
 supports namespace assigning - by associating a target namespace to the language we are

describing.

Example:

Here:
the default namespace is that of XML Schema (such that e.g. complexType is
considered an XML Schema element)
the target namespace is our business card namespace
the b prefix also denotes our business card namespace (such that we can refer
to target language constructs from within the schema)

10

XSD structure

The Schema Element
Element Definitions
Attribute Definitions
Type Definitions
Annotations

An XSD is composed of:

11

XSD : The Schema Element
The schema element is the container element
where all elements, attributes and data types
contained in an XML document are stored
The schema element refers to the XML-
schema definition at W3C and is the
document element (root) of an XSD:

<xsd:schema xmlns:xsd = “http://www.w3c.org/2001/XMLSchema”>
.
.
.
.
.

</xsd:schema>

12

XSD: Schema element

Can have several attributes:
<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3schools.com"
 xmlns="http://www.w3schools.com"
 elementFormDefault="qualified">
...
</xsd:schema>

Elements and data types used in an XML schema document
(schema, element, complexType, sequence, string, boolean, etc.)
come from the "http://www.w3.org/2001/XMLSchema" namespace, and must
be prefixed with xsd:

13

XSD: Schema element

Can have several attributes:
<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3schools.com"
 xmlns="http://www.w3schools.com"
 elementFormDefault="qualified">
...
</xsd:schema>

The language defined by this schema (note, to, from, heading, body.) is supposed to
be in the "http://www.w3schools.com" namespace.

14

XSD: Schema element

Can have several attributes:
<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3schools.com"
 xmlns="http://www.w3schools.com"
 elementFormDefault="qualified">
...
</xsd:schema>

default namespace is "http://www.w3schools.com". Usually makes sense to have the
same def.ns and targetns…

15

XSD: Schema element

Can have several attributes:
<?xml version="1.0"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3schools.com"
 xmlns="http://www.w3schools.com"
 elementFormDefault="qualified">
...
</xsd:schema>

Any elements used by an XML instance document which were declared in this
schema must be namespace qualified by the target namespace (analogous:
attributeFormDefault), i.e. the language defined here is bound to the namespace.
alternative: “unqualified”,

16

How to reference XSD inside an
instance document:

<?xml version="1.0"?> <note
xmlns="http://www.w3schools.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3schools.com
note.xsd">

Again default namespace, (this is now
what was the targetns of the schema)In the instance file:

XML Schema Instance namespace

The schemaLocation attribute has two values. The first value is the
namespace to use. The second value is the location of the XML schema to use
for that namespace

17

How to reference XSD
XSD can make use of namespaces!

schemaLocation attribute in instance

(value: pair namespaces-xsd)
 w/o targetNamespace:

noNamespaceSchemaLocation attribute in instance

… sophisticated… don’t bother too much for the
moment. Find more in the references:

e.g.
http://ww.w3schools.com/
http://www.w3.org/XML/Schema

18

XML-Schema : Defining Elements
Elements

Must have a name and a type (attributes)
Either globally defined: as child of <schema>
or locally defined: in context of other elements

 (can also have the same name as globally defined)

Elements can refer to other (global) element or type definitions
Elements can have an associated cardinality
Complex or simple type:

 simple: (refinements of) built-in types (e.g. strings, numbers, dates, etc.)
 complex: can have nested elements, etc.

<xsd:element name = “employee” type = “xsd:string”/>

Example for a simple type element referring to a built-in type:

<xsd:element name = “marketing">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name = “employee” type = “xsd:string”
 maxOccurs = “unbounded”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Example for a complex type element which does not refer to a global or built-in type declaration:

19

Element order in XSD

In general, there is no preferred order within
a schema document – you generally have to
infer the "containing" element of a schema
based upon which <xsd:element> references
the highest elements in the tree.

(unlike DTDs where you strictly define the
document element)

20

XML-Schema : Defining Attributes
Like elements, attributes must have a name and type
Attributes can use custom data types (but only simple
types*!)
Attributes can be restricted similar like in DTDs (optional,
fixed, required, default values)

Attributes can refer to other (global) attribute definitions:

* More on what exactly are simple types in the following slides….

<xsd:attribute name = “country” type = “xsd:string” fixed=“Austria”/>

<xsd:attribute name="partNum" type="ipo:SKU" use="required"/>

<xsd:attribute ref=“xml:lang" use="optional" />

21

XML-Schema : Annotations
XML-schema provides several tags for annotating a schema:
documentation (intended for human readers),
appInfo (intended for applications) and annotation

Documentation and appInfo usually appear as subelements
of annotation

Remark: Different from normal comments in XML, since these
annotations can be used in e.g. XML Schema editors, etc.,
difference is mainly conceptually

<xsd:annotation>
 <xsd:documentation xml:lang = “en”>
 here goes the documentation text for the schema
 </xsd:documentation>
</xsd:annotation>

22

XML-Schema :
Data Type Definitions

Pre-built Simple Types
Derived from Simple Types
Complex Types

XML-schema data types are either:

23

XML-Schema : Simple Types

Simple types are elements that contain
data
Simple types may not contain
attributes or sub-elements
New simple types are defined by
deriving them from built-in simple types

<xsd:simpleType name = “mySimpleDayOfMonth”>
 <xsd:restriction base = “xsd:positiveInteger”>
 <!--positiveInteger defines the minimum to be 1-->
 <xsd:maxInclusion value = “31”/>
 </xsd:restriction>
</xsd:simpleType>

24

XML-Schema :
Some Built-in Simple Types

http://www.Dot.com/my.html#a3xsd:anyURI

1977-10-03xsd:date

TRUE, FALSE, 0, 1xsd:boolean

-1.23, 0, 5.256xsd:decimal

-12834, 0, 235xsd:integer

0FB7xsd:hexBinary

Man, this day is long!xsd:string

ExampleSimple Type

25

XML-Schema : Complex Types
Complex types are elements that allow sub-
elements and/or attributes
Complex types are defined by listing the
elements and/or attributes nested within
Complex types are used if one wants to
define sequences, groups or choices of
elements

<xsd:complexType name = “myAdressType”>
 <xsd:sequence>
 <xsd:element name = “Name” type = “xsd:string”>
 <xsd:element name = “Email” type = “xsd:string”>
 <xsd:element name = “Tel” type = “xsd:string”>
 </xsd:sequence>
</xsd:complexType>

26

XML-Schema : Complex Types

Sequence: all the named elements must appear in the
sequence listed
Choice: one and only one of the elements must appear
All: all the named elements must appear, but in no specific
order
Group: collection of elements, usually used to refer to a
common group of elements (only usable for global declarations
and for references!), groups other sequences, choices or alls,
for reuse.

In complex types elements can be com-
bined using the following constructs:

27

XML-Schema : Complex Types

Cardinality can also be restricted (for choice and sequence!

<xsd:complexType name = “myAdressType”>
 <xsd:sequence>
 <xsd:element name = “Name” type = “xsd:string”>
 <xsd:element name = “Email” type = “xsd:string”>
 <xsd:element name = “Tel” type = “xsd:string”>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name = “myAtMost2AdressType”>
 <xsd:sequence minOccurs=0 maxOccurs=2>
 <xsd:element name = “Name” type = “xsd:string”>
 <xsd:element name = “Email” type = “xsd:string”>
 <xsd:element name = “Tel” type = “xsd:string”>
 </xsd:sequence>
</xsd:complexType>

28

XML-Schema : Mixed, Empty
and Any Content

Mixed content is used if you want to model elements that includes both
subelements and character data <xs:complexType mixed="true">

Empty content is used to define elements that must not include any
subelements and character data, implicit in the definition:

<xs:element name="product">

 <xs:complexType>

<xs:attribute name="prodid" type="xs:positiveInteger"/>

 </xs:complexType>

</xs:element>

Any content (the most basic data type) does not constrain the content in
any way. The <any> element enables us to extend the XML document
with elements not specified by the schema:

<xs:element name="person">

<xs:complexType>

<xs:sequence>

<xs:element name="firstname" type="xs:string"/>

<xs:element name="lastname" type="xs:string"/>

<xs:any minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

29

XML-Schema : Inheritance

XML-Schema provides a „pseudo“ inheritance via
type-derivations
In XML-Schema all inheritance has to be defined
explicitly
New types can only be created by extending or
restricting existing types
Types can only be derived from one type – multiple
inheritance is not supported

30

XML-Schema : Restricting a Type

New simple types can be derived by
constraining facets of a simple type
The XSD:RESTRICTION element is used to
state the base type

<xsd:simpleType name = “AustrianPostalCode”>

 <xsd:restriction base = “xsd:integer”>

 <xsd:minInclusive value = “1000”>
 <xsd:maxInclusive value = “9999”>

 </xsd:restriction>

</xsd:simpleType>

31

XML-Schema : Extending a Type
New complex types can be derived by extending
other types (simpleContent/complexContent)
The XSD:EXTENSION element is used to state the
base type

<xsd:complexType name = “myPrice“>

 <xsd:simpleContent>

 <xsd:extension base = "xsd:decimal">
 <xsd:attribute name = "currency" type="xsd:string"/>
 </xsd:extension>

 </xsd:simpleContent>

</xsd:complexType>

When do you need this? E.g. if you want to attach
attributes to a simple type element

32

Yet another complex example…
<element name="item">
<annotation>
<documentation>One item of a purchase order with its

details</documentation>
</annotation>
<complexType>
<sequence>
<choice>
<element name="productName" type="string"/>
<element name="productDescr" type="string"/>

</choice>
<element name="quantity">
<simpleType>
<restriction base="positiveInteger">
<maxExclusive value="100"/>

</restriction>
</simpleType>

</element>
<element name="price" type="decimal">
<annotation>
<documentation>Needs to be specified in

US$</documentation>
</annotation>

</element>
<element ref="ipo:comment" minOccurs="0" maxOccurs="5"/>
<element name="shipDate" type="date" minOccurs="0"/>

</sequence>
<attribute name="partNum" type="ipo:Sku"/>

</complexType>
</element>

prodDescr

33

Inheritance in XSD compared with “real”
type systems/inheritance:

 Note that this inheritance is not FULL
inheritance in the sense of the semantics
defined for OOP or Ontologies, for instance
there is no Bottom-up inheritance of instances:

E.g. element employee is a subclass (restriction/extension)
of complextype person, but in XSD no means to say that an
employee is a person then…)

34

Some examples and exercices in the zip file I
will pt on the lecture homepage might help!

Play around with it and find out more!

These were some but not ALL
features of DTDs and XSD…

35

Overview
XML-schema, a powerful alternative to
DTDs
XML APIs:
 DOM, a data-object Model for XML
 SAX, a simple API for XML
 Validating Parsers based on DOM and SAX

 More XML Companion standards

36

XML Parsers&APIs: DOM vs. SAX
Document Object Model (DOM)

 DOM is a programming language independent object model and an API
 The specification describes a defined XML-usage handling elements as objects for

interaction with object-oriented programming languages such as Java (tutorials: Java DOM
implementation of apache: Xerces)

 DOM provides a complete tree structure for all objects of XML-documents
 Not suitable for extremely large XML-files. Good for forms/editors, simple to program with.
 DOM is a (bunch of) W3C Standard recommendation(s).

Simple API for XML (SAX)
 More “low-level” API for XML application processing with the help of object-oriented

programming languages such as Java. (tutorials: SAX implementation of apache: Xerces)
 Event-based rather than tree-based, not the whole tree in memory, sequential.
 SAX delivers an XML-element to an output stream and is suitable for processing large XML-

Files. Good for App2App exchange.

An XML parser reads an XML document and provides it in a form of DOM or in its
own structure with SAX-events for further processing. A validating parser also
checks with DTD/XSD.

37

What is DOM ?

DOM(Document Object Model)
 Was developed by W3C
 Specify how future Web browser and embedded scripts

should access HTML and XML documents

DOM

This and the following slides are very much borrowed from:
http://oopsla.snu.ac.kr/research/object/open_xml/8_xmldomsax_noted.ppt
© copyright 2001 SNU OOPSLA Lab.

38

Java implementation

SUN provides a class for parsing XML, called
 Xml Document.

Xml Document methods to parse XML file,
build the document tree.
To use the SUN parser

 => import org.w3c.dom.*;
 import com.sun.xml .tree.*;
 import org.xml.sax.*;

Check docs for these to learn details!

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

39

Nodes (1/4)
Nodes
 describe elements, text, comments, processing instructions, CDATA

section, entity references ...

The Node interface itself defines a number of methods.
 1. Each node has characteristics (type, name, value)
 2. Having a contextual location in the document tree.
 3. Capability to modify its contents.

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

40

Nodes (2/4)

Node characteristics
 getNodeType => determining its type

 getNodeName => returning the name of the node

 setNodeValue => replacing the value of node

 hasChildNodes => whether node has children or not

 getAttributes => accessing attribute

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

41

Nodes (3/4)

Node navigation
 When processing a document via the DOM

interface, it is to use node as a stepping-stones.
 Each node has methods that return references to

surrounding nodes.

getParentNode() getPreviousSibling()

getFirstChild()

getChildNodes()

getLastChild()

getNextSibling()

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

42

Nodes (4/4)

Node manipulation
 remove child method.
 appendChild method
 insertbefore method
 replaceChild method
Ex) Old Child

New Child

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

43

Documents

• An entire XML document is represented by a
special type of node.
 - getDoctype
 - getImplementation
 - getDocumentElement
 - getElementsByTagName

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

44

Elements

• Element interface
• Extends the Node interfaces
• Adds element-specific functionality
• General element processing

 - getTagName method
 - getElementsByTagName method
 - normalize method

 Example
normalize:

Here is some

text “Here is sometext”

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

45

Attributes

• Attribute characteristics
 - getName method
 - getValue
 - setValue
 - getSpecified

• Creating attribute
 - createAttribute

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

46

Node lists

• The Nodelist interface contains two
method

 - Node item(int index);
 int getLength();

 3

getLength();

 node 1

 node 0
getLength()

 node 2

Item(1);

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

47

Named node maps
• The NamedNodemap interface is designed to contain

nodes, in no particular order, that can be accessed by name.

 4
getLength();

 Lang

 ID
getLength()

 Security

Item(1);

 Added

getNamedItem(“Security”);

setNamedItem(O);

removeNamedItem(“Added”)

DOM

This slide: © copyright 2001 SNU OOPSLA Lab.

48

What is SAX?

SAX(the Simple API for XML)
 Is a standard API for event-driven processing of

XML data
 Allowing parsers to deliver information to

applications in digestible chunks

SAX

This slide: © copyright 2001 SNU OOPSLA Lab.

49

Call-backs and interfaces
The SAX interface are:
 Parser
 Document Handler
 AttributeList
 ErrorHandler
 EntityResolver
 Locator
 DTD Handler

SAX

This slide: © copyright 2001 SNU OOPSLA Lab.

50

The Parser

The Work of Parser
 The parser developer creates a class that actually parses the

XML document or data stream
 The parser reads the XML source data
 Stops reading when encounters a meaningful object
 Sends the information to the main application by calling an

appropriate method
 Waits for this method to return before continuing

SAX

This slide: © copyright 2001 SNU OOPSLA Lab.

51

Document handlers

In order for the application to receive basic markup events from
the parser, the application developer must create a class that
implements the DocumentHandler interface.

Application

Parser

Document Handler

create

give

startDocument()
startElement()

characters()
endElement()

endDocument()

<!……………>

<->
………….
</->

parsing
Feedback
When event driven

Event driven

SAX

This slide: © copyright 2001 SNU OOPSLA Lab.

52

Attribute lists

A wrapper object for all attribute details
 int getLength(); … to associate how many attributes are present.
 String getName(int i); … to discover the name of one of the attributes
 String getType(int i); … when a DTD is in use, to get a data type
 String getType(String name); assigned to each attribute.
 String getValue(int i); … to get the value of an attribute
 String getValue(String name);

SAX

This slide: © copyright 2001 SNU OOPSLA Lab.

53

Error handlers

When the application needs to be informed of
warnings and errors
 It can implement ErrorHandler interface

SAX

This slide: © copyright 2001 SNU OOPSLA Lab.

54

Locators
Necessity
 An error message is not particularly helpful when no indication

is given as to where the error occurred.

Locator interface
 can tell the entity, line number and character number of the

warning or error

SAX

This slide: © copyright 2001 SNU OOPSLA Lab.

55

Handler bases

HandlerBase class
 Providing some sensible default behavior for each event, which could

be subclassed to add application-specific functionality
 E.g. DTDHandler

SAX

This slide: © copyright 2001 SNU OOPSLA Lab.

56

XML Application Architecture
An XML application is typically built around an
XML parser
It has an interface to its users, and an
interface to some sort of back-end data store

XML
ApplicationUser

Interface
Data
Store

XML Parser

Making XML Application

This slide: © copyright 2001 SNU OOPSLA Lab.

57

Kinds of Parsers

Validating versus non-validating parsers
 Validating parsers validate XML documents as they parse

them with respect to a DTD or an XSD
 Non-validating parsers ignore any validation errors

Parsers that support the Document Object
Model(DOM)

Parsers that support the Simple API for
XML(SAX)

Making XML Application

This slide: © copyright 2001 SNU OOPSLA Lab.

58

DOM Parser
Tree structure that contains all of the
elements of a document
Provides a variety of functions to examine the
contents and structure of the document

Making XML Application

This slide: © copyright 2001 SNU OOPSLA Lab.

59

SAX Parser
Generates events at various points in the
document
It’s up to you to decide what to do with each
of those events

Making XML Application

This slide: © copyright 2001 SNU OOPSLA Lab.

60

DOM vs SAX
Why use DOM?
 Need to know a lot about

the structure of a document
 Need to move parts of the

document around
 Need to use the information

in the document more than
once

Why use SAX?
 Only need to extract a few

elements from an XML
document

Making XML Application

This slide: © copyright 2001 SNU OOPSLA Lab.

61

A sample XML parser implementation:

Xerces: xml.apache.org/

provides full implementation of SAX and
DOM (level 2) APIs for JAVA, C++, etc.

62

Overview
XML-schema, a powerful alternative to
DTDs
XML APIs:
 DOM, a data-object Model for XML
 SAX, a simple API for XML
 Validating Parsers based on DOM and SAX

 More XML Companion standards

63

XML : XPath
XPath is a non-XML language used to
identify particular parts of XML documents.
XPath lets you write expressions that refer
to the document's first person element,
the seventh child element of the third
person element, the ID attribute of the
first person element whose contents are
the string "Fred Jones“,…
XSLT and XPointer use XPath to identify
particular points in an XML document.

64

XML : XPointer

XPointer defines an addressing scheme
for individual parts of an XML
document.
XPointers enable you to target a given
element by number, name, type, or
relation, to other elements in the
document.
XPointers uses the XPath syntax to
identify the parts of the document they
point to.

65

XML : XML Linking Language

The XML Linking Language (XLink) allows
elements to be inserted into XML documents in
order to create and describe links between
resources.
Generalizes Link Concept of HTML, based on
XPointer.
XLink provides a framework for creating both
basic unidirectional links and more complex
linking structures, e.g. linking relationships
among more than two resources, associate
metadata with a link,…

66

XML : XML Style Language

XSL (XML Style Language) is a language
for expressing stylesheets for XML
documents
XSL describes how to display an XML
document of a given type
XSL defines a set of elements called
Formatting Objects and attributes (in
part borrowed from CSS2 properties
and adding more complex ones)

67

XML : XSLT
XSLT (XSL Transformations) is a language for
transforming XML documents into other XML
documents.
XSLT is also designed to be used independently of
XSL. However, XSLT is not intended as a completely
general-purpose XML transformation language.
Rather it is designed primarily for the kinds of
transformations that are needed when XSLT is used
as part of XSL.
A transformation expressed in XSLT describes rules
for transforming a source tree into a result tree.

Important for Data Integration/Mediation!

68

References
XML-Schema :
http://www.w3.org/XML/Schema
(also has links to useful tools, etc.)

 Fallside, D. XML Schema Primer,
http://www.w3.org/TR/xmlschema-0/

DOM & SAX:
Some very nice introduction to DOM&SAX:
http://oopsla.snu.ac.kr/research/object/open_xml/8_xmldomsax_noted.ppt
Xerces: http://xml.apache.org

Examples will be provided on the Lecture-homepage (zip file)!

Etc. etc.

