
1

Lecture 8

SLD-Resolution and PROLOG

13/12/2006

2

Overview

• SLD-Resolution

• PROLOG by example

• Lists,

• slowsort

• built-in arithmetic and other useful operators

• Next time: negation and cut

3

Resolution:
• Let C be a Horn clause

A ! A1, … An

and G be a goal

! B1, …, Bm

where G and C have no variables in common.

Let further ! be an mgu of A and Bi for some 1! i! m

Then the goal

! B1!,… Bi-1!, A1!, … An!, Bi+1!, Bm!

is called resolvent of G and C.

Remark: There is also a general resolution for full Clause logic, but for

Horn programs the above is sufficient…

4

A refutation proof by resolution

"

S = {a(x)!b(x), b(x)!e(x), l(karl,x)!a(x), b(franz)!, e(hansi)!}

G:

•Does Karl love Hansi?

5

Attention:
Why goal and clause may not have

variables in common:

• try resolving:

Not unifiable!

This can however always be solved by renaming the variables in

the clause to resolve:

6

Desirable properties:

We want to show that resolution is a sound and

complete refutation procedure!

• Soundness: Whenever a resolution
refutation is found from a set of clauses S,
then S is contradictory.

• Completeness: Whenever S is contradictory,
there exists a resolution proof.

… for this we will use a declarative characterization of the set of

all consequences by the so-called least Herbrand Model

7

The least Herbrand Model
• Model Intersection Property:

Let P be a Horn program and {Mi} i" I be a non-empty set of
Herbrand Models for P: Then Ii" I

 Mi is an Herbrand model of P

• Every Horn Program P which only consists of rules with exactly

one head atom (short: definite program) has a Herbrand Model.

Thus: There exists a so called least Herbrand Model MP.

• Let P be a definite program. Then MP = { A " BP : A is a logical

consequence of P}.

• This least Herbrand Model can be characterized by a

fixpoint operator !

8

The immediate consequence operator:

Let I be a Herbrand interpretation and P a definite program:

TP(I) =

{A # BP : A ! A1, … An is a ground instance in of a rule in P

such that A1, …, An # I}

is called the immediate consequence operator.

Clearly TP(I) is monotonic, i.e. I1 $ I2 # TP(I1) $ TP(I2).

9

Fixpoint characterization of the

Least Herbrand Model:

• The least Herbrand model can be characterized in
terms of TP:

Let P be a definite program: Then

MP = lfp(TP) = TP
%(")

Remark: for a finite Herbrand universe, this is finitely
computable!

10

Example:
• P = {a(x) ! b(x), b(x) ! e(x), l(karl,x) ! a(x), b(franz) ! , e(hansi) ! }

TP(") = {b(franz), e(hansi)}

TP
2(") = {b(franz), e(hansi), a(franz), b(hansi)}

TP
3(") = {b(franz), e(hansi), a(franz), b(hansi), l(karl,franz), a(hansi)}

TP
4(") = {b(franz), e(hansi), a(franz), b(hansi), l(karl,franz), a(hansi), l(karl,hansi)}

TP
5(") = TP

4(")

i.e. lfp(TP) = TP
4(") = MP

A simple example where the least Herbrand model is infinite:

• P = {p(a) !, p(f(x)) ! p(x)}

lfp(TP) = {p(a), p(f(a), p(f(f(a)) … }

11

SLD resolution and its properties:

• We will now focus on resolution for a single Goal clause and a
definite program:

• SLD – resolution: Linear resolution with Selection function for
Definite clauses.

Soundness:

We want to show that whenever we can find a SLD-refutation
from a definite program P plus a goal G, then G is a logical
consequence of P, i.e. G is in the least Herbrand Model MP.

Completeness:

We want to show that for a definite program P plus a goal G,
whenever G is a logical consequence if P, i.e. G is in the least
Herbrand Model MP then we can find a SLD-refutation.

12

Definitions: SLD-Derivation and

SLD-Refutation:

• Definition: Let P be a definite program and G0 be a
definite Goal. Then an SLD-derivation of P & {G0}
consists of a (finite or infinite) sequence G0,G1,…of
goals, a sequence of clauses C1,C2, … of variants of
program clauses of P and a sequence !1,!2, …of
mgu's such that Gi+1 is the resolvent of Gi and Ci+1

using !i+1.

• Definition: A finite SLD-derivation of P & {G0} which
has the empty clause " as the last goal Gn is called
SLD-refutation of length n.

* Remark: The S in SLD-resolution refers to which atom/subgoal is

selected for resolution in each step.

*

13

Notation:
G0

G1

G2

Gn-1

Gn

C1

!2

Cn

!n

!1

C2

Finite, infinite, successful,

failed SLD-derivations:

• SLD-derivations can be finite or infinite

• A failed SLD-derivation is on that ends

in a non-empty goal such that the

selected atom does not unify with the

head of any program clause.

14

Computed answers:

• Definition: A computed answer ! for P & {G} is the substitution

obtained by restricting the composition of !1, …, !n from an

SLD-refutation of P & {G} to the variables of G.

"

Back to our example: Which Eagles does Karl love?
P = {a(x)!b(x), b(x)!e(x), l(karl,x)!a(x), b(franz)!, e(hansi)!}

G = ! e(y), l(karl,y)

G:

There are possibly several valid refutations, each of which "contains" an answer
substitution (e.g. add e(seppl)! to P.)

Computed answer: ! = {y/hansi}

15

Soundness of SLD resolution:
• Proposition 1: Every computed answer for

P & {G} is a correct answer
(i.e. for G=! A1,… Ak, and and a refutation of length n with mgu's !1 … !n

 '(A1 (…(Ak)!1 … !n is a logical consequence of P).

• Proof: By inductuction on length n of the refutation.

Assume n = 1, i.e. G= ! A1 and there is a unit clause A! and in P such that A1!1 = A!1.

Since

A1!1! is an instance of a unit clause in P it follows that '(A1!1) is a logical consequ.of P.

Next, assume that the result holds for refutations of length n-1 for goal G0 = ! A1, …, Ak.

Suppose !1 … !n is the set of mgu's of a refutation of length n. Let C1 = A ! B1, …, Bq

be the first input clause for the refutation and Am be the selected clause in this first

resolution step.

Then, by induction hypothesis,

' (A1 … (Am-1 (B1 (… (Bq (Am-1 … (Ak) !1 … !n

is a logical consequence of P. Thus, if q > 0, ' ((B1 (… (Bq) !1 … !n) is a log.

consequence of P, which further means that also ' (A !1 … !n) = ' (Am !1 … !n) is a

consequence of P and therefore also: ' (A1 … (Ak) !1 … !n

16

Completeness of SLD-Resolution:

Proof (sketch):

 $: follows by soundness already.

): (i.e. for every atom A in the least Herbrand model we can find an SLD-refutation) this is the

actual completeness result:

Suppose A is in the least Herbrand model, then there is some n such that A # TP
n(").

We can then show inductively that A # TP
n(") implies that A has a refutation of length n.

Proposition 2: The set SLD-provable ground atoms for a definite

program is equal to its least Herbrand model.

First for ground atoms:

Proposition 3: Let P be a definite program and G be a definite goal.
Suppose that P & {G} is unsatisfiable. Then there exists an SLD-

refutation of P & {G}.

Now for definite goals:

Proof (sketch):

 Let G = ! A1, …, Ak. Since P & {G} is unsatisfiable, G is false wrt. MP. So some
ground instance G! is false wrt. MP. Thus {A1!, Ak!} # MP.By the above
proposition, there is a SLD-refutation of P & ! Ai!, for each i= 1,...,k. Since each
Ai! is ground, we can combine these refutations into a refutation for P & {G!}.
Thus, by the so-called lifting lemma, there also exists a refutation for P & {G}.

Remark: For the proof details: check [Lloyd, 1987]

17

Further properties of SLD

resolution:

• Soundness and completeness do not depend
on the selection function S (i.e. which subgoal
is selected first).

• What does this mean?

We could (naively) implement a Breath-First
search algorithm for finding a refutation
proofs, which uses backtracking for finding all

computed answers.

18

PROLOG:

• In the early 70's A. Colmerauer and R.A. Kowalski more or less at the same time invented
PROLOG as a recursive programming language which uses the SLD-resolution principle in
a slightly more procedural way:

• Colmerauer and his group at the University of Marseille-Aix developed a specialized
theorem prover, which they called PROLOG (for “Programacion en Logique” or
“Programming in Logic”), embodied Kowalski's procedural interpretation

Alain Colmerauer Robert Kowalski

19

PROLOG

• For efficiency reasons, PROLOG systems make the following
simplifications wrt. Full SLD resolution:

1) No occur check

2) Depth-first search

• PROLOG is rather a procedural implementation of the resolution
principle than really declarative: Efficient, procedural
implementation vs. declarativity and completeness

• In the following: Some examples and problems

• Next time:
– Programming in PROLOG,

– Termination, Negation as finite failure

– Cut, …

20

The problem with the occur-

check:
• Occur-check can be very expensive, that's why it is ommitted in most PROLOG

implementations.

• Problem: wrong answers or infinite loops

Examples:

1) P = testme ! p(x,x)

p(x,f(x)) !

G = ! testme

PROLOG will wrongly answer "yes" here!

! SOUNDNESS OF SLD-Resolution is sacrificed for efficiency!

2) P = testme ! p(x,x)

 p(x,f(x)) ! p(x,x)

G = ! testme

PROLOG will run into an infinite loop here, not finding the correct answer "no"!

! COMPLETENESS OF SLD-Resolution is sacrificed for efficiency!

• See exercises!

"mgu" = {x/f(x)} … circular binding!

21

The problem with Depth-First-Search

• PROLOG systems always select the first subgoal,
and try to unify with the clauses of the program in a
first-to-last, depth-first fashion. Backtracking is used,
when no solution has been found.

• Problem: Termination!

• Simple example:

P = test ! p(x)

 p(a) !

p(x) ! p(f(x))

G = ! test

P = test ! p(x)

p(x) ! p(f(x))

p(a) !

G = ! test

vs.

22

Overview

• SLD-Resolution

• PROLOG by example

• Lists and built-ins

• Cut and Negation

23

PROLOG +/-

• The Log.Prog.Paradigm of Prolog has advantages
and drawbacks against "pure" Logic Programming:

Prolog:

+ simplicity, conciseness (simple backtracking, easy to
understand)

+ useful extensions by arithmetics, datatypes, etc.

- restrictions of simple control mechanism (not fully
declarative)

cf. [Apt ,2001]

24

Basic Syntax and Programs:
• As in clausal notation we distinguish different kinds of clauses:

– Facts

b(hansi)! b(hansi).

– Rules

parrot(x) ! bird(x),colorful(x). parrot(X) :-bird(X),colorful(X).

– Queries (Goals)

! l(karl,hansi) ?- l(karl,hansi).

• A program is a set of facts and rules.

• You can store a program in a file

(usually with extension ".pl" (SWI-Prolog), or ".P" (XSB-Prolog))

25

More on PROLOG syntax

– Variables start with a capital letter or with '_' (more on that
later), all other combinations of letters, numbers are
constants.

– Constants start with a lower case letter or can alternatively
be included in single quotes axel,'Axel'.

– Single quotes and double quotes are something different!!!

– Body elements of rules are separated by ','

– Each rule/fact/query ends with a fullstop '.'

– ! is written ':-' in rules, '?-' in queries and can be skipped
for rules with empty body (facts).

– Prolog does not make a distinction between function
symbols and predicate symbols on a syntactical level! (more
on that later), see also slides 17/18.

– Comments start with '%' (the rest of the line will be ignored).

26

A small program…
… which we will subsequently extend:

% Some relations between Austrian emporers

% in the 17th and 18th century:

child_of(joseph_I, leopold_I).

child_of(karl_VI, leopold_I).

child_of(maria_theresia,karl_VI).

child_of(joseph_II, maria_theresia).

child_of(joseph_II,franz_I).

child_of(leopold_II,maria_theresia).

child_of(leopold_II,franz_I).
child_of(marie_antoinette,maria_theresia).

child_of(franz_II,leopold_II).

male(franz_I).

male(franz_II).

male(joseph_I).

male(joseph_II).

male(karl_VI).

male(leopold_I).
male(leopold_II).

female(maria_theresia).

female(maria_antoinette).

emporers.pl

27

A small program…
Our program is currently simply a set of facts.

This can be viewed as a relational database,

with tables:

• Now we want to query this database, therefore we

use queries (i.e. goals).

Maria TheresiaMarie Antoinette

Leopold IIFranz II

Franz ILeopold II

Maria TheresiaLeopold II

Franz IJoseph II

Maria TheresiaJoseph II

Karl VIMaria Theresia

Leopold IKarl VI

Leopold IJoseph I

ParentChild

child_of

Ferdinand I

Name

Leopold I

Karl VI

Franz II

Franz I

Joseph II

Joseph I

malefemale

Marie Antoinette

Maria Theresia

Name

28

Start PROLOG and load Program

• Download/install: http://www.swi-prolog.org/

• From the command line:
$ swipl

Welcome to SWI-Prolog (Multi-threaded, Version 5.4.2)

Copyright (c) 1990-2003 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?-

• Load a Program with
?- [name].

or
?- compile('name.pl').

or

?- consult('name.pl').

• Now you can ask queries on the program

• Leave PROLOG with <Ctrl>-<D> or
?- halt.

29

Queries

• Simple queries: e.g.

"Who are the children of Maria Theresia?"

?- child_of(X, maria_theresia).

• Composed queries: e.g.
"Who are the sons (i.e., male children) of Maria Theresia?"

?- child_of(X, maria_theresia), male(X).

Alternative:

?- child_of(X, maria_theresia), male(Y), X=Y.

In SWI-PROLOG: Hit <n> or <;> to get the next answer, Hit <RETURN> to

get not further answers.

30

Simple Queries vs. SQL
• A program consisting only of a set of facts can be viewed as a

database.

• We can ask simple conjunctive queries on this database.

e.g. "Who are the grandchildren of Maria Theresia?":
? – child_of(X,Y), child_of(Y,maria_theresia).

This can be similarly expressed in SQL:
SELECT c2.child FROM child_of c1, child_of c2

WHERE c1.parent = 'Maria Theresia'

AND c1.child = c2.parent;

• Note that these queries are exactly what is expressible in databases
by so called SPJ-queries (select-project-join)…

• … Moment! We don't have projection (yet)! Our query is more
something like:

•
SELECT c2.child, c2.parent FROM child_of c1, child_of c2

WHERE c1.parent = 'Maria Theresia'

AND c1.child = c2.parent;

i.e., we have to output all bindings used in the query.

31

The answer 'No' and the Closed

World Assumption (CWA):
• Bear in mind… PROLOG only answers 'yes' to what can be proven from the

program.

• The answer 'no' means: "No answers could be found (in finite time)"

• So, a negative answer to:
?- child_of(D, franz_I), male(D).

can have several reasons:

1. The program describes reality incompletely, the result 'no' is not necessarily
true. (In fact Marie Antoinette was a daughter of Franz I, which is not represented in our facts!)

2. The program describes reality completely, then result 'no' is correct.

… by answering 'no' Prolog adopts the so called Closed World Assumption, i.e.
complete knowledge in the facts is assumed we will speak about this in more
detail in later lectures.

32

Rules

• As mentioned above, the current "program" is

only a set of facts similar to tables in a

database…

• …but in databases we had something like

"views", right?

• For more interesting programs and queries

we need rules defining new predicates!

33

Examples for rules:

• Grandchildren from before, add a rule to the program:

grandchild_of(X,Z) :- child_of(X,Y), child_of(Y,Z).

The set of rules with a certain predicate p in its head are also called the definition of p.

• You can now define grandsons or grandfathers in terms of this new predicate:

grandson(X) :- grandchild_of(X,Y), male(X).

etc.

• A predicate can be defined by several rules, e.g.:
person(X) :- male(X).
person(X) :- female(X).

person(X) :- child_of(X,Y).

person(X) :- child_of(Y ,X).
e.g. in our database, it is not listed whether ferdinand I is a child of any of the others,

or for Leopld it it is not listed whether he was a man or a woman.

34

Rules as views:

person(X) :- male(X).

person(X) :- female(X).

CREATE VIEW person AS

SELECT name from male

UNION SELECT name from female;

Since recursion is allowed, this goes beyond

SQL-2!

35

Recursive Rules

• Interesting rules are recursive ones, with recursion
we can, for instance define a predicate ancestor:

ancestor(X,Y) :- child_of(X,Y).

ancestor(X,Z) :- child_of(X,_ Y), ancestor(_Y,Z).

When using recursion, remember the evaluation of Prolog Programs: Be aware
of the rule order and the order of goals!

e.g.:
ancestor(X,Y) :- child_of(X,Y).

ancestor(X,Z) :- ancestor(_Y,Z), child_of(X,_Y).

or
ancestor(X,Z) :- ancestor(_Y,Z), child_of(X,_Y).

ancestor(X,Y) :- child_of(X,Y).

cause problems (similar to what you already know from programming

recursively in procedural languages).

36

Tracing of queries!
1 ?- trace.

Yes

[trace] 1 ?-

 Call: (7) ancestor(_G523, maria_theresia) ? creep

 Call: (8) child_of(_G523, maria_theresia) ? creep

 Exit: (8) child_of(leopold_II, maria_theresia) ? creep
 Exit: (7) ancestor(leopold_II, maria_theresia) ? Creep

X = leopold_II ;

 Redo: (8) child_of(_G523, maria_theresia) ? creep

 Exit: (8) child_of(joseph_II, maria_theresia) ? creep

 Exit: (7) ancestor(joseph_II, maria_theresia) ? creep

X = joseph_II ;

 Redo: (8) child_of(_G523, maria_theresia) ? creep
 Exit: (8) child_of(marie_antoinette, maria_theresia) ? creep

 Exit: (7) ancestor(marie_antoinette, maria_theresia) ? creep

X = marie_antoinette ;

 Redo: (7) ancestor(_G523, maria_theresia) ? creep

 Call: (8) child_of(_G523, _L186) ? creep

 Exit: (8) child_of(leopold_II, maria_theresia) ? creep

 Call: (8) ancestor(maria_theresia, maria_theresia) ? creep

 …

 Exit: (8) ancestor(leopold_II, maria_theresia) ? creep
 Exit: (7) ancestor(franz_II, maria_theresia) ? creep

X = franz_II ;

37

Rules as procedures

• Rules can be read as procedures, due to the working of PROLOG:
ancestor(X,Z) :- child_of(X,_Y), ancestor(_Y,Z).

procedure ancestor(X,Z)

call child_of(X,Y);

call ancestor(Y,Z);

end

• In Logic Programming data-manipulation is achieved exclusively by the
unification algorithm. Unification subsumes:

– Single assignment

– Parameter passing

– Allocation of memory for (dynamic) data-structures like terms and lists

– Read/(single-)write to these data-structures

Introduction to Logic

Programmming: WS 2004/2005

38

Terms in PROLOG

Example:
natNumber(0).

natNumber(s(X)) :- natNumber(X).

% 0+X=X

% s(X)+Y=s(X+Y)

plus(0,X,X) :- natNumber(X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

Note:

• Prolog does not restrict function symbols and predicate symbols
to be distinct (all are called functors), i.e. terms and predicates
are not distinguished in PROLOG.

• Prolog does allow functors to appear with different arities.

39

Functions and Terms

• Terms in Prolog:
– Constants: sequence of alphanumeric characters

and '_' beginning lower case letter.

• Examples:
f(X,Y) :- p(f(X)), q(f(Y)).

is valid in PROLOG!

Note:

 f(X,Y): f/2 f(X):f/1 f/1"f/2

40

Functions and Lists

• We seen in the last exercises a very verbose encoding for
lists with constant symbol nil and function symbol l/2.

• Prolog provides a more convenient notation of lists:

• Empty list: []

• List notation [Head|Tail]

• Short notation for [El_1 |[El_2 [El_3|[]]]

[El_1, El_2, El_3]

• Examples:

l(a,nil) [a]

l(1,X) [1|X]

l(1,l(2,l(3,nil))) [1,2,3]

l(l(a,nil), l(l(b,nil),nil) [[a],[b]]

This can be used to encode Matrices!

41

Recursive Programming on Lists
• Several predicates such as append/3, member/2, etc. are

predifined for lists, let us try to emulate the predicate appending
two lists:

app([],X,X).

app([X|Xs],Y,[X|Z]) :- app(Xs,Y,Z).

Let us check (in append.pl) some other programs for reversing lists, deleting elements
from lists, etc. …

% reverse a list, inefficient:

bad_rev([],[]).

bad_rev([X|Y],Z) :- bad_rev(Y,Y1), app(Y1,[X],Z).

% better version:

rev(List, Reversed) :- rev(List, [], Reversed).

rev([], Reversed, Reversed).

rev([Head|Tail], SoFar, Reversed) :- rev(Tail, [Head|SoFar], Reversed).

42

Slowsort in PROLOG!

Version 1
 slowsort(X,Y) :- perm(X,Y), sorted(Y).

 sorted(nil).
 sorted(l(X,nil)).
 sorted(l(X,l(Y,Z))) :- leq(X,Y), sorted(l(Y,Z)).

!perm(nil,nil).
!perm(l(X,Y),l(U,V)) :- delete(U,l(X,Y),Z), perm(Z,V).
!delete(X,l(X,Y),Y).
!delete(X,l(Y,Z),l(Y,W)) :- delete(X,Z,W).

!leq(0,X).
!leq(s(X),s(Y)) :- leq(x,y).

43

Slowsort in PROLOG!

Version 2
slowsort(X,Y) :- perm(X,Y), sorted(Y).

sorted([]).
sorted([X|[]]).
sorted([X|[Y|Z]]) :- X @=< Y, sorted([Y|Z]).

perm([],[]).
perm([X|Y],[U|V]) :- delete(U,[X|Y],Z), perm(Z,V).

delete(X,[X|Y],Y).
delete(X,[Y|Z],[Y|W]) :- delete(X,Z,W).

Uses PROLOG’s list notation and built-in arithmetic!

44

Built-in Predicates

• Prolog supports a variety of system
predicates, which are implemented in the
system, and evaluated directly, not by the
normal resolution of pure PROLOG.
– Arithmetic for numbers

– Built-ins for lists

– etc.

• Most systems also provide APIs to extend
prolog by external function calls.

45

Equality and comparison operators:

• All these predicates are binary and can be used in infix notation.

4 < 5

4 =< 4

Comparison operators, evaluate the terms on both

sides, no uninstantiated variables allowed.

>, <

=<, >=

Opposite of =@=\=@=

Opposite of =:==\=

X \== 2Opposite of ==\==

Opposite of =\=

A =@= BStructural equivalence, wrt. To variable structure

(weaker than == but stronger than =)

=@=

1+1 == 2Checks equivalence of terms on lhs and rhs.==

evaluates the term on both sides, no

uninstantiated variables allowed.

evaluates the term on the right-hand-side (rhs)

and unifies with the left-hand-side (lhs), no

uninstantiated variables allowed on the rhs.

Unifies, no evaluation.

3+2 =:= 4+1=:=

 X is 4+3is

 X = Y=

46

Arithmetic functions:
• Arithmetic expressions (can be nested):

+ … addition

 - … subtraction (binary) or unary minus

mod … modulo

rem … remainder

/ … division

// … integer division

min, max … minimum, maximum

abs … absolute

etc.

For a complete list check SWI-Prolog manual!

47

Some examples:

Arithmetic Operators: +, -, -, *, /, mod, etc. in predicate or

infix notation.

 ?- X is Y. error

 ?- 3+1 < 4*5. succeeds

 ?- <(3+1,*(4,5)). succeeds

 ?- N < N+1. error

 ?- N=4, N < 2+1. fails

 ?- 1+1 =\= 2. fails

 ?- 1+1 \== 2. succeeds

 ?- 1+1 =:= 2. succeeds

 ?- 4 >= min(5,3). succeeds

48

Useful built-ins for lists:

• member/2, reverse/2, sort/2, msort/2,

merge/3, append/3, length/2

• etc.

• We've seen already ways to implement

these, but the builtins are more efficient.

49

Meta-logical and structure

predicates

Example: check the program natNumbers.pl

?- add(s(s(0)),X, s(s(s(s(0))))).

Not so, if we use arithmetics and the following simple

definition:

plus(X,Y,Z) :- Z is X + Y.

• We need to analyze X,Y, and Z and distinguish

cases where they are variables, numbers, etc.

• Prolog supports a number of meta-logical built-in

predicates for that and for several other uses.

50

Structure predicates &

meta-logical Predicates:
Used to check the structure of a term or predicate:

• compound/1

• is_list/1

• atom/1

• integer/1, float/1, number/1

• atomic/1

• var/1, nonvar/1,

• functor/3

• arg/3

• =..

51

Checking types and structure of

terms:
• Check whether some term is of a certain type or structure:

var/1 … suceeds if argument is bound to a variable.

compound/1 … succeds if argument is bound to a compound term.

atom/1 … succeeds if argument is bound to an atom
 (note that by atom we only mean an identifier here, not an atom in FOL sense!).

integer/1,

float/1,

number/1 … succeed if argument is bound to a number

atomic/1 … succeeds for variables and atoms

is_list/1 … succeeds if argument is bound to a list.

ground/1 … succeeds if argument is bound to a ground term.

etc.

52

Examples:

• ?- X is 3, var(X). fails

• ?- var(X), X is 3. succeeds

• ?- is_list(X). fails

• ?- atom(maria_theresia)suceeds

• ?- atom(s) suceeds

• ?- atom(s(s(0))). Fails

53

More Meta-Logical predicates

for analyzing and constructing terms:

• functor/3 … functor(X,Y,Z) succeeds if X is a term with

functor name Y and arity Z.

• arg/3 … arg(X,Y,Z) succeeds if Z is the argument of

term Y at position X.

• =../2 … converts a term into a list and vice versa.

54

Examples

?- functor(a(b,_),N,A). succeeds

?- arg(2, a(b,c),X). succeeds

?- X =.. [a,b,c]. succeeds

?- a(b,c) =.. X. succeeds

?- X =.. a(b,c). error

55

• Meta-predicates can be used to define further predicates, e.g.

we can model some of them as definitions using the other ones:

ground/1 acts as if defined by the following definition:

ground(X) :- nonvar(X), atomic(X).

ground(X) :- nonvar(X), compound(X), functor(X,F,N),ground(N,X).

ground(N,X) :- N>0, arg(N,X,Arg), ground(Arg), N1 is N-1, ground(N1,X).

ground(0,X).

is_list/1 acts as if defined by the following definition:
is_list(X) :- var(X), !, fail.

is_list([]).

is_list([_|T]) :- is_list(T).

For the meaning of '!' and 'fail', see below.

Example: Redefine is_list/1 and

ground/1:

56

Example: Redefine plus/3:

plus(X,Y,Z) :- nonvar(X), nonvar(Y), Z is X + Y.

plus(X,Y,Z) :- nonvar(X), nonvar(Z), Y is Z - X.

plus(X,Y,Z) :- nonvar(Y), nonvar(Z), X is Z - Y.

