‘f_jz;nu

Inference Engine

Short Overview

* Open World Assumption

* Forward Chaining Engine
* Backward Chaining Engine
* Hybrid Rule Engine

* Generic Rule Reasoner

Open World Assumption

* Every non explicit knowledge is unknown

Rule = bare-rule .
or [bare-rule]
or [ruleName : bare-rule]
bare-rule := term, ... term -> hterm, ... hterm // forward rule
or bhterm <- term, ... term // backward rule
hterm = term
or [bare-rule]
term = (nede, node, node) // triple pattern
or (nede, node, functor) // extended triple pattern
or builtin(node, ... node) // 1invoke procedural primitive
bhterm = (node, node, node) // triple pattern

Forward Chaining

e called Data-driven C \,\ -
* Deduction Graph G* | _! — .

| | _>\ =

for firing rules |
\ H'\, / B

—> Yy

% A—>C |

» Based on | x}\ |

!
(B—>C)—>(A—>C)

RETE - Algorithm |
Forwarding Rule

RETE Algorithm

» Matches Tuples (= Facts)against
Productions (=Rules)

* Produces a DAG, Graph splitted into

e Alpha Network: contain Selection Nodes
e Beta Network: contain Condition Nodes

* Conflict Resolution (salience, recently

used..)

DAG

Rete

xample RETE

Select Modes

i . . .
A

-
-

Type Hades

Foat

Hode s Ll
I ermor sy
=508 0 =
- i Alpha
. . h-'li:l'rm-r'_-,-'
. I_)./ Eea
Loy bty
It

Alaha |

rden'u:vrw_-,-' J

] {_,.(“'ﬁ. Dy Mernu:-rw_.,.-

e [t
Alpha Network A x‘xh_.
o i
" Beta Network e J2in Hades
\ 3
'\\.\-‘
Tetirina Huodes @ @
\\ ..H"‘"\-\..___ :
Assertions & h‘\ i
Fetraczions -,

Bt
TRy

R““""*—-._____________ Agenda (==

Corflict
esolution

Backward Chaining

* Called Goal Orientated C.
* Logic Programming (Prolog)
* Results are cached (Called Tabling)
e Inference Model is updated - Cache reset !
* Based on SLD Resolution

e Special form of Resolution (Input Set is Horn !)

Hybrid Rule Engine (HRE)

* Combination of both Engines

II(.;-"
‘ Faw data 'FL

I

Forward _ ‘
Forward niles ——m (RETE) engine —o[deductions
data
h 4
Backward rules r_"“‘x rules Backward |e——

g " (LPY engine —* HUEry

"

Hybrid Rule Engine (HRE)

* Forward Part of HRE:
e Pass an Instance of Rule to the Backward Engine

e Backward Part of HRE

e Answers QQueries

* Kind of Intelligence
* Jena uses only those Part that is required

* Examples:

