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Inference Engine




Short Overview

* Open World Assumption

* Forward Chaining Engine
* Backward Chaining Engine
* Hybrid Rule Engine

* Generic Rule Reasoner




Open World Assumption

* Every non explicit knowledge is unknown

Rule = bare-rule .
or [ bare-rule ]
or [ ruleName : bare-rule ]
bare-rule := term, ... term -> hterm, ... hterm // forward rule
or bhterm <- term, ... term // backward rule
hterm = term
or [ bare-rule ]
term = (nede, node, node) // triple pattern
or (nede, node, functor) // extended triple pattern
or builtin(node, ... node) // 1invoke procedural primitive
bhterm = (node, node, node) // triple pattern




Forward Chaining

e called Data-driven C \,\ -
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RETE Algorithm

» Matches Tuples (= Facts)against
Productions (=Rules)

* Produces a DAG, Graph splitted into

e Alpha Network: contain Selection Nodes
e Beta Network: contain Condition Nodes

* Conflict Resolution (salience, recently

used..)
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Backward Chaining

* Called Goal Orientated C.
* Logic Programming (Prolog)
* Results are cached (Called Tabling)
e Inference Model is updated - Cache reset !
* Based on SLD Resolution

e Special form of Resolution (Input Set is Horn !)




Hybrid Rule Engine (HRE)

* Combination of both Engines
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Hybrid Rule Engine (HRE)

* Forward Part of HRE:
e Pass an Instance of Rule to the Backward Engine

e Backward Part of HRE

e Answers QQueries

* Kind of Intelligence
* Jena uses only those Part that is required




* Examples:




