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Unit 1 – Overview

Where are we?

Last time we learnt:
• Basic ideas about RDF and how it is published
• Turtle Syntax for RDF - we know how to write RDF
• Basic SPARQL queries - we (roughly) know how to query RDF
• Overview of RDF Schema & OWL

Today and on Monday:
• RDF formal semantics...
• ... which will be the basis for SPARQL’s formal semantics
• ... and also for RDF Schema & OWL

RDF Schema semantics & SPARQL semantics
Also on Monday:
• Discussion of Assignment 1 (plus Assignment2)
• Some initial suggestions for final presentation topics

A. Polleres VU 184.729 2/37



Unit 1 – Overview

Unit Outline

1. Semantics of RDF+RDFS

2. RDF Graph – Formal Definitions

3. RDF Interpretations and Simple Entailment

4. APPENDIX: Simple RDF Entailment is NP-complete
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Unit 1 – Overview 1. Semantics of RDF+RDFS

The Semantics of RDF graphs:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://www.mat.unical.it/˜ianni/foaf.rdf> a foaf:PersonalProfileDocument.
<http://www.mat.unical.it/˜ianni/foaf.rdf> foaf:maker _:me .
<http://www.mat.unical.it/˜ianni/foaf.rdf> foaf:primaryTopic _:me .
:me a foaf:Person .
:me foaf:name "Giovambattista Ianni" .
:me foaf:homepage <http://www.gibbi.com> .
:me foaf:phone <tel:+39-0984-496430> .
:me foaf:knows [ a foaf:Person ;

foaf:name "Wolfgang Faber" ;
rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/faber/foaf.rdf>].

:me foaf:knows [ a foaf:Person .
foaf:name "Axel Polleres" ;
rdfs:seeAlso <http://www.polleres.net/foaf.rdf>].

:me foaf:knows [ a foaf:Person .
foaf:name "Thomas Eiter" ] .

:me foaf:knows [ a foaf:Person .
foaf:name "Alessandra Martello" ] .
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Unit 1 – Overview 1. Semantics of RDF+RDFS

The Semantics of RDF graphs:

Recall from last time:
Each RDF graph can – essentially – be viewed as a first-order formula:

∃b1 , b2 , b3 , b4
(triple(foaf.rdf, rdf:type, PersonalProfileDocument)
∧ triple(foaf.rdf, maker,me)
∧ triple(foaf.rdf, primaryTopic,me)
∧ triple(me, rdf:type, Person)
∧ triple(me, name, "Giovambattista Ianni")
∧ triple(me, homepage, http://www.gibbi.com)
∧ triple(me, phone, tel:+39-0984-496430)
∧ triple(me, knows, b2) ∧ triple(b1 , type, Person)
∧ triple(b1 , name, "Wolfgang Faber")
∧ triple(b1 , rdfs:seeAlso, http://www.kr.tuwien...)
∧ triple(me, knows, b1) ∧ triple(b1 , rdf:type, Person)
∧ triple(b2 , name, "Axel Polleres")
∧ triple(b2 , rdfs:seeAlso, http://www.polleres...)
∧ triple(me, knows, b3) ∧ triple(b1 , rdf:type, Person)
∧ triple(b3 , name, "Thomas Eiter")
∧ triple(me, knows, b4) ∧ triple(b1 , type, Person)
∧ triple(b4 , name, "Alessandra Martello"))
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Unit 1 – Overview 1. Semantics of RDF+RDFS

The Semantics of the RDFS vocabulary:
The formal semantics of RDF(S) [Hayes, 2004] is accompanied by a set of
(informative) entailment rules . . . can be written down as the following first-order
formulas:

∀S, P,O (triple(S, P,O) ⊃ triple(S, rdf:type, rdfs:Resource))

∀S, P,O (triple(S, P,O) ⊃ triple(P, rdf:type, rdf:Property))

∀S, P,O (triple(S, P,O) ⊃ triple(O, rdf:type, rdfs:Resource))

∀S, P,O (triple(S, P,O) ∧ triple(P, rdfs:domain, C) ⊃ triple(S, rdf:type, C))

∀S, P,O,C (triple(S, P,O) ∧ triple(P, rdfs:range, C) ⊃ triple(O, rdf:type, C))

∀C (triple(C, rdf:type, rdfs:Class) ⊃ triple(C, rdfs:subClassOf, rdfs:Resource))

∀C1, C2, C3 (triple(C1, rdfs:subClassOf, C2) ∧
triple(C2, rdfs:subClassOf, C3) ⊃ triple(C1, rdfs:subClassOf, C3))

∀S,C1, C2 (triple(S, rdf:type, C1) ∧ triple(C1, rdfs:subClassOf, C2) ⊃ triple(S, rdf:type, C2))

∀S,C (triple(S, rdf:type, C) ⊃ triple(C, rdf:type, rdfs:Class))

∀C (triple(C, rdf:type, rdfs:Class) ⊃ triple(C, rdfs:subClassOf, C))

∀P1, P2, P3 (triple(P1, rdfs:subPropertyOf, P2) ∧
triple(P2, rdfs:subPropertyOf, P3) ⊃ triple(P1, rdfs:subPropertyOf, P3))

∀S, P1, P2, O (triple(S, P1, O) ∧ triple(P1, rdfs:subPropertyOf, P2) ⊃ triple(S, P2, O))

∀P (triple(P, rdf:type, rdf:Property) ⊃ triple(P, rdfs:subPropertyOf, P ))
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Unit 1 – Overview 1. Semantics of RDF+RDFS

RDFS Semantics Example: The FOAF ontology

FOAF Ontology:
Each Person is a Agent (subclass)

The img property is more specific than depiction (subproperty)

img is a relation between Persons and Imgages (domain/range)

knows is a relation between two Persons (domain/range)
...

RDFS: Semantics
.
.
.

∀S,C1, C2 (triple(S, rdf:type, C1) ∧ triple(C1, rdfs:subClassOf, C2) ⊃ triple(S, rdf:type, C2))
.
.
.

Data:

:me rdf:type foaf:Person .

:me rdf:type foaf:Agent .
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Unit 1 – Overview 1. Semantics of RDF+RDFS

RDFS Semantics Example: The FOAF ontology

FOAF Ontology in RDF:
foaf:Person rdfs:subClassOf foaf:Agent .
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...
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Unit 1 – Overview 1. Semantics of RDF+RDFS

RDF + RDFS Semantics according to W3C:

http://www.w3.org/TR/rdf-mt/
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RDF + RDFS Semantics according to W3C:

http://www.w3.org/TR/rdf-mt/
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Unit 1 – Overview 2. RDF(S)

Unit Outline

1. Semantics of RDF+RDFS

2. RDF Graph – Formal Definitions

3. RDF Interpretations and Simple Entailment

4. APPENDIX: Simple RDF Entailment is NP-complete
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Unit 1 – Overview 2. RDF(S)

RDF Graph – Formal Definitions

Let U be the set of URIs, B be the set of blank nodes (or “variables”),
L = Lt ∪ Lp ∪ Llang be the set of literals (i.e., typed, plain, and plain
lang-tagged)

An RDF graph, or simply a graph, is a set of RDF triples from
UB × U × UBL.1

A vocabulary of a graph VG is the subset of UL mentioned in the graph.

A graph or triple without blank nodes is also called ground

1We write short e.g. UBL for U ∪B ∪ L.
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Unit 1 – Overview 2. RDF(S)

RDF Graph – Example 1

Node: “edge labels” may appear as nodes and vice versa, e.g.
G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G2 :

ex:alice rdf:type foaf:Person.

G3 :

__ :alice foaf:knows ex:bob.
__ :alice foaf:name __ :name.

G4 :

__ :alice foaf:knows ex:bob.
__ :alice foaf:name __ :alice.

Again, we will occasionally write blank nodes as like this V ar, to make clearer
that actually they ammount to existentially quantified variables.
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Node: “edge labels” may appear as nodes and vice versa, e.g.
G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G2 :

ex:alice rdf:type foaf:Person.

G3 :

Alice foaf:knows ex:bob.
Alice foaf:name Name.

G4 :

Alice foaf:knows ex:bob.
Alice foaf:name Alice.

Again, we will occasionally write blank nodes as like this V ar, to make clearer
that actually they ammount to existentially quantified variables.
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Unit 1 – Overview 2. RDF(S)

RDF Graph – Example 2

That is also a valid RDF graph:

G5 :

rdfs:Resource rdf:type rdfs:Class.
rdf:Property rdf:type rdfs:Resource.
rdf:Property rdfs:subclassOf rdfs:Resource.
rdf:Property rdf:type rdfs:Class.
rdfs:Class rdf:type rdfs:Resource.
rdfs:Class rdf:type rdfs:Class.
rdfs:Class rdfs:subclassOf rdfs:Resource.
rdfs:Class rdfs:subclassOf rdfs:Class.
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RDF Graph – Example 2

That is also a valid RDF graph:

G5 :
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Unit 1 – Overview 2. RDF(S)

RDF Graph – Example 3

Or that:

G6 :

rdfs:subClassOf rdfs:subPropertyOf rdfs:Resource.
rdfs:subClassOf rdfs:subPropertyOf rdfs:subPropertyOf.
rdf:type rdfs:subPropertyOf rdfs:subClassOf.
rdfs:subClassOf rdf:type owl:SymmetricProperty.
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Unit 1 – Overview 2. RDF(S)

Definitions
Assume a blank node mapping µ : B → UBL.

By µ(G) we denote the graph obtained from G by replacing each blank node x with
µ(x). We call µ(G) an instance of G.

A proper instance of a graph is an instance in which a blank node has been replaced by
a constant (form U or L), or two blank nodes in the graph have been mapped into the
same node in the instance.

An RDF graph is lean if it has no instance which is a proper subgraph of the graph.
Non-lean graphs have internal redundancy and express the same content as their lean
subgraphs.

Two graphs which differ only in the identity of their blank nodes, are considered to be
equivalent.

The merge of a set of graphs is obtained by renaming (“standardize apart”) blank
nodes in each graph such that no blank nodes between any two graphs are in common
and then taking the union of all triples, we write G1 ]G2 for the graph merge
between two graphs G1, G2.

Questions

What is meant by “redundancy” and “same content”?
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Unit 1 – Overview 2. RDF(S)

Graph Merge: Example

G7 :

__ :x foaf:knows ex:bob.
__ :x foaf:knows __ :y.

G8 :

__ :x foaf:knows ex:bob.
__ :x foaf:knows __ :x.

G7 ]G8: ???

__ :x foaf:knows ex:bob.
__ :x foaf:knows __ :y.
__ :z foaf:knows ex:bob.
__ :z foaf:knows __ :z.
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__ :x foaf:knows ex:bob.
__ :x foaf:knows __ :y.

G8 :

__ :x foaf:knows ex:bob.
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Unit 1 – Overview 2. RDF(S)

Lean and non-lean graphs: Examples

G7 : non-lean

__ :x foaf:knows ex:bob.
__ :x foaf:knows __ :y.

G8 : lean

__ :x foaf:knows ex:bob.
__ :x foaf:knows __ :x.

Why?

Becomes clear if we look at first-order “reading” of the RDF graph, where
we treat blank nodes as existential variables and triples in a predicate triple.
With this reading, one could say: G′7 = {__ :x foaf:knows ex:bob.} |= G7

We use first-order entailment here. Entailment is typically defined in terms of a
model theory (interpretation, satisfaction, models). . .
RDF has its own model theory!
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Unit Outline

1. Semantics of RDF+RDFS

2. RDF Graph – Formal Definitions

3. RDF Interpretations and Simple Entailment

4. APPENDIX: Simple RDF Entailment is NP-complete
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Model theoretic semantics – in general

A model theory is usually defined using the following “components”:
Defining a notion of an interpretation I, consisting of separate
interpretation functions
• i.e., defining how are constants, variables and logical conectives,

formulas being “interpreted” in a possible real world.
A satisfaction relation between interpretations and theories (in our
case graphs), written I |= G, which says:
• I is an interpretation satisfying G, or I is a model of G

An entailment relation between theories (in our case graphs), written
G |= G′, which says
• all models of G are also models of G′
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Simple Interpretations 1/4

“ interpretation I: . . . i.e. how are constants, variables, predicates,
formulas being “interpreted” in a possible real world.”

What does that mean for RDF?
RDF “constants” . . . subjects, objects, i.e. UL
RDF “variables” . . . blank nodes, i.e. B
RDF “predicates” . . . predicates, i.e. U
RDF “formulas” . . . triples, graphs.

Now here we have something unlike classical logic... URIs can actually
need to be interpreted “as predicates” or “as constants” depending on
where they appear in the graph.

To cater for that, RDF defines a very general notion of interpretation.
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RDF “formulas” . . . triples, graphs.

Now here we have something unlike classical logic... URIs can actually
need to be interpreted “as predicates” or “as constants” depending on
where they appear in the graph.

To cater for that, RDF defines a very general notion of interpretation.
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Simple Interpretations 2/4

A simple interpretation I over vocabulary V is a 6-tuple
I = 〈IR, IP, IEXT, IS, IL, LV 〉, s.t.

1 A non-empty set IR of resources.

• called the domain or universe of I

2 A set IP , called the set of properties,

• not necessaily disjoint with IR

3 A mapping IEXT : IP → 2(IR×IR), i.e. assigns a set of pairs 〈x, y〉 with
x, y ∈ IR.

• intuitivelty, assigns a binary relation between subjects and objects to properties.

4 A mapping IS : U ∩ V → IR ∪ IP

• this basically says, URIs can be both constants and predicates

5 A mapping IL : Lt ∩ V into IR.

• typed literals are constants.

6 A distinguished subset LV ⊂ IR, called the set of literal values, which
contains all the plain literals in V, i.e. LV ⊆ Lp ∪ Llang.

• plain literals in RDF are special, they are always interpreted as themselves
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Unit 1 – Overview 3. Simple Entailment

Simple Interpretations 3/4

Interpreting ground graphs (i.e. without blank nodes):

Interpreting constants:
• if e = ”aaa” ∈ V ∩ Lp, then I(e) = aaa ∈ LV
• if e = ”aaa”@ttt ∈ V ∩ Llang , then I(e) =< aaa, ttt >∈ LV
• if e ∈ V ∩ Lt, then I(e) = IL(e)
• if e ∈ V ∩ U , then I(e) = IS(e)

Interpreting ground triples:
• if t = s p o., is a ground triple, then

I(t) = true if s, p, o ∈ V ∧ I(p) ∈ IP ∧ 〈I(s), I(o)〉 ∈ IEXT (I(p))
I(t) = false, otherwise

Interpreting ground graphs:
• if G is a ground RDF graph then I(G) = true if and only if I(t) = true for all

triples t ∈ G, .

Satisfaction
If I(G) = true we also say I satisfies G, written I |= G
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Unit 1 – Overview 3. Simple Entailment

Simple Interpretation – Example ground graphs

Take the following artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2

G9 :

ex:a ex:b ex:c .
ex:c ex:a ex:a .
ex:c ex:b ex:a .
ex:a ex:b "whatever"∧∧ex:b .

I(G9) = true, i.e., I |= G9:
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G′9 :

ex:a ex:c ex:b .
ex:a ex:b ex:b .
ex:c ex:b ex:c .
ex:a ex:b "whatever".

I(G′9) = false, i.e., I doesn’t satisfy any triple in G′9:
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Simple Interpretation – Example ground graphs

Take the following artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2

G′9 :

ex:a ex:c ex:b . IS(ex : c) = 2 6∈ IP
ex:a ex:b ex:b . 〈1, 1〉 6∈ IEXT (IS(ex : b))
ex:c ex:b ex:c . 〈2, 2〉 6∈ IEXT (IS(ex : b))
ex:a ex:b "whatever". 〈1, ”whatever”〉 6∈ IEXT (IS(ex : b))

I(G′9) = false, i.e., I doesn’t satisfy any triple in G′9:
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Unit 1 – Overview 3. Simple Entailment

Simple Interpretations 4/4

Dealing with blank nodes is analogously to dealing with existential variables in
first-order logic:

We call some function µ : B → IR an assignment.
Given an interpretation I, and an assignment µ, [I + µ] is defined just like I,
except that it uses µ to interpret blank nodes.

Interpreting non-ground graphs:
• if G is a non-ground RDF graph then I(G) = true if and only if there exists an

assignment µ such that [I + µ](G) = true.
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Unit 1 – Overview 3. Simple Entailment

Simple Interpretation – Example non-ground graphs

Same interpretation as before, artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2
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Simple Interpretation – Example non-ground graphs

Same interpretation as before, artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2

G10 :

__ :x <ex:a> <ex:b> .
<ex:c> <ex:b> __ :y .

I(G10) = true, i.e., I |= G10:

E.g. take the assignment µ(x) = 2, µ(y) = 1

A. Polleres VU 184.729 24/37



Unit 1 – Overview 3. Simple Entailment

Simple Interpretation – Example non-ground graphs

Same interpretation as before, artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2

G′10 :

__ :x <ex:a> <ex:b> .
<ex:c> <ex:b> __ :x .

I(G′10) = false, i.e., I 6|= G′10:

If µ maps x to 1 then the first triple is false, and if it maps it to 2 then the second one.
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Unit 1 – Overview 3. Simple Entailment

Simple Entailment between RDF Graphs

The usual entailment relation as we know it from first-order theories:

Simple Entailment

An RDF graph G (simply) entails a graph E, written G |= E, if every
interpretation which satisfies G also satisfies E

“Entailment is the key idea which connects model-theoretic semantics to
real-world applications” [Hayes, 2004] . . . indeed, simple entailment is the
key for SPARQL graph pattern matching.
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Simple Entailment between RDF Graphs

The usual entailment relation as we know it from first-order theories:

Simple Entailment (for sets of graphs)

A set S of RDF graphs (simply) entails a graph E, written S |= E, if
every interpretation which satisfies every member of S also satisfies E

“Entailment is the key idea which connects model-theoretic semantics to
real-world applications” [Hayes, 2004] . . . indeed, simple entailment is the
key for SPARQL graph pattern matching.
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Unit 1 – Overview 3. Simple Entailment

Simple Entailment - Properties

Merging lemma

The merge of a set S of RDF graphs is entailed by S, and entails every
member of S, i.e.
S |=

⊎
s∈S s and

⊎
s∈S s |= s′, where s′ ∈ S.

Recall the example from before:
G′10:

__ :x <ex:a> <ex:b> .
<ex:c> <ex:b> __ :x .

This example shows the difference of union and merge:
The merge of each triple by itself taken as a singleton graph is NOT equivalent to G′10!

(Recall the definition of merge: Obtained by “standardizing apart” blank nodes.)
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Unit 1 – Overview 3. Simple Entailment

Simple Entailment - Properties

Main result for simple RDF inference is:

Interpolation Lemma
S entails a graph E if and only if a subgraph of S is an instance of E.

What does this mean?
Recall: We call µ(G) an instance of G, where µ maps blank nodes to UBL.
So, you can test entailment G |=?G′ by

1 guessing a mapping µ and

2 test whether µ(G′) ⊆ G

Complexity
Checking simple entailment is NP-complete.

(proof in the end of the slides, time allowed)
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Unit 1 – Overview 3. Simple Entailment

Simple Entailment - Examples 1/4

G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G3 :

__ :alice foaf:knows ex:bob.
__ :alice foaf:name __ :name.

G4 :

__ :alice foaf:knows ex:bob.
__ :alice foaf:name __ :alice.
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foaf:knows rdfs:domain foaf:Person.

G3 :

Alice foaf:knows ex:bob.
Alice foaf:name Name.

G4 :

Alice foaf:knows ex:bob.
Alice foaf:name Alice.

G1|=G3 :

µ(Alice) = ex : alice, µ(Name) = ”Alice”⇒ µ(G3) ⊆ G1
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ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G3 :

Alice foaf:knows ex:bob.
Alice foaf:name Name.

G4 :

Alice foaf:knows ex:bob.
Alice foaf:name Alice.

G1 6|=G4 :

no blank node mapping µ makes µ(G4) a subset of G1
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foaf:knows rdfs:domain foaf:Person.

G3 :

Alice foaf:knows ex:bob.
Alice foaf:name Name.
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Simple Entailment - Examples 1/4

G1 :
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ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G3 :

Alice foaf:knows ex:bob.
Alice foaf:name Name.

G4 :

Alice foaf:knows ex:bob.
Alice foaf:name Alice.

G4|=G3 :

µ(Alice) = Alice, µ(Name) = Alice⇒ µ(G3) ⊆ G4
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Simple Entailment - Examples 2/4

G7 : non-lean
X foaf:knows ex:bob.
X foaf:knows Y .

G8 : lean
X foaf:knows ex:bob.
X foaf:knows X.

G′7 : lean
X foaf:knows ex:bob.

G′8 : lean
X foaf:knows X.

G7 6|= G8, G7 6|= G′8
G8 |= G7, G7 |= G′7

Finally: G′7 |= G7 !!!! that confirms non-leanness!
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X foaf:knows X.

G′7 : lean
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G′8 : lean
X foaf:knows X.

G7 6|= G8, G7 6|= G′8
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2since G′7 is a subgraph that is a proper instance entailing the whole graph
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Simple Entailment - Examples 3/4

Now what about G2?
G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G2 :

ex:alice rdf:type foaf:Person.

Obviously, no simple entailment: G1 6|= G2!

Would need “special” interpretation of the rdf: and rdfs: vocabulary!

This is needed to interpret ontologies. . .
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Unit 1 – Overview 3. Simple Entailment

Recall from before – The FOAF ontology:

Properties: foaf:name, foaf:knows, foafhomepage, foaf:primaryTopic etc.

Classes: foaf:Person, foaf:Agent, foaf:Document, foaf:Organisation, etc.

Relations: e.g.

• Each Person is a Agent (subclass)

• The img property is more specific than depiction
(subproperty)

• img is a relation between Persons and Imgages
(domain/range)

• knows is a relation between two Persons
(domain/range)

• homepage denotes unique homepage of an Agent
(uniquely identifying property)

...
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Simple Entailment - Examples 4/4
G′1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice". ex:alice ex:age "30.0"∧∧xs:decimal.

GFOAF : <http://xmlns.com/foaf/0.1/>

foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person.
foaf:Person rdfs:subclassOf foaf:Agent.

Intuitively, G′1 ]GFOAF should entail: G′2 :

ex:alice rdf:type foaf:Person.
ex:bob rdf:type foaf:Person.
ex:alice rdf:type foaf:Agent.
ex:bob rdf:type foaf:Agent.
ex:alice ex:age "30"∧∧xs:integer

The RDF semantics specification [Hayes, 2004] defines three refinements of simple

interpretations and entailment relations which cover these entailments! [Hayes, 2004]. . .
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ex:alice ex:age "30"∧∧xs:integer . . . simply because each 30.0 = 30
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Unit 1 – Overview 3. Simple Entailment

RDF Entailment regimes beyond simple Entailment

The RDF semantics specification [Hayes, 2004] defines three refinements of
simple interpretations and entailment relations which cover these entailments!:

RDF-entailment: Interpreting the rdf: vocabulary

• e.g. imposes that {s p o .} |= p rdf:type rdf:Property

RDFS-entailment: Interpreting the rdfs: vocabulary

• e.g. imposes that G′1 ]GFOAF |= { ex:alice rdf:type foaf:Person.}

D-entailment: Interpreting datatypes

• e.g. imposing that in all interpretations that "1"∧∧xs:integer is interpreted the
same as "1.0"∧∧xs:decimal
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Unit 1 – Overview 4. APPENDIX: Simple RDF Entailment is NP-complete

Unit Outline

1. Semantics of RDF+RDFS

2. RDF Graph – Formal Definitions

3. RDF Interpretations and Simple Entailment

4. APPENDIX: Simple RDF Entailment is NP-complete
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Unit 1 – Overview 4. APPENDIX: Simple RDF Entailment is NP-complete

Simple RDF Entailment is NP-complete: Membership

Recall, we had that before already: We can test entailment G |=?G′ by
1 guessing a mapping µ and

2 test whether µ(G′) ⊆ G (this is obviously polynomial)

Membership in NP - done
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Simple RDF Entailment is NP-complete: Hardness

To proof hardness we have to reduce another NP-hard problem to RDF entailment (in
polynomial time). Let’s “adapt” the proof from [Chandra and Merlin, 1977].

3-colorability: Given an undirected Graph Gr, can all nodes be colored with 3 colors
red, green, blue without two adjacent nodes having the same color?

Reduction (the “trick” is we have to convert an undirected to a directed RDF graph):
Graph G1: simply encodes all "allowed" edges:

:red :edge :green. :green :edge :red.
:green :edge :blue. :blue :edge :green.
:blue :edge :red. :red :edge :blue.

Graph G2: for each (node1, node2) ∈ Gr we add two triples:
__ :n1 :edge __ :n2. __ :n2 :edge __ :n1.

to the graph G2, i.e, we model the nodes as blank nodes.

Now, it is easy to see that:

Proposition
Gr is 3-colorably if and only if G1 |= G2
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Recommended Reading

[Gutiérrez et al., 2004], excellent article on the logical foundations of
RDF
[de Bruijn et al., 2005], relating RDF entailment to normal first-order
logic.

A bit more tough reading (specs), but also recommended:
[Hayes, 2004, Sections 1–2], official RDF semantics specification.
[Mallea et al., 2011] . . . all you ever wanted to know about blank
nodes and never dared to ask.
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