FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Property Path Query in SPARQL 1.1

Worarat Krathu Guohui Xiao

Institute of Information Systems, Vienna University of Technology

July 2012

Property Path Query in SPARQL 1.1 0/27

Overview

Introduction
Limitation of navigational capabilities in SPARQL 1.0
SPARQL 1.1 property path
Experiments on Evaluation and Counting

Complexity
Evaluation Complexity
Counting Complexity

Conclusion

Outline MH

Introduction

Property Path Query in SPARQL 1.1 1/27

Outline TUl 1

Introduction
Limitation of navigational capabilities in SPARQL 1.0

Property Path Query in SPARQL 1.1 2/27

Property Path: in SPARQL 1.0 Query TUl 1
SPARQL 1.0 provides limited navigational capabilities
: knows

. knows : knows

. hame

“Worarat” “XXX” “Guohui” “Axel”

Example Query
SELECT ?x
WHERE

{

?x :knows ?y .
?y :name "Axel" .

}

Property Path Query in SPARQL 1.1 3/27

Property Path: in SPARQL 1.0 Query TUl 1
SPARQL 1.0 provides limited navigational capabilities
: knows

. knows : knows

. hame

“Worarat” “XXX” “Guohui” “Axel”

Example Query
SELECT ?x
WHERE

{

?x :knows ?y .
?y :name "Axel" .

}

Property Path Query in SPARQL 1.1 3/27

Property Path: in SPARQL 1.0 Query TUl 1
SPARQL 1.0 provides limited navigational capabilities
: knows

. knows . knows

. hame

“Worarat” “XXX” “Guohui” “Axel”

Example Query
SELECT ?x
WHERE

{
?x ((knows)* ?y . # Property Path in SPARQL 1.1

?y :name "Axel" .

}

Property Path Query in SPARQL 1.1 3/27

Outline TUl 1

Introduction

SPARQL 1.1 property path

Property Path Query in SPARQL 1.1 4/27

Property Path Syntax in SPARQL 1.1

Matches

Syntax Form
iri

An IRI. A path of length one.

“elt Inverse path (object to subject).

Viri or 1(iriy|...|irin) An IRI. Negated property set. An IRI which is not one of iri;.
liri is short for !(iri).

1%iri or An IRI. Negated property set. An IRI which is not one of iri;.

V(iriy|...|irgj| "iriiea] - . .| Cirin]) liri is short for !(iri).

(elt) A group path elt, brackets control precedence.

(eltl) / (elt2)

A sequence path of elt1 followed by elt2.

(eltl) | (elr2)

A alternative path of elt1 or elt2 (all possibilities are tried).

elt* A path of zero or more occurrences of elt.
elrT A path of one or more occurrences of elt.

elt? A path of zero or one occurrences of elt.
elt{n,m} A path of between n and m occurrences of elt.
elt{n} A path of exactly n occurrences of elt.

elt{n, } A path of n or more occurrences of elt.
elt{,n} A path of between 0 and n occurrences of elt.

elt: is a path element, which may itself be composed of path syntax

constructs.

Property Path Query in SPARQL 1.1

5/27

Property Path TUl 1

Property Path (SPARQL 1.1 Spec. [Harris et al., 2012])
A property path is a possible route through a graph between two

JoNoN
i

Property Path Query in SPARQL 1.1 6/27

Property Path TUl 1

Property Path (SPARQL 1.1 Spec. [Harris et al., 2012])
A property path is a possible route through a graph between two

graph nodes.
JORFON
(6)
@§@4 @§@4
Main interesting problems:

Property Path Query in SPARQL 1.1 6/27

Property Path TUl 1

Property Path (SPARQL 1.1 Spec. [Harris et al., 2012])
A property path is a possible route through a graph between two

graph nodes.
JORNON
(&)
@§@4 @§@4
Main interesting problems:

» Evaluation — Is there a path from 0 to 67 - Yes !

Property Path Query in SPARQL 1.1 6/27

Property Path TUl 1

Property Path (SPARQL 1.1 Spec. [Harris et al., 2012])
A property path is a possible route through a graph between two

graph nodes.
a (% e C%
d f:@4
Main interesting problems:
» Evaluation — Is there a path from 0 to 67 - Yes !
» Counting — How many different paths between 0 to 67 - 4 paths (i.e.

aceg,)
Property Path Query in SPARQL 1.1 6/27

Property Path TUl 1

Property Path (SPARQL 1.1 Spec. [Harris et al., 2012])
A property path is a possible route through a graph between two

graph nodes.
JORRYON
(&)
@§@4 @§@4
Main interesting problems:
» Evaluation — Is there a path from 0 to 67 - Yes !

» Counting — How many different paths between 0 to 67 - 4 paths (i.e.

aceg, acfh,)
Property Path Query in SPARQL 1.1 6/27

Property Path TUl 1

Property Path (SPARQL 1.1 Spec. [Harris et al., 2012])
A property path is a possible route through a graph between two

graph nodes.
a (% e C%
d f:@4
Main interesting problems:
» Evaluation — Is there a path from 0 to 67 - Yes !
» Counting — How many different paths between 0 to 67 - 4 paths (i.e.

aceg, acfh, bdeg,)

Property Path Query in SPARQL 1.1 6/27

Property Path TUl 1

Property Path (SPARQL 1.1 Spec. [Harris et al., 2012])
A property path is a possible route through a graph between two

graph nodes.
JORFON
(&)
@§@4 @§@4
Main interesting problems:

» Evaluation — Is there a path from 0 to 67 - Yes !

» Counting — How many different paths between 0 to 67 - 4 paths (i.e.
aceg, acfh, bdeg, and bdfh)

Property Path Query in SPARQL 1.1 6/27

Outline TUl 1

Introduction

Experiments on Evaluation and Counting

Property Path Query in SPARQL 1.1 7127

Experiments on Evaluation

b
S a N\
K ——)
\\\g///

b

[Arenas et al., 2012]

ASK WHERE { x

—— Jena
60,000 |-
g —a— RDF::Query

50,000 |-

40,000

ms

30,000

20,000 |

10,000

ol
0

fail

ms

Figure: Evaluation time for Jena

and RDF::Query.

Property Path Query in SPARQL 1.1

5,000

4,000

3,000

2,000

1,000

T T T
|| —m— Sesame

fail

[
0

Figure: Evaluation time for
Sesame.

(alb) {1,k} vy }

8/27

Experiments on Counting TY] 1]

[Losemann and Martens, 2012]
SELECT = WHERE { :a0 (p)x :al }

a) a0 <> a2

ARQ —— pI 1!3
RDFQ —%— _
KGram —+— -
Sesame —H5— -

al <> a3

1000 |
100 |

10 |
b) @prefix : http://example.org/ .
:a0 :p :al, :a2, :a3.
:al :p :a0, :a2, :a3.

:a2 :p :a0, :al, :a3.
Figure: Time in seconds for q a3 :p 20, :al, :a2.
processing the queries w.r.t. the
clique size n (time axis in log-scale) Figure: a) Clique with 4 nodes, b)
RDF graph representing a clique
with 4 nodes

Property Path Query in SPARQL 1.1 9/27

Outline MH

Complexity

Property Path Query in SPARQL 1.1 10/27

Outline TUl 1

Complexity
Evaluation Complexity

Property Path Query in SPARQL 1.1 11/27

Property Path Evaluation TUl 1

» In the experiment, the evaluation algorithm is shown as double
exponential behavior

Property Path Query in SPARQL 1.1 12/27

Property Path Evaluation TUl 1

» In the experiment, the evaluation algorithm is shown as double
exponential behavior
» This depends on which semantics that algorithm relies on:
» Regular path
» Simple walk (or simple path and simple cycle): a path that does not
visit the same node twice, but is allowed to return to its first node
(cycle).

Property Path Query in SPARQL 1.1 12/27

Property Path Evaluation TUl 1

» In the experiment, the evaluation algorithm is shown as double
exponential behavior

» This depends on which semantics that algorithm relies on:
» Regular path

» Simple walk (or simple path and simple cycle): a path that does not
visit the same node twice, but is allowed to return to its first node
(cycle).

» Under the semantics of regular path, the evaluation can be improved
to polynomial-time

Property Path Query in SPARQL 1.1 12/27

Property Path Evaluation TUl 1

v

In the experiment, the evaluation algorithm is shown as double
exponential behavior

This depends on which semantics that algorithm relies on:
» Regular path
» Simple walk (or simple path and simple cycle): a path that does not

visit the same node twice, but is allowed to return to its first node
(cycle).

v

v

Under the semantics of regular path, the evaluation can be improved
to polynomial-time

Under the simple path, the evaluation is intractable

v

Property Path Query in SPARQL 1.1 12/27

Simple Path vs. Regular Path TUl 1

Simple path Regular path (path)

A simple path in a graph is a A path in a graph is a sequence
sequence of nodes such that of nodes such that from each of
each node in a path occurs its nodes there is an edge to the
exactly once next node in the sequence

Find paths from x to z.

Simple? | / V X (x visited twice)

ai

s as Path ‘ as ap,ap,as ay,ay,as, as
o Regular? | / vV Vv
7@

Property Path Query in SPARQL 1.1 13/27

Evaluation under Regular Path Semantics

/ (5,6) a 2{
(314
b c (5.6)
(412)
(1,2) (2,3)
(3,4) (4,5)
(5:6)
(412)

(a) Part of a run on the expression (b+ ¢)*b>® and the
graph in Fig. 2(b).

b c b c b b b b b b
1—2—3—4—"5—6—>7—8—9—10—11
b b
12— 13
b

(b) An edge-labeled graph.

Property Path Query in SPARQL 1.1

» Under the semantics of regular
path, the evaluation can be
done in polynomial-time

14/27

Evaluation under Regular Path Semantics

(1,13)

(1.5)

(1.6)
(1,1) (3,13) (111
o / \ (13 &
(1.3) 3.5 (G0

[(1,2) (4,5)
(1,5) ‘ (2:3) |G
ST @By
+ (4,5) b
(a12)
SO\ e (5120
(3.
b c (5.6)
(a12)
(1,2) (2.3)
(3.4) (4.5)
(5:6)
(a12)

(a) Part of a run on the expression (b + ¢)*b>® and the
graph in Fig. 2(b).
b c b c b b b b b b
1—2—53—4—5—6—T7—8—9— 10— 11
b b

12— 13
b

(b) An edge-labeled graph.

Figure: lllustration of polynomial-time
dynamic programming algorithm

Property Path Query in SPARQL 1.1

» Under the semantics of regular
path, the evaluation can be
done in polynomial-time

» by using dynamic
programming approach

14/27

Evaluation under Regular Path Semantics

(1,13)

(1.5)

(1,6)
(1,1) (3,13) (111
(1.2) / \ (13 &
(13) 35 (36

[(1,2) 3,5 (s
(1,5) ‘ (2.3) | wo
ST @
+ 5) b
(a112)
/ \\ (5.6) (1,2)
(3.4)
b c (5.6)
(a12)
12 (2.3)
3.4 (@5)

(a) Part of a run on the expression (b + ¢)*b>® and the
graph in Fig. 2(b).

b c b c b b b b b b
1—2—3—4—5—6—">7—8—9—10—11
NN
12— 13
b

(b) An edge-labeled graph.

Figure: lllustration of polynomial-time
dynamic programming algorithm

Property Path Query in SPARQL 1.1

» Under the semantics of regular
path, the evaluation can be
done in polynomial-time

» by using dynamic
programming approach

The Complexity of Evaluation

The complexity of evaluation
under regular path semantics is
in polynomial time (PTIME).

14/27

W3T

SPARQL 1.1 Query Language
W3C Working Draft 05 January 2012

Definition: ZeroOrMorePath

An arbitrary length path P = (X (path)” Y)is all solutions from X to Y by repeated use of path such that any
nodes in the graph are fraversed once only. ZeroOrMorePath includes X

Definition: OneOrMorePath
An arbitrary length path P = (X (path)+ Y) is all solutions from X to Y by repeated use of path such that any

nodes in the graph are traversed once only. This does not include X, unless repeated evaluation of the path

from X retuns to X

Figure: Simple Path in SPARQL 1.1 Last Call

Property Path Query in SPARQL 1.1

15/27

Evaluation under Simple Path Semantics Y}

Reduction Chain of NP-completeness Problems

Path evaluation Even length Path via a node s?;;g?;ii 3-SAT
in SPARQL 1.1 simple path in digraph homeomorphism

Property Path Query in SPARQL 1.1 16/27

Evaluation under Simple Path Semantics Y}

Reduction Chain of NP-completeness Problems

Path evaluation Even length Path via a node :J';Zf;fi 3-SAT
in SPARQL 1.1 simple path in digraph homeomorphism

Path evaluation in SPARQL 1.1
[Losemann and Martens, 2012]
Path evaluation under simple walk (simple path and simple cycle)

semantics is NP-complete for the expression (aa)* and for the
expression (aa)™

Property Path Query in SPARQL 1.1 16/27

Evaluation under Simple Path Semantics Y}

Reduction Chain of NP-completeness Problems

Path evaluation Even length Path via a node SI?LZ?;% 3-SAT
in SPARQL 1.1 simple path in digraph homeomorphism

D ——

Even length simple path [Mendelzon and Wood, 1989,

Lapaugh and Papadimitriou, 1984]

Let 0 and 1 be distinct symbols in 3. FIXED REGULAR PATH(R),
in which is either (1) (00)*, or (2) 0*10* is NP-complete

Proof. of (1)

» EVEN PATH is shown to be NP-complete

» We can reduce even path to FIXED REGULAR PATH(R),
where R = (00)* as follows

Property Path Query in SPARQL 1.1 16/27

Evaluation under Simple Path Semantics Y}

Reduction Chain of NP-completeness Problems

Path evaluation Even length Path via a node SI?;[;Z?;T;:] 3-SAT
in SPARQL 1.1 simple path in digraph homeomorphism

Even length simple path [Mendelzon and Wood, 1989,

Lapaugh and Papadimitriou, 1984]

Given a digraph D = (V, A) and s, t € V, it is NP-complete to
decide whether there is an even-length simple path from s to ¢

Property Path Query in SPARQL 1.1 16/27

Evaluation under Simple Path Semantics Y}

Reduction Chain of NP-completeness Problems

Path evaluation Even length Path via a node SI?;[;Z?;epi 3-SAT
in SPARQL 1.1 simple path in digraph homeomorphism

Path via a node in digraph

[Lapaugh and Papadimitriou, 1984]

Path via a node problem, is NP-complete: Given a digraph
D = (V,A) and s,t,m € V,is there a simple path from s to 7 via m?

Property Path Query in SPARQL 1.1 16/27

Evaluation under Simple Path Semantics Y}

Reduction Chain of NP-completeness Problems

Path evaluation Even length Path via a node s?,'ggf;ﬁ 3-SAT
in SPARQL 1.1 simple path in digraph homeomorphism

D ——

Directed subgraph homeomorphism [Fortune et al., 1980]

For each P not in C the fixed subgraph homeomorphism problem
with pattern P is NP-complete

TN

In the reduction of Directed subgraph homeomorphism to Path via a
node problem,weuseP =, .

Property Path Query in SPARQL 1.1 16/27

Evaluation under Simple Path Semantics Y}

Reduction Chain of NP-completeness Problems

Path evaluation Even length Path via a node STLZ(;;T)i 3-SAT
in SPARQL 1.1 simple path in digraph homeomorphism

—

3-SAT

3-SAT is well-know NP-complete.

The reduction of 3-SAT to Directed subgraph homeomorphism is very
complicated [Fortune et al., 1980].

Property Path Query in SPARQL 1.1 16/27

Outline TUl 1

Complexity

Counting Complexity

Property Path Query in SPARQL 1.1 17/27

Duplicates in SPARQL 1.1 Draft TU[1 |

9.3 Cycles and Duplicates

SPARQL property paths treat the RDF triples as a directed, possibly cyclic, graph with named edges. Evaluation
of a property path expression can lead to duplicates in the results. The property paths are equivalent to their
translation into triple patterns and SPARQL UNION graph patterns, with the addition of operators for negated
property paths, zero-length paths and arbitrary length paths. Any variables introduced in the equivalent pattern
are not part of the results and are not already used elsewhere. They are hidden by implicit projection of the
results to just the variables given in the query.

eprefix : <http://example/> .
X ip iy .

iy P :X

PREFIX : <http://example/>
SELECT *

{ ix :p* %0 }

giving results of:

°

<http://example/x>
<http: //example/y>
<http://example/x>

The order of results in these examples is not significant.

Property Path Query in SPARQL 1.1 18/27

Example of Counting TY] 1]

SELECT * WHERE {:0 (p)* :1}
on cligue(n) = {(:1 p +/) |0 < ij <n,i #]}

Property Path Query in SPARQL 1.1 19/27

Example of Counting TY] 1]

SELECT * WHERE {:0 (p)* :1}
on cligue(n) ={(:i p :j)|0<i,j<mn,i#j} /\
1

Property Path Query in SPARQL 1.1 19/27

Example of Counting TY] 1]

SELECT * WHERE {:0 (p)* :1}
on cligue(n) ={(:i p :j)|0<i,j<mn,i#j} /\
1

Solution: {{ [I,[,---,] }} \ /

duplicates of S, times

Property Path Query in SPARQL 1.1 19/27

Example of Counting TY] 1]

SELECT * WHERE {:0 (p)* :1} 0
on cligue(n) ={(:i p :j)|0<i,j<mn,i#j} /\
1

4
solution: {{ [, 0,-...1 }} \ /
N—— P
duplicates of S, times
2 3
length p* path count
1 p 01 P =
2 pp 021, 031, 041 Pl=3
3 ppp 0231, 0241, 0321, 0341, 0421, 0431 P;=6
4 pppp 02341, 02431, 03241, 03421, 04231, 04321 Pg =6
sum S5 =16

Table: Compute Ss. Recall that P = n(n —1)...(n —k+ 1)

Property Path Query in SPARQL 1.1 19/27

Example of Counting TY] 1]

SELECT * WHERE {:0 (p)* :1} 0
on cligue(n) ={(:i p :j)|0<i,j<mn,i#j} /\
1

4
solution: {{ [, 0,-...1 }} \ /
N—— P
duplicates of S, times
2 3
length p* path count
1 p 01 Py =
2 pp 021, 031, 041 Pl=3
3 ppp 0231, 0241, 0321, 0341, 0421, 0431 P;=6
4 pppp 02341, 02431, 03241, 03421, 04231, 04321 P% =6
sum S5 =16

Table: Compute Ss. Recall that P = n(n —1)...(n —k+ 1)

Spp1 =P° 4P 4Pl P = (1)

Property Path Query in SPARQL 1.1 19/27

Nesting of x

s = 1: SELECT % WHERE { :a0 (p)* :al }
s =2: SELECT * WHERE { :a0 ((p)*) :al }
s =3: SELECT * WHERE { :a0 (((p)*)*)x :al }
[s n CoUNTCLIQUE(pe,n) [s n COUNTCLIQUE(pe,n) |
1 3 2 1 5 16
2 3 6 2 5 418576
3 3 42 3 5 > 1028
4 3 1806 4 5 = 1093
1 4 5 1 6 65
2 4 305 2 6 28278702465
3 4 56931@05 3 6 =105
4 4 =107 4 6 =107

Figure: Number of occurrences of the mapping in the answer to property-path
triple (a1, ps, a,) over RDF graph cligue(n)[Arenas et al., 2012]

Property Path Query in SPARQL 1.1

20/27

Data Complexity of Counting TU[1 |

Data complexity [Losemann and Martens, 2012, Arenas et al., 2012]

Counting in SPARQL 1.1 Draft is #P-complete for the expressions
a*anda™.

#P Complexity Class

» The class of function problems of the form "compute f(x),"
where f is the number of accepting paths of an NP machine.

» The canonical #P-complete problem is #SAT.
» More difficult than NP, thus intractible

Proof of #P-completeness

» #P-membership. The non-deterministic TM simply guesses a
path of a certain length and tests whether it matches

» #P-hardness. Reductions from #DNF

Property Path Query in SPARQL 1.1 21/27

An Existential Semantics to the Rescue [}

» the core of this problem the necessity of counting different paths.
» Existential Semantics usde in Graph DB, XML is tractalbe

» Possible solution: Discarding duplicates from the standard

» SELECT DISTINCT * WHERE { ... }

n || ARQ RDFQ Kgram Sesame | Pspargl Gleen n || ARQ RDFQ | Pspargl Gleen n || ARQ RDFQ | Pspargl Gleen
¥ 68 3261 739 S08 018 104 3] 076 014 1.3 2 I8 077 014 124
9 200 21399 534 16682 020 123 3 119 0.84 014 123 3 141 6.7% 014 123
10 165 212390 22766 - 020 125 4 165 1938 014 123 4 - - 015 124
11 29.71 - - - 023 125 5 || 97.06 - 015 122 5 - - 015 124
12 || 139406 - - - 024 124 6 - - 016 123 6 - - 016 124
13 - - - - 027 124 7 - - 016 123 7 - - 016 124
Clig-1D Clig-2D Clig-3D

Figure: Experiement with Existential Semantics

Property Path Query in SPARQL 1.1 22/27

Outline MB

Conclusion

Property Path Query in SPARQL 1.1 23/27

Conclusion TUl 1

» The property path in SPARQL 1.1 query can make it intractable

Property Path Query in SPARQL 1.1 24/27

Conclusion TUl 1

» The property path in SPARQL 1.1 query can make it intractable
» Two requirements makes property queries difficult

Property Path Query in SPARQL 1.1 24/27

Conclusion TUl 1

» The property path in SPARQL 1.1 query can make it intractable
» Two requirements makes property queries difficult

» Simple path requirement
» Duplicates in path counting

Property Path Query in SPARQL 1.1 24/27

Conclusion TUl 1

» The property path in SPARQL 1.1 query can make it intractable
» Two requirements makes property queries difficult

» Simple path requirement
» Duplicates in path counting

» Possible solutions:

Property Path Query in SPARQL 1.1 24/27

Conclusion TUl 1

» The property path in SPARQL 1.1 query can make it intractable
» Two requirements makes property queries difficult

» Simple path requirement

» Duplicates in path counting
» Possible solutions:

» Avoid simple path requirement (like XPATH)

» Existential Semantics

» Only count paths for some specific number of occurrence (e.g.
shortest paths)

Property Path Query in SPARQL 1.1 24/27

Latest Stories in Editors’ Draft TUl 1

» Simple path requirements in ZeroOrMorePath (*),
OneOrMorePath (+) are removed

> http:/lists.w3.org/Archives/Public/public-rdf-dawg-
comments/2012Apr/0004.html

The changes from the current Last Call working draft are as follows:

The semantics of *, +, and ? are changed toc be non-counting (they

no longer preserve duplicates)
The /, |, and ! remain unchanged as in the current draft (they

preserve duplicates)
The curly brace forms -- {n}, {n,m}, {n,}, {,m} -- have all been
removed

Property Path Query in SPARQL 1.1 25/27

Latest Stories in Editors’ Draft TUl 1
http://www.w3.0rg/2009/spargl/docs/query-1.1/rq25.xml

9.4 Arbitrary Length Path Matching

onnectivity between the subject and object by a property path of arbitrary length path can be found using the
"zero or more" property path operator, *, and the "one or more" property path operator, +. There is also a "zero
or one" connectivity property path operator, 2.

or example, finding all the the possible types of a resource, including supertypes of resources, can be
achieved with:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
SELECT ?x ?type

W3C Editor’s Draft

?x rdf:type/rdfs:subClassOf* ?type

Similarly, finding all the people :x connects to via the foaf : knows relationship,

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX : <http://example/>
SELECT ?person

:x foaf:knows+ ?person

Such connectivity matching does not introduce duplicates (it does not incorporate any count of the number of
ways the connection can be made) even if the repeated path itself would otherwise result in duplicates.

The graph matched may include cycles. Connectivity matching is defined so that matching cycles does not
lead to undefined or infinite results.

Property Path Query in SPARQL 1.1 26/27

References MH

‘ Arenas, M., Conca, S., and Pérez, J. (2012).
Counting beyond a yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the
standard.
In WWW ’12, pages 629638, New York, NY, USA. ACM.

Fortune, S., Hopcroft, J. E., and Wyllie, J. (1980).
The directed subgraph homeomorphism problem.
Theor. Comput. Sci., 10:111-121.

Harris, S., Seaborne, A., and Prud’hommeaux, E. (2012).
SPARQL 1.1 query language (W3C working draft 05 january 2012).
http://www.w3.org/TR/sparql11-query/.

Lapaugh, A. S. and Papadimitriou, C. H. (1984).
The even-path problem for graphs and digraphs.
Networks, 14(4):507-513.

Losemann, K. and Martens, W. (2012).
The complexity of evaluating path expressions in SPARQL.
In PODS 12, pages 101-112. ACM.

Mendelzon, A. O. and Wood, P. T. (1989).
Finding regular simple paths in graph databases.
In VLDB '89, pages 185—-193. Morgan Kaufmann Publishers Inc.

¢ & 9 & ¢

Property Path Query in SPARQL 1.1 27/27

	Introduction
	Limitation of navigational capabilities in SPARQL 1.0
	SPARQL 1.1 property path
	Experiments on Evaluation and Counting

	Complexity
	Evaluation Complexity
	Counting Complexity

	Conclusion

