Unit 5: OWL2 (in a nutshell) & OWL Reasoning for Linked Data

Axel Polleres. 2013. All rights reserved.

Overview

- What's new in OWL2 (2009, edited REC 2012)?
- OWL for Linked Data (summary of own works on over the past view years, with various co-authors, e.g. Aidan Hogan, Jürgen Umbrich, Stefan Bischof, Andreas Harth, Birte Glimm, Markus Krötzsch, etc.)

Why OWL1 is Not Enough

Too expensive to reason with

- High complexity: NEXPTIME-complete
- Some ontologies only use some limited expressive power; e.g. The SNOMED (Systematised Nomenclature of Medicine) ontology

Not expressive enough; e.g.

- No user defined datatypes
- No metamodeling support
- Limited support for describing properties

From OWL1 to OWL2

OWL2: A new version of OWL in 2009

Main goals:

- 1. To define "profiles" of OWL that are:
- smaller, easier to implement and deploy
- cover important application areas and are easily understandable to nonexpert users
- 2. To add a few extensions to current OWL that are useful, and is known to be implementable
- many things happened in research since 2004

New Expressiveness in OWL 2

New expressive power

user defined datatypes, e.g.:

:personAge owl:equivalentClass _:x .
_:x rdf:type rdfs:Datatype .
_:x owl:onDatatype xsd:integer .
:x owl:withRestrictions (:y1 _:y2) .
_:y1 xsd:minInclusive "0"^^xsd:integer .
_:y2 xsd:maxInclusive "150"^^xsd:integer.

punning (metamodeling), e.g.:

```
:John rdf:type :Father .
:Father rdf:type :SocialRole .
```

New Expressiveness in OWL 2

- qualified cardinality restrictions, e.g.:
 - :x rdf:type owl:Restriction .
 - :x owl:onProperty foaf:knows .
 - :x owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger .
 - :x owl:onClass Scottish.
- property chain inclusion axioms, e.g.: foaf:nick owl:propertyChainAxiom (foaf:holdsAccount sioc:name).
- Iocal reflexivity restrictions, e.g.:
 - :x rdf:type owl:Restriction .
 - _:x owl:onProperty :like .
 - [:x owl:hasSelf "true"^^xsd:boolean [for narcissists]
- reflexive, irreflexive, symmetric, and antisymmetric properties, e.g.: foaf:knows rdf:type owl:ReflexiveProperty . rel:childOf rdf:type owl:IrreflexiveProperty .
- disjoint properties, e.g.: rel:childOf owl:propertyDisjointWith rel:parentOf .
- keys, e.g.: foaf:OnlineAccount owl:hasKey (foaf:accountName foaf:accountServiceHomepage).

New Expressiveness in OWL 2

Syntactic sugar (make things easier to say)

Disjoint unions, e.g.:

```
child owl:disjointUnionOf (boy girl) .
```

Disjoint classes, e.g.:

```
_:x rdf:type owl:AllDisjointClasses .
```

```
_:x owl:members (boy girl) .
```

Negative assertions, e.g.:

```
_:x rdf:type owl:NegativePropertyAssertion .
```

- _:x owl:sourceIndividual :John .
- _:x owl:assertionProperty foaf:knows .
- _:x owl:targetIndividual :Mary .

OWL 2 and Description Logics (DL)

 ${\mathcal R}$ often used for ${\mathcal{ALC}}$ extended with property chain inclusion axioms

- following the notion introduced in *RIQ* [Horrocks and Sattler, 2003]
- including transitive property axioms

Additional letters indicate other extensions, e.g.:

- S for property characteristics (e.g., reflexive and symmetric)
- \mathcal{O} for **nominals**/singleton classes
- ${\mathcal I}\,$ for inverse roles
- \mathcal{Q} for qualified number restrictions

property characteristics (S) + R + nominals (O) + inverse (I) + qualified number restrictions(Q) = SROIQ

 \mathcal{SROIQ} [Horrocks et al., 2006] is the basis for OWL 2 DL

OWL 2 Profiles and Reasoning Services

SIEMENS

Rationale:

- Tractable
- Tailored to specific reasoning services

Popular reasoning services

- TBox reasoning: OWL 2 EL
- ABox reasoning: OWL 2 RL
- Query answering: OWL 2 QL

Specification: http://www.w3.org/TR/owl2-profiles/

The family tree Undecidable OWL 2 Full 1 2NExpTime-OWL 2 DL Complete SROIQ NExpTime-OWL 1 DL Complete SHOIN PTime-OWL 2 RL OWL 2 EL Complete *EL*++ OWL 2 QL In AC⁰ DL-Lite

SIEMENS

OWL 2 QL

- A (near maximal) fragment of OWL 2 such that
- Data complexity of conjunctive query answering in AC⁰

Based on **DL-Lite** family of description logics [Calvanese et al. 2005; 2006; 2008]

Can exploit query rewriting based reasoning technique

- Computationally optimal
- Data storage and query evaluation can be delegated to standard RDBMS
- Novel technique to prevent exponential blowup produced by rewritings [Kontchakov et al. 2010, Rosati and Almatelli 2010]
- Can be extended to more expressive languages (beyond AC⁰) by delegating query answering to a Datalog engine [Perez-Urbina et al. 2009]

Given ontology \mathcal{O} (TBox) and a conjunctive query q use \mathcal{O} to rewrite qto $q' \mathcal{Q}'$ s.t., for any set of ground facts \mathcal{A} : ans $(q, \mathcal{O}, \mathcal{A}) = ans(q', \emptyset, \mathcal{A})$ Answer query q over ontology (*T*, \mathcal{A})

SIEMENS

Resolution based query rewriting

- Clausify ontology axioms
- Saturate (clausified) ontology and query using resolution
- Prune redundant query clauses

Query Rewriting Technique (basics)

Example:

```
:Doctor rdfs:subClassOf [ a owl:Restriction;
owl:onProperty :treats ; owl:someValuesFrom :Patient ].
```

:Consultant rdfs:subClassOf :Doctor .

SELECT ?x WHERE {
 ?x :treats ?y . ?y a :Patient. }

SIEMENS

Example:

Doctor $\sqsubseteq \exists treats. Patient$ Consultant \sqsubseteq Doctor

 $Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$

Example (clausify):

Doctor $\sqsubseteq \exists treats. Patient$ Consultant \sqsubseteq Doctor

 $\begin{aligned} \mathsf{treats}(x, f(x)) &\leftarrow \mathsf{Doctor}(x) \\ \mathsf{Patient}(f(x)) &\leftarrow \mathsf{Doctor}(x) \\ \mathsf{Doctor}(x) &\leftarrow \mathsf{Consultant}(x) \end{aligned}$

 $Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$

SIEMENS

Query Rewriting Technique (basics)

Example (saturate):

Doctor $\sqsubseteq \exists$ treats.Patient Consultant 🖵 Doctor

 $Doctor(x) \leftarrow Consultant(x)$

 $treats(x, f(x)) \leftarrow Doctor(x)$ $Q(x) \leftarrow treats(x, y) \land Patient(y)$ $Patient(f(x)) \leftarrow Doctor(x)$ $Q(x) \leftarrow Doctor(x) \land Patient(f(x))$

Example (saturate):

Doctor \Box \exists treats.Patient Consultant
Doctor

 $treats(x, f(x)) \leftarrow Doctor(x)$ $Q(x) \leftarrow treats(x, y) \land Patient(y)$ $\mathsf{Patient}(f(x)) \leftarrow \mathsf{Doctor}(x)$ $Q(x) \leftarrow \mathsf{Doctor}(x) \land \mathsf{Patient}(f(x))$ $Doctor(x) \leftarrow Consultant(x)$ $Q(x) \leftarrow treats(x, f(x)) \land Doctor(x)$

SIEMENS

SIEMENS

Example (saturate):

Doctor $\sqsubseteq \exists$ treats.Patient Consultant ⊑ Doctor

 $treats(x, f(x)) \leftarrow Doctor(x)$

 $Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$ $\mathsf{Patient}(f(x)) \leftarrow \mathsf{Doctor}(x)$ $Q(x) \leftarrow \mathsf{Doctor}(x) \land \mathsf{Patient}(f(x))$ $Doctor(x) \leftarrow Consultant(x)$ $Q(x) \leftarrow treats(x, f(x)) \land Doctor(x)$ $Q(x) \leftarrow \mathsf{Doctor}(x)$

SIEMENS

Example (saturate):

Doctor $\sqsubseteq \exists$ treats.Patient Consultant ⊑ Doctor

 $treats(x, f(x)) \leftarrow Doctor(x)$ $Q(x) \leftarrow treats(x, y) \land Patient(y)$ $Patient(f(x)) \leftarrow Doctor(x)$ $Q(x) \leftarrow Doctor(x) \land Patient(f(x))$ $Doctor(x) \leftarrow Consultant(x)$ $Q(x) \leftarrow treats(x, f(x)) \land Doctor(x)$ $Q(x) \leftarrow \mathsf{Doctor}(x)$ $Q(x) \leftarrow \mathsf{Consultant}(x)$

Query Rewriting Technique (basics)

Example (prune):

 $\mathsf{Doctor} \sqsubseteq \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consultant} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Doctor} \\$

 $\begin{aligned} & \operatorname{treats}(x, f(x)) \leftarrow \operatorname{Doctor}(x) \\ & \operatorname{Patient}(f(x)) \leftarrow \operatorname{Doctor}(x) \\ & \operatorname{Fo} \quad \operatorname{Doctor}(x) \leftarrow \operatorname{Consultant}(x) \end{aligned}$

$$\begin{array}{l} Q(x) \leftarrow \mathsf{treats}(x,y) \land \mathsf{Patient}(y) \\ \hline Q(x) \leftarrow \mathsf{Doctor}(x) \land \mathsf{Patient}(f(x)) \\ \hline Q(x) \leftarrow \mathsf{treats}(x,f(x)) \land \mathsf{Doctor}(x) \\ Q(x) \leftarrow \mathsf{Doctor}(x) \\ Q(x) \leftarrow \mathsf{Consultant}(x) \end{array}$$

 $Q(x) \leftarrow (\text{treats}(x, y) \land \text{Patient}(y)) \lor \text{Doctor}(x) \lor \text{Consultant}(x)$

Query Rewriting Technique (basics)

SELECT ?x WHERE {
?x :treats ?y . ?y a :Patient. }

$$Q(x) \leftarrow \text{treats}(x, y) \land \text{Patient}(y)$$

 $Q(x) \leftarrow (\text{treats}(x, y) \land \text{Patient}(y)) \lor \text{Doctor}(x) \lor \text{Consultant}(x)$
 $Q(x) \leftarrow (\text{treats}(x, y) \land \text{Patient}(y)) \lor \text{Doctor}(x) \lor \text{Consultant}(x)$

```
SELECT ?x WHERE {
{ ?x :treats ?y . ?y a :Patient. }
UNION
{ ?x a :Doctor }
UNION
{ ?x a :Consultant} }
```

OWL 2 EL

SIEMENS

A (near maximal) fragment of OWL 2 such that

- Satisfiability checking is in PTime (PTime-Complete)
- Data complexity of query answering also PTime-Complete Based on *EL* family of description logics [Baader et al. 2005] Can exploit saturation based reasoning techniques
- Computes complete classification in "one pass"
- Computationally optimal (PTime for EL)

Saturation-based Technique (basics)

Normalise ontology axioms to standard form:

 $A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$

SIEMENS

Saturate using inference rules:

 $\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \qquad \frac{A \sqsubseteq B \quad A \sqsubseteq C \quad B \sqcap C \sqsubseteq D}{A \sqsubseteq D}$ $\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq C \quad \exists R.C \sqsubseteq D}{A \sqsubseteq D}$

Extensions to Horn fragment of OWL DL [Kazakov 2009] requires (many) more rules

Saturation-based Technique (basics)

Example:

 $\begin{aligned} & \mathsf{OrganTransplant} \equiv \mathsf{Transplant} \sqcap \exists \mathsf{site}.\mathsf{Organ} \\ & \mathsf{HeartTransplant} \equiv \mathsf{Transplant} \sqcap \exists \mathsf{site}.\mathsf{Heart} \\ & \mathsf{Heart} \sqsubseteq \mathsf{Organ} \end{aligned}$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq \exists site.Organ \exists site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq \exists site.Heart \exists site.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant Heart \sqsubseteq Organ

Saturation-based Technique (basics)

Example:

 $\begin{array}{l} \mathsf{OrganTransplant} \equiv \mathsf{Transplant} \sqcap \exists \mathsf{site}.\mathsf{Organ} \\ \mathsf{HeartTransplant} \equiv \mathsf{Transplant} \sqcap \exists \mathsf{site}.\mathsf{Heart} \\ \mathsf{Heart} \sqsubseteq \mathsf{Organ} \end{array}$

OrganTransplant \Box Transplant OrganTransplant \Box Site.Organ \exists site.Organ \sqsubseteq SO Transplant \Box SO \Box OrganTransplant HeartTransplant \Box Transplant HeartTransplant \Box Site.Heart \exists site.Heart \sqsubseteq SH Transplant \Box SH HeartTransplant \Box HeartTransplant Heart \Box Organ $\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq C \quad \exists R.C \sqsubseteq D}{A \sqsubseteq D}$

Saturation-based Technique (basics)

Example:

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$ Heart $\sqsubseteq Organ$

 $\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq C \quad \exists R.C \sqsubseteq D}{A \sqsubseteq D}$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq \exists site.Organ \exists site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq \exists site.Heart \exists site.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant Heart \sqsubseteq Organ $\mathsf{HeartTransplant}\sqsubseteq\mathsf{SO}$

OWL 2 RL

- A (near maximal) fragment of OWL 2 such that
- ABox reasoning can be implemented using forward-chaining rules
- Expands on the idea of inference rules for RDFS (recall Unit 3):

x is in ICEXT(v) if and only if <x.v> is in IEXT(I(rdf:type))</x.v>	$o = Class . \leftarrow s = o .$
	$[] a s . \Leftarrow s a class .$
IC = ICEXT(I(rdfs:Class))	$n = \text{Resource}$, $\leftarrow s = p = 0$.
IR = ICEXT(I(rdfs:Resource))	p a Resource $\cdot \leftarrow s p o$. $o \not\in L$
	$_:l a Literal . \Leftarrow s p l.$ $l \in L$
LV = IOEXI(I(rdis:Literal))	$s p : 1 . \Leftarrow s p l .$ $l \in L$
If <x,y> is in IEXT(I(rdfs:domain)) and <u,v> is in IEXT(x) then u is in ICEXT(y)</u,v></x,y>	$s = c$. $\Leftarrow p$ domain c . $s p o$.
IT <x,y> IS IN IEX I (I(rdfs:range)) and <u,v> IS IN IEX I (X) then v IS IN ICEX I (y)</u,v></x,y>	$o = c \cdot \Leftarrow p \operatorname{range} c \cdot s p o \cdot o \notin L$
IEXT(I(rdfs:subPropertyOf)) is transitive and reflexive on IP	s subPropertvOf r , \leftarrow s subPropertvOf o .
	o subPropertyOf r .
If <x,y> is in IEXT(I(rdfs:subPropertyOf)) then x and y are in IP and IEXT(x) is a</x,y>	s subPropertyOf s . $\leftarrow s$ a Property .
	$_s$ a Property . $\Leftarrow s$ subPropertyOf o .
If x is in IC then <x ((rdfs.resource))="" ifxt(((rdfs.subclassof))<="" in="" is="" td=""><td>o a Property . $\Leftarrow s$ subPropertyOf o .</td></x>	o a Property . $\Leftarrow s$ subPropertyOf o .
	$s \ q \ o \Leftarrow p \ subPropertyOf \ q. \ s \ p \ o. \ q \not\in B$
	s subClassOf Resource . $\Leftarrow s$ a Class .
If x,y is in IEXT(I(rdfs:subclassof)) then x and y are in IC and ICEXT(x) is a s	sut s a Class . $\Leftarrow s$ subclassUf o .
	$= \begin{array}{c} 0 \text{ a Class } . \iff s \text{ subclassor } 0 \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\$
IEXT(I(rdfs:subclassof)) is transitive and reflexive on IC	$e^{\operatorname{subClassOf} e}$ $\leftarrow e^{\operatorname{subClassOf} e}$
	o subclassof r .
If y is in ICEYT/I/-discontrationation technology () then:	s subClassOf s . \Leftarrow s a Property .
< X, I(rdfs:member)> is in IEXT(I(rdfs:subPropertyOf))	s subPropertyOf member . \Leftarrow
	s a ContainerMembershipProperty.
((rdis:bit IOEA (((rdis:batatype)) uleit < , ((rdis:biteral)> IS IN IEA (((rdis:bit	
	e subClassOf Literal $\leftarrow e$ a Datatume

27

OWL 2 RL

- A (near maximal) fragment of OWL 2 such that
- ABox reasoning can be implemented using forward-chaining rules
- Expands on the idea of inference rules for RDFS (recall Unit 3).
- Some additional rules for OWL 2:

{ ?O ?Q ?S . } :- { ?S ?P ?O . ?Q owl:inverseOf ?P. }

{ ?O ?P ?S . } :- { ?S ?P ?O . ?P a owl:SymmetricProperty. }

OWL 2 RL

Further examples:

e.g. inverseFunctionalProperty can also (partially) be expressed by Rules:

Details:

...

http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Now can OWL(2) Reasoning be done on Linked Data?

Slides: OWLED 2013 keynote,

http://www.polleres.net/presentations//20130527OWLED2013_Invited_talk.pdf

Next time: Discuss assignment 3 & Q/A

Anything in particular you want repeated/answered?

Note:

- 1) OPTIONAL in Virtuoso sometimes causes troubles (please submit still what you have, we'll check that next time in detail)
- 2) Queries with FROM/FROM NAMED probably don't run on a remote endpoint, use ARQ for those.

Student presentations:

Who has sent me a topic suggestion already?

- SPARQL GUIs (F. J. Ekaputra)
- Good Relations Ontology and use (B.Ege)
- Web of Needs (A.Tus)
- SPARQL1.1 Property Paths (K. Bui, J. Petttersson)
- RDB2RDF or OWL/DL Modeling? (B.Doenz)
- SPARQL1.1 Entailment Regimes & Update (L. Agatic, V. Viljanic)
- SPARQL Benchmarking (E. Rut)
- OWL 2 and metamodeling (F. Leberl)
- Schema.org and RDFa (M.Suchi)
- A SW application based on Dbpedia (S. Belk)
- Using Semantics for resource allocation (D. Drenjanac)
- W3C LDP (O. Zhukova)
- XBRL & Linked Data (L. Madlberger)
- RDF/OWL wrapper for TISS (N. Frohner, S.Lindner)
- SKOS (B. Fazekas)

Anybody who has a solution of the suggested a topic yet?

Student presentations schedule

Stefan Belk Olga Zhukova Simon Lindner, Nikolaus Frohner **Botond Fazekas** Elias Rut Leon Agatic, Vanda Viljanac S Boertecin Ege Franz Leberl Domagoj Drenjanac Benjamin Doenz Ekaputra Fajar Juang Lisa Madlberger Markus Suchi Alan Tus Jonas Petterson, Kie Florian Wieser Soroosh Mortezapoo

	SW application using DBPEdia	24.6.2013 09:00
	W3C Linked Data Platform	24.6.2013 09:30
	OWL/RDF for TISS	24.6.2013 10:00
	SKOS	24.6.2013 10:30
	Berlin SPARQL Benchmark	24.6.2013 11:00
SPARQ	L1.1 Entailment Regimes and Update	24.6.2013 11:30
	Good Relations	24.6.2013 15:00
	OWL2 Metamodeling	24.6.2013 15:30
	Semantics for resource allocation	24.6.2013 16:00
	RDB2RDF	24.6.2013 16:30
g	SPARQL GUIS	24.6.2013 17:00
	XBRL & Linked Data	24.6.2013 17:30
	Schema.org and RDFa	25.6.2013 09:00
	Web of Needs project	25.6.2013 09:30
en Bui	SPARQL1.1 Property Paths	25.6.2013 10:00
	??	25.6.2013 10:30?
or	??	25.6.2013 11:00?

Some suggested topics (which we can assign now **SIEMENS** already – first come, first serve:

• W3C RDF1.1 WG – status semantics, changes, semantics for named graphs, etc.

More own topics suggestions welcome!

Presentations

First slot:24/06/2013Second slot:25/06/2013

Send me the slides at least 1 week in advance per email! \rightarrow You should start to work on the topic soon!