Modal Propositional Logic

David Pearce

Modal propositional logic: Syntax

- □ Syntax of classical propositional logic
- \Box Countable set of propositional atoms: $p_0, p_1, \ldots, p_n, \ldots$
- \Box Logical connectives: $\land,\lor,\rightarrow,\neg$
- \Box Modal operators: \Box , \diamond (necessity, possibility)
- \Box If α is a wff, so is $\Box \alpha$. $\Diamond \alpha =_{df} \neg \Box \neg \alpha$

Normal Modal Systems

- □ A system of modal logic is a certain class S of formulas whose elements are theorems
- $\Box \vdash_S \alpha$ denotes that α is a theorem of S.
- □ A modal system is *normal* if it contains:
- □ all theorems of propositional logic
- the axiom **K**: $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$
- $\hfill \hfill \hfill$
- □ MP (modus ponens)
- $\Box \mathsf{N} \text{ (necessitation): } \vdash \alpha \Rightarrow \vdash \Box \alpha$

- A model is a triple $\langle W, R, V \rangle$, where
- \Box W is a non-empty set (of possible worlds)
- $\hfill\square\ensuremath{\,R}$ is a binary relation over W, ie $R\subseteq W\times W$
- $\hfill V$ is a valuation assigning a truth-value 1 or 0 to each atomic proposition p at each world $w \in W$

Valuations V are extended to all formulas via the following rules:

$$(\mathbf{V} \wedge) V(\alpha \wedge \beta, w) = 1 \text{ iff } V(\alpha, w) = 1 \& V(\beta, w) = 1$$

$$(\mathbf{V} \lor) V(\alpha \lor \beta, w) = 1 \text{ iff } V(\alpha, w) = 1 \text{ or } V(\beta, w) = 1$$

$$(\mathbf{V} \rightarrow) V(\alpha \rightarrow \beta, w) = 1 \text{ iff } V(\alpha, w) = 1 \text{ implies } V(\beta, w) = 1$$

 $(\mathbf{V} \neg) V(\neg \alpha, w) = 1 \text{ iff } V(\alpha, w) = 0$

(V \Box) $V(\Box \alpha, w) = 1$ iff $V(\alpha, w') = 1$, for all w' such that wRw'

Truth and Validity

- □ A formula α is true at world w in a model $\mathcal{M} = \langle W, R, V \rangle$ if $V(\alpha, w) = 1$. In this case we sometimes write $\mathcal{M}, w \models \alpha$.
- □ A formula α is true in a model $\langle W, R, V \rangle$ if $V(\alpha, w) = 1$, for all $w \in W$. We also write $\mathcal{M} \models \alpha$.
- □ A formula is valid (in a class of models) if it is true in every model in that class
- $\hfill\square$ The axiom ${\bf K}$ is valid in the class of all models
- \Box The weakest normal system axiomatised by \mathbf{K} and propositional logic is called K. Its theorems are true in all models

some other axioms of normal systems

Stronger normal systems can be obtained by adding further axioms

- $\mathbf{T}:\ \Box p \to p$
- $\mathbf{D}:\ \Box p \to \Diamond p$
- $\mathbf{4}:\ \Box p \to \Box \Box p$
- $\mathbf{5}:\, \Diamond \Box p \to \Box p$
- $\mathbf{B}:\, \diamondsuit \Box p \to p$
- $\mathbf{W5}: \, \Diamond \Box p \to (p \to \Box p)$
- $\mathbf{F}:\ (p \land \Diamond \Box q) \to \Box (\Diamond p \lor q)$

some normal systems

Some well-known normal systems are denoted as follows

- $B: \mathbf{B}$
- $T: \mathbf{K}, \mathbf{T}$
- $S4: {f K}, {f T}, {f 4}$
- $S4F: \mathbf{K}, \mathbf{T}, \mathbf{4}, \mathbf{F}$
- $KD45: \mathbf{K}, \mathbf{D}, \mathbf{4}, \mathbf{5}$
- $SW5: {f K}, {f T}, {f 4}, {f W5}$
- S5: K, T, 4, 5

Some relations between normal systems

- $\ \square \ K \subset T \subset S4 \subset S5$
- $\ \square \ K \subset B \subset S4 \subset S5$
- □ These logics are *sound* with respect to classes of models whose accessibility relations satisfy simple algebraic properties.

Some types of binary relations

- Let R be a binary relation over a set X.
- \square R is *reflexive* if R(a, a) for every $a \in X$
- \square R is symmetric if $R(a,b) \Rightarrow R(b,a)$ for every $a,b \in X$
- $\label{eq:relation} \square \ R \ \text{is transitive if} \ R(a,b), R(b,c) \Rightarrow R(a,c) \ \text{for every} \ a,b,c \in X$
- □ A relation that is reflexive, symmetric and transitive is said to be an *equivalence* relation.

Some soundness characterisations

- $\square T \text{ is sound for the class of reflexive models, ie. the axiom } \mathbf{T} : \Box P \to p \text{ is valid in models whose } R \text{-relation is reflexive.}$
- $\hfill \hfill S4$ is sound wrt to models that are reflexive and transitive
- \square *B* is sound wrt models that are reflexive and symmetric.
- $\hfill\square$ S5 is sound wrt models in which R is an equivalence relation.

soundness proofs

To prove soundness we must show

□ The axioms of the system are true in all models of the given class

□ The transformation rules US, MP and N are truth preserving, ie when applied to formulas true in all models, they lead to formulas true in all models.

soundness for \boldsymbol{K}

so to prove soundness for the system ${\cal K}$ we must show

- □ The K axiom is true in all models. Given a model (W, R, V), it suffices to show that if (a) □(p → q) and □p are true in a world w, then also (b) □q is true in w. Suppose (a) holds. Then by (V □), p → q and p are true in all w' such that R(w, w'), so by (V →) so is q. Therefore by (V □), □q is true in w.
- The transformation rules US, MP and N are validity preserving, ie when applied to formulas true in all models, they lead to formulas true in all models. Suppose α is valid, then it is a formula true in every world w in any model. Then α is true independent of the truth-values assigned to the atomic variables in α. Hence if β is the result of uniformly replacing the variables of α by any wff, then β must also be true in w. So the rule US is validity preserving.

Exercises

- \Box (1) show that the rules MP and N are validity preserving.
- \Box (2) show that the axiom T is true in all reflexive models.
- \Box (3) show that the axiom **B** is true in all reflexive, symmetric models.

preserving validity in a (single) model

The rule US of uniform substitution does not preserve truth in a single model. Counter-example: consider a model with two worlds w, w' with (w, w') as the only element in the R relation. Consider atoms p, q where p is true at both worlds and q at just the world w'. Then $\Box p \rightarrow p$ is true in the model but $\Box q \rightarrow q$ is not. Yet the latter is a substitution instance of the former.

However we do have the following:

□ Theorem. Let S be an axiomatic, normal model system and let $\langle W, R, V \rangle$ be any model. If every substitution instance of every axiom of S is true in $\langle W, R, V \rangle$, then every theorem of S is true in $\langle W, R, V \rangle$.

□ Note that the rules MP and N do preserve truth in a single model.

- Let R be a binary relation over a set X.
- $\square R \text{ is universal if } R = X \times X$
- $\hfill\square\ R$ is Euclidean if for every $a,b,c\in X$ such that R(a,b) and R(a,c), also R(b,c)
- □ Suppose $a \in X$ and there is no $b \in X$ such that R(a, b), then a is called a *dead-end*.

 $\hfill \hfill \hfill$

We want to show that certain classes of models *fully* characterise particular normal model systems. We use the powerful method of *canonical* models.
Let S be a normal modal system and C a given class of models. A wff is said to be C-valid iff it is true in every model in C.

- \Box S is sound wrt C if every theorem of S is C-valid.
- □ S is complete wrt C if every C-valid formula is a theorem of S; i.e. if α is not a theorem of S ($\not\vdash_S \alpha$) then it is not true in some C-model.
- □ A formula α is said to be *S*-inconsistent if $\vdash_S \neg \alpha$; otherwise (if $\nvDash_S \neg \alpha$) it is *S*-consistent. It follows that *S* is complete wrt *C* if $\forall \alpha$, if α is *S*-consistent then there is a *C*-model in which α is true at some world *w*.

We first generalise S-consistency to sets of formulas

- $\square \text{ Definition: A finite set } \Sigma = \{\alpha_1, \dots, \alpha_n\} \text{ is } S\text{-consistent iff } \alpha_1 \wedge \dots \wedge \alpha_n \text{ is } S\text{-consistent.}$
- □ An arbitrary set of formulas Σ is *S*-consistent if every finite subset of Σ is *S*-consistent, ie there is no finite $\{\alpha_1, \ldots, \alpha_n\} \subset \Sigma$ such that $\vdash_S \neg(\alpha_1 \land \ldots \land \alpha_n)$.
- □ the canonical model method will show that if Σ is an *S*-consistent set of wff, then there is a *C*-model $\mathcal{M} = \langle W, R, V \rangle$ and $w \in W$ such that $\mathcal{M}, w \models \Sigma$. \mathcal{M} is called the canonical model.

maximal consistent sets, contd

- $\label{eq:constraint} \square \mbox{ Definition: A set } \Gamma \mbox{ of wff is maximal iff for every wff } \alpha \mbox{, either } \alpha \in \Sigma \mbox{ or } \\ \neg \alpha \in \Sigma.$
- \Box Γ is said to be *maximal S*-consistent iff it is maximal and *S*-consistent. Lemma 1 Let Γ be a maximal *S*-consistent set of wff. Then:
 - 1. for any α , exactly one member of $\{\alpha, \neg \alpha\}$ is in Γ
 - 2. $\alpha \lor \beta \in \Gamma$ iff either $\alpha \in \Gamma$ or $\beta \in \Gamma$
 - 3. $\alpha, \beta \in \Gamma$ iff both $\alpha \in \Gamma$ and $\beta \in \Gamma$
 - 4. $\vdash_S \alpha \Rightarrow \alpha \in \Gamma$
 - 5. if $\alpha \in \Gamma$ and $\alpha \to \beta \in \Gamma$, then $\beta \in \Gamma$
 - 6. if $\alpha \in \Gamma$ and $\vdash_S \alpha \to \beta$, then $\beta \in \Gamma$

□ Theorem 2 Let Σ be S-consistent. Then there is a maximal S-consistent set $\Gamma \supseteq \Sigma$.

canonical models

First some notation: for Σ a set of wff, let $\Box^{-}(\Sigma) =_{df} \{ \alpha : \Box \alpha \in \Sigma \}$

- **Lemma 3** let S be a normal system and Γ an S-consistent set of wff containing a wff of the form $\neg \Box \alpha$. Then $\Box^{-}(\Sigma) \cup \{\neg \alpha\}$ is S-consistent.
- □ Corollary. let S be normal and Γ an S-consistent set of wff containing a wff of the form $\Diamond \alpha$. Then $\Box^-(\Sigma) \cup \{\alpha\}$ is S-consistent.
- □ Definition. The *canonical* model of a normal modal system S is the model $\langle W, R, V \rangle$ defined as follows.
 - 1. $W = \{w : w \text{ is a maximal } S \text{-consistent set of wff} \}$
 - 2. For any $w, w' \in W$, $R(w, w') \Leftrightarrow \Box^-(w) \subseteq w'$.
 - 3. for any atom p and $w \in W$, $V(p, w) = 1 \Leftrightarrow p \in w$.

basic theorem for canonical models

□ Theorem 4 Let $\langle W, R, V \rangle$ be the *canonical* model of a normal modal system S. For any wff a and any $w \in W$, $V(\alpha, w) = 1 \Leftrightarrow \alpha \in w$.

 $\hfill\square$ Proof. By induction on complexity of α

- 1. For α an atom, claim holds by definition.
- 2. Assume theorem for α and prove for $\neg \alpha$. Consider any $\neg \alpha$ and $w \in W$. By $(\vee \neg)$, $V(\neg \alpha, w) = 1 \Leftrightarrow V(\alpha, w) = 0$. By assumption, $V(\alpha, w) = 0 \Leftrightarrow \alpha \notin w$. Hence $V(\neg \alpha, w) = 1 \Leftrightarrow \alpha \notin w$. By Lemma 1.1, $\alpha \notin w$ iff $\neg \alpha \in w$. Therefore $V(\neg \alpha, w) = 1 \Leftrightarrow \neg \alpha \in w$.
- 3. For $\alpha \lor \beta$, assume claim holds for α and β , use (V \lor) and apply Lemma 1.2.
- 4. Consider the case of □α and assume claims holds for α. (i) suppose □α ∈ w. By definition of R, α ∈ w' for all w' such that R(w, w'). By induction assumption, for each such w', V(α, w') = 1. So by (V □), V(□α) = 1.

(ii) Suppose on the other hand that $\Box \alpha \notin w$. By Lemma 1.1, $\neg \Box \alpha \in w$. So by Lemma 3, $\Box^-(w) \cup \{\neg \alpha\}$ is S-consistent. Thus by Theorem 2 and definition of W, there exists a $w' \in W$ such that $\Box^-(w) \cup \{\neg \alpha\} \subseteq w'$. Hence we have (i) $\Box^-(w) \subseteq w'$ and (ii) $\neg \alpha \in w'$. (i) implies R(w, w'), by def of R. So by induction assumption, theorem holds for α and by part 1 above for $\neg \alpha$. Therefore by (ii), since $\neg \alpha \in w'$, we have $V(\neg \alpha, w') = 1$ and therefore $V(\alpha, w') \neq 1$. Then by (V \Box), we obtain $V(\Box \alpha) \neq 1$.

□ Corollary. A formula α is valid in the canonical model for S iff $\vdash_S \alpha$. Proof: Let $\langle W, R, V \rangle$ be the *canonical* model for S. Suppose that $\vdash_S \alpha$. Then by Lemma 1.4, α belongs to every maximal S-consistent set. So $\alpha \in w$, for all $w \in W$. By Theorem 4, $V(\alpha, w) = 1$, for all $w \in W$ so α is true in the canonical model. Suppose that $\nvDash_S \alpha$. Then $\neg \alpha$ is S-consistent. So for some $w \in W$, $\neg \alpha \in w$ and hence $\alpha \notin w$. Therefore by Theorem 4, $V(\alpha, w) \neq 1$, for some $w \in W$, and so α is not true in the canonical model.

 \Box Corollary. The system K is complete for the class of all models.

some completeness theorems

- $\hfill\square$ T is complete with respect to the class of all reflexive models
- $\hfill S4$ is complete for the class of all reflexive, transitive models
- \Box B is complete fore the class of all reflexive, symmetrical models
- $\hfill S5$ is complete for the class of all models in which R is an equivalence relation

Method Show in each case that the canonical model has the stated structure.

more completeness results

- $\hfill D$ is complete with respect to the class of all models with serial accessibility relation
- $\hfill \ensuremath{\square}\xspace{KD45}$ is complete for the class of all transitive, Euclidean models with no dead-ends
- □ S4F is complete fore the class of all reflexive, transitive models with the condition: if R(a, b) and R(a, c) but not R(b, a), then R(c, b).
- □ SW5 is complete for the class of all reflexive, transitive models in which R satisfies the condition: if $a \neq b, a \neq c$, R(a, b) and R(a, c), then R(b, c) and R(c, b).

References

G E Hughes & M J Cresswell, A Companion to Modal Logic, Methuen, 1984.

V W Marek & M Truszczynski, Nonmonotonic Logic, Springer, 1993

W. Rautenberg, Klassische und nichtklassiche Aussagenlogik, Vieweg, 1979