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Property Path: in SPARQL 1.0 Query

SPARQL 1.0 provides limited navigational capabilities

URI1 URI2 URI3 URI4URI4

“Worarat” “XXX” “Guohui” “Axel”

: knows : knows : knows

: name : name : name : name

Example Query
SELECT ?x
WHERE
{

?x :knows ?y .
?y :name "Axel" .

}
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Property Path Syntax in SPARQL 1.1

Syntax Form Matches
iri An IRI. A path of length one.
ˆelt Inverse path (object to subject).
!iri or !(iri1|...|irin) An IRI. Negated property set. An IRI which is not one of irii.

!iri is short for !(iri).
!ˆiri or An IRI. Negated property set. An IRI which is not one of irii.
!(iri1|...|irij|ˆirij+1| . . . |ˆirin|) !iri is short for !(iri).
(elt) A group path elt, brackets control precedence.
(elt1) / (elt2) A sequence path of elt1 followed by elt2.
(elt1) | (elt2) A alternative path of elt1 or elt2 (all possibilities are tried).
elt∗ A path of zero or more occurrences of elt.
elt+ A path of one or more occurrences of elt.
elt? A path of zero or one occurrences of elt.
elt{n,m} A path of between n and m occurrences of elt.
elt{n} A path of exactly n occurrences of elt.
elt{n, } A path of n or more occurrences of elt.
elt{, n} A path of between 0 and n occurrences of elt.

elt: is a path element, which may itself be composed of path syntax
constructs.
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Property Path

Property Path (SPARQL 1.1 Spec. [Harris et al., 2012])
A property path is a possible route through a graph between two
graph nodes.
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Main interesting problems:
I Evaluation – Is there a path from 0 to 6? - Yes !
I Counting – How many different paths between 0 to 6? - 4 paths (i.e.

aceg, acfh, bdeg, and bdfh)
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Experiments on Evaluation

The language defined by an expression r, denoted by L(r),
is inductively defined as follows: L(ε) = {ε}; L(a) = {a};
L(•) = ∆; L(rs) = L(r)·L(s); L(r+s) = L(r)∪L(s); L(r∗) =

{ε} ∪⋃∞i=1 L(r)i, L(rk,`) =
⋃`
i=k L(r)i; and, L(¬r) = ∆∗ −

L(r). Furthermore, L(r?) = ε+L(r) and L(r+) = L(r)L(r∗).2

The size of a regular expression r over ∆, denoted by |r|, is
the number occurrences of ∆-symbols, •-symbols, and oper-
ators occurring in r, plus the sizes of the binary representa-
tions of the numerical occurrence indicators.

We consider edge-labeled graphs. A graph G will be de-
noted as G = (V,E), where V is the set of nodes of G and
E ⊆ V ×∆× V is the set of edges. An edge e is therefore of
the form (u, a, v) if it goes from node u to node v and bears
the label a. When we don’t care about the label of an edge,
we sometimes also write an edge as a pair (u, v) in order to
simplify notation. We assume familiarity with basic termi-
nology on graphs. A path from node x to node y in G is a
sequence p = v0[a1]v1[a2]v2 · · · vn−1[an]vn such that v0 = x,
vn = y, and (vi−1, ai, vi) is an edge for each i = 1, . . . , n.
When we are not interested in the labels on the edges, we
sometimes also write p = v0v1 . . . vn. We say that path p
has length n. Notice that a path of length zero does not fol-
low any edges. The labeled string induced by the path p in
G is a1 · · · an and is denoted by labG(p). If G is clear from
the context, we sometimes also simply write lab(p). A path p
matches a regular expression r if lab(p) ∈ L(r). We define the
concatenation of paths p1 = v0[a1]v1 · · · vn−1[an]vn and p2 =
vn[an+1]vn1 · · · vn+m−1[an+m]vn+m to be the path p1p2 :=
v0[a1]v1 · · · vn−1[an]vn[an+1]vn1 · · · vn+m−1[an+m]vn+m.

We consider two paths p1 = v10 [a11]v11 · · · [a1n]v1n and p2 =
v20 [a21]v21 · · · [a2m]v2m to be different, if either the sequences of
nodes or the sequences of labels are different, i.e., v10v

1
1 · · · v1n 6=

v20v
2
1 · · · v2m or lab(p1) 6= lab(p2). Notice that this implies that

we consider two paths going through the same sequence of
nodes but using different edge labels to be different.

We will often consider a graph G = (V,E) together with
a source node x and a target node y, for example, when con-
sidering paths from x to y. We say that (V,E, x, y) is the
s-t graph of G w.r.t. x and y. Sometimes we leave the facts
that x and y are source and target implicit and just refer to
(V,E, x, y) as a graph.

We are mainly interested in the following problems:

Evaluation: Given a graph (V,E, x, y) and a regular ex-
pression r, is there a path from x to y that matches r?

Finiteness: Given a graph (V,E, x, y) and a regular expres-
sion r, are there only finitely many different paths from x to
y that match r?

Counting: Given a graph (V,E, x, y), a regular expression
r and a natural number max in unary, how many different
paths of length at most n between x and y match r?

For the Counting problem, we chose to have the number
max in unary because this was also the case in the classi-
cal path counting problems we found in the literature, so it
makes results easier to compare. Furthermore, it strengthens
our hardness results. However, our polynomial-time results
for Counting still hold when the number max is given in
binary (Theorems 5.3 and 4.6).

We will often parameterize the problems with the kind
of regular expressions or automata we consider. For exam-

2We do not define r+ as an abbreviation of rr∗ since r+ and
rr∗ have different semantics in the SPARQL definition.

ple, when we talk about Evaluation for RE(#,¬), then we
mean the Evaluation problem where the input is a graph
(V,E, x, y) and an expression r in RE(#,¬).

3. THE EFFICIENCY OF EVALUATION
We conducted a practical study on the efficiency in which

SPARQL engines evaluate property paths. We evaluated
the most prevalent SPARQL query engines which support
property paths, namely the Jena Semantic Web Framework
(which is used in, e.g., ARQ), Sesame, RDF::Query, and
Corese 3.0.3 We asked the four frameworks to answer the
query ASK WHERE { x (a|b){1,k} y } for increasing values
of k on the graph

x y
a

a

b

b

consisting of two nodes and four labeled edges. Formally,
this corresponds to answering the Evaluation problem on
the above graph for the expression (a + b)1,k. (Notice that
the answer is always “true”.)

The performance of three of the four systems is depicted
in Figure 1. The results are obtained from evaluation on a
desktop PC with 2 GB of RAM. For the Jena and Sesame
framework the points in the graph depict all the points we
could obtain data on. When we increased the number k by
one more as shown on the graphic, the systems ran out of
memory. Our conclusion from our measurements is that all
three systems seem to exhibit a double exponential behavior:
from a certain point, whenever we increase the number k by
one (which does not mean that one more bit is needed to
represent it), the processing time doubles. Corese 3.0 evalu-
ated queries of the above form very quickly. However, when
we asked the query ASK WHERE {x ((a|b)/(a|b)){1,k} y},
which asks for the existence of even length paths, its time
consumption was the same than the other three systems. In
contrast to the other three systems, Corese did not run out
of memory so quickly. We note that similar double exponen-
tial behavior for SELECT queries is also observed by Arenas,
Conca, and Pérez [4].

3.1 An Efficient Algorithm for Evaluation
We show that the double exponential behavior we observed

in practice can be improved to polynomial-time combined
complexity. In particular, we present a polynomial-time al-
gorithm for Evaluation of RE(#, •).

We briefly discuss some basic results on evaluating regular
expressions on graphs. Evaluation is in PTIME for stan-
dard regular expressions.4 In this case, the problem basically
boils down to testing intersection emptiness of two finite au-
tomata: one converts the graph G with the given nodes x
and y into a finite automaton AG by taking the nodes of G
as states, the edges as transitions, x as its initial state and
y as its accepting state. The expression r is converted into
a finite automaton Ar by using standard methods. Then,
there is a path from x to y in G that matches r if and only if

3RDF3X was also recommended to us as a benchmark system
but, as far as we could see, it does not support property
paths.
4This has already been observed in the literature several
times, e.g., as Lemma 1 in [34], on p.7 in [2], and in [3].

[Arenas et al., 2012]
ASK WHERE { x (a|b){1,k} y }
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Figure 1: Time taken by Jena, Sesame and
RDF::Query for evaluating the expression (a + b)1,k

for increasing values of k on a graph with two nodes
and four edges.

the intersection of the languages of AG and Ar is not empty,
which can easily be tested in polynomial time. Pérez et al.
have shown that the product construction of automata can
even be used for a linear-time algorithm for evaluating nested
regular path expressions, which are regular expressions that
have the power to branch out in the graph [36].

The polynomial time algorithm for Evaluation of RE(#, •)-
expressions follows a dynamic programming approach. We
first discuss the main idea of the algorithm and then dis-
cuss its complexity. Let r be an RE(#, •)-expression and let
G = (V,E) be a graph. Our algorithm traverses the syntax
tree of r in a bottom-up fashion. To simplify notation in the
following discussion, we identify nodes from the parse tree of
r to their corresponding subexpressions. We store, for each
node in the syntax tree with associated subexpression s, a
binary relation Rs ⊆ V × V such that

(u, v) ∈ Rs if and only if

there exists a path from u to v in G that matches s.

The manner in which we join relations while going bottom-
up in the parse tree depends on the type of the node. We
discuss all possible cases next.

If s is a ∆-symbol, then Rs := {(u, v) | (u, s, v) ∈ E}.

If s = ε, then Rs := {(u, u) | u ∈ V }.
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(a) Part of a run on the expression (b + c)∗b3,5 and the
graph in Fig. 2(b).
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(b) An edge-labeled graph.

Figure 2: Illustration of the polynomial-time dy-
namic programming algorithm.

If s = •, then Rs := {(u, v) | ∃a ∈ ∆ s.t. (u, a, v) ∈ E}.
If s = s1 + s2, then Rs = Rs1 ∪Rs2 .

If s = s1 · s2, then Rs := π1,3(Rs1 ./
Rs1

.2=Rs2
.1
Rs2), where

./
Rs1

.2=Rs2
.1

denotes the ternary relation obtained by joining

Rs1 and Rs2 by pairing tuples that agree on the right column
of Rs1 and the left column on Rs2 . Furthermore, π1,3 denotes
the projection of these triples onto the leftmost and rightmost
column.

If s = s∗1, then Rs is the reflexive and transitive closure of
Rs1 .

If s = s+1 , then Rs is the transitive closure of Rs1 .

If s = sk1 , then consider the connectivity matrix Ms1 of pairs
that match s1 in G. That is, for each pair of nodes (u, v)
in G, we have that Ms1 [u, v] = 1 if and only if (u, v) ∈ Rs1
and Ms1 [u, v] = 0 otherwise. Notice that Ms1 is a |V | × |V |
matrix. Then Rs := {(u, v) | Mk

s1 [u, v] 6= 0}, where Mk
s1

denotes the matrix Ms1 to the power of k.

If s = sk,∞1 , then Rs is the relation for the expression sk1 · s∗1.

If s = sk,`1 and ` 6= ∞, then let Ms1 be the same matrix
as we used in the sk1 case. Let M ′s1 be the matrix obtained
from Ms1 by setting M ′s1 [u, v] := 1 if u = v. Therefore we
have that M ′s1 [u, v] := 1 if and only if v is reachable from
u by a path that matches s1 zero or one times. Let Ms :=
(Ms1)k · (M ′s1)`−k. Then, Rs := {(u, v) |Ms[u, v] 6= 0}.
Finally, if the input for Evaluation is G, nodes x and y,
and RE(#, •)-expression r, we return the answer “true” if
and only if Rr contains the pair (x, y).

Example 3.1. Figure 2 illustrates part of a run of the
evaluation algorithm on the graph in Figure 2(b) and the reg-
ular expression r = (b+ c)∗b3,5. Each node of the parse tree
of the expression (Fig. 2(a)) is annotated with the binary re-
lation that we compute for it. Finally, the relation for the
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0 5 10 15 20 25
0

10,000

20,000

30,000

40,000

50,000

60,000

fail

k

m
s

Jena

RDF::Query

(a) Evaluation time for Jena and
RDF::Query.

0 2 4 6 8 10 12 14
0

1,000

2,000

3,000

4,000

5,000
fail

k

m
s

Sesame

(b) Evaluation time for Sesame.

Figure 1: Time taken by Jena, Sesame and
RDF::Query for evaluating the expression (a + b)1,k

for increasing values of k on a graph with two nodes
and four edges.

the intersection of the languages of AG and Ar is not empty,
which can easily be tested in polynomial time. Pérez et al.
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Experiments on Counting

[Losemann and Martens, 2012]
SELECT * WHERE { :a0 (p)* :a1 }

Counting Beyond a Yottabyte, or how SPARQL 1.1
Property Paths will Prevent Adoption of the Standard

Marcelo Arenas
Department of Computer Science

PUC Chile
marenas@ing.puc.cl

Sebastián Conca
Department of Computer Science

PUC Chile
saconca@puc.cl

Jorge Pérez
Department of Computer Science

Universidad de Chile
jperez@dcc.uchile.cl

ABSTRACT
SPARQL –the standard query language for querying RDF– pro-
vides only limited navigational functionalities, although these fea-
tures are of fundamental importance for graph data formats such as
RDF. This has led the W3C to include the property path feature in
the upcoming version of the standard, SPARQL 1.1.

We tested several implementations of SPARQL 1.1 handling prop-
erty path queries, and we observed that their evaluation methods
for this class of queries have a poor performance even in some
very simple scenarios. To formally explain this fact, we conduct
a theoretical study of the computational complexity of property
paths evaluation. Our results imply that the poor performance of
the tested implementations is not a problem of these particular sys-
tems, but of the specification itself. In fact, we show that any im-
plementation that adheres to the SPARQL 1.1 specification (as of
November 2011) is doomed to show the same behavior, the key
issue being the need for counting solutions imposed by the current
specification. We provide several intractability results, that together
with our empirical results, provide strong evidence against the cur-
rent semantics of SPARQL 1.1 property paths. Finally, we put our
results in perspective, and propose a natural alternative semantics
with tractable evaluation, that we think may lead to a wide adoption
of the language by practitioners, developers and theoreticians.

Categories and Subject Descriptors
H.2.3 [Languages]: Query Languages

Keywords
SPARQL 1.1, property paths, bag semantics, counting complexity

1. INTRODUCTION
It has been noted that, although RDF is a graph data format, its
standard query language, SPARQL, provides only limited naviga-
tional functionalities. This has led the W3C to include the property-
path feature in the upcoming version of the standard, SPARQL 1.1.
Property paths are essentially regular expressions that retrieve pairs
of nodes of an RDF graph that are connected by paths conform-
ing to those expressions. In this paper, we study the semantics of
property paths and the complexity of evaluating them. We per-
form this study both from a theoretical and a practical point of
view, and provide strong arguments against the current semantics
of SPARQL 1.1 property paths.

We began our study by testing several SPARQL 1.1 implementa-
tions, and we were faced with an intriguing empirical observation:
all these implementations of SPARQL 1.1 fail to give an answer
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Figure 1: Time in seconds for processing Cliq-1 w.r.t. the clique
size n (time axis in log-scale)

@prefix : <http://example.org/> .
:a0 :p :a1, :a2, :a3, :a4, :a5, :a6, :a7 .
:a1 :p :a0, :a2, :a3, :a4, :a5, :a6, :a7 .
:a2 :p :a0, :a1, :a3, :a4, :a5, :a6, :a7 .
:a3 :p :a0, :a1, :a2, :a4, :a5, :a6, :a7 .
:a4 :p :a0, :a1, :a2, :a3, :a5, :a6, :a7 .
:a5 :p :a0, :a1, :a2, :a3, :a4, :a6, :a7 .
:a6 :p :a0, :a1, :a2, :a3, :a4, :a5, :a7 .
:a7 :p :a0, :a1, :a2, :a3, :a4, :a5, :a6 .

Figure 2: RDF graph representing a clique with 8 nodes

in a reasonable time (one hour) even for small input graphs and
very simple property path expressions. We conduct two sets of
experiments, the clique experiments and the foaf experiments, test-
ing four implementations: ARQ [22], RDF::Query [24], KGRAM-
Corese [23], and Sesame [25]. For the first experiment, we con-
sider RDF graphs representing cliques (complete graphs) of dif-
ferent sizes. For example, Figure 2 shows a clique with 8 nodes
in N3 notation. In this scenario, we tested the performance of the
implementations by using a very simple query:

Cliq-1: SELECT * WHERE { :a0 (:p)* :a1 }

that essentially asks for paths of arbitrary length between two fixed
nodes. The experimental behavior for this query was quite sur-
prising: no implementation was able to handle a clique with 13
nodes. That is, all implementations fail to give an answer after
one hour for an input RDF graph with only 156 triples and 970
bytes of size on disk. In particular, Sesame fails for a clique with
10 nodes, KGRAM and RDF::Query for 12 nodes, and ARQ for
13 nodes. Our experiments show that for all implementations, the
time needed to process Cliq-1 seems to grow doubly-exponentially
w.r.t. the input data file (see the graph in Figure 1, which is in log-
arithmic scale). We also tested queries with nested stars, showing
that nesting has an unexpected impact in query evaluation. In par-
ticular, we tested the query:

Figure: Time in seconds for
processing the queries w.r.t. the
clique size n (time axis in log-scale)
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@prefix : http://example.org/ . 
:a0  :p  :a1,  :a2,  :a3 . 
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Figure: a) Clique with 4 nodes, b)
RDF graph representing a clique
with 4 nodes
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Property Path Evaluation

I In the experiment, the evaluation algorithm is shown as double
exponential behavior

I This depends on which semantics that algorithm relies on:
I Regular path
I Simple walk (or simple path and simple cycle): a path that does not

visit the same node twice, but is allowed to return to its first node
(cycle).

I Under the semantics of regular path, the evaluation can be improved
to polynomial-time

I Under the simple path, the evaluation is intractable
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Simple Path vs. Regular Path

Simple path
A simple path in a graph is a
sequence of nodes such that
each node in a path occurs
exactly once

Regular path (path)
A path in a graph is a sequence
of nodes such that from each of
its nodes there is an edge to the
next node in the sequence

w x

y z

a1

a2

a3

a4a 5

Find paths from x to z.

Path a4 a1, a2, a3 a1, a2, a5, a4

Regular?
√ √ √

Simple?
√ √

× (x visited twice)
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Evaluation under Regular Path Semantics
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RDF::Query.
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Figure 1: Time taken by Jena, Sesame and
RDF::Query for evaluating the expression (a + b)1,k

for increasing values of k on a graph with two nodes
and four edges.

the intersection of the languages of AG and Ar is not empty,
which can easily be tested in polynomial time. Pérez et al.
have shown that the product construction of automata can
even be used for a linear-time algorithm for evaluating nested
regular path expressions, which are regular expressions that
have the power to branch out in the graph [36].

The polynomial time algorithm for Evaluation of RE(#, •)-
expressions follows a dynamic programming approach. We
first discuss the main idea of the algorithm and then dis-
cuss its complexity. Let r be an RE(#, •)-expression and let
G = (V,E) be a graph. Our algorithm traverses the syntax
tree of r in a bottom-up fashion. To simplify notation in the
following discussion, we identify nodes from the parse tree of
r to their corresponding subexpressions. We store, for each
node in the syntax tree with associated subexpression s, a
binary relation Rs ⊆ V × V such that

(u, v) ∈ Rs if and only if

there exists a path from u to v in G that matches s.

The manner in which we join relations while going bottom-
up in the parse tree depends on the type of the node. We
discuss all possible cases next.

If s is a ∆-symbol, then Rs := {(u, v) | (u, s, v) ∈ E}.

If s = ε, then Rs := {(u, u) | u ∈ V }.

·

∗

+

b c

3, 5

b
(1,2)
(3,4)
(5,6)
(4,12)
. . .(1,2)

(3,4)
(5,6)
(4,12)
. . .

(2,3)
(4,5)

(1,2)
(2,3)
(3,4)
(4,5)
(4,12)
(5,6)
. . .

(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
. . .

(3,13)
(3,5)
(3,6)
(4,5)
(4,6)
. . .

(1,13)
(1,5)
(1,6)
. . .
(1,11)
(2,8)
. . .

(a) Part of a run on the expression (b + c)∗b3,5 and the
graph in Fig. 2(b).
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Figure 2: Illustration of the polynomial-time dy-
namic programming algorithm.

If s = •, then Rs := {(u, v) | ∃a ∈ ∆ s.t. (u, a, v) ∈ E}.
If s = s1 + s2, then Rs = Rs1 ∪Rs2 .

If s = s1 · s2, then Rs := π1,3(Rs1 ./
Rs1

.2=Rs2
.1
Rs2), where

./
Rs1

.2=Rs2
.1

denotes the ternary relation obtained by joining

Rs1 and Rs2 by pairing tuples that agree on the right column
of Rs1 and the left column on Rs2 . Furthermore, π1,3 denotes
the projection of these triples onto the leftmost and rightmost
column.

If s = s∗1, then Rs is the reflexive and transitive closure of
Rs1 .

If s = s+1 , then Rs is the transitive closure of Rs1 .

If s = sk1 , then consider the connectivity matrix Ms1 of pairs
that match s1 in G. That is, for each pair of nodes (u, v)
in G, we have that Ms1 [u, v] = 1 if and only if (u, v) ∈ Rs1
and Ms1 [u, v] = 0 otherwise. Notice that Ms1 is a |V | × |V |
matrix. Then Rs := {(u, v) | Mk

s1 [u, v] 6= 0}, where Mk
s1

denotes the matrix Ms1 to the power of k.

If s = sk,∞1 , then Rs is the relation for the expression sk1 · s∗1.

If s = sk,`1 and ` 6= ∞, then let Ms1 be the same matrix
as we used in the sk1 case. Let M ′s1 be the matrix obtained
from Ms1 by setting M ′s1 [u, v] := 1 if u = v. Therefore we
have that M ′s1 [u, v] := 1 if and only if v is reachable from
u by a path that matches s1 zero or one times. Let Ms :=
(Ms1)k · (M ′s1)`−k. Then, Rs := {(u, v) |Ms[u, v] 6= 0}.
Finally, if the input for Evaluation is G, nodes x and y,
and RE(#, •)-expression r, we return the answer “true” if
and only if Rr contains the pair (x, y).

Example 3.1. Figure 2 illustrates part of a run of the
evaluation algorithm on the graph in Figure 2(b) and the reg-
ular expression r = (b+ c)∗b3,5. Each node of the parse tree
of the expression (Fig. 2(a)) is annotated with the binary re-
lation that we compute for it. Finally, the relation for the

Figure: Illustration of polynomial-time
dynamic programming algorithm

I Under the semantics of regular
path, the evaluation can be
done in polynomial-time

I by using dynamic
programming approach

The Complexity of Evaluation
The complexity of evaluation
under regular path semantics is
in polynomial time (PTIME).
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cuss its complexity. Let r be an RE(#, •)-expression and let
G = (V,E) be a graph. Our algorithm traverses the syntax
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Finally, if the input for Evaluation is G, nodes x and y,
and RE(#, •)-expression r, we return the answer “true” if
and only if Rr contains the pair (x, y).

Example 3.1. Figure 2 illustrates part of a run of the
evaluation algorithm on the graph in Figure 2(b) and the reg-
ular expression r = (b+ c)∗b3,5. Each node of the parse tree
of the expression (Fig. 2(a)) is annotated with the binary re-
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Figure: Simple Path in SPARQL 1.1 Last Call
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Reduction Chain of NP-completeness Problems

Path evaluation
in SPARQL 1.1

Even length
simple path

Path via a node
in digraph

Directed
subgraph

homeomorphism
3-SAT

Path evaluation in SPARQL 1.1
[Losemann and Martens, 2012]
Path evaluation under simple walk (simple path and simple cycle)
semantics is NP-complete for the expression (aa)∗ and for the
expression (aa)+
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Evaluation under Simple Path Semantics

Reduction Chain of NP-completeness Problems

Path evaluation
in SPARQL 1.1

Even length
simple path

Path via a node
in digraph

Directed
subgraph

homeomorphism
3-SAT

Even length simple path [Mendelzon and Wood, 1989,
Lapaugh and Papadimitriou, 1984]
Let 0 and 1 be distinct symbols in Σ. FIXED REGULAR PATH(R),
in which is either (1) (00)∗, or (2) 0∗10∗ is NP-complete
Proof. of (1)

I EVEN PATH is shown to be NP-complete
I We can reduce even path to FIXED REGULAR PATH(R),

where R = (00)∗ as follows
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Evaluation under Simple Path Semantics

Reduction Chain of NP-completeness Problems

Path evaluation
in SPARQL 1.1

Even length
simple path

Path via a node
in digraph

Directed
subgraph

homeomorphism
3-SAT

Even length simple path [Mendelzon and Wood, 1989,
Lapaugh and Papadimitriou, 1984]
Given a digraph D = (V, A) and s, t ∈ V, it is NP-complete to
decide whether there is an even-length simple path from s to t
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Evaluation under Simple Path Semantics

Reduction Chain of NP-completeness Problems

Path evaluation
in SPARQL 1.1

Even length
simple path

Path via a node
in digraph

Directed
subgraph

homeomorphism
3-SAT

Path via a node in digraph
[Lapaugh and Papadimitriou, 1984]
Path via a node problem, is NP-complete: Given a digraph
D = (V,A) and s, t,m ∈ V,is there a simple path from s to t via m?
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Evaluation under Simple Path Semantics

Reduction Chain of NP-completeness Problems

Path evaluation
in SPARQL 1.1

Even length
simple path

Path via a node
in digraph

Directed
subgraph

homeomorphism
3-SAT

Directed subgraph homeomorphism [Fortune et al., 1980]
For each P not in C the fixed subgraph homeomorphism problem
with pattern P is NP-complete

C = · · · or · · ·

In the reduction of Directed subgraph homeomorphism to Path via a
node problem, we use P =
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Evaluation under Simple Path Semantics

Reduction Chain of NP-completeness Problems

Path evaluation
in SPARQL 1.1

Even length
simple path

Path via a node
in digraph

Directed
subgraph

homeomorphism
3-SAT

3-SAT
3-SAT is well-know NP-complete.

The reduction of 3-SAT to Directed subgraph homeomorphism is very
complicated [Fortune et al., 1980].

Property Path Query in SPARQL 1.1 16/27



Outline

Introduction
Limitation of navigational capabilities in SPARQL 1.0
SPARQL 1.1 property path
Experiments on Evaluation and Counting

Complexity
Evaluation Complexity
Counting Complexity

Conclusion

Property Path Query in SPARQL 1.1 17/27



Duplicates in SPARQL 1.1 Draft
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Example of Counting

SELECT * WHERE { :0 (p)* :1 }
on clique(n) = {(: i p : j) | 0 ≤ i, j ≤ n, i 6= j}

Solution: {{ [], [], . . . , []︸ ︷︷ ︸
duplicates of Sn times

}}

0

1

2 3

4

length p* path count
1 p 01 P0

3 = 1
2 pp 021, 031, 041 P1

3 = 3
3 ppp 0231, 0241, 0321, 0341, 0421, 0431 P2

3 = 6
4 pppp 02341, 02431, 03241, 03421, 04231, 04321 P3

3 = 6
sum S5 = 16

Table: Compute S5. Recall that Pk
n = n(n− 1) . . . (n− k + 1)

Sn+1 = P0
n−1 + P1

n−1 + ... + Pn−1
n−1 > Pn−1

n−1 = (n− 1)!
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Nesting of ∗

s = 1: SELECT * WHERE { :a0 (p)* :a1 }
s = 2: SELECT * WHERE { :a0 ((p)*)* :a1 }
s = 3: SELECT * WHERE { :a0 (((p)*)*)* :a1 }

Figure: Number of occurrences of the mapping in the answer to property-path
triple (a1, ps, an) over RDF graph clique(n)[Arenas et al., 2012]
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Data Complexity of Counting

Data complexity [Losemann and Martens, 2012, Arenas et al., 2012]

Counting in SPARQL 1.1 Draft is #P-complete for the expressions
a∗ and a+.

#P Complexity Class
I The class of function problems of the form "compute f (x),"

where f is the number of accepting paths of an NP machine.
I The canonical #P-complete problem is #SAT.
I More difficult than NP, thus intractible

Proof of #P-completeness
I #P-membership. The non-deterministic TM simply guesses a

path of a certain length and tests whether it matches
I #P-hardness. Reductions from #DNF
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An Existential Semantics to the Rescue

I the core of this problem the necessity of counting different paths.
I Existential Semantics usde in Graph DB, XML is tractalbe
I Possible solution: Discarding duplicates from the standard
I SELECT DISTINCT * WHERE { ... }

Figure: Experiement with Existential Semantics
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Conclusion

I The property path in SPARQL 1.1 query can make it intractable
I Two requirements makes property queries difficult

I Simple path requirement
I Duplicates in path counting

I Possible solutions:
I Avoid simple path requirement (like XPATH)
I Existential Semantics
I Only count paths for some specific number of occurrence (e.g.

shortest paths)
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Latest Stories in Editors’ Draft

I Simple path requirements in ZeroOrMorePath (*),
OneOrMorePath (+) are removed

I http://lists.w3.org/Archives/Public/public-rdf-dawg-
comments/2012Apr/0004.html
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Latest Stories in Editors’ Draft
http://www.w3.org/2009/sparql/docs/query-1.1/rq25.xml
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