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Lecture 5

Herbrand Models,

Unification, Resolution
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Overview
Where are we with classical logic?

• Repitition of FOL, models, interpretation, satisfiability

• We learned a proof method called natural deduction

• We saw that it is hard to automatize…
(completeness proof)

Today:

• Automated Theorem proving, Logic Programming

• Herbrand Interpretations & Herbrand Models

• An automatic proof method: Resolution
– Transformation to clausal form

– Substitutions

– Unification

– Resolution
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Motivation: We want to build an

automatic proof procedure…

• For proofing a goal G from a set of formula S in a
special normal form called clausal form

• We will see, that we can do this by showing:

S  {¬ G} is unsatisfiable.

• Problem: remember, for doing this automatically, we
would need to consider ALL possible interpretations

• Furthermore: If G or S are not in clausal form, we
need to transform them to clausal form.
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Automated theorem proving?

• Imagine a (set of) logical formula(e):
– Program clauses:

– Goal:

– Finding a solution for the question

– “Who is Sepp’s grandpa?” amounts to finding a
proof for:

But: Usual proof procedures do not return the
substitutions, we need slight modifications.
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Clauses
• Universally closed disjunctions of literals are

called clauses:

    x1 …  xn (L1  …  Lm)

(no other variables except x1,…,xn occur!)

• Special notation for clauses: The clause

(where Ai, Bj are atoms) is written:

- universal quantification is implicit in this notation

- "," in the head stands for disjunction

- "," in the body stands for conjunction

We will deal a lot with formulae in clausal form!

head                                body



6

Clauses and Logic Programming:

• Clauses with exactly one positive literal (i.e. one head literal) are called
definite clauses.

• Clauses with at most one positive literal (i.e. at most one head literal)
are called Horn clauses.

• A logic program is a set of clauses.

• A Horn program (or definite logic program) is a program which
consists only of Horn clauses (or only definite clauses).

• A clause with an empty body

A 

is also called unit clause (or fact).

• A clause with an empty head (this is also a Horn clause, but not
definite!)

 B1, …, Bn

is also called goal (sometimes also "constraint", or "query").

• The empty clause, written , stands for contradiction.
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Logic Programming, what is this?

• Basically based on Kowalsky, Colmerauer, 1972:

• "Logic can be used as a programming Language" by

interpreting clauses of the form

A  B1,B2,…,Bn

as "procedures"… how?
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Logic Programming in one slide:
• A logic program is a set of clauses (  rules):

• A program run is given an initial goal:

  C1,C2,…,Cm

• If the current goal is  C1,C2,…,Cm a computation step involves

– unifying some Ci with the head A of some clause A  B1,B2,…,Bn

and

– Reducing the current goal to

 (C1,…,Ci-1,B1,B2,…,Bn,Cj+1,…,Cm)

where  is the unifying substitution.

– The computation ends when the empty goal is produced.

• Variable substitutions for the variables in the original goal mark
"solutions".

head                   body
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A proof for our simple

example:
Program clauses:

c1: father(sepp,hans) 

c2: father(hans,franz) 

c3: grandpa(x1,y1)  father(x1,z1),father(z1,y1)

Goal:   grandpa(sepp, x)

Solution: franz

 ={x/franz}

 ={z1/hans} father(hans, x)

 ={x1/sepp , y1/x } father(sepp, z1),father(z1,x)

 ={} grandpa(sepp, x)

c3

c1

c2
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Motivation: We want to build an

automatic proof procedure…

• For proofing a goal G from a set of formula S in a
special normal form called clausal form

• We will see, that we can do this by showing:

S  {¬ G} is unsatisfiable.

• Problem: remember, for doing this automatically, we
would need to consider ALL possible interpretations

• Furthermore: If G or S are not in clausal form, we
need to transform them to clausal form.
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Observation:

• The notions of interpretations, models, satifiability and

validity, discussed in Lecture 2 can be expanded to sets of

(closed) formulae (i.e. to sets of clauses) straightforwardly:

• A set of closed formulae S = {F1, …, Fn} is then simply

viewed as the conjunction

 F1  …  Fn
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Crucial Idea behind the evaluation of Logic

Programs: Proof by refutation!

• Proposition 1: Let S be a set of closed formulae. Then F is a
logical consequence of S iff  S  {¬ F} is unsatisfiable, i.e.

S  F iff S  {¬ F}  has no model.

• Recall the example from the beginning:

       ?

show that:

has no model.

 grandpa(sepp,x)

in our case: a set of clauses…
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Proof of Proposition 1:

S  F iff S  {¬ F} is unsatisfiable.

 Suppose F is a logical consequence of S. Now let 
be an interpretation and suppose  is a model for S.
Then  is also a model for F . Hence,  is not a model
of S  {¬ F }. Therefore, no model for S  {¬ F } can
exist and thus S  {¬ F } is unsatisfiable.

 Suppose S  {¬ F } is unsatisfiable. Now let  be any
interpretation. Suppose  is a model for S, then,
since S  {¬ F } is unsatisfiable it cannot be a model
for ¬ F . Thus,  is a model for F and therefore F is a
logical consequence of S
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Problem:

• Showing unsatisfiability is not easy:

We have to consider EVERY possible

interpretation!

• However, it turns out that for showing

unsatisfiability,we only have to consider a

subset of all possible interpretations: So-

called Herbrand Interpretations
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Motivation: We want to build an

automatic proof procedure…

• For proofing a goal G from a set of formula S in a special
normal form called clausal form

• We will see, that we can do this by showing:

S  {¬ G} is unsatisfiable.

• Problem: remember, for doing this automatically, we
would need to consider ALL possible interpretations

… or can we restrict ourselves to special interpretations?

• Furthermore: If G or S are not in clausal form, we need
to transform them to clausal form.
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Jacques Herbrand

(1908-1931)

• Idea: only consider interpretations where each

constant and each ground term is interpreted as

itself…
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Ground Terms, ground atoms

and the Herbrand Universe

• terms not containing any variables ar called ground terms

• Similarly, a ground atom is an atom not containing variables

For a first order language (alphabet) L, the Herbrand Universe

UL is the set of all ground terms which can be formed out of the

constants and function symbols appearing in L.

For a first order language (alphabet) L, the Herbrand Base BL is

the set of all ground atoms which can be build from the

predicate symbols in L using ground terms from UL as

arguments.
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Example:

• Language/alphabet L:

Function symbols and constants: f/2, g/1,a/0.

Predicate symbols: p/1, q/2, variable symbols

x,y,z.

How does UL look like?

How does BL look like?
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Herbrand Interpretation
• Recall: interpretation consists of domain D, assignments to D for each constant, mappings for each function

symbol and relations for each predicate symbol.

• A Herbrand Interpretation for a FO language  L is an interpretation as
follows:
– The domain of a Herbrand interpretation is the Herbrand Universe UL

– Constants are assigned themselves

– If f is an n-ary function symbol (n>0) in L then then the mapping from (UL)
n

  to
UL defined by

(t1, …, tn)  f(t1, …, tn) is assigned to f

• Basically, each Herbrand Interpretation  can be viewed as a subset
of the Herbrand base , where each predicate symbol p is interpreted as
the subset of  corresponding to p.

• Herbrand Models are defined anaolgously to normal Models for a set S of
closed Formulae, i.e. a Herbrand interpretation which is a model is called
Herbrand Model
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For unsatisfiability it is enough to

consider Herbrand interpretations:

Proposition 2: Let S be a set of clauses and

suppose S has a model. Then S has a

Herbrand model.

• Proof: Let  be an interpretation of S. We define a Herbrand

interpretation '  of S as follows:

  = { p(t1, …, tn)  BS | p(t1, …, tn) is true wrt }

It is obvious that if  is a model, so is 

Proposition 3: A set of clauses S is

unsatisfiable iff S has no Herbrand models

From this and Proposition 1 it follows immediately that:
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Attention!

• Note that this only follows if the formulae in S

are clauses!!

Example:  S = {p(a),  x ¬p(x)}

Has clearly a model, e.g. take D the natural numbers p

for "odd" and 1 assigned to a.

However, the only Herbrand interpretations are

  and {p(a)}, but neither is a model.

We'll hear more about this when we speak about skolemization…
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Logical equivalence vs.

 equi-satisfiability

• We say two formulae F and G are logically equivalent iff   ( ) F  G  is valid.

• In other words: Two formulae are logically equivalent iff they have the same
models.

• We say that two (sets of) formulae F and G are equi-satisfiable, written F e G,
iff whenever  F has a model then also G has a model.

• Our goal: Given a set S of arbitrary closed FO formulae, construct an equi-
satisfiable set of clauses.

• Remember: Since we want to prove UNSATISFIABILITY, this is sufficient.

Note: It is not always possible to create a logically equivalent set of clauses:

– Example: S = {p(a),  x ¬p(x)

 S' = {p(a), ¬p(f(a))}

But: S e S'
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Motivation: We want to build an

automatic proof procedure…

• For proofing a goal G from a set of formula S in a
special normal form called clausal form

• We will see, that we can do this by showing:

S  {¬ G} is unsatisfiable.

• For doing this automatically, we need to consider
Herbrand interpretations

• If G or S are not in clausal form, we need to
transform them to equi-satisfiable clausal form.
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Transformation to clausal form

• Given a closed Formula F:*

• Step 1: Transform F in a (logically equivalent) form

F'  where

– variables are renamed to avoid ambiguities

– ¬ occurs only in front of atoms

– ,  and  are eliminated

• Step 2: Transform F' into an equisatisfiable form F'',

eliminating all -quantifiers by introducing constant

and function symbols (Skolemization)

• Step 3: Transform F'' into quantor-free conjunctive

normal form, i.e. a set of clauses

* For sets of formulae we proceed by taking the conjunction of the formulae
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Step 1a: Rename variables

Again equivalence obviously retains…

• Transform F such that no different occurrences of

Quantifiers F in bind the same variable

• This can always be achieved through simple

variable renaming…

Examples:

 x p(x)   x q(x)

  x1 p(x1)   x2 q(x2)

 y  x (s(x,y)   x p(x))

  x1  x2 (s(x2,x1)   x3 p(x3))
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Step 1b: Eliminate implications and

"push" negation in front of atoms

Only basic logic transformations which retain equivalence. Obviously, by

iterative application you reach a form where ¬ only occurs in front of

atoms.
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Step 2: Eliminate  quantifiers

Thoralf Skolem

(1887-1963)
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Step 2: Eliminate  quantifiers
while F' contains   quantifiers, repeat:

{

pick the first (from left to right) existential quantifier  x:

• Case 1:  x is in not the scope of any all-quantifiers:
– Replace  x G by G[x/a] where a is a new constant symbol, not occurring in F

• Case 2:  x is in the scope of all-quantifiers   y1 …  yk:
– Replace  x G by G[x/f(y1,…, yk)] where f  is a new k-ary function symbol, not

occurring in F'

}

Remark: This elimination is called "Skolemization" after its inventor

Thoralf Skolem, a and f are often called Skolem-constant or Skolem-function,
respectively.

The  -free formula F'' obtained in this step is called Skolemform of F'

G[x/t]  … stands for the formula obtained from G by substituting the variable x with the term t
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Properties of Skolemization:
• Skolemization does not preserve logical equivalence, but

preserves equi-satisfiability:

Proposition 4: If F' is a closed formula obtained from Step 1 and

F'' is the Skolemform of F' , then F' ~e F''

Proof (sketch): Enough to show that each step in the Skolemization preserves

equi-satisfiability, since ~e is an equivalence relation.

Let us consider the (more interesting) Case 2:

Since F'  is in the form of Step 1 (no negation in front of quantifiers, no implications, variables

renamed), quantifiers can be moved in front.

So, if  x G is in the scope of all-quantifiers   y1 …  yk we can rewrite F'  to

 y1 …  yk  x F.

Now informal: This stands for "for all y1 … yk there exists an x, such that F is valid"

So, for any model, we chose a respective function  : Dk  D which makes exactly the

assignment from y1 … yk to x.

Now extend the model M to M' such that a new function symbol f is assigned this function .

Then M' is a model for F'' which is obtained from F' by replacing  x G with G[x/f(y1,…, yk]
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Step 3:

• Since F'' does not contain  quantors, negation only

occurs in front of atoms, and variables have been

renamed,  quantors can be moved to the front.

We obtain a formula of the form:

 y1  yk G

• Finally, by applying the distributive laws on  and 

bring the formula G to conjunctive normal form.

we obtain a conjunction of Clauses!
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* A mechanical translation would maybe rather create something like:

Example:

After Step 1a:

After Step 1b:

*

After Step 2:

After Step 3:

This corresponds to a set of clauses:
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Automatic Proof Generation for

sets of clauses by resolution

• A proof system needs inference rules

• Idea: We will prove a goal G from a set of clauses S
by proving contradiction (i.e. unsatisfiability) from
S  {¬ G}.

• Assume that your goal has the form:

G = (A) where A is an atom:

Then ¬ G is the clause    A

• We will now learn some inference rule which can
allows to prove contradiction, called resolution.
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Example:

• All birds are animals a(x)  b(x)

• All eagles are birds b(x)  e(x)

• Karl loves (all) animals l(karl,x)  a(x)

• Franzi is a bird b(franz) 

• Hansi is an Eagle e(hansi) 

• Goal/Query: Does Karl love Hansi?

¬ G  ¬ l(karl,hansi)   

  l(karl,hansi)

 let's try it out in Prolog!
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* Could for clauses also be written as:

Resolution:

Cut + Substitution

Resolution is a combination of an inference rule called cut rule …

…and another one called substitution rule: 

(R)

(S)

*

Exercise: Use these two rules to prove contradiction from 

the example from the last slide!
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Let's try to prove contradiction

using (R) and (S)
S: a(x) b(x), b(x) e(x), l(karl,x) a(x), b(franz) ,  e(hansi) ,

G: l(karl,hansi)

S: (a(x)  ¬b(x)), (b(x)  ¬e(x)), (l(karl,x)  ¬a(x)),  (b(franz)), (e(hansi))

(R)

(R)

(R)

(R)

Contradiction!
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Resolution rule:

• In the refutation in the last slide, a substitution

always served as "preparation step" before the cut

rule was applied.

• The derivation is "goal-oriented"

• Idea: Combine substitution and cut rules by using a

canonical substitution, the so called most general

unifier (mgu), which can be found automatically.

• This combined rule serves as a basis for an

automatic refutation procedure.

• First we have to define substitutions and unifiers…
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Subsitutions:
• A substitution is a finite set of the form:

 = {v1/t1, …, vn/tn} where:

– the vi are variables and the ti are terms

– each ti is distinct from vi

– the variables v1, …, vn are distinct

• If all t1, …, tn are ground terms then  is called called

a ground substitution

• If all t1, …, tn are variables then  is called called a

variable-pure substitution

• For a quantifier-free formula F

F[v1/t1, …, vn/tn] can be written F

Example: p(x,y,f(a))   = {x/b, y/x}
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• Composition of substitutions:

 = {u1/s1, …, um/sm}

 = {v1/t1, …, vn/tn}

•   is obtained from {u1/s1 , …, um/sm ,  v1/t1, …, vn/tn}
by:
– deleting any binding where ui = si

– deleting any binding vi/ti where vj  {u1 ,…, um }

• Two atomic formulae P and Q with the same
predicate symbol are called unifiable if there exists a
substitution  such that

P  = Q

• A unifier  of P and Q is called most general unifier
(mgu), if for each unifier  of P and Q a substitution 
exists such that  = 

Subsitutions and Unifiers:
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Examples:

• p(f(x),a), p(y,f(w)) are not unifiable because

the second argument cannot be unified.

• p(f(x),z), p(y,a) are unifiable:

 = {y/f(a), x/a, z/a} is a unifier

 = {y/f(x), z/a} is a mgu

• How to compute an mgu automatically?
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A unification algorithm:

Input: Two atomic formulae P and Q with the same

predicate symbol.
Output: fail or an mgu k

• Set 0 := {}, k := 0

• If P k = Q k return k ( k is an mgu).

Otherwise: find disagrement (tP,tQ) of P k and Q k

• If tP,tQ are both non-variable terms return fail

• If tP, is a variable not occurring in tQ

set k+1 :=  k {tP/tQ}, k := k+1,

else if tQ, is a variable not occurring in tP

set k+1 :=  k{tQ/tP}, k := k+1,

and go to 2.

The disagreement of P and Q is defined as follows: 

Find the leftmost position in P  and Q where 

there is a different symbol and extract from P  and Q the 

pair of terms (tP,tQ) beginning at that position. 

Remark: This

"occur-check"

Is not done by

all Prolog

systems !

Remark: There is also a general unification algorithm for sets of literals, but for 

our form of resolution this one is sufficient…
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An example:

P = p(a,x,f(g(y)) Q= p(z,h(z,w),f(w))

0 = {}

P 0 = p(a,x,f(g(y)) Q 0= p(z,h(z,w),f(w))

1 = 0{z/a}={z/a}

P 1 = p(a,x,f(g(y)) Q 1= p(a,h(a,w),f(w))

2 = 1{x/h(a,w)}={z/a, x/h(a,w)}

P 2 = p(a,h(a,w),f(g(y)) Q 2= p(a,h(a,w),f(w))

3 = 2{w/g(y)}={z/a, x/h(a,g/y)), w/g(y)}

 P 3 = p(a,h(a,g(y)),f(g(y)) Q 3= p(a,h(a,g(y)),f(g(y)))

3 is an mgu!
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Resolution:
• Let C be a Horn clause

A  A1, … An

and G be a goal

 B1, …, Bm

where G and C have no variables in common.

Let further  be an mgu of A and Bi for some 1  i  m

Then the goal

 B1 ,… Bi-1 , A1 , … An , Bi+1 , Bm

is called resolvent of G and C.

Remark: There is also a general resolution for full Clause logic, but for 

Horn programs the above is sufficient…
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A refutation proof by resolution
S = {a(x) b(x), b(x) e(x), l(karl,x) a(x), b(franz) ,  e(hansi) }

G:

•Does Karl love Hansi?
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Attention:
Why goal and clause may not have

variables in common:

• try resolving:

Not unifiable!

This can however always be solved by renaming the variables in 

the clause to resolve:
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Answer Substitutions!

• However: What about more complex
questions:
– Who does Karl love?

– Which Eagles does Karl love?

• Try resolution! There are possibly several
possible refutations, each of which "contains"
an answer substitution.

• More: next time!
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Exercises:

• See separate sheet! Will be put on the

lecture web site today.
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Next Lecture:

• How to compute all answer substitutions

• Why does resolution work?
– Correspondence between consequences and the

minimal Herbrand model

– Soundness & completeness

• SLD-Resolution + Prolog
– 1. Why is the occur-check so expensive?

– 2. Problems with termination in Prolog's
procedural depth-first search! Left- and right
recursion, selection-strategy…

– Programming with Prolog! 


