SIEMENS

Unit 6:

OWL, OWL 2, SPARQL+OWL

Some facts about OWL....

SIEMENS

OWL stands for Web Ontology Language

Strongly Simplified: OWL is an Ontology language with an RDF syntax

= There are different syntaxes for OWL,

we will focus on RDF syntax here, but occasionally use DL syntax or

First-order logics notation for explanation.

OWL extends RDF Schema by more expressive constructs.

A fragment of OWL is expressible

in Description Logics (sometimes referred to as OWL DL)

The original OWL standards date back to 2004 (also sometimes referred to as OWL 1)

There was a significant revision in 2008 (also often referred to as OWL 2)

Page 2 2012-04-17

Axel Polleres

SIEMENS

In today’s lecture:

= OWL 1 Overview

= OWL 2 new features

= OWL 2 tractable fragments: EL, QL, RL
= OWL + SPARQL

Disclaimer: We will only be able to scratch the surface
(e.g. not be able to give an in-depth Description Logics introduction)

Page 3 2012-04-17 Axel Polleres

SIEMENS
OWL 1 Overview:

See Lecture 3 slides 31ff.

Page 4 2012-04-17 Axel Polleres

SIEMENS
Why OWLA1 is Not Enough

Too expensive to reason with

» High complexity: Satisfiability checking is NEXPTIME-complete

= Some ontologies only use some limited expressive power; e.g. The SNOMED
(Systematised Nomenclature of Medicine) ontology

Not expressive enough; e.g.
» No user defined datatypes
[Pan 2004; Pan and Horrocks 2005; Motik and Horrocks 2008]
» No metamodeling support
[Pan 2004; Pan, Horrocks, Schreiber, 2005; Motik 2007]
» Limited support for modeling relations between properties
[Horrocks et al., 20006]

SIEMENS
From OWL1 to OWL2

Since 2009: OWL 2: A new version of OWL
Two Main goals:

1. To define “profiles” of OWL that are:

= smaller, easier to implement and deploy

= cover important application areas and are easily
understandable to non-expert users

2. To add a few extensions to current OWL that are useful,

and are known to be implementable
= many things happened in research since 2004 in research

W3C

OWL 2 Web Ontology Language
Document Overview

W3C Recommendation 27 October 2009

SIEMENS

New Expressiveness in OWL 2

New expressive power
» DatatypeDefinitions: user defined datatypes using XSD restrictions, e.g.

:personAge owl:equivalentClass
[a rdfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions
(xsd:minInclusive "0"""xsd:integer
xsd:maxInclusive "150"""xsd:integer) |

dbpedia:Elizabeth II :age “86”"":personAge
= punning (metamodeling), e.g.:

:John a :Father
:FFather a :SocialRole

New Expressiveness in OWL 2

SIEMENS

New expressive power on properties

Qualified cardinality restrictions
Property chain axioms

Local reflexivity restrictions

reflexive, irreflexive, symmetric, and antisymmetric properties

Disjoint properties

keys

SIEMENS

New Expressiveness in OWL 2

Qualified cardinality restrictions

* In OWL 1 you could only make general cardinality restrictions, e.g. we were
cheating here:

A Senior researcher is a foaf:Person who isAuthorOf 10+ Publications

ex:Sentor= foaf:Person M = 10 ex:isAuthorO f I
Jex:is AuthorO f.ex: Publication

What we really wanted to say (but which wasn'’t expressible in OWL1)

ex:Sentor = foaf:Person I > 10 ex:isAuthorO f.ex: Publication

Page 9 2012-04-17 Axel Polleres

SIEMENS

New Expressiveness in OWL 2

Qualified cardinality restrictions

* In OWL 1 you could only make general cardinality restrictions, e.g. we were
cheating here:

A Senior researcher is a foaf:Person who isAuthorOf 10+ Publications

ex:Senior owl:intersectionOf (

foaf:Person
[a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:minCardinality 10]

[2a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:someValuesFrom ex:Publication]).

What we really wanted to say (but which wasn'’t expressible in OWL1)

ex:Senior owl:intersectionOf (

foaf:Person

[a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:minQualifiedCardinality 10
owl:onClass ex:Publication])

Page 10 2012-04-17 Axel Polleres

SIEMENS

New Expressiveness in OWL 2

Property Chain axioms:

— E.g. could be useful to tie sioc:name and foaf:nick via foaf:holdsAccount:

(foaf:holdsAccount o sioc:name) T foaf:nick

foaf:nick owl:propertyChainAxiom (foaf:holdsAccount sioc:name)

foaf:Agent
foaf depiction~ /< | g >\ ~

foaf- mbox foaf:holdsAccount "~ foafnick
foaf-made ¥ foaf:zmbox_sha1sum

-
~ sioc:avatar

~
- H H . \ .
siocemail oaf.OnhpeAccount _siocname .[Literal)
sioc-creator of (inc. sioc:User) sioc:email_sha1

Page 11 2012-04-17 Axel Polleres

SIEMENS

New Expressiveness in OWL 2

local reflexivity restrictions

Narcissist = Jloves.sel f()

:Narcissist owl:equivalentClass
[a owl:Restriction ;
owl:onProperty :loves ;
owl:hasSelf "true"""xsd:boolean]

Page 12 2012-04-17 Axel Polleres

SIEMENS

New Expressiveness in OWL 2

In OWL 1, you can define tgat a property is functional, transitive, symmetric,
inverseFunctional...
owl:SymmetricProperty
owl :FunctionalProperty
owl:InverseFunctionalProperty
owl:TransitiveProperty

... additional property features in OWL2:
reflexive, irreflexive, and asymmetric, properties.
owl :ReflexiveProperty
owl:IrreflexiveProperty
owl :AsymmetricProperty

Page 13 2012-04-17 Axel Polleres

SIEMENS

New Expressiveness in OWL 2

Disjoint properties:
In OWL 1 disjointness can only be asserted for classes
:Animal owl:disjointWith :Person
In OWL2 also allowed to assert disjointness of Properties

:childOf owl:propertyDisjointWith :spouseOf

Page 14 2012-04-17 Axel Polleres

SIEMENS

New Expressiveness in OWL 2

Keys

Multi-attribute Keys now possible in OWL 2, e.q. foaf:0nlineAccount/
members are uniquely identified by a combination of foaf:accountName
and foaf:accountServiceHomepage:

foaf:OnlineAccount owl:hasKey

(foaf:accountName foaf:accountServiceHomepage)

Page 15 2012-04-17 Axel Polleres

SIEMENS

New Expressiveness in OWL 2

Syntactic sugar (make things easier to say)
= Disjoint unions, e.g.:
Element owl:DisjointUnionOf (Metal Wood Water Fire Earth)
= Disjoint classes, and propertiese.g.:
[a owl:AllDisjointClasses ;
owl :members (University Department Professor Student)]

[a owl:AllDisjointProperties ;
owl :members (spouseOf childOf grandChildOf)]

» More Syntactic sugar for Negative assertions, e.g.:
owl:NegativePropertyAssertion
allows to state negated facts, such as (but the RDF syntax for it looks quite ugly ;-)):*

—childO f (adam, eve)

* Note: this is already expressible in OWL1: {adam} T —=3childO f.{eve}
16

SIEMENS

OWL 2 DL

S used for ALC with role transitivity (also reflexivity, symmetry)

H used for role hierarchy

R (subsumes H) often used for with role (property chain) inclusion
axioms.

Additional letters indicate other extensions, e.g.:

= S for property characteristics (e.g., reflexive and symmetric)

» O for nominals/singleton classes

= 7 for inverse roles

= N for unqualified number restrictions

= O for qualified number restrictions

property characteristics (S) + R + nominals (O) + inverse () + qualified

number restrictions(Q) = SROZQ
SROIQ [Horrocks et al., 2006] is the basis for OWL 2 DL

17

SIEMENS
OWL 2 Profiles

Rationale:
= Tractable

» Tailored to specific reasoning services
Popular reasoning services

= Query answering: OWL 2 QL
= Terminological reasoning (reasoning about classes and Properties): OWL 2 EL

Specification: http://www.w3.org/TR/owl2-profiles/

W3C

OWL 2 Web Ontology Language
Profiles

W3C Recommendation 27 October 2009

18

SIEMENS

The family tree

Undecidable
______ 2NExpTime-
Complete
NExpTime-
OWL 1 DL Complete
/“\SHOIN
AN A PTime-
OWL 2 I_(E)WL 2 Complete
RL L EL++
""""" |_8W|_2 e A
L DL-Lite

19

OWL 2 RL: OWL reasoning via rules

SIEMENS

Page 20 2012-04-17 Axel Polleres

SIEMENS
Ontologies: Example FOAF

foaf:knows rdfs:domain foaf:Person

dknows. T C Person
foaf:knows rdfs:range foaf:Person

dknows™ . T C Person

foaf:Person rdfs:subclassOf foaf:Agent

Person C Agent

foaf:homepage rdf:type owl:inverseFunctionalProperty

T E< lhomepage™

21

SIEMENS
RDFS+OWL inference by rules 1/2

Recall that the semantics of RDFS can be expressed as (Datalog like) rules:

rdfsl: { ?S rdf:type ?C } :- { ?S ?P ?0 . ?P rdfs:domain ?C . }

rdfs2: { ?0 rdf:type ?C } :- { ?S ?P ?0 . ?P rdfs:range ?C . }

rdfs3: { ?S rdf:type ?C2 } :- {?S rdf:type ?Cl . ?Cl rdfs:subclassOf ?C2 . }
rdfsd: { ?S ?P2 ?0 } :- {?S ?P1 ?0 . ?P1l rdfs:subPropertyOf ?P2 . }

cf. informative Entailment rules in [RDF-Semantics, W3C, 2004] from Lecture 3.

22

SIEMENS
RDFS+OWL inference by rules 2/2

Some OWL Reasoning e.g. inverseFunctionalProperty can also be expressed by Rules:

owll: { ?S1 owl:SameAs ?S2 } :-
{ ?S1 ?P ?0 . ?S2 ?P ?0 . ?P rdf:type owl:InverseFunctionalProperty }

owl2: { ?2Y ?P ?0 } :- { ?X owl:SameAs ?Y . ?X ?P ?0 }
owl3: { ?S ?Y 20 } :- { ?X owl:SameAs ?Y . ?S ?X 20 }
owld: { ?S ?P ?Y } :- { ?X owl:SameAs ?Y . ?S ?P ?X }

- OWL 2 RL is the maximal fragment of OWL DL
such that reasoning can be expressed in Rules!

23

SIEMENS
Example OWL 2 RL inference:

Rules of the previous slides are sufficient e.g. for the example | showed you last time:

<http://dbpedia.org/resource/Tim Berners-Lee>
foaf:homepage

<http://www.w3.0rg/People/Berners-Lee/> . (jt)F)EBCjiEi.C)rgJ

foaf:name rdfs:subPropertyOf rdfs:label .
foaf:homepage a owl:InverseFunctionalProperty .

xmlns.com/foaf/

<http://dblp.13s.de/d2r/page/authors/Tim Berners-Lee>
foaf:homepage

<http://www.w3.0rg/People/Berners-Lee/> ;

foaf:name “Tim Berners-Lee”. (jt)IF).IEBES.(jEB

by owll -> <../dblp../Tim Berners-Lee> owl:sameAs <../dbpedia../Tim Berners-Lee>.
by owl2 = <../dbpedia../Tim Berners-Lee> foaf:name “Tim Berners-Lee”.
by rdfs4 - <../dbpedia../Tim Berners-Lee> rdfs:label “Tim Berners-Lee”.

SELECT ?P ?0
WHERE { <http://dbpedia.org/resource/Tim Berners-Lee> rdfs:label 2?0 }

?0

“Tim Berners-Lee”

Page 24 2008-04-01 Author

SIEMENS
RDFS+OWL inference in OWL 2 RL, what’s missing?

Note: Not all of OWL Reasoning can be expressed in Datalog, e.g.:

foaf:Person owl:disjointWith foaf:Organisation
Can be written/and reasoned about with FOL/DL reasoners:

FOL Syntax: VX.Person(X) D —Organisation(X)
DL Syntax: Person M Organisation C L

But can be “approximated” by Rules (this is what is done in OWL 2 RL):
owl5: ERROR :- { ?X a ?Cl; a ?C2. ?Cl owl:disjointWith ?C2.}

25

SIEMENS
RDFS+OWL inference in OWL 2 RL, NOW what’s not expressible?

Some expressions are only allowed on one side of a subclassOf axiom, e.g.

FisAuthorO f.Publication T Scientist

IS ok, can be covered by a simple Datalog-style rule:

{ ?S a ?D } :- { [owl:onProperty ?P ; owl:someValuesFrom ?C]
rdfs:subClassOf 7?D.
?S ?P ?20 . ?20 a ?C . }

But not the other way around (would need a rule with “existential” in the head):

Scientist T 3 isAuthorO f.Publication

This is why OWL 2 RL forbids e.g. certain constructs on the right/left-hand-side of
rdfs:subClassOf.

Page 26 2012-04-17 Axel Polleres

OWL 2 QL SIEMENS

A (near maximal) fragment of OWL 2 such that

= Data complexity of conjunctive query answering in AC°

Based on DL-Lite family of description logics [Calvanese et al. 2005;
20006; 2008]

Can exploit query rewriting based reasoning technique

= Computationally optimal

» Data storage and query evaluation can be delegated to
standard RDBMS or RDF Store/SPARQL engine.

* Novel technique to prevent exponential blowup produced by rewritings
[Kontchakov et al. 2010, Rosati and Almatelli 2010]

= Can be extended to more expressive languages (beyond AC?) by delegating
query answering to a Datalog engine [Perez-Urbina et al. 2009]

27

SIEMENS

Query Rewriting Technique (basics)

Given ontology O and query Q, use O to rewrite Q
as 9’ s.t., for any set of ground facts A:

= ans(Q, O, A) = ans(Q/, 0, A)

Use (GAV) mapping M to map Q' to SQL query

O M
l l >
/
Q) — Rewrite < > Map SQL > A > Ans

28

SIEMENS

Query Rewriting Technique (basics)

Given ontology O and query Q, use O to rewrite Q
as 9’ s.t., for any set of ground facts A:
= ans(Q, O, A) = ans(Q/, 0, A)

Resolution based query rewriting

= Clausify ontology axioms (using Skolemization)

» Saturate (clausified) ontology and query using resolution
* Prune redundant query clauses

29

SIEMENS

Query Rewriting Technique (basics)

Example:

Doctor C dtreats.Patient

Consultant C Doctor

Q(z) « treats(z, y) A Patient(y)

30

SIEMENS
Query Rewriting Technique (basics) - Clausify

Example:

Doctor L dtreats.Patient

Consultant C Doctor

treats(z, f(z)) < Doctor(z) Q(z) « treats(z, y) A Patient(y)
Patient(f(x)) « Doctor(x)

Doctor(z) « Consultant(x)

Clausified ontology

31

SIEMENS

Query Rewriting Technique (basics) - Saturate

Example:

Doctor C dtreats.Patient

Consultant C Doctor

treats(z, f(z)) < Doctor(z) Q(x) « treats(z, y) A Patient(y)
Q(z) < Doctor(x) A Patient(f(z))

32

SIEMENS

Query Rewriting Technique (basics) - Saturate

Example:

Doctor C dtreats.Patient

Consultant C Doctor
Q(x) « treats(z, y) A Patient(y)

Patient(f(x)) « Doctor(x)
Q(z) « treats(z, f(z)) A Doctor(z)

33

SIEMENS

Query Rewriting Technique (basics) - Saturate

Example:

Doctor C dtreats.Patient

Consultant C Doctor
treats(z, f(x)) « Doctor(x)

Q(z) « treats(z, f(z)) A Doctor(z)
Q(z) < Doctor(x)

34

SIEMENS

Query Rewriting Technique (basics) - Saturate

Example:

Doctor C dtreats.Patient

Consultant C Doctor

Doctor(z) « Consultant(z)
Q(z) <« Doctor(z)
Q(z) < Consultant(z)

35

SIEMENS

Query Rewriting Technique (basics) - Prune

Example:

Doctor C dtreats.Patient

Consultant = Doctor

treats(z, f(z)) « Doctor(z) Q(z) « treats(z, y) A Patient(y)

Patient(f(z)) < Doctor(x) e

Doctor(z) < Consultant(z) - —treatsla—fla A Doctor(a)
Q(z) « Doctor(z)

Q(z) « Consultant(z)

The result is a union of conjunctive queries
Q(z) « (treats(z, y) A Patient(y)) V Doctor(z) V Consultant(x)

36

SIEMENS

Could be used to answer some SPARQL queries over ontologies:

Example
Doctor L dtreats.Patient

Consultant C Doctor

y is also called a non-distinguished
query variable. Distinguished variables
in a conj. Query are output variables

Original Query: Q(z) « treats(z, y) A Patient(y)

SELECT ?X WHERE { ?X :treats ?Y .?Y a :Patient }

The resulting union of conjunctive queries:

Q(z) « (treats(z,y) A Patient(y)) V Doctor(z) V Consultant(x)

SELECT ?X WHERE { { ?X :treats ?Y .?Y a :Patient }
UNION { ?X a :Doctor .}

UNION { ?X a :Consultant.} }
37

SIEMENS
OWL 2 QL - Summary

- OWL 2 QL is the maximal fragment of OWL DL

such that Query Answering can be expressed by (polynomial) Query
rewriting techniques!

Again: several restrictions on what can and can’t be used, e.g. owl:sameAs is not

allowed in OWL 2 QL ... unfortunately, in the general case, non-distinguished
variables can make trouble...

Page 38 2012-04-17 Axel Polleres

OWL 2 EL SIEMENS

A (near maximal) fragment of OWL 2 such that

= Satisfiability checking is in PTime (PTime-Complete)

» Data complexity of query answering also PTime-Complete
Based on £L family of description logics [Baader et al. 2005]
Can exploit saturation based reasoning techniques

= Computes complete classification in “one pass”

= Computationally optimal (PTime for EL)

» Can be extended to Horn fragment of OWL DL [Kazakov 2009]

Will skip over this since it’s mainly useful for terminological reasoning,
less for query answering...

39

SIEMENS

Saturation-based Technique (basics)

Normalise ontology axioms to standard form:
ACB AnNnBCC ACJdR.B dRBCC

Saturate using inference rules:

ACB BCC ACB ACC BNnCcCD
ACC ACD

ACJR.B BCLC 4dRCCD
ACD

(This is a simplification, the whole EL requires (many) more rules)

40

Saturation-based Technique (basics)

SIEMENS

Example:

Heart C Organ

OrganTransplant C Transplant

OrganTransplant C dsite.Organ
dsite.Organ C SO

Transplant M SO C OrganTransplant

HeartTransplant = Transplant

HeartTransplant C dsite.Heart
Jsite.Heart C SH

Transplant M SH C HeartTransplant

Heart C Organ

41

SIEMENS

Saturation-based Technique (basics)

Example:

ACJdR.B BCLC JdRCCD
ACD

dsite.Organ C SO

HeartTransplant C dsite.Heart

Heart C Organ

42

SIEMENS

Saturation-based Technique (basics)

Example:

ACJdR.B BCLC JdRCCD
ACD

HeartTransplant = SO

dsite.Organ C SO

HeartTransplant C dsite.Heart

Heart C Organ

43

SPARQL and OWL

SIEMENS

... Now what about SPARQL1.1 and OWL?

Page 44 2012-04-17

Axel Polleres

SIEMENS
SPARQL1.1 Entailment Regimes

SPARQL1.1 defines SPARQL query answering over RDFS and OWL2
ontologies (as well as RIF rule sets):
= http://www.w3.org/TR/spargl11-entailment/

Particularly:

* RDF Entailment Regime

» RDFS Entailment Regime

» D-Entailment Regime

» OWL 2 RDF-Based Semantics Entailment Regime
= OWL 2 Direct Semantics Entailment Regime

= Won’t go into details of those, but sketch the main ideas!

RDFS/OWL2 and SPARQLA1.1

SIEMENS

General Idea: Answer Queries with implicit answers

<http://dbpedia.org/resource/Tim Berners-Lee>
foaf:homepage
<http://www.w3.org/People/Berners-Lee/> .

foaf:name rdfs:subPropertyOf rdfs:label .
foaf:homepage a owl:InverseFunctionalProperty .

<http://dblp.13s.de/d2r/page/authors/Tim Berners-Lee>
foaf:homepage
<http://www.w3.0rg/People/Berners-Lee/> ;
foaf:name “Tim Berners-Lee”.

SELECT ?P ?0
WHERE { <http://dbpedia.org/resource/Tim Berners-Lee>

rdfs:label 2?0 }

?0
“Tim Berners-Lee”

SIEMENS
OWL2 and SPARQL1.1

General Idea: Answer Queries with implicit answers
E.g. Graph/Ontology:
foaf:Person rdfs:subClassOf foaf:Agent
foaf:Person rdfs:subclassOf
[2 owl:Restriction ;
owl :onProperty :hasFather ;
owl :someValuesFrom foaf:Person.]

foaf:knows rdfs:range foaf:Person.

:jeff a Person .

:jeff foaf:knows :aidan

SELECT ?X { ?X a foaf:Person }

Pure SPARQL 1.0 returns only : Jeff,
should also return :aidan

SPARQL1.1+RDFS/OWL.: Challenges+Pitfalls

SIEMENS

Challenges+Pitfalls:

» Possibly Infinite answers (by RDFS ContainerMembership properties, OWL

datatype reasoning, etc.)
= Conjunctive Queries: non-distinguished variables

» SPARQL 1.1 features: e.g. Aggregates

SIEMENS
SPARQL1.1+RDFS/OWL.: Challenges+Pitfalls

Pragmatic Solution within SPARQL1.1:

» Possibly Infinite answers (by RDFS ContainerMembership properties, OWL
datatype reasoning, etc.)

» Restrict answers to rdf:/rdfs:/owl:vocabulary minus rdf:_1 ... rdf:_n plus terms
occurring in the data graph

» Non-distinguished variables
» No non-distinguished variables, answers must result from BGP matching,
projection a post-processing step not part of SPARQL entailment regimes.

» SPARQL 1.1 other features: e.g. Aggregates, etc.
= Again not affected, answers must result from BGP matching, projection a
post-processing step not part of entailment.

» Simple, BUT: maybe not always entirelty intuitive, so
» Good to know what to expect ... ;-)

SIEMENS

Possibly Infinite answers RDF(S): Container Membership

Graph:

:rr2010Proceedings :hasEditors [a rdf:Seq;

rdf: 1 :pascal hitzler.
rdf: 2 :thomas lukasiewicz.

Query with RDFS Entailment in mind:
SELECT ?CM { ?CM a rdfs:ContainerMembershipProperty}

Entailed by RDFS (axiomatic Triples):

rdfs

rdfs:

rdfs

rdfs:

: 1

2
: 3
4

a

(ORI

rdfs
rdfs
rdfs
rdfs

:ContainerMembershipProperty .
:ContainerMembershipProperty .
:ContainerMembershipProperty .
:ContainerMembershipProperty .

SIEMENS

Possibly Infinite answers RDF(S): Container Membership

Graph:

:rr2010Proceedings :hasEditors [a rdf:Seq;
rdf: 1 :pascal hitzler.
rdf: 2 :thomas lukasiewicz.

]
Query with RDFS Entailment in mind:
SELECT ?CM { ?CM a rdfs:ContainerMembershipProperty}

SPARQL 1.1 restricts answers to rdf:/rdfs:/owl:vocabulary minus rdf._1 ... rdf:_n plus
terms occurring in the data graph

So, the only answers in SPARQL1.1 are:
{ ?CM/rdfs: 1, ?CM/rdfs: 2, }

SIEMENS

Possibly Infinite answers OWL: datatype reasoning

Stupid way to say Peter is 50 in OWL.:

ex:Peter a [a owl:Restriction ;
owl:onProperty ex:age ;
owl:allValuesFrom [rdf:type rdfs:Datatype
owl:oneOf ("50"""xsd:integer)]]

Stupid query asking What is NOT Peters age:
SELECT ?x WHERE ({
ex:Peter a [a owl:Restriction ; owl:onProperty ex:age
owl:allValuesFrom [a rdfs:Datatype ;
owl:datatypeComplementOf [a
rdfs:Datatype ; owl:oneOf (?x)] 1 1 1}

.
14

Theoretical answer: all literal different from 50

No danger in SPARQL 1.1 restricts answers to rdf:/rdfs:/owl:vocabulary
minus rdf:_1 ... rdf:_n plus terms occurring in the data graph

SIEMENS

Now What about Non-distinguished variables?

E.g. Graph
foaf:Person rdfs:subClassOf foaf:Agent
foaf:Person rdfs:subclassOf
[a owl:Restriction ;
owl:onProperty :hasFather ;
owl:someValuesFrom foaf:Person.]
foaf:knows rdfs:range foaf:Person.
:Jjeff a Person
:Jjeff foaf:knows :aidan

SELECT ?X ?Y { ?X :hasFather ?Y }

No answer, because no known value for ?Y in the data graph (here, ?Y is a
distinguished variable, according to the previous definition)

Now What about Non-distinguished variables?

SIEMENS

E.g. Graph
foaf:Person rdfs:subClassOf foaf:Agent
foaf:Person rdfs:subclassOf
[a owl:Restriction ;
owl:onProperty :hasFather ;

owl :someValuesFrom foaf:Person. |

foaf:knows rdfs:range foaf:Person.
:Jjeff a Person
:jeff foaf:knows :aidan

SELECT ?X { ?X :hasFather ?Y }

But what about this one? ?Y looks like a “non-distinguished” variable
Solution: In SPARQL 1.1 answers must result from BGP matching, projection a
post-processing step not part of entailment, i.e. SPARQL1.1 treats ALL variables

as distinguished =» so, still no answer.

SIEMENS

Non-distinguished variables:

Simple Solution may seem not always intuitive, but:

» OWL Entailment in SPARQL based on BGP matching, i.e.
= always only returns results with named individuals
» Doesn’t affect SELECT: BGP matching takes place before projection
» That is: non-distinguished variables can’t occur “by design”

= Conjunctive queries with non-distinguished variable still an open research problem for
OWL.:
» Decidable for SHIQ, [B. Glimm et al. 2008]
» Decidable for OWL 1 DL without transitive properties [B. Glimm, KR-10]
» Particularly though: Decidability for the SROIQ Description Logics still unknown...

SIEMENS
SPARQL1.1 Entailment & complex graph patterns

Once again: SPARQL entailment defined only at the level of BGP matching
=>SPARQL1.1 Algebra is layered “on top”, no interaction

:personl rdf:type [owl:unionOf (:male :female)]

SELECT ?X { {?X rdf:type :male }
UNION
{?X rdf:type :female }

}

=» No result!

SIEMENS
SPARQL1.1 Entailment & Aggregates

Similar as before... aggregates are evaluated as post-processing after BGP

matching, so, no effect:
foaf:Person rdfs:subClassOf foaf:Agent
foaf:Person rdfs:subclassOf
[a owl:Restriction ;
owl:onProperty :hasFather ;
owl:someValuesFrom foaf:Person. |
:jeff a Person
:jeff foaf:knows :aidan
foaf:knows rdfs:range foaf:Person.

SELECT ?X { ?X a foaf:Person }

Under RDFS/OWL entailment returns : {?X/jeff, ?X/aidan}

SIEMENS

Similar as before... aggregates are evaluated as post-processing after BGP
matching, so, no effect:

foaf:Person rdfs:subClassOf foaf:Agent
foaf:Person rdfs:subclassOf
[a owl:Restriction ;
owl :onProperty :hasFather ;
owl:someValuesFrom foaf:Person. |

:jeff a Person Attention! owl:sameAs
:jeff foaf:knows :aidan inference does NOT
foaf:knows rdfs:range foaf:Person. affect counting!!! ...

: jeff :hasFather [a Person]. But bnodes do!

:jeff owl:sameAs :aidan.

SELECT (Count(?X) AS ?Y) { ?X a foaf:Person }

Under RDFS/OWL entailment returns : {?Y/3}

SIEMENS

Lessons learnt

OWL adds more expressivity on top of what can be said in RDF Schema about
properties and Classes

OWL 2
1) adds more expressivity on top
2) defines tractable fragments that are implementable efficiently

OWL+SPARQL gives implicit answers, but poses some challenges...

Will — by the end of the week — publish some last small assignment on:

Mini-assignment:

1. Write down statement (vii) from Unit3, slide 37 in Turtle Syntax.

2. Freestyle: Write your own ontology in OWL... Be creative! Your ontology
should allow some useful inferences from your FOAF file.

Page 59

