
Axel Polleres. Siemens AG Österreich. 2012. All rights reserved.

Unit 6:
OWL, OWL 2, SPARQL+OWL

Some facts about OWL…

  OWL stands for Web Ontology Language

  Strongly Simplified: OWL is an Ontology language with an RDF syntax

  There are different syntaxes for OWL, we will focus on RDF syntax here, but occasionally use DL syntax or
First-order logics notation for explanation.

  OWL extends RDF Schema by more expressive constructs.

  A fragment of OWL is expressible in Description Logics (sometimes referred to as OWL DL)

  The original OWL standards date back to 2004 (also sometimes referred to as OWL 1)

  There was a significant revision in 2008 (also often referred to as OWL 2)

2012-04-17 Axel Polleres Page 2

In today’s lecture:

  OWL 1 Overview
  OWL 2 new features
  OWL 2 tractable fragments: EL, QL, RL
  OWL + SPARQL

Disclaimer: We will only be able to scratch the surface
(e.g. not be able to give an in-depth Description Logics introduction)

2012-04-17 Axel Polleres Page 3

OWL 1 Overview:

See Lecture 3 slides 31ff.

2012-04-17 Axel Polleres Page 4

Why OWL1 is Not Enough

Too expensive to reason with
  High complexity: Satisfiability checking is NEXPTIME-complete
  Some ontologies only use some limited expressive power; e.g. The SNOMED

(Systematised Nomenclature of Medicine) ontology

Not expressive enough; e.g.
  No user defined datatypes
 [Pan 2004; Pan and Horrocks 2005; Motik and Horrocks 2008]

  No metamodeling support
 [Pan 2004; Pan, Horrocks, Schreiber, 2005; Motik 2007]

  Limited support for modeling relations between properties
[Horrocks et al., 2006]

5

From OWL1 to OWL2

Since 2009: OWL 2: A new version of OWL
Two Main goals:

1. To define “profiles” of OWL that are:
  smaller, easier to implement and deploy
  cover important application areas and are easily

understandable to non-expert users

2. To add a few extensions to current OWL that are useful,
and are known to be implementable

  many things happened in research since 2004 in research

6

New Expressiveness in OWL 2

New expressive power
  DatatypeDefinitions: user defined datatypes using XSD restrictions, e.g.

 :personAge owl:equivalentClass
 [a rdfs:Datatype ;
 owl:onDatatype xsd:integer ;
 owl:withRestrictions
 (xsd:minInclusive "0"^^xsd:integer

 xsd:maxInclusive "150"^^xsd:integer)] .

  punning (metamodeling), e.g.:

 :John a :Father .
 :Father a :SocialRole .

7

dbpedia:Elizabeth_II :age “86”^^:personAge

New Expressiveness in OWL 2

New expressive power on properties

  Qualified cardinality restrictions

  Property chain axioms

  Local reflexivity restrictions

  reflexive, irreflexive, symmetric, and antisymmetric properties

  Disjoint properties

  keys

8

New Expressiveness in OWL 2

Qualified cardinality restrictions

  In OWL 1 you could only make general cardinality restrictions, e.g. we were
cheating here:

A Senior researcher is a foaf:Person who isAuthorOf 10+ Publications

What we really wanted to say (but which wasn’t expressible in OWL1)

2012-04-17 Axel Polleres Page 9

ex:Senior≡ foaf :Person � � 10 ex:isAuthorOf �
∃ex:isAuthorOf.ex:Publication

ex:Senior ≡ foaf :Person � � 10 ex:isAuthorOf.ex:Publication

New Expressiveness in OWL 2

Qualified cardinality restrictions

  In OWL 1 you could only make general cardinality restrictions, e.g. we were
cheating here:

A Senior researcher is a foaf:Person who isAuthorOf 10+ Publications

What we really wanted to say (but which wasn’t expressible in OWL1)

2012-04-17 Axel Polleres Page 10

ex:Senior owl:intersectionOf (

 foaf:Person

 [a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:minCardinality 10]

 [a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:someValuesFrom ex:Publication]).

ex:Senior owl:intersectionOf (

 foaf:Person

 [a owl:Restriction; owl:onProperty ex:isAuthorOf ; owl:minQualifiedCardinality 10

 owl:onClass ex:Publication]) .

New Expressiveness in OWL 2

Property Chain axioms:

–  E.g. could be useful to tie sioc:name and foaf:nick via foaf:holdsAccount:

foaf:nick owl:propertyChainAxiom (foaf:holdsAccount sioc:name) .!

2012-04-17 Axel Polleres Page 11

(foaf :holdsAccount ◦ sioc:name) � foaf :nick

New Expressiveness in OWL 2

local reflexivity restrictions

:Narcissist owl:equivalentClass
 [a owl:Restriction ;
 owl:onProperty :loves ;
 owl:hasSelf "true"^^xsd:boolean] .

2012-04-17 Axel Polleres Page 12

Narcissist ≡ ∃loves.self()

New Expressiveness in OWL 2

In OWL 1, you can define tgat a property is functional, transitive, symmetric,
inverseFunctional…

 owl:SymmetricProperty
 owl:FunctionalProperty
 owl:InverseFunctionalProperty
 owl:TransitiveProperty

… additional property features in OWL2:
 reflexive, irreflexive, and asymmetric, properties.

 owl:ReflexiveProperty
 owl:IrreflexiveProperty
 owl:AsymmetricProperty

2012-04-17 Axel Polleres Page 13

New Expressiveness in OWL 2

Disjoint properties:

 In OWL 1 disjointness can only be asserted for classes

 :Animal owl:disjointWith :Person .

In OWL2 also allowed to assert disjointness of Properties

 :childOf owl:propertyDisjointWith :spouseOf .

2012-04-17 Axel Polleres Page 14

New Expressiveness in OWL 2

Keys

2012-04-17 Axel Polleres Page 15

 Multi-attribute Keys now possible in OWL 2, e.g. foaf:OnlineAccount/
members are uniquely identified by a combination of foaf:accountName
and foaf:accountServiceHomepage:

foaf:OnlineAccount owl:hasKey

(foaf:accountName foaf:accountServiceHomepage) .

New Expressiveness in OWL 2

Syntactic sugar (make things easier to say)
  Disjoint unions, e.g.:

 Element owl:DisjointUnionOf (Metal Wood Water Fire Earth)
  Disjoint classes, and propertiese.g.:

[a owl:AllDisjointClasses ;
 owl:members (University Department Professor Student)] .
[a owl:AllDisjointProperties ;
 owl:members (spouseOf childOf grandChildOf)] .

  More Syntactic sugar for Negative assertions, e.g.:
 owl:NegativePropertyAssertion
 allows to state negated facts, such as (but the RDF syntax for it looks quite ugly ;-)):*

16

¬childOf(adam, eve)

{adam} � ¬∃childOf.{eve}* Note: this is already expressible in OWL1:

OWL 2 DL

S used for ALC with role transitivity (also reflexivity, symmetry)
H used for role hierarchy
R (subsumes H) often used for with role (property chain) inclusion
axioms.
Additional letters indicate other extensions, e.g.:
  S for property characteristics (e.g., reflexive and symmetric)
 O for nominals/singleton classes
  I for inverse roles
 N for unqualified number restrictions
 Q for qualified number restrictions

property characteristics (S) + R + nominals (O) + inverse (I) + qualified
number restrictions(Q) = SROIQ
SROIQ [Horrocks et al., 2006] is the basis for OWL 2 DL

17

OWL 2 Profiles

Rationale:
  Tractable
  Tailored to specific reasoning services

Popular reasoning services
  Instance reasoning: OWL 2 RL
  Query answering: OWL 2 QL
  Terminological reasoning (reasoning about classes and Properties): OWL 2 EL

Specification: http://www.w3.org/TR/owl2-profiles/

18

The family tree

OWL 2 DL

OWL 1 DL

OWL 2
QL

OWL 2
RL

OWL 2
EL

SROIQ

SHOIN

DL-Lite

EL++

OWL 2
Full

In AC0

PTime-
Complete

NExpTime-
Complete

2NExpTime-
Complete

Undecidable

19

2012-04-17 Axel Polleres Page 20

OWL 2 RL: OWL reasoning via rules

Ontologies: Example FOAF

 foaf:knows rdfs:domain foaf:Person
 Everybody who knows someone is a Person
 foaf:knows rdfs:range foaf:Person
 Everybody who is known is a Person

 foaf:Person rdfs:subclassOf foaf:Agent
 Everybody Person is an Agent.

 foaf:homepage rdf:type owl:inverseFunctionalProperty .
 A homepage uniquely identifies its owner (“key” property)

…

21
21

RDFS+OWL inference by rules 1/2

Recall that the semantics of RDFS can be expressed as (Datalog like) rules:

 rdfs1: { ?S rdf:type ?C } :- { ?S ?P ?O . ?P rdfs:domain ?C . }
 rdfs2: { ?O rdf:type ?C } :- { ?S ?P ?O . ?P rdfs:range ?C . }

 rdfs3: { ?S rdf:type ?C2 } :- {?S rdf:type ?C1 . ?C1 rdfs:subclassOf ?C2 . }

 rdfs4: { ?S ?P2 ?O } :- {?S ?P1 ?O . ?P1 rdfs:subPropertyOf ?P2 . }

cf. informative Entailment rules in [RDF-Semantics, W3C, 2004] from Lecture 3.

22
22

RDFS+OWL inference by rules 2/2

Some OWL Reasoning e.g. inverseFunctionalProperty can also be expressed by Rules:

owl1: { ?S1 owl:SameAs ?S2 } :-
 { ?S1 ?P ?O . ?S2 ?P ?O . ?P rdf:type owl:InverseFunctionalProperty }

owl2: { ?Y ?P ?O } :- { ?X owl:SameAs ?Y . ?X ?P ?O }
owl3: { ?S ?Y ?O } :- { ?X owl:SameAs ?Y . ?S ?X ?O }
owl4: { ?S ?P ?Y } :- { ?X owl:SameAs ?Y . ?S ?P ?X }

  OWL 2 RL is the maximal fragment of OWL DL
 such that reasoning can be expressed in Rules!

23
23

Rules of the previous slides are sufficient e.g. for the example I showed you last time:

Example OWL 2 RL inference:

2008-04-01 Author Page 24

 <http://dbpedia.org/resource/Tim_Berners-Lee>
 foaf:homepage
 <http://www.w3.org/People/Berners-Lee/> .

 foaf:name rdfs:subPropertyOf rdfs:label .
 foaf:homepage a owl:InverseFunctionalProperty .

 <http://dblp.l3s.de/d2r/page/authors/Tim_Berners-Lee>
 foaf:homepage
 <http://www.w3.org/People/Berners-Lee/> ;
 foaf:name “Tim Berners-Lee”.

SELECT ?P ?O!
WHERE { <http://dbpedia.org/resource/Tim_Berners-Lee> rdfs:label ?O }!

?O
“Tim Berners-Lee”

dbpedia.org

dblp.l3s.de

xmlns.com/foaf/

by owl1 <…/dblp…/Tim_Berners-Lee> owl:sameAs <…/dbpedia…/Tim_Berners-Lee>.
by owl2 <…/dbpedia…/Tim_Berners-Lee> foaf:name “Tim Berners-Lee”.
by rdfs4 <…/dbpedia…/Tim_Berners-Lee> rdfs:label “Tim Berners-Lee”.

RDFS+OWL inference in OWL 2 RL, what’s missing?

Note: Not all of OWL Reasoning can be expressed in Datalog, e.g.:

 foaf:Person owl:disjointWith foaf:Organisation

Can be written/and reasoned about with FOL/DL reasoners:

FOL Syntax:
DL Syntax:

But can be “approximated” by Rules (this is what is done in OWL 2 RL):
owl5: ERROR :- { ?X a ?C1; a ?C2. ?C1 owl:disjointWith ?C2.}

25

∀X.Person(X) ⊃ ¬Organisation(X)

Some expressions are only allowed on one side of a subclassOf axiom, e.g.

is ok, can be covered by a simple Datalog-style rule:

 { ?S a ?D } :- { [owl:onProperty ?P ; owl:someValuesFrom ?C]
 rdfs:subClassOf ?D.
 ?S ?P ?O . ?O a ?C . }

But not the other way around (would need a rule with “existential” in the head):

This is why OWL 2 RL forbids e.g. certain constructs on the right/left-hand-side of
rdfs:subClassOf.

2012-04-17 Axel Polleres Page 26

RDFS+OWL inference in OWL 2 RL, NOW what’s not expressible?

∃isAuthorOf.Publication � Scientist

Scientist � ∃ isAuthorOf.Publication

OWL 2 QL

A (near maximal) fragment of OWL 2 such that
  Data complexity of conjunctive query answering in AC0
Based on DL-Lite family of description logics [Calvanese et al. 2005;
2006; 2008]
Can exploit query rewriting based reasoning technique
  Computationally optimal
  Data storage and query evaluation can be delegated to

standard RDBMS or RDF Store/SPARQL engine.
  Novel technique to prevent exponential blowup produced by rewritings

[Kontchakov et al. 2010, Rosati and Almatelli 2010]
  Can be extended to more expressive languages (beyond AC0) by delegating

query answering to a Datalog engine [Perez-Urbina et al. 2009]

27

Query Rewriting Technique (basics)

Given ontology O and query Q, use O to rewrite Q
as Q0 s.t., for any set of ground facts A:
  ans(Q, O, A) = ans(Q0, ;, A)
Use (GAV) mapping M to map Q0 to SQL query

A Rewrite

O

Q
Q0

Map
SQL

M

Ans

28

Query Rewriting Technique (basics)

Given ontology O and query Q, use O to rewrite Q
as Q0 s.t., for any set of ground facts A:
  ans(Q, O, A) = ans(Q0, ;, A)

Resolution based query rewriting
  Clausify ontology axioms (using Skolemization)
  Saturate (clausified) ontology and query using resolution
  Prune redundant query clauses

29

Query Rewriting Technique (basics)

Example:

30

Query Rewriting Technique (basics) - Clausify

Example:

31

Clausified ontology

Query Rewriting Technique (basics) - Saturate

Example:

32

Query Rewriting Technique (basics) - Saturate

Example:

33

Query Rewriting Technique (basics) - Saturate

Example:

34

Example:

35

Query Rewriting Technique (basics) - Saturate

Example:

The result is a union of conjunctive queries

36

Query Rewriting Technique (basics) - Prune

37

Could be used to answer some SPARQL queries over ontologies:

Example

Original Query:

The resulting union of conjunctive queries:

SELECT ?X WHERE { ?X :treats ?Y .?Y a :Patient }

SELECT ?X WHERE { { ?X :treats ?Y .?Y a :Patient }

 UNION { ?X a :Doctor .}

 UNION { ?X a :Consultant.} }

y is also called a
non-distinguished
query variable.

y is also called a non-distinguished
query variable. Distinguished variables
in a conj. Query are output variables

  OWL 2 QL is the maximal fragment of OWL DL
 such that Query Answering can be expressed by (polynomial) Query
 rewriting techniques!

Again: several restrictions on what can and can’t be used, e.g. owl:sameAs is not
allowed in OWL 2 QL … unfortunately, in the general case, non-distinguished
variables can make trouble…

2012-04-17 Axel Polleres Page 38

OWL 2 QL - Summary

OWL 2 EL

A (near maximal) fragment of OWL 2 such that
  Satisfiability checking is in PTime (PTime-Complete)
  Data complexity of query answering also PTime-Complete
Based on EL family of description logics [Baader et al. 2005]
Can exploit saturation based reasoning techniques
  Computes complete classification in “one pass”
  Computationally optimal (PTime for EL)
  Can be extended to Horn fragment of OWL DL [Kazakov 2009]

Will skip over this since it’s mainly useful for terminological reasoning,
less for query answering…

39

Normalise ontology axioms to standard form:

Saturate using inference rules:

(This is a simplification, the whole EL requires (many) more rules)

40

Saturation-based Technique (basics)

Example:

41

Saturation-based Technique (basics)

Example:

42

Saturation-based Technique (basics)

Example:

43

Saturation-based Technique (basics)

SPARQL and OWL

… Now what about SPARQL1.1 and OWL?

2012-04-17 Axel Polleres Page 44

SPARQL1.1 Entailment Regimes

SPARQL1.1 defines SPARQL query answering over RDFS and OWL2
ontologies (as well as RIF rule sets):
  http://www.w3.org/TR/sparql11-entailment/

Particularly:

  RDF Entailment Regime
  RDFS Entailment Regime
  D-Entailment Regime
  OWL 2 RDF-Based Semantics Entailment Regime
  OWL 2 Direct Semantics Entailment Regime

  Won’t go into details of those, but sketch the main ideas!

45

RDFS/OWL2 and SPARQL1.1

General Idea: Answer Queries with implicit answers
E.g. example from before: <http://dbpedia.org/resource/Tim_Berners-Lee>
 foaf:homepage
 <http://www.w3.org/People/Berners-Lee/> .

 foaf:name rdfs:subPropertyOf rdfs:label .
 foaf:homepage a owl:InverseFunctionalProperty .

 <http://dblp.l3s.de/d2r/page/authors/Tim_Berners-Lee>
 foaf:homepage
 <http://www.w3.org/People/Berners-Lee/> ;
 foaf:name “Tim Berners-Lee”.

SELECT ?P ?O!
WHERE { <http://dbpedia.org/resource/Tim_Berners-Lee> rdfs:label ?O }!

?O
“Tim Berners-Lee”

OWL2 and SPARQL1.1

General Idea: Answer Queries with implicit answers
E.g. Graph/Ontology:
some more complex OWL Ontology (T-Box):

RDF facts (A-Box):

SELECT ?X { ?X a foaf:Person }

Pure SPARQL 1.0 returns only :Jeff,
should also return :aidan

 :jeff a Person .
 :jeff foaf:knows :aidan .

foaf:Person � foaf:Agent

foaf:Person � ∃ hasFather.foaf:Person

∃foaf:knows−.� � foaf:Person

 foaf:Person rdfs:subClassOf foaf:Agent .

 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;

 owl:onProperty :hasFather ;

 owl:someValuesFrom foaf:Person.]

 foaf:knows rdfs:range foaf:Person.

 :jeff a Person .

 :jeff foaf:knows :aidan .

Challenges+Pitfalls:

  Possibly Infinite answers (by RDFS ContainerMembership properties, OWL
datatype reasoning, etc.)

  Conjunctive Queries: non-distinguished variables

  SPARQL 1.1 features: e.g. Aggregates

48

SPARQL1.1+RDFS/OWL: Challenges+Pitfalls

Pragmatic Solution within SPARQL1.1:

  Possibly Infinite answers (by RDFS ContainerMembership properties, OWL
datatype reasoning, etc.)
  Restrict answers to rdf:/rdfs:/owl:vocabulary minus rdf:_1 … rdf:_n plus terms

occurring in the data graph

  Non-distinguished variables
  No non-distinguished variables, answers must result from BGP matching,

projection a post-processing step not part of SPARQL entailment regimes.

  SPARQL 1.1 other features: e.g. Aggregates, etc.
  Again not affected, answers must result from BGP matching, projection a

post-processing step not part of entailment.

  Simple, BUT: maybe not always entirelty intuitive, so
  Good to know what to expect … ;-)
49

SPARQL1.1+RDFS/OWL: Challenges+Pitfalls

Possibly Infinite answers RDF(S): Container Membership

Graph:
 :rr2010Proceedings :hasEditors [a rdf:Seq;
 rdf:_1 :pascal_hitzler.
 rdf:_2 :thomas_lukasiewicz.
]

Query with RDFS Entailment in mind:
SELECT ?CM { ?CM a rdfs:ContainerMembershipProperty}

Entailed by RDFS (axiomatic Triples):
rdfs:_1 a rdfs:ContainerMembershipProperty .
rdfs:_2 a rdfs:ContainerMembershipProperty .
rdfs:_3 a rdfs:ContainerMembershipProperty .
rdfs:_4 a rdfs:ContainerMembershipProperty .
…

50

Possibly Infinite answers RDF(S): Container Membership

Graph:
 :rr2010Proceedings :hasEditors [a rdf:Seq;
 rdf:_1 :pascal_hitzler.
 rdf:_2 :thomas_lukasiewicz.
]

Query with RDFS Entailment in mind:
SELECT ?CM { ?CM a rdfs:ContainerMembershipProperty}

SPARQL 1.1 restricts answers to rdf:/rdfs:/owl:vocabulary minus rdf:_1 … rdf:_n plus
terms occurring in the data graph

So, the only answers in SPARQL1.1 are:
{ ?CM/rdfs:_1, ?CM/rdfs:_2, }

51

52

Possibly Infinite answers OWL: datatype reasoning
Stupid way to say Peter is 50 in OWL:

ex:Peter a [a owl:Restriction ;
 owl:onProperty ex:age ;
 owl:allValuesFrom [rdf:type rdfs:Datatype .
 owl:oneOf ("50"^^xsd:integer)]]

Stupid query asking What is NOT Peters age:
SELECT ?x WHERE {

 ex:Peter a [a owl:Restriction ; owl:onProperty ex:age ;
 owl:allValuesFrom [a rdfs:Datatype ;
 owl:datatypeComplementOf [a
 rdfs:Datatype ; owl:oneOf (?x)]]] }

Theoretical answer: all literal different from 50

52

No danger in SPARQL 1.1 restricts answers to rdf:/rdfs:/owl:vocabulary
minus rdf:_1 … rdf:_n plus terms occurring in the data graph

Now What about Non-distinguished variables?

E.g. Graph
 foaf:Person rdfs:subClassOf foaf:Agent .
 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:someValuesFrom foaf:Person.]
 foaf:knows rdfs:range foaf:Person.
 :jeff a Person
 :jeff foaf:knows :aidan

SELECT ?X ?Y { ?X :hasFather ?Y }

No answer, because no known value for ?Y in the data graph (here, ?Y is a
distinguished variable, according to the previous definition)

53

E.g. Graph
 foaf:Person rdfs:subClassOf foaf:Agent .
 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:someValuesFrom foaf:Person.]
 foaf:knows rdfs:range foaf:Person.
 :jeff a Person
 :jeff foaf:knows :aidan

SELECT ?X { ?X :hasFather ?Y }

But what about this one? ?Y looks like a “non-distinguished” variable
Solution: In SPARQL 1.1 answers must result from BGP matching, projection a
post-processing step not part of entailment, i.e. SPARQL1.1 treats ALL variables
as distinguished so, still no answer. 54

Now What about Non-distinguished variables?

Non-distinguished variables:

Simple Solution may seem not always intuitive, but:
  OWL Entailment in SPARQL based on BGP matching, i.e.
  always only returns results with named individuals
  Doesn’t affect SELECT: BGP matching takes place before projection
  That is: non-distinguished variables can’t occur “by design”

  Conjunctive queries with non-distinguished variable still an open research problem for
OWL:
  Decidable for SHIQ, [B. Glimm et al. 2008]
  Decidable for OWL 1 DL without transitive properties [B. Glimm, KR-10]
  Particularly though: Decidability for the SROIQ Description Logics still unknown…

55

SPARQL1.1 Entailment & complex graph patterns
Once again: SPARQL entailment defined only at the level of BGP matching
 SPARQL1.1 Algebra is layered “on top”, no interaction

 No result!

:person1 rdf:type [owl:unionOf (:male :female)]

SELECT ?X { {?X rdf:type :male }
 UNION
 {?X rdf:type :female }
 }

56

Similar as before… aggregates are evaluated as post-processing after BGP
matching, so, no effect:
foaf:Person rdfs:subClassOf foaf:Agent .
 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:someValuesFrom foaf:Person.]
 :jeff a Person .
 :jeff foaf:knows :aidan
 foaf:knows rdfs:range foaf:Person.

SELECT ?X { ?X a foaf:Person }

Under RDFS/OWL entailment returns : {?X/jeff, ?X/aidan}

57

SPARQL1.1 Entailment & Aggregates

Similar as before… aggregates are evaluated as post-processing after BGP
matching, so, no effect:

foaf:Person rdfs:subClassOf foaf:Agent .
 foaf:Person rdfs:subclassOf

 [a owl:Restriction ;
 owl:onProperty :hasFather ;
 owl:someValuesFrom foaf:Person.]
 :jeff a Person
 :jeff foaf:knows :aidan
 foaf:knows rdfs:range foaf:Person.

SELECT (Count(?X) AS ?Y) { ?X a foaf:Person }

58

 :jeff owl:sameAs :aidan.

Attention! owl:sameAs
inference does NOT
affect counting!!!

Attention! owl:sameAs
inference does NOT
affect counting!!! …
But bnodes do! :jeff :hasFather [a Person].

Under RDFS/OWL entailment returns : {?Y/2} {?Y/2} {?Y/3}

Lessons learnt

OWL adds more expressivity on top of what can be said in RDF Schema about
properties and Classes

OWL 2
 1) adds more expressivity on top
 2) defines tractable fragments that are implementable efficiently

OWL+SPARQL gives implicit answers, but poses some challenges…

Will – by the end of the week – publish some last small assignment on:

Mini-assignment:
1.  Write down statement (vii) from Unit3, slide 37 in Turtle Syntax.
2.  Freestyle: Write your own ontology in OWL... Be creative! Your ontology

should allow some useful inferences from your FOAF file.
Page 59

