
1

Lecture 9
1) Cut & Negation in PROLOG

2) Alternative semantics for negation:

Perfect, Well-founded and Stable

Models

20/12/2006

2

Cut: !

• Example: 2 implementations of max:

max(X,Y,X) :- X >= Y.

max(X,Y,Y) :- X < Y.

max(X,Y,X) :- X >= Y, !.

max(X,Y,Y) :- X < Y.

• Goal: cut down search space, gain efficiency

• Disadvantage: against declarativity.

3

The working of the cut operator:

• If A unifies with Z and subgoals B1, …, Bk can be proven, then !

succeeds and fixes the solutions to the clause C, i.e. no further

backtracking for any alternative wrt. C (below C in the program).

• Bk+1, …, Bn are proven normally, but in case Bi (i>k) fails, backtracking

only upto '!'

• If backtracking reaches '!' a second time then it fails and computation

returns to the point before clause Z C was chosen.

Behavior: if … then … elseif … else, can be emulated.

Clause C: A :- B1, …, Bk, !, Bk+1, …, Bn.

Goal: ?- Z.

4

Cut

• … in other words:

– '!' cuts off all alternative clauses which follow

– '!' cuts off all alternatives on its left.

– '!' does not influence subgoals on its right.

5

In summary: Cut makes sense if you model some

deterministic choices, but a bit dirty ;-) compared to pure Prolog.

Example:

• Backtracking over exclusive alternatives can be avoided with cuts:

% mymerge(X,Y,Z) merges two sorted lists X and Y:

mymerge([X|Xs],[Y|Ys],[X|Zs]) :- X < Y, mymerge(Xs,[Y|Ys],Zs).

mymerge([X|Xs],[Y|Ys],[X,Y|Zs]) :- X = Y, mymerge(Xs,Ys,Zs).

mymerge([X|Xs],[Y|Ys],[Y|Zs]) :- X > Y, mymerge([X|Xs],Ys,Zs).

mymerge(Xs,[],Xs).

mymerge([],Ys,Ys).

% mymerge(X,Y,Z) merges two sorted lists X and Y:

mymerge([X|Xs],[Y|Ys],[X|Zs]) :- X < Y, !, mymerge(Xs,[Y|Ys],Zs).

mymerge([X|Xs],[Y|Ys],[X,Y|Zs]) :- X = Y, !, mymerge(Xs,Ys,Zs).

mymerge([X|Xs],[Y|Ys],[Y|Zs]) :- X > Y, !, mymerge([X|Xs],Ys,Zs).

mymerge(Xs,[],Xs) :- !.

mymerge([],Ys,Ys) :- !.

This one is redundant…

6

What the cut is usable for:

• Useful to make programs more efficient.

• Sometimes useful to avoid additional or duplicate answers,

• But often a sign of "dirty" non-declarative PROLOG hacking and

should be avoided.

• You should know what you're doing and have to understand the working of

PROLOG when using cuts!

7

Negation (not or \+) in Prolog.

• Prolog has the builtin fail which never succeeds.

• This can be used to emulate a restricted form of negation, so called

"negation as finite failure".

• Recall: whenever PROLOG could not find a solution to a query in finite

time, it answered 'No'.

• We also want to reuse this in rules… for this, there exists the predicate
not also written \+

• can be emulated more or less as follows:

not X :- X, !, fail.

not X.

8

Negation as failure and SQL:

We said in Lecture 4 that we can use PROLOG

as a Query language similar to SQL… Now we

can also express negative queries:

"Give me all persons without a father"

SELECT name FROM person p WHERE NOT EXISTS

 (SELECT * FROM child_of c, male m

 WHERE c.child=p.name

 AND c.parent=m.name);

In PROLOG:

no_father(X) :- person(X), \+ has_father(X).

has_father(X) :- child_of(X,Y), male(Y).

9

Problems with this form of not:

• not in PROLOG often written \+ does not

correspond with classical negation!!!

Example: a :- not b.

Minimal Herbrand Models: {a} {b}

• i.e., Success of {not G} does not mean: P !

¬ G but: P ! G

10

Non-monotonic reasoning 1:

Default rules

• This form of negation allows some limited form of non-monotonic reasoning.

• Classical logic is monotonic, i.e. whenever I add knowledge, the set of
consequences increases.

• Horn Logic is classical, i.e. monotonic.

• This is not the case if negation as failure is added to Horn logic!

• In non-monotonic reasoning, previous conclusions can be invalidated by
additional knowledge.

• Non-monotonic reasoning often important in common-sense reasoning:
"Default" reasoning

Example: "Birds normally fly, unless they are penguins"
flys(X) :- bird(X), \+ penguin(X).

bird(tweety).

Does Tweety fly?
What if I add penguin(tweety). to the facts?

11

Non-monotonic reasoning 2:

Closed World Assumption

• Everything which is not explicitly known, is assumed
to be false.

• Example: Train Schedule.

• This is the motivation for using a minimal model
semantics.

• ?- \+ train(vienna, bregenz, 0500, X).

• ‘No’ means there really is no such train under the
closes world assumption.

12

All the examples had

Negation as failure in rule bodies/queries:

• Prolog makes a “practical” assumption about

this: Negation as (finite) failure to proof.
• What happens to the Semantics? (rule with

negation in the body are no longer Horn)

• PROLOG cannot deal with negation and

recursion at once!

13

Alternative semantics for negation:

Perfect, Well-founded and Stable

Models

• We will now try to define formal semantics for programs

with non-monotonic negation in rule bodies!

• To keep things simple, we now talk about function-free

programs only, ie no nested terms.

• We learned already that the Herbrand Base is finite for

such programs.

• For-such programs, the TP
!(") operator defines an

algorithm to compute the minimal Herbrand model:

– First ground the program using the Herbrand Base

– Then compute (in finite time) the minimal Herbrand model

14

Bottom-up computation:

Alternative definition of T
P
:

Let I be a Herbrand interpretation and ! a definite program:

We define by Ground(!) the set of all ground instances of rules of !

TP(I) =

{A # BP : A $ A1, … An is a rule in Ground(!) such that A1, …, An # I}

Since HB(P) is finite, also Ground(!) is finite

15

The ground Instantiation of a

program:

16

Ground(!) – The ground

Instantiation of a program:

17

Normal logic programs

• Negation in the body allowed, rules of the

form:

Recall: we already had one form of negation (negation as failure) in Prolog!

18

Normal Logic Programs

• Recall: Problems with Semantics:

• In general there is no unique minimal

Herbrand Model anymore:

a ! not b.

• Two Herbrand Models: M1 = {a}, M2 = {b},

M2 is less intuitive.

19

Normal Logic Programs

• Negation as failure in Prolog was fine, as long as negation was

non-recursive, but we had problems with evaluating things like:

• When evaluating this bottom-up, we would get an alternating

fixpoint.

• Practical solution: forbid recursion over negation!

20

Stratified Programs:

• Let the dependency graph be defined as in

the previous lecture:

• A program is called stratifiable, if there are

no cycles with a marked (negative) edge.

• Nodes: Predicates

• Edges: for each rule from head to body literals.

• Edges with negation are marked

• Components: maximal sets of nodes such that

each node is reachable from each other node.

• Partial order between components is induced by

the edges.

21

Example:

Stratifiable vs. non-stratifiable

• Non-stratifiable:

• Stratifiable:

22

The Perfect Model:

• Components induced by the dependency graph are
inducing a stratification, i.e. you can evaluate
stratifiable programs in a leveled fashion, first
grounding, where negation only occurs between the
levels.

• This stratification implies an order for the evaluation.
Similar idea as component-wise evaluation.

• Let % P1, …, Pn & be the strata (levels) of a stratifiable
normal program P, then the sequence:

 defines the perfect model Mn of P

23

The Perfect Model:

• Operator TP has to be slightly modifided,

since P can now contain negation in rule

bodies:

TP(I) =

{A # BP : A $ A1, … An ,not An+1, … not Am

 is a rule r in Ground(!) such that B+(r') ' I and B-(r') (
I = ! }

24

The Perfect Model:

• Perfect Model Semantics only defined for stratifiable programs

• Each stratifiable program has a unique perfect Model

• Non-recursive Programs are always stratifiable

• Remark: Non-recursive safe programs with negation under the
perfect model semantics have the same expressivity as
Relational Algebra.

• Componentwise evaluation methods as shown last lecture are
directly applicable.

25

Non-stratifiable programs:

The perfect model is not defined here, but at least

we would like to conclude alive(nicola).

26

How to proceed with non-stratifiable

Programs, i.e. recursive negation?

• Partial Interpretations

• Unfounded sets

• Well-founded Model Semantics

• Stable Model Semantics

27

Recursive Negation:

What happens if we apply TP?

28

Recursive Negation:

• But: There are two fixpoints of TP:

• Two ways to deal with this in the
semantics:

1. don't state anything about male(nicola)
and female(nicola)

2. accept both possible scenarios
male(nicola) and female(nicola)

Needs an additional

truth-value:

{true,false,unknown}

to express that no

statement is made on

a certain atom.

Allow several models,

one where male(nicola)

holds and one where

female(nicola) holds

29

Three-valued interpretation:

• Literals are of the form: a or not a

(where a is an atom)

• A set of literals is called consistent iff

L (not.L = " *, thus if no atom occurs positively
and negatively.

• A three-valued interpretation is a consistent set of
ground literals.

Example:
• a is false wrt. I

• b is unknown wrt. I

• c is true wrt. I

* not.l is defined for l=a as not l and for l=not a as l

30

Three-valued interpretation:

Difference to Herbrand Interpretations:

• Negative Information explicitly mentioned.

• Negative information has to be explicitly

derived during Fixpoint-Computation

• No direct consequences from undefined

literals in the rule body!

31

Unfounded Sets - Example

• Goal: Derive as much negative information
as possible.

b doesn't occur in any rule head

"thus b cannot be true

"thus a is true.

"Intended interpretation" I ={not b, a}

32

Unfounded Sets - Example

• Goal: Derive as much negative information as
possible.

b doesn't occur in any rule head

"thus b cannot be true

"thus b is false

"thus a cannot be made true

"thus a is false

"Thus c should be true

"Intended interpretation" I ={not a, not b, c}

33

Unfounded Sets - Example

• Goal: Derive as much negative information as
possible.

a occurs in a rule head, but can only be caused "by
itself"

"thus a cannot be true (same for b)

"thus c is true.

"Intended interpretation" I ={not a, not b, c}

34

Unfounded Sets - Definition:

• The previous scenarios should be covered

wrt. to a definition of what the "intended

interpretation" should be:

• A Set U ' B! is called unfounded wrt. a

partial interpretation I if:

For every atom a # U and any rule

 r # Ground(!) with head a one of the following

conditions holds:

Informally: "For each element of U there is no rule which justifies believing a."

35

Unfounded Sets – examples:

With I=! {b} is an unfounded set.

With I={not b} {a} is an unfounded set, due to condition 1.

{a,c} is not unfounded wrt. I since neither condition holds for the

second rule.

With I=! {a,b} is an unfounded set, due to condition 2.

36

Greatest unfounded Set:

• Theorem: There is always a greatest
unfounded set GUS!(I) which contains all

other unfounded sets

• Idea: Use GUS!(I) to derive negative

information.

• Definition:

37

Well-Founded Operator

• Now we generalize T!(I) to three-valued interpretations:

T!(I) =

{A # BP : A $ A1, … An is a rule r in Ground(!) such that B(r) # I}

• Now we define the well-founded Operator W!(I) as a

combination of T!(I) and U!(I) :

Definition:

38

Well-Founded Model

39

Well-founded Model:

• Theorem:

W! is monotonic, thus, there exists a least
fixpoint W!

!(")

W!
!(") is called the Well-Founded Model of

a normal Program !

A three-valued Interpretation I is called total
if no atom has the value "unknown", i.e. each
element of B! is either assigned true or false.

40

Well-founded Model:

• Theorem: Each Program has a unique well-founded

model

• Theorem: The well-founded model for definite

(negation-free logic programs is total and

corresponds to the least Herbrand-Interpretation

• Theorem: The well founded model of a stratifiable

normal logic program is total and corresponds to the

perfect model

41

Well-founded Model: Example

• The well founded model is not total:

42

What about this one?

Similar to the previous program, but:

The well-founded model only consists of {person(nicola)}

Intuitively, many people would also expect alive(nicola)

to be true.

43

Stable Models

44

Stable Models

• Allow more than one model

• Stability condition instead of Fixpoint-

Semantics

45

Gelfond-Lifschitz Transformation:

• The GL-Transformation ! I of a program

! wrt. a total interpretation I is defined by

transforming Ground(!) as follows:

1. Remove all rules r for which B-(r) " I ! " holds.

2. Remove B-(r) from all remaining rules.

! From this transformation you achieve a definite (negation-free) program!

46

GL-Transformation: Example

47

Stable Models

• Observation: ! I is a definite (negation-free)

program, thus it has a least Herbrand model.

• Definition: A total Herbrandinterpretation M
is called stable model of ! if M is the least

Herbrand model of !M

48

Stable Model: Examples

I2 and I3 are stable models.

49

Stable Model: Examples

Has no stable model!

50

Stable Models:

• Each normal datalog program has one, several or no
stable models.

• Theorem: On stratifiable programs stable model
semantics, well-founded semantics and perfect
model semantics coincide, i.e. there is a single
stable model which is equal to the perfect model.

• On the whiteboard:
– The example from slide 30.

– An elegant formulation of 3-colorability.

51

Answer Set Programming:

• Stable Models are the basis for a powerful

logic programming paradigm, as an

alternative to non-declarative PROLOG:

ANSWER SET PROGRAMMING (ASP)

• ASP = LP under stable model semantics plus

useful extensions

– More in the rest of my lectures after Chrismas!

52

Feliz navidad &

muchos regalos!

;-)

