
Axel Polleres. Siemens AG Österreich. 2012. All rights reserved.

Unit 6:
OWL, OWL 2, SPARQL+OWL

Some facts about OWL…

  OWL stands for Web Ontology Language

  Strongly Simplified: OWL is an Ontology language with an RDF syntax

  There are different syntaxes for OWL, we will focus on RDF syntax here, but occasionally use DL syntax or
First-order logics notation for explanation.

  OWL extends RDF Schema by more expressive constructs.

  A fragment of OWL is expressible in Description Logics (sometimes referred to as OWL DL)

  The original OWL standards date back to 2004 (also sometimes referred to as OWL 1)

  There was a significant revision in 2008 (also often referred to as OWL 2)

2012-04-17 Axel Polleres Page 2

In today’s lecture:

  OWL 1 Overview
  OWL 2 new features
  OWL 2 tractable fragments: EL, QL, RL
  OWL + SPARQL

Disclaimer: We will only be able to scratch the surface
(e.g. not be able to give an in-depth Description Logics introduction)

2012-04-17 Axel Polleres Page 3

OWL 1 Overview:

See Lecture 3 slides 31ff.

2012-04-17 Axel Polleres Page 4

Why OWL1 is Not Enough

Too expensive to reason with
  High complexity: Satisfiability checking is NEXPTIME-complete
  Some ontologies only use some limited expressive power; e.g. The SNOMED

(Systematised Nomenclature of Medicine) ontology

Not expressive enough; e.g.
  No user defined datatypes
 [Pan 2004; Pan and Horrocks 2005; Motik and Horrocks 2008]

  No metamodeling support
 [Pan 2004; Pan, Horrocks, Schreiber, 2005; Motik 2007]

  Limited support for modeling relations between properties
[Horrocks et al., 2006]

5

From OWL1 to OWL2

Since 2009: OWL 2: A new version of OWL
Two Main goals:

1. To define “profiles” of OWL that are:
  smaller, easier to implement and deploy
  cover important application areas and are easily

understandable to non-expert users

2. To add a few extensions to current OWL that are useful,
and are known to be implementable

  many things happened in research since 2004 in research

6

New Expressiveness in OWL 2

New expressive power
  DatatypeDefinitions: user defined datatypes using XSD restrictions, e.g.

 :personAge owl:equivalentClass
 [a rdfs:Datatype ;
 owl:onDatatype xsd:integer ;
 owl:withRestrictions
 (xsd:minInclusive "0"^^xsd:integer

 xsd:maxInclusive "150"^^xsd:integer)] .

  punning (metamodeling), e.g.:

 :John a :Father .
 :Father a :SocialRole .

7

dbpedia:Elizabeth_II :age “86”^^:personAge

New Expressiveness in OWL 2

New expressive power on properties

  Qualified cardinality restrictions

  Property chain axioms

  Local reflexivity restrictions

  reflexive, irreflexive, symmetric, and antisymmetric properties

  Disjoint properties

  keys

8

New Expressiveness in OWL 2

Qualified cardinality restrictions

  In OWL 1 you could only make general cardinality restrictions, e.g. we were
cheating here:

A Senior researcher is a foaf:Person who isAuthorOf 10+ Publications

What we really wanted to say (but which wasn’t expressible in OWL1)

2012-04-17 Axel Polleres Page 9

ex:Senior≡ foaf :Person � � 10 ex:isAuthorOf �
∃ex:isAuthorOf.ex:Publication

ex:Senior ≡ foaf :Person � � 10 ex:isAuthorOf.ex:Publication

New Expressiveness in OWL 2

Qualified cardinality restrictions

  In OWL 1 you could only make general cardinality restrictions, e.g. we were
cheating here:

A Senior researcher is a foaf:Person who isAuthorOf 10+ Publications

What we really wanted to say (but which wasn’t expressible in OWL1)

2012-04-17 Axel Polleres Page 10

ex:Senior owl:intersectionOf (

 foaf:Person

 [a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:minCardinality 10]

 [a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:someValuesFrom ex:Publication]).

ex:Senior owl:intersectionOf (

 foaf:Person

 [a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:minQualifiedCardinality 10

 owl:onClass ex:Publication]) .

New Expressiveness in OWL 2

Property Chain axioms:

–  E.g. could be useful to tie sioc:name and foaf:nick via foaf:holdsAccount:

foaf:nick owl:propertyChainAxiom (foaf:holdsAccount sioc:name) .!

2012-04-17 Axel Polleres Page 11

(foaf :holdsAccount ◦ sioc:name) � foaf :nick

New Expressiveness in OWL 2

local reflexivity restrictions

:Narcissist owl:equivalentClass
 [a owl:Restriction ;
 owl:onProperty :loves ;
 owl:hasSelf "true"^^xsd:boolean] .

2012-04-17 Axel Polleres Page 12

Narcissist ≡ ∃loves.self()

New Expressiveness in OWL 2

In OWL 1, you can define tgat a property is functional, transitive, symmetric,
inverseFunctional…

 owl:SymmetricProperty
 owl:FunctionalProperty
 owl:InverseFunctionalProperty
 owl:TransitiveProperty

… additional property features in OWL2:
 reflexive, irreflexive, and asymmetric, properties.

 owl:ReflexiveProperty
 owl:IrreflexiveProperty
 owl:AsymmetricProperty

2012-04-17 Axel Polleres Page 13

New Expressiveness in OWL 2

Disjoint properties:

 In OWL 1 disjointness can only be asserted for classes

 :Animal owl:disjointWith :Person .

In OWL2 also allowed to assert disjointness of Properties

 :childOf owl:propertyDisjointWith :spouseOf .

2012-04-17 Axel Polleres Page 14

New Expressiveness in OWL 2

Keys

2012-04-17 Axel Polleres Page 15

 Multi-attribute Keys now possible in OWL 2, e.g. foaf:OnlineAccount/
members are uniquely identified by a combination of foaf:accountName
and foaf:accountServiceHomepage:

foaf:OnlineAccount owl:hasKey

(foaf:accountName foaf:accountServiceHomepage) .

New Expressiveness in OWL 2

Syntactic sugar (make things easier to say)
  Disjoint unions, e.g.:

 Element owl:DisjointUnionOf (Metal Wood Water Fire Earth)
  Disjoint classes, and propertiese.g.:

[a owl:AllDisjointClasses ;
 owl:members (University Department Professor Student)] .
[a owl:AllDisjointProperties ;
 owl:members (spouseOf childOf grandChildOf)] .

  More Syntactic sugar for Negative assertions, e.g.:
 owl:NegativePropertyAssertion
 allows to state negated facts, such as (but the RDF syntax for it looks quite ugly ;-)):*

16

¬childOf(adam, eve)

{adam} � ¬∃childOf.{eve}* Note: this is already expressible in OWL1:

OWL 2 DL

S used for ALC with role transitivity (also reflexivity, symmetry)
H used for role hierarchy
R (subsumes H) often used for with role (property chain) inclusion
axioms.
Additional letters indicate other extensions, e.g.:
  S for property characteristics (e.g., reflexive and symmetric)
 O for nominals/singleton classes
  I for inverse roles
 N for unqualified number restrictions
 Q for qualified number restrictions

property characteristics (S) + R + nominals (O) + inverse (I) + qualified
number restrictions(Q) = SROIQ
SROIQ [Horrocks et al., 2006] is the basis for OWL 2 DL

17

OWL 2 Profiles

Rationale:
  Tractable
  Tailored to specific reasoning services

Popular reasoning services
  Instance reasoning: OWL 2 RL
  Query answering: OWL 2 QL
  Terminological reasoning (reasoning about classes and Properties): OWL 2 EL

Specification: http://www.w3.org/TR/owl2-profiles/

18

The family tree

OWL 2 DL

OWL 1 DL

OWL 2
QL

OWL 2
RL

OWL 2
EL

SROIQ

SHOIN

DL-Lite

EL++

OWL 2
Full

In AC0

PTime-
Complete

NExpTime-
Complete

2NExpTime-
Complete

Undecidable

19

2012-04-17 Axel Polleres Page 20

OWL 2 RL: OWL reasoning via rules

Ontologies: Example FOAF

 foaf:knows rdfs:domain foaf:Person
 Everybody who knows someone is a Person
 foaf:knows rdfs:range foaf:Person
 Everybody who is known is a Person

 foaf:Person rdfs:subclassOf foaf:Agent
 Everybody Person is an Agent.

 foaf:homepage rdf:type owl:inverseFunctionalProperty .
 A homepage uniquely identifies its owner (“key” property)

…

21
21

RDFS+OWL inference by rules 1/2

Recall that the semantics of RDFS can be expressed as (Datalog like) rules:

 rdfs1: { ?S rdf:type ?C } :- { ?S ?P ?O . ?P rdfs:domain ?C . }
 rdfs2: { ?O rdf:type ?C } :- { ?S ?P ?O . ?P rdfs:range ?C . }

 rdfs3: { ?S rdf:type ?C2 } :- {?S rdf:type ?C1 . ?C1 rdfs:subclassOf ?C2 . }

 rdfs4: { ?S ?P2 ?O } :- {?S ?P1 ?O . ?P1 rdfs:subPropertyOf ?P2 . }

cf. informative Entailment rules in [RDF-Semantics, W3C, 2004] from Lecture 3.

22
22

RDFS+OWL inference by rules 2/2

Some OWL Reasoning e.g. inverseFunctionalProperty can also be expressed by Rules:

owl1: { ?S1 owl:SameAs ?S2 } :-
 { ?S1 ?P ?O . ?S2 ?P ?O . ?P rdf:type owl:InverseFunctionalProperty }

owl2: { ?Y ?P ?O } :- { ?X owl:SameAs ?Y . ?X ?P ?O }
owl3: { ?S ?Y ?O } :- { ?X owl:SameAs ?Y . ?S ?X ?O }
owl4: { ?S ?P ?Y } :- { ?X owl:SameAs ?Y . ?S ?P ?X }

  OWL 2 RL is the maximal fragment of OWL DL
 such that reasoning can be expressed in Rules!

23
23

Rules of the previous slides are sufficient e.g. for the example I showed you last time:

Example OWL 2 RL inference:

2008-04-01 Author Page 24

 <http://dbpedia.org/resource/Tim_Berners-Lee>
 foaf:homepage
 <http://www.w3.org/People/Berners-Lee/> .

 foaf:name rdfs:subPropertyOf rdfs:label .
 foaf:homepage a owl:InverseFunctionalProperty .

 <http://dblp.l3s.de/d2r/page/authors/Tim_Berners-Lee>
 foaf:homepage
 <http://www.w3.org/People/Berners-Lee/> ;
 foaf:name “Tim Berners-Lee”.

SELECT ?P ?O!
WHERE { <http://dbpedia.org/resource/Tim_Berners-Lee> rdfs:label ?O }!

?O
“Tim Berners-Lee”

dbpedia.org

dblp.l3s.de

xmlns.com/foaf/

by owl1  <…/dblp…/Tim_Berners-Lee> owl:sameAs <…/dbpedia…/Tim_Berners-Lee>.
by owl2  <…/dbpedia…/Tim_Berners-Lee> foaf:name “Tim Berners-Lee”.
by rdfs4  <…/dbpedia…/Tim_Berners-Lee> rdfs:label “Tim Berners-Lee”.

RDFS+OWL inference in OWL 2 RL, what’s missing?

Note: Not all of OWL Reasoning can be expressed in Datalog, e.g.:

 foaf:Person owl:disjointWith foaf:Organisation

Can be written/and reasoned about with FOL/DL reasoners:

FOL Syntax:
DL Syntax:

But can be “approximated” by Rules (this is what is done in OWL 2 RL):
owl5: ERROR :- { ?X a ?C1; a ?C2. ?C1 owl:disjointWith ?C2.}

25

∀X.Person(X) ⊃ ¬Organisation(X)

Some expressions are only allowed on one side of a subclassOf axiom, e.g.

is ok, can be covered by a simple Datalog-style rule:

 { ?S a ?D } :- { [owl:onProperty ?P ; owl:someValuesFrom ?C]
 rdfs:subClassOf ?D.
 ?S ?P ?O . ?O a ?C . }

But not the other way around (would need a rule with “existential” in the head):

This is why OWL 2 RL forbids e.g. certain constructs on the right/left-hand-side of
rdfs:subClassOf.

2012-04-17 Axel Polleres Page 26

RDFS+OWL inference in OWL 2 RL, NOW what’s not expressible?

∃isAuthorOf.Publication � Scientist

Scientist � ∃ isAuthorOf.Publication

OWL 2 QL

A (near maximal) fragment of OWL 2 such that
  Data complexity of conjunctive query answering in AC0
Based on DL-Lite family of description logics [Calvanese et al. 2005;
2006; 2008]
Can exploit query rewriting based reasoning technique
  Computationally optimal
  Data storage and query evaluation can be delegated to

standard RDBMS or RDF Store/SPARQL engine.
  Novel technique to prevent exponential blowup produced by rewritings

[Kontchakov et al. 2010, Rosati and Almatelli 2010]
  Can be extended to more expressive languages (beyond AC0) by delegating

query answering to a Datalog engine [Perez-Urbina et al. 2009]

27

Query Rewriting Technique (basics)

Given ontology O and query Q, use O to rewrite Q
as Q0 s.t., for any set of ground facts A:
  ans(Q, O, A) = ans(Q0, ;, A)
Use (GAV) mapping M to map Q0 to SQL query

A Rewrite

O

Q
Q0

Map
SQL

M

Ans

28

Query Rewriting Technique (basics)

Given ontology O and query Q, use O to rewrite Q
as Q0 s.t., for any set of ground facts A:
  ans(Q, O, A) = ans(Q0, ;, A)

Resolution based query rewriting
  Clausify ontology axioms (using Skolemization)
  Saturate (clausified) ontology and query using resolution
  Prune redundant query clauses

29

Query Rewriting Technique (basics)

Example:

30

Query Rewriting Technique (basics) - Clausify

Example:

31

Clausified ontology

Query Rewriting Technique (basics) - Saturate

Example:

32

Query Rewriting Technique (basics) - Saturate

Example:

33

Query Rewriting Technique (basics) - Saturate

Example:

34

Example:

35

Query Rewriting Technique (basics) - Saturate

Example:

The result is a union of conjunctive queries

36

Query Rewriting Technique (basics) - Prune

37

Could be used to answer some SPARQL queries over ontologies:

Example

Original Query:

The resulting union of conjunctive queries:

SELECT ?X WHERE { ?X :treats ?Y .?Y a :Patient }

SELECT ?X WHERE { { ?X :treats ?Y .?Y a :Patient }

 UNION { ?X a :Doctor .}

 UNION { ?X a :Consultant.} }

y is also called a
non-distinguished
query variable.

y is also called a non-distinguished
query variable. Distinguished variables
in a conj. Query are output variables

  OWL 2 QL is the maximal fragment of OWL DL
 such that Query Answering can be expressed by (polynomial) Query
 rewriting techniques!

Again: several restrictions on what can and can’t be used, e.g. owl:sameAs is not
allowed in OWL 2 QL … unfortunately, in the general case, non-distinguished
variables can make trouble…

2012-04-17 Axel Polleres Page 38

OWL 2 QL - Summary

OWL 2 EL

A (near maximal) fragment of OWL 2 such that
  Satisfiability checking is in PTime (PTime-Complete)
  Data complexity of query answering also PTime-Complete
Based on EL family of description logics [Baader et al. 2005]
Can exploit saturation based reasoning techniques
  Computes complete classification in “one pass”
  Computationally optimal (PTime for EL)
  Can be extended to Horn fragment of OWL DL [Kazakov 2009]

Will skip over this since it’s mainly useful for terminological reasoning,
less for query answering…

39

Normalise ontology axioms to standard form:

Saturate using inference rules:

(This is a simplification, the whole EL requires (many) more rules)

40

Saturation-based Technique (basics)

Example:

41

Saturation-based Technique (basics)

Example:

42

Saturation-based Technique (basics)

Example:

43

Saturation-based Technique (basics)

SPARQL and OWL

… Now what about SPARQL1.1 and OWL?

2012-04-17 Axel Polleres Page 44

SPARQL1.1 Entailment Regimes

SPARQL1.1 defines SPARQL query answering over RDFS and OWL2
ontologies (as well as RIF rule sets):
  http://www.w3.org/TR/sparql11-entailment/

Particularly:

  RDF Entailment Regime
  RDFS Entailment Regime
  D-Entailment Regime
  OWL 2 RDF-Based Semantics Entailment Regime
  OWL 2 Direct Semantics Entailment Regime

  Won’t go into details of those, but sketch the main ideas!

45

RDFS/OWL2 and SPARQL1.1

General Idea: Answer Queries with implicit answers
E.g. example from before: <http://dbpedia.org/resource/Tim_Berners-Lee>
 foaf:homepage
 <http://www.w3.org/People/Berners-Lee/> .

 foaf:name rdfs:subPropertyOf rdfs:label .
 foaf:homepage a owl:InverseFunctionalProperty .

 <http://dblp.l3s.de/d2r/page/authors/Tim_Berners-Lee>
 foaf:homepage
 <http://www.w3.org/People/Berners-Lee/> ;
 foaf:name “Tim Berners-Lee”.

SELECT ?P ?O!
WHERE { <http://dbpedia.org/resource/Tim_Berners-Lee> rdfs:label ?O }!

?O
“Tim Berners-Lee”

OWL2 and SPARQL1.1

General Idea: Answer Queries with implicit answers
E.g. Graph/Ontology:
some more complex OWL Ontology (T-Box):

RDF facts (A-Box):

SELECT ?X { ?X a foaf:Person }

Pure SPARQL 1.0 returns only :Jeff,
should also return :aidan

 :jeff a Person .
 :jeff foaf:knows :aidan .

foaf:Person � foaf:Agent

foaf:Person � ∃ hasFather.foaf:Person

∃foaf:knows−.� � foaf:Person

 foaf:Person rdfs:subClassOf foaf:Agent .

 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;

 owl:onProperty :hasFather ;

 owl:someValuesFrom foaf:Person.]

 foaf:knows rdfs:range foaf:Person.

 :jeff a Person .

 :jeff foaf:knows :aidan .

Challenges+Pitfalls:

  Possibly Infinite answers (by RDFS ContainerMembership properties, OWL
datatype reasoning, etc.)

  Conjunctive Queries: non-distinguished variables

  SPARQL 1.1 features: e.g. Aggregates

48

SPARQL1.1+RDFS/OWL: Challenges+Pitfalls

Pragmatic Solution within SPARQL1.1:

  Possibly Infinite answers (by RDFS ContainerMembership properties, OWL
datatype reasoning, etc.)
  Restrict answers to rdf:/rdfs:/owl:vocabulary minus rdf:_1 … rdf:_n plus terms

occurring in the data graph

  Non-distinguished variables
  No non-distinguished variables, answers must result from BGP matching,

projection a post-processing step not part of SPARQL entailment regimes.

  SPARQL 1.1 other features: e.g. Aggregates, etc.
  Again not affected, answers must result from BGP matching, projection a

post-processing step not part of entailment.

  Simple, BUT: maybe not always entirelty intuitive, so
  Good to know what to expect … ;-)
49

SPARQL1.1+RDFS/OWL: Challenges+Pitfalls

Possibly Infinite answers RDF(S): Container Membership

Graph:
 :rr2010Proceedings :hasEditors [a rdf:Seq;
 rdf:_1 :pascal_hitzler.
 rdf:_2 :thomas_lukasiewicz.
]

Query with RDFS Entailment in mind:
SELECT ?CM { ?CM a rdfs:ContainerMembershipProperty}

Entailed by RDFS (axiomatic Triples):
rdfs:_1 a rdfs:ContainerMembershipProperty .
rdfs:_2 a rdfs:ContainerMembershipProperty .
rdfs:_3 a rdfs:ContainerMembershipProperty .
rdfs:_4 a rdfs:ContainerMembershipProperty .
…

50

Possibly Infinite answers RDF(S): Container Membership

Graph:
 :rr2010Proceedings :hasEditors [a rdf:Seq;
 rdf:_1 :pascal_hitzler.
 rdf:_2 :thomas_lukasiewicz.
]

Query with RDFS Entailment in mind:
SELECT ?CM { ?CM a rdfs:ContainerMembershipProperty}

SPARQL 1.1 restricts answers to rdf:/rdfs:/owl:vocabulary minus rdf:_1 … rdf:_n plus
terms occurring in the data graph

So, the only answers in SPARQL1.1 are:
{ ?CM/rdfs:_1, ?CM/rdfs:_2, }

51

52

Possibly Infinite answers OWL: datatype reasoning
Stupid way to say Peter is 50 in OWL:

ex:Peter a [a owl:Restriction ;
 owl:onProperty ex:age ;
 owl:allValuesFrom [rdf:type rdfs:Datatype .
 owl:oneOf ("50"^^xsd:integer)]]

Stupid query asking What is NOT Peters age:
SELECT ?x WHERE {

 ex:Peter a [a owl:Restriction ; owl:onProperty ex:age ;
 owl:allValuesFrom [a rdfs:Datatype ;
 owl:datatypeComplementOf [a
 rdfs:Datatype ; owl:oneOf (?x)]]] }

Theoretical answer: all literal different from 50

52

No danger in SPARQL 1.1 restricts answers to rdf:/rdfs:/owl:vocabulary
minus rdf:_1 … rdf:_n plus terms occurring in the data graph

Now What about Non-distinguished variables?

E.g. Graph
 foaf:Person rdfs:subClassOf foaf:Agent .
 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:someValuesFrom foaf:Person.]
 foaf:knows rdfs:range foaf:Person.
 :jeff a Person
 :jeff foaf:knows :aidan

SELECT ?X ?Y { ?X :hasFather ?Y }

No answer, because no known value for ?Y in the data graph (here, ?Y is a
distinguished variable, according to the previous definition)

53

E.g. Graph
 foaf:Person rdfs:subClassOf foaf:Agent .
 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:someValuesFrom foaf:Person.]
 foaf:knows rdfs:range foaf:Person.
 :jeff a Person
 :jeff foaf:knows :aidan

SELECT ?X { ?X :hasFather ?Y }

But what about this one? ?Y looks like a “non-distinguished” variable
Solution: In SPARQL 1.1 answers must result from BGP matching, projection a
post-processing step not part of entailment, i.e. SPARQL1.1 treats ALL variables
as distinguished  so, still no answer. 54

Now What about Non-distinguished variables?

Non-distinguished variables:

Simple Solution may seem not always intuitive, but:
  OWL Entailment in SPARQL based on BGP matching, i.e.
  always only returns results with named individuals
  Doesn’t affect SELECT: BGP matching takes place before projection
  That is: non-distinguished variables can’t occur “by design”

  Conjunctive queries with non-distinguished variable still an open research problem for
OWL:
  Decidable for SHIQ, [B. Glimm et al. 2008]
  Decidable for OWL 1 DL without transitive properties [B. Glimm, KR-10]
  Particularly though: Decidability for the SROIQ Description Logics still unknown…

55

SPARQL1.1 Entailment & complex graph patterns
Once again: SPARQL entailment defined only at the level of BGP matching
 SPARQL1.1 Algebra is layered “on top”, no interaction

 No result!

:person1 rdf:type [owl:unionOf (:male :female)]

SELECT ?X { {?X rdf:type :male }
 UNION
 {?X rdf:type :female }
 }

56

Similar as before… aggregates are evaluated as post-processing after BGP
matching, so, no effect:
foaf:Person rdfs:subClassOf foaf:Agent .
 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:someValuesFrom foaf:Person.]
 :jeff a Person .
 :jeff foaf:knows :aidan
 foaf:knows rdfs:range foaf:Person.

SELECT ?X { ?X a foaf:Person }

Under RDFS/OWL entailment returns : {?X/jeff, ?X/aidan}

57

SPARQL1.1 Entailment & Aggregates

Similar as before… aggregates are evaluated as post-processing after BGP
matching, so, no effect:

foaf:Person rdfs:subClassOf foaf:Agent .
 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:someValuesFrom foaf:Person.]
 :jeff a Person
 :jeff foaf:knows :aidan
 foaf:knows rdfs:range foaf:Person.

SELECT (Count(?X) AS ?Y) { ?X a foaf:Person }

58

 :jeff owl:sameAs :aidan.

Attention! owl:sameAs
inference does NOT
affect counting!!!

Attention! owl:sameAs
inference does NOT
affect counting!!! …
But bnodes do! :jeff :hasFather [a Person].

Under RDFS/OWL entailment returns : {?Y/2} {?Y/2} {?Y/3}

Lessons learnt

OWL adds more expressivity on top of what can be said in RDF Schema about
properties and Classes

OWL 2
 1) adds more expressivity on top
 2) defines tractable fragments that are implementable efficiently

OWL+SPARQL gives implicit answers, but poses some challenges…

Will – by the end of the week – publish some last small assignment on:

Mini-assignment:
1.  Write down statement (vii) from Unit3, slide 37 in Turtle Syntax.
2.  Freestyle: Write your own ontology in OWL... Be creative! Your ontology

should allow some useful inferences from your FOAF file.
Page 59

