
First things first… 

•  Assignment of slots for final presentations 
•  Q&A – I expect you to resend me corrected assignments, taking my feedback 

into account  
•  e.g.  for Assignment 1: make sure that your FOAF file validates in an RDF 

   validator 
  for Assignment 2: send me only parseable Turtle 
  for Assignment 3: send me only running SPARQL queries,  
    which you have tested. 

            don’t forget Assignment 4 (just published) 

•  Grades: 
•  No exam necessary. 
•  But no “Sehr Gut” unless you have been excellent in the assignments and in 

your presentation. 
•  I will send you some suggested grade after the presentation. 
•  You can improve in an oral exam, if you want – by appointment. 

Page 1 



2012, Axel Polleres. All rights reserved. 

Unit 7:  
Querying and Exchanging Data 
on the Web 



Overview 

•  Linked Data – The idea 
•  Why is it interesting for companies? 
•  Which challenges are lying ahead? 
•  XSPARQL: An approach to query and combine several Web Data Formats at 

once. 

Axel Polleres Page 3 



Linked Data – The idea 

1.  Everything gets a URI (conferences, people, talks, …) 
2.  These URIs are linked via RDF describing relations 
3.  Relations are URIs again (e.g. :name) 
4.  When I dereference the URIs, I should find more information about them 

4  

4 



Let Tim Berners-Lee explain it: 

http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html 

(around 5:40) 

http://www.ted.com/talks/
tim_berners_lee_the_year_open_data_went_worldwide.html 

Axel Polleres Page 5 

Linked Data – The idea 



2012, Axel Polleres. All rights reserved. 

Why is this all 
interesting for 
companies? 

© Siemens AG 2012. All rights reserved 



Why is this interesting for companies? 

Linked Data and Open Data (apart from Linked Open Data) are both emerging paradigms: 

  Linked Data apart from the “LOD cloud”: 
  Enterprise Linked Data (for Knowledge Management within the Enterprise 
  Online companies (eCommerce, Search) start to leverage and support Linked Data 

2008-04-01 Author Page 7 



Why is this interesting for companies? 

Linked Data and Open Data (apart from Linked Open Data) are both emerging paradigms: 

  Open Data: 
  Open Data is a trend towards transparency for Governments 
  More Publically available Data leverages new Business Models (not only for SMEs!) 
  Many Governments realize that Opening Data brings more revenue than selling it 
  (EU) regulations force Cities and Governments to publish Data 
  Trend towards harmonization (nationally, at European level, etc.) 

2008-04-01 Author Page 8 



Siemens Corporate Technology (CT)  
Networking the integrated technology company 

Customers 

Corporate Technology (CT) 

R
eg

io
ns

 

Sectors / Divisions 

Energy Healthcare Industry Infrastructure 
& Cities 

Chief Technology  
Officer (CTO) 

 Review innovation 
strategies 

 Drive technology 
based synergies 

 Secure innovation 
power 

 Technology 
assessments 

 Governance and 
guidance 

Corporate Intellectual Property  
and Functions (CT IP) 
  Intellectual property 
  Standardization and regulation 
  Information research  

Corporate Research and  
Technologies (CT T) 
  GTFs with multiple impact 
  Pictures of the Future 
  Accelerators 

Chief Technology  
Office (CT O) 
  Direct support  

of CTO 

Corporate Development 
Center (CT DC) 
  Software development 

partner for the Sectors  



2012, Axel Polleres. All rights reserved. 

Challenges ahead... 

© Siemens AG 2012. All rights reserved 

This Photo was taken by Böhringer Friedrich. 



Challenges/Problems 

The Linked Data Web is “brittle”… 

Just like the normal Web is (did you ever try to run an HTML validator on google.com)?   

Page 11 



How good/bad is published Linked Data? 

Page 12 

                                        ISWC2010 

Journal of Web Semantics (forthcoming) 

“Almost all infrastructural connectivity on 
the WoD is mediated by 3 servers, 
xmlns.com, dbpedia.org and purl.org, 
making the system very brittle.” 

“conformance of data providers varies significantly for the different Linked 
Data guide- lines highlighted, which in turn may have implications for ad 
hoc consumers operating over the Web of Data.” 



How much OWL is on the Web of Data? 
What’s missing for using Linked Data? 

LDOW workshop @ WWW2012 

DESWEB workshop @ICDE2012 

Page 13 

“Single-triple expressible OWL RL 
axioms are most prominent on the 
Web.” 

“indexes for Linked Data in 
the Web are often 
incomplete and outdated.” 

 Needs rethinking in terms 
of applying traditional 
Database techniques. 



Linked Data, RDFS and OWL: Linked Vocabularies 

… 

… 
Image from http://blog.dbtune.org/public/.081005_lod_constellation_m.jpg:; Giasson, Bergman 



So what OWL is used out there? 

Looked at Billion Triple Challenge 2011 Dataset 
  2.1 billion quadruples, crawled from… 
  7.4 million RDF/XML documents, covering… 
  791 (pay-level) domains 

Count OWL features used in the dataset: 
  Per use 
  Per document 
  Per domain 
  Can be skewed by data 

Ranked OWL features using PageRank: 
  Rank documents based on dereferenceable links 
  For each OWL feature, sum the rank of documents using it 
  Intuition: Approximates probability of encountering an OWL feature 

during a random walk of the data 



Results of ranking (see paper for all details) 

1  rdf:Property     5.74E-1 
2  rdfs:range     4.67E-1 
3  rdfs:domain     4.62E-1 
4  rdfs:subClassOf    4.60E-1 
5  rdfs:Class     4.45E-1 
6  rdfs:subPropertyOf    2.35E-1 
7  owl:Class     1.74E-1 
8  owl:ObjectProperty    1.68E-1 
9  rdfs:Datatype    1.68E-1 
10  owl:DatatypeProperty   1.65E-1 
11  owl:AnnotationProperty   1.60E-1 
12  owl:FunctionalProperty   9.18E-2 
13  owl:equivalentProperty   8.54E-2 
14  owl:inverseOf    7.91E-2 
15  owl:disjointWith    7.65E-2 



Results of ranking (see paper for all details) 

… 
16  owl:sameAs     7.29E-2 
17  owl:equivalentClass    5.24E-2 
18  owl:InverseFunctionalProperty  4.79E-2 
19  owl:unionOf     3.15E-2 
20  owl:SymmetricProperty   3.13E-2 
21  owl:TransitiveProperty   2.98E-2 
22  owl:someValuesFrom    2.13E-2 
23  rdf:_*      1.42E-2 
24  owl:allValuesFrom    2.98E-3 
25  owl:minCardinality    2.43E-3 
26  owl:maxCardinality    2.14E-3 
27  owl:cardinality    1.75E-3 
28  owl:oneOf     4.13E-4 
29  owl:hasValue     3.91E-4 
30        owl:intersectionOf    3.37E-4 
31  owl:NamedIndividual    3.37E-4 



Observations? 

RDFS features amongst the most prominently used 
OWL 2 features not yet used prominently 

RDF | RDFS | OWL | OWL 2 
x-axis is log-scale! 



Observations? 

(OWL) Features expressed with a single RDF triple are most prominent 
  Roughly speaking, features not requiring blank nodes  

  e.g., sub-class/-property, inverse-of, equivalent property/class, sameas, domain/range, disjoint with, etc. 

  Not those requiring lists or n-ary predicate in RDF mapping 
  e.g., union, intersection, cardinalities, all-disjoint, some/all/has-value restrictions, hasKey, pCAs, etc. 

Single Triple (No BNodes) | Multi-Triple (Needs BNodes)  
x-axis is log-scale! 



What Reasoning is needed?   

Bottomline: 
   A subset of OWL 2 RL (which is efficiently implementable, i.e. without ABox-
joins) is sufficient to cover reasoning on most Linked Data sources! 

Details, cf.  

Page 20 



However… 

Not all Web Data is RDF (and OWL): 

In fact, most Web Data is still in other formats: 
 XML, CSV, JSON… 

 We need approaches to deal with these formats! 

2012-04-17   Axel Polleres Page 21 

XML 



XML & RDF: one Web – two formats 

<XML/> 
SOAP/WSDL 

RSS 
HTML 

SPARQL 

XSLT/XQuery 

XS
PA

R
Q

L 

Page 22 



A Sample Scenario… 



Example: Favourite artists location 

Using RDF allows to combine 
Last.fm info with other information 
on the web, e.g. location. 

Last.fm knows what music you 
listen to, your most played artists, 
etc. 

Display information about your favourite artists on a map 

Show your top bands hometown in 
Google Maps. 

Page 24 



1)  Get your favourite bands 

Example: Favourite artists location 
How to implement the visualisation? 

Last.fm shows 
your most 
listened bands 

2)  Get the hometown of the bands 
3)  Create a KML file to be displayed in Google Maps 

Last.fm API: 

http://www.last.fm/api 

Last.fm is not so 
useful in this step 

Page 25 



1)  Get your favourite bands 

Example: Favourite artists location 
How to implement the visualisation? 

2)  Get the hometown of the bands 
3)  Create a KML file to be displayed in Google Maps 

SPARQL XML Res 

SPARQL 

? 

XQuery 

XQuery 

XQ
ue

ry
 

Page 26 



Transformation and Query Languages 

XSLT     

XML Transformation Language 
Syntax: XML 

X
Pa
t
h 

  XPath is the common core 
  Mostly used to select nodes 

from an XML doc 

SPARQL 

  Query Language for RDF 
  Pattern based 
  declarative 

RDF world 
XML world 

      XQuery 

  XML Query Language 
  non-XML syntax 

Page 27 



Querying XML Data from Last.fm with XQuery 1/2 

Page 28 

<lfm status="ok"> 	
  <topartists type="overall"> 	
    <artist rank="1"> 	
      <name>Therion</name> 	
      <playcount>4459</playcount> 	
      <url>http://www.last.fm/music/Therion</url> 	
    </artist>	
    <artist rank="2"> 	
      <name>Nightwish</name> 	
      <playcount>3627</playcount> 	
      <url>http://www.last.fm/music/Nightwish</url> 	
    </artist>	
  </topartists>	
</lfm> 	

Last.fm API format: 
•  root element: “lfm”, 
then “topartists” 
•  sequence of “artist” 

XPath steps: /lfm	 Selects the “lfm” root element 

//artist	 Selects all the “artist” elements 

XPath Predicates: //artist[@rank = 1]	Selects the “artist” with rank 1 

Querying this document with XPath: 



Querying XML Data from Last.fm with XQuery 2/2 

let $doc := "http://ws.audioscrobbler.com/2.0/user.gettopartist"	
for $artist in doc($doc)//artist	
where $artist[@rank = 2] 
return <artistData>{$artist}</artistData>	

Query:  
Retrieve information 
regarding a users' 
2nd top artists from 
the  

Last.fm API  

assign values 
to variables 

iterate over 
sequences 

filter 
expressions 

create XML 
elements 

Page 29 



Querying XML Data from Last.fm 2/2 

let $doc := "http://ws.audioscrobbler.com/2.0/user.gettopartist"	
for $artist in doc($doc)//artist	
where $artist[@rank = 2] 
return <artistData>{$artist}</artistData>	

Query:  
Retrieve information 
regarding a users' 
2nd top artists from 
the  

Last.fm API  

Result for user “jacktrades” 

Page 30 



Now what about RDF Data? 

Lots of RDF Data out there, ready to “query the Web” 

Page 31 



XML vs. RDF 

XML: “treelike” semi-
structured Data (mostly 
schema-less, but “implicit” 
schema by tree structure… 
not easy to combine, e.g. 
how to combine lastfm data 
with wikipedia data? 

2012-04-17   Axel Polleres Page 32 



accou
ntNam

e 

likes 

“Jacktrades” 

RDF 
Simple, declarative, graph-style format 
based on dereferenceable URIs (= Linked Data) 

Page 33 

Kitee 
label 

” Kitee”@en 

Finland 

Nightwish 

origi
n 

“Nightwish” 
label 

33  

<http://dbpedia.org/resource/Nightwish> <http://dbpedia.org/property/origin>  

                            <http://dbpedia.org/resource/Kitee> . 

<http://dbpedia.org/resource/Nightwish> <http://www.w3.org/2000/01/rdf-schema#label>  

           ”Kitee”@es . 

_:x <http://xmlns.com/foaf/0.1/accountName> “Jacktrades" . 

_:x <http://graph.facebook.com/likes> <http://dbpedia.org/resource/Nightwish> . 



XSPARQL 

  Transformation language 

  Consume and generate XML and RDF 
  Syntactic extension of XQuery, ie. 

    XSPARQL = XQuery + SPARQL 

34 

Idea: One approach to conveniently query XML and RDF side-by-side: XSPARQL 



Data Input 
(XML or RDF) 

XSPARQL: Syntax overview (I) 

Prefix 
declarations 

Data Output 
(XML or RDF) 

Page 35 



“SPARQL-
FOR-Clause” 
represents a 
SPARQL 
query 

36 

XSPARQL Syntax overview (II) 

36 

XQuery or 
SPARQL 
prefix 
declarations 
Any XQuery 
query 

construct 
allows to 
create RDF 

Page 36 



Use case 

37 Page 37 



XSPARQL: Convert XML to RDF 

prefix lastfm: <http://xsparql.deri.org/lastfm#>	

let $doc := "http://ws.audioscrobbler.com/2.0/?method=user.gettopartists"	
for $artist in doc($doc)//artist	
where $artist[@rank < 6]	
construct { [] lastfm:topArtist {$artist//name};  	
               lastfm:artistRank {$artist//@rank} . }	

38 

@prefix lastfm: <http://xsparql.deri.org/lastfm#> . 	

[ lastfm:topArtist "Therion" ;  lastfm:artistRank "1" ] .	
[ lastfm:topArtist "Nightwish" ;  lastfm:artistRank "2" ] .	
[ lastfm:topArtist "Blind Guardian" ;  lastfm:artistRank "3" ] .	
[ lastfm:topArtist "Rhapsody of Fire" ;  lastfm:artistRank "4" ] .	
[ lastfm:topArtist "Iced Earth" ;  lastfm:artistRank "5" ] .	

Result: 

Query:  
Convert Last.fm top artists of a user into RDF 

XSPARQL construct 
generates valid Turtle RDF 

Page 38 



Use case 

Page 39 



XSPARQL: Integrate RDF sources 

prefix dbprop: <http://dbpedia.org/property/> 	
prefix foaf:   <http://xmlns.com/foaf/0.1/> 	

construct { $artist foaf:based_near $origin }	
from <http://dbpedia.org/resource/Nightwish>	
where { $artist dbprop:origin $origin }	

Issue: 
determining the 
artist identifiers 

Query:  
Retrieve the origin of an artist from DBPedia: Same as the SPARQL query 

DBPedia does not 
have the map 
coordinates 

Page 40 



XSPARQL: Integrate RDF sources 

Query:  
Retrieve the origin of an artist from DBPedia including map coordinates 

DBPedia does not 
have the map 
coordinates 

prefix wgs84_pos: <http://www.w3.org/2003/01/geo/wgs84_pos#>	
prefix dbprop: <http://dbpedia.org/property/> 	

for * from <http://dbpedia.org/resource/Nightwish>	
where { $artist dbprop:origin $origin }	
return 	
let $hometown := 	
  fn:concat("http://api.geonames.org/search?type=rdf&q=",fn:encode-for-uri($origin))	
for * from $hometown	
where { [] wgs84_pos:lat $lat; wgs84_pos:long $long }	
limit 1	
construct { $artist wgs84_pos:lat $lat; wgs84_pos:long $long } 	

Page 41 



Use case 

Page 42 



Output: KML XML format 

43 

<kml xmlns="http://www.opengis.net/kml/2.2">	
   <Document>	
      <Placemark>	
         <name>Hometown of Nightwish</name>	
         <Point>	
            <coordinates>	
              30.15,62.1,0	
            </coordinates>	
         </Point>	
      </Placemark>	
 </Document>	
</kml>	

KML format: 
•  root element: “kml”, 
then “Document” 
•  sequence of “Placemark” 
•  Each “Placemark” contains: 

•  “Name” element 
•  “Point” element with 
the “coordinates” 

Axel Polleres Page 43 



prefix dbprop: <http://dbpedia.org/property/> 	

<kml><Document>{	
let $doc := "http://ws.audioscrobbler.com/2.0/?method=user.gettopartists”	
for $artist in doc($doc)//artist	
return let $artistName := fn:data($artist//name)	
  let $uri := fn:concat("http://dbpedia.org/resource/", $artistName)	
  for $origin from $uri	
  where { [] dbprop:origin $origin }	
  return 	
   let $hometown := fn:concat("http://api.geonames.org/search?type=rdf&q=",	
                    fn:encode-for-uri($origin))	
   for * from $hometown	
   where { [] wgs84_pos:lat $lat; wgs84_pos:long $long }	
   limit 1	
   return <Placemark>	
            <name>{fn:concat("Hometown of ", $artistName)}</name>	
            <Point><coordinates>{fn:concat($long, ",", $lat, ",0")}	
            </coordinates></Point>	
           </Placemark>	
}</Document></kml>	

XSPARQL: Putting it all together 
Query: Display top artists origin in a map 

Page 44 



Axel Polleres Page 45 

XSPARQL: Demo 

45 

http://xsparql.deri.org/lastfm  



XSPARQL:  another example… 

46 



Federated Queries in SPARQL1.1 

PREFIX dbpedia2: <http://dbpedia.org/property/> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT ?N ?MyB 
FROM <http://polleres.net/foaf.rdf> 
{ [ foaf:birthday ?MyB ]. 

  SERVICE <http://dbpedia.org/sparql> { SELECT ?N WHERE { 
    [ dbpedia2:born ?B; foaf:name ?N ]. FILTER ( Regex(Str(?B),str(?MyB)) ) } } 
} 

Find which persons in DBPedia have the same birthday as Axel (foaf-file): 

SPARQL 1.1 has new feature SERVICE to query remote endpoints 
PREFIX dbpedia2: <http://dbpedia.org/property/> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT ?N ?MyB 
FROM <http://polleres.net/foaf.rdf> 
{ [ foaf:birthday ?MyB ]. 

  SERVICE <http://dbpedia.org/sparql> { SELECT ?N WHERE { 
    [ dbpedia2:born ?B; foaf:name ?N ]. FILTER ( Regex(str(?B),str(?MyB)) ) } } 
} 

Doesn’t work!!! ?MyB unbound in SERVICE query 

Page 47 



Federated Queries in SPARQL1.1 

48 

PREFIX dbpedia2: <http://dbpedia.org/property/> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT ?N ?MyB 
FROM <http://polleres.net/foaf.rdf> 
{ [ foaf:birthday ?MyB ]. 

  SERVICE <http://dbpedia.org/sparql> { SELECT ?N WHERE { 
    [ dbpedia2:born ?B; foaf:name ?N ]. FILTER ( Regex(Str(?B),str(?MyB)) ) } } 
} 

Find which persons in DBPedia have the same birthday as Axel (foaf-file): 

SPARQL 1.1 has new feature SERVICE to query remote endpoints 
PREFIX dbpedia2: <http://dbpedia.org/property/> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT ?N ?MyB 
FROM <http://polleres.net/foaf.rdf> 
{ [ foaf:birthday ?MyB ]. 

  SERVICE <http://dbpedia.org/sparql> { SELECT ?N WHERE { 
    [ dbpedia2:born ?B; foaf:name ?N ]. } } 

 FILTER ( Regex(Str(?B),str(?MyB)) ) 
} 

Doesn’t work either in practice  as SERVICE endpoints often only 
returns limited results… 

Axel Polleres Page 48 



Federated Queries 

49 

prefix dbprop: <http://dbpedia.org/property/> 
prefix foaf: <http://xmlns.com/foaf/0.1/> 
prefix : <http://xsparql.deri.org/bday#> 

let $MyB := for * from <http://polleres.net/foaf.rdf> 
            where { [ foaf:birthday $B ]. } 
            return $B 

for * from <http://dbpedia.org/> endpoint <http://dbpedia.org/sparql> 
where { [ dbprop:born $B; foaf:name $N ].  
             filter ( regex(str($B),str($MyB)) )  }  
construct { :axel :sameBirthDayAs $N } 

Specifies the 
endpoint to 
perform the query, 
similar to SERVICE 
in SPARQL1.1 

Find which persons in DBPedia have the same birthday as Axel (foaf-file): 

In XSPARQL: 

Works! In XSPARQL bound values (?MyDB) are injected into the SPARQL subquery 
 More direct control over “query execution plan” 

Axel Polleres 



Test Queries and play around…   

2012-04-17   Axel Polleres Page 50 

http://xsparql.deri.org/demo  



Details about XSPARQL1.1 semantics and 
implementation 

Check our Technical Report (just accepted at Springer’s Journal of Data 
Semantics): 

Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno Lopes, Axel Polleres.  
Mapping between RDF and XML with XSPARQL. Technical Report 2011.  
http://www.deri.ie/fileadmin/documents/DERI-TR-2011-04-04.pdf  

BTW: First author started in this lecture two years ago! 
  If you are interested in Internships, Diploma theses, PhD theses let me know!) 

Page 51 


