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Unit 2 – RDF & SPARQL foundations 1. RDF(S)

RDF Graph – Formal Definitions

Let U be the set of URIs, B be the set of blank nodes (or “variables”),
L = Lt ∪ Lp ∪ Llang be the set of literals (i.e., typed, plain, and plain
lang-tagged)

An RDF graph, or simply a graph, is a set of RDF triples from
UB × U × UBL.1

A vocabulary of a graph VG is the subset of UL mentioned in the graph.

A graph or triple without blank nodes is also called ground

1We write short e.g. UBL for U ∪B ∪ L.
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Unit 2 – RDF & SPARQL foundations 1. RDF(S)

RDF Graph – Example 1

Node: “edge labels” may appear as nodes and vice versa, e.g.
G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G2 :

ex:alice rdf:type foaf:Person.

G3 :

__ :alice foaf:knows ex:bob.
__ :alice foaf:name __ :name.

G4 :

__ :alice foaf:knows ex:bob.
__ :alice foaf:name __ :alice.

Again, we will occasionally write blank nodes as like this V ar, to make clearer
that actually they ammount to existentially quantified variables.
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Unit 2 – RDF & SPARQL foundations 1. RDF(S)

RDF Graph – Example 2

That is also a valid RDF graph:

G5 :

rdfs:Resource rdf:type rdfs:Class.
rdfs:Property rdf:type rdfs:Resource.
rdfs:Property rdf:subclassOf rdfs:Resource.
rdfs:Property rdf:type rdfs:Class.
rdfs:Class rdf:type rdfs:Resource.
rdfs:Class rdf:type rdfs:Class.
rdfs:Class rdf:subclassOf rdfs:Resource.
rdfs:Class rdf:subclassOf rdfs:Class.
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Unit 2 – RDF & SPARQL foundations 1. RDF(S)

RDF Graph – Example 3

Or that:

G6 :

rdfs:subClassOf rdfs:subPropertyOf rdfs:Resource.
rdfs:subClassOf rdfs:subPropertyOf rdfs:subPropertyOf.
rdf:type rdfs:subPropertyOf rdfs:subClassOf.
rdfs:subClassOf rdf:type owl:SymmetricProperty.
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Unit 2 – RDF & SPARQL foundations 1. RDF(S)

Definitions

Assume a blank node mapping µ : B → UBL.

By µ(G) we denote the graph obtained from G by replacing each blank node x
with µ(x).

We call µ(G) an instance of G.

A proper instance of a graph is an instance in which a blank node has been
replaced by a name, or two blank nodes in the graph have been mapped into the
same node in the instance.

An RDF graph is lean if it has no instance which is a proper subgraph of the
graph. Non-lean graphs have internal redundancy and express the same content
as their lean subgraphs.

Two graphs which differ only in the identity of their blank nodes, are considered
to be equivalent.

The merge of a set of graphs is obtained by renaming (“standardize apart”)
blank nodes in each graph such that no blank nodes between any two graphs are
in common and then taking the union of all triples, we write G1 ]G2 for the
graph merge between two graphs G1, G2.

Questions

What is meant by “redundancy” and “same content” here?
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Unit 2 – RDF & SPARQL foundations 1. RDF(S)

Lean and non-lean graphs: Examples

G7 : non-lean

__ :x foaf:knows ex:bob.
__ :x foaf:knows __ :y.

G8 : lean

__ :x foaf:knows ex:bob.
__ :x foaf:knows __ :x.

Why?

Becomes clear if we look at first-order “reading” of the RDF graph,
where we treat blank nodes as existential variables and triples in a predicate
triple.With this reading, one could say:
G′7 = {__ :x foaf:knows ex:bob.} |= G7

We use first-order entailment here. Entailment is typically defined in terms of a
model theory (interpretation, satisfaction, models). . .
RDF has its own model theory!
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Unit Outline

1. RDF Graph – Formal Definitions
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4. Complexity of simple RDF entailment and SPARQL
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Model theoretic semantics – in general

A model theory is usually defined using the following “components”:
Defining a notion of an interpretation I, consisting of separate
interpretation functions
• i.e., defining how are constants, variables and logical conectives,

formulas being “interpreted” in a possible real world.
A satisfaction relation between interpretations and theories (in our
case graphs), written I |= G, which says:
• I is an interpretation satisfying G, or a model of G

An entailment relation between theories (in our case graphs), written
G |= G′, which says
• all models of G are also models of G′
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Interpretations1/4

“ interpretation I: . . . i.e. how are constants, variables, predicates,
formulas being “interpreted” in a possible real world.”

What does that mean for RDF?
RDF “constants” . . . subjects, objects, i.e. UL
RDF “variables” . . . blank nodes, i.e. B
RDF “predicates” . . . predicates, i.e. U
RDF “formulas” . . . triples, graphs.

Now here we have something unlike classical logic... URIs can actually
need to be interpreted “as predicates” or “as constants” depending on
where they appear in the graph.

To cater for that, RDF defines a very general notion of interpretation.
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Interpretations 2/4

A simple interpretation I over vocabulary V is a 6-tuple
I = 〈IR, IP, IEXT, IS, IL, LV 〉, s.t.

1 A non-empty set IR of resources.

• called the domain or universe of I

2 A set IP , called the set of properties of I,

• not necessaily disjoint of IR!

3 A mapping IEXT : IP → 2(IR×IR), i.e. assigns a set of pairs 〈x, y〉 with
x, y ∈ IR.

• intuitivelty, assigns a binary relation between subjects and objects to properties.

4 A mapping IS : U ∩ V → IR ∪ IP

• this basically says, URIs can be both constants and predicates

5 A mapping IL : Lt ∩ V into IR.

• typed literals are constants.

6 A distinguished subset LV ⊂ IR, called the set of literal values, which
contains all the plain literals in V, i.e. LV ⊆ Lp ∪ Llang.

• plain literals in RDF are special, they are always interpreted as themselves
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Interpretations 3/4

Interpreting ground graphs (i.e. without blank nodes):

Interpreting constants:
• if e = ”aaa” ∈ V ∩ Lp, then I(e) = aaa ∈ LV
• if e = ”aaa”@ttt ∈ V ∩ Llang , then I(e) =< aaa, ttt >∈ LV
• if e ∈ V ∩ Lt, then I(e) = IL(e)
• if e ∈ V ∩ U , then I(e) = IS(e)

Interpreting ground triples:
• if t = s p o., is a ground triple, then

I(t) = true if s, p, o ∈ V ∧ I(p) ∈ IP ∧ 〈I(s), I(o)〉 ∈ IEXT (I(p))
I(t) = false, otherwise

Interpreting ground graphs:
• if G is a ground RDF graph then I(G) = true if and only if I(t) = true for all

triples t ∈ G, .

Satisfaction
If I(G) = true we also say I satisfies G, written I |= G
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Interpreting constants:
• if e = ”aaa” ∈ V ∩ Lp, then I(e) = aaa ∈ LV
• if e = ”aaa”@ttt ∈ V ∩ Llang , then I(e) =< aaa, ttt >∈ LV
• if e ∈ V ∩ Lt, then I(e) = IL(e)
• if e ∈ V ∩ U , then I(e) = IS(e)

Interpreting ground triples:
• if t = s p o., is a ground triple, then

I(t) = true if s, p, o ∈ V ∧ I(p) ∈ IP ∧ 〈I(s), I(o)〉 ∈ IEXT (I(p))
I(t) = false, otherwise

Interpreting ground graphs:
• if G is a ground RDF graph then I(G) = true if and only if I(t) = true for all

triples t ∈ G, .

Satisfaction
If I(G) = true we also say I satisfies G, written I |= G
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Interpretation – Example ground graphs

Take the following artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2

G9 :

ex:a ex:b ex:c .
ex:c ex:a ex:a .
ex:c ex:b ex:a .
ex:a ex:b "whatever"∧∧ex:b .

I(G9) = true, i.e., I |= G9:
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I(G′9) = false, i.e., I doesn’t satisfy any triple in G′9:
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Simple Interpretation – Example ground graphs

Take the following artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2

G′9 :

ex:a ex:c ex:b . IS(ex : c) = 2 6∈ IP
ex:a ex:b ex:b . 〈1, 1〉 6∈ IEXT (IS(ex : b))
ex:c ex:b ex:c . 〈2, 2〉 6∈ IEXT (IS(ex : b))
ex:a ex:b "whatever". 〈1, ”whatever”〉 6∈ IEXT (IS(ex : b))

I(G′9) = false, i.e., I doesn’t satisfy any triple in G′9:
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Interpretations 4/4

Dealing with blank nodes is analogously to dealing with existential variables in
first-order logic:

We call some function A : B → IR an assignment.
Given an interpretation I, and an assignment A, [I +A] is defined just like I,
except that it uses A to interpret blank nodes.

Interpreting non-ground graphs:
• if G is a non-ground RDF graph then I(G) = true if and only if there exists an

assignment A such that [I +A](G) = true.
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Interpretation – Example non-ground graphs

Same interpretation as before, artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2
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Simple Interpretation – Example non-ground graphs

Same interpretation as before, artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2

G10 :

__ :x <ex:a> <ex:b> .
<ex:c> <ex:b> __ :y .

I(G10) = true, i.e., I |= G10:

E.g. take the assignment A(x) = 2, A(y) = 1
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Interpretation – Example non-ground graphs

Same interpretation as before, artificial vocabulary:
{ex : a, ex : b, ex : c, ”whatever”, ”whatever”∧∧ex : b}
IR = LV ∪ {1, 2}
IP = {1}
IEXT (1) = {< 1, 2 >,< 2, 1 >}
IS(ex : a) = IS(ex : b) = 1, IS(ex : c) = 2

IL(”whatever”∧∧ex : b) = 2

G′10 :

__ :x <ex:a> <ex:b> .
<ex:c> <ex:b> __ :x .

I(G′10) = false, i.e., I 6|= G′10:

If A maps x to 1 then the first triple is false, and if it maps it to 2 then the second one.
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Entailment between RDF Graphs

The usual entailment relation as we know it from first-order theories:

Simple Entailment

An RDF graph G (simply) entails a graph E, written G |= E, if every
interpretation which satisfies G also satisfies E

“Entailment is the key idea which connects model-theoretic semantics to
real-world applications” [Hayes, 2004] . . . indeed, simple entailment is the
key for SPARQL graph pattern matching.
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Simple Entailment between RDF Graphs

The usual entailment relation as we know it from first-order theories:

Simple Entailment (for sets of graphs)

A set S of RDF graphs (simply) entails a graph E, written S |= E, if
every interpretation which satisfies every member of S also satisfies E

“Entailment is the key idea which connects model-theoretic semantics to
real-world applications” [Hayes, 2004] . . . indeed, simple entailment is the
key for SPARQL graph pattern matching.
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Entailment - Properties

Merging lemma

The merge of a set S of RDF graphs is entailed by S, and entails every
member of S, i.e.
S |=

⊎
s∈S s and

⊎
s∈S s |= s′, where s′ ∈ S.

Recall the example from before:
G′10:

__ :x <ex:a> <ex:b> .
<ex:c> <ex:b> __ :x .

This example shows the difference of union and merge:
The merge of each triple by itself taken as a singleton graph is NOT equivalent to G′10!

(Recall the definition of merge: Obtained by “standardizing apart” blank nodes.)
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Entailment - Properties

Main result for simple RDF inference is:

Interpolation Lemma
S entails a graph E if and only if a subgraph of S is an instance of E.

What does this mean?
Recall: We call µ(G) an instance of G, where µ maps blank nodes to UBL.
So, you can test entailment G |=?G′ by

1 guessing a mapping µ and

2 test whether µ(G′) ⊆ G

Complexity
Simple entailment is NP-complete.

(proof in the end of the slides, time allowed)
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Entailment - Examples 1/4

G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G3 :

__ :alice foaf:knows ex:bob.
__ :alice foaf:name __ :name.

G4 :

__ :alice foaf:knows ex:bob.
__ :alice foaf:name __ :alice.
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Simple Entailment - Examples 1/4

G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G3 :

Alice foaf:knows ex:bob.
Alice foaf:name Name :.

G4 :

Alice foaf:knows ex:bob.
Alice foaf:name Alice.

G1|=G3 :

µ(Alice) = ex : alice, µ(Name) = ”Alice”⇒ µ(G3) ⊆ G1
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Simple Entailment - Examples 1/4

G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G3 :

Alice foaf:knows ex:bob.
Alice foaf:name Name :.

G4 :

Alice foaf:knows ex:bob.
Alice foaf:name Alice.

G1 6|=G4 :

no blank node mapping µ makes µ(G4) a subset of G1
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Simple Entailment - Examples 1/4

G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.
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Simple Entailment - Examples 1/4
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G3 :
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Simple Entailment - Examples 2/42

G7 : non-lean
X foaf:knows ex:bob.
X foaf:knows Y .

G8 : lean
X foaf:knows ex:bob.
X foaf:knows X.

G′7 : lean
X foaf:knows ex:bob.

G′8 : lean
X foaf:knows X.

G7 6|= G8, G7 6|= G′8
G8 |= G7, G7 |= G′7

Finally: G′7 |= G7 !!!! that confirms non-lean!

2draw on whiteboard
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Entailment - Examples 3/4

Now what about G2?
G1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice".
foaf:knows rdfs:domain foaf:Person.

G2 :

ex:alice rdf:type foaf:Person.

Obviously, no simple entailment: G1 6|= G2!

Would need “special” interpretation of the rdf: and rdfs: vocabulary!

This is needed to interpret ontologies. . .
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Recall from Unit1 – The FOAF ontology:

Properties: name, knows, homepage, primaryTopic etc.

Classes: Person, Agent, Document, Organisation, etc.

Relations: e.g.

• Each Person is a Agent (subclass)

• The img property is more specific than depiction
(subproperty)

• img is a relation between Persons and Imgages
(domain/range)

• knows is a relation between two Persons
(domain/range)

• homepage denotes unique homepage of an Agent
(uniquely identifying property)

...
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

Simple Entailment - Examples 4/4
G′1 :

ex:alice foaf:knows ex:bob.
ex:alice foaf:name "Alice". ex:alice ex:age "30.0"∧∧xs:decimal.

GFOAF : <http://xmlns.com/foaf/0.1/>

foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person.
foaf:Person rdfs:subclassOf foaf:Agent.

Intuitively, G′1 ]GFOAF should entail: G′2 :

ex:alice rdf:type foaf:Person.
ex:bob rdf:type foaf:Person.
ex:alice rdf:type foaf:Agent.
ex:bob rdf:type foaf:Agent.
ex:alice ex:age "30"∧∧xs:integer

The RDF semantics specification[Hayes, 2004] defines three refinements of simple

interpretations and entailment relations which cover these entailments![Hayes, 2004]. . .
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interpretations and entailment relations which cover these entailments![Hayes, 2004]. . .
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ex:bob rdf:type foaf:Person. . . . because the range of knows is Person
ex:alice rdf:type foaf:Agent. . . . because each Person is an Agent
ex:bob rdf:type foaf:Agent. . . . because each Person is an Agent
ex:alice ex:age "30"∧∧xs:integer . . . simply because each 30.0 = 30

The RDF semantics specification[Hayes, 2004] defines three refinements of simple
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Unit 2 – RDF & SPARQL foundations 2. Simple Entailment

RDF Entailment regimes beyond simple Entailment

The RDF semantics specification[Hayes, 2004] defines three refinements of
simple interpretations and entailment relations which cover these entailments!:

RDF-entailment: Interpreting the rdf: vocabulary

• e.g. imposes that {s p o .} |= p rdf:type rdf:Property

RDFS-entailment: Interpreting the rdfs: vocabulary

• e.g. imposes that G′1 ]GFOAF |= { ex:alice rdf:type foaf:Person.}

D-entailment: Interpreting datatypes

• e.g. imposing that in all interpretations that "1"∧∧xs:integer is interpreted the
same as "1.0"∧∧xs:decimal

More on that later! Now to the semantics of SPARQL. . .
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Unit Outline

1. RDF Graph – Formal Definitions

2. RDF Interpretations and Simple Entailment

3. Semantics of SPARQL

4. Complexity of simple RDF entailment and SPARQL

5. From SPARQL to Rules

6. Simple RDF Entailment acyclic graphs
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Semantics of SPARQL

The formal semantics of SPARQL [Prud’hommeaux and Seaborne, 2007] is
based on simple Entailment
i.e., no special interpretation of the RDFS vocabulary3

semantics in the spec is defined in an operational way
based on [Pérez et al., 2006], who first defined a relational algebra for
SPARQL
some differences... similar issues as for SQL vs. relational algebra

For simplicity, we will focus on the formal semantics defined by [Pérez et
al., 2006] here, and only highlight the differences to the spec. semantics
by examples.

3Not entirely true: the entailment regime is actually “parametric”, i.e. extensions
allowed, more on that later.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

SPARQL Semantics

Definition of a formal semantics of SPARQL:
http://www.polleres.net/sparqltutorial/ESWC2007_SPARQL_Tutorial_unit2a.pdf
Slides from M. Arenas C. Gutierrez, J. Pérez, ESWC 2007 Tutorial, Unit 2a.
The basic semantics is defined in slides 8–31.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Notation used in SPARQL Semantics slides

Before we look into the semantics of Peréz at al. some notation:
They use an abbreviated version to write SPARQL query patterns:
((({ t1 , t2 } AND t3 ) OPT {t4 , t5 }) AND ( t6 UNION { t7 , t8 }))

stands for a pattern (or a sub-pattern) in the WHERE part of a query:

{
{ { t1 . t2 } { t3 } OPTIONAL { t4 . t5 } }
{ { { t6 } UNION { t7 . t8 } }

}
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Notation used in SPARQL Semantics slides

Definition Graph pattern:
if t1, t2, . . . tn are triple patterns, then {t1, t2, . . . , tn} is a basic
graph pattern (BGP)
if P1, P2 are graph patterns, then
• ( P1 AND P1)
• ( P1 UNION P1)
• ( P1 OPT P1)
• ( P1 FILTER R), where R is a FILTER expression
• ( G GRAPH P1), where G is a variable or in U

are graph patterns.
Filter expressions: only bound()
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

SPARQL Semantics

Definition of a formal semantics of SPARQL:
http://www.polleres.net/sparqltutorial/ESWC2007_SPARQL_Tutorial_unit2a.pdf
Slides from M. Arenas C. Gutierrez, J. Pérez, ESWC 2007 Tutorial, Unit 2a.
The basic semantics is defined in slides 8–31.

Advice to the reader: SWITCH TO OTHER SLIDESET now ;-)

Tricky parts:

Blank nodes in Basic Graph patterns (treated slightly different in the spec)

Blank nodes in CONSTRUCT queries

Bag semantics, i.e. duplicates in solutions to SELECT queries

Unsafe FILTERs (not treated in those slides in detail)

FILTERs in OPTIONALs (not treated in those slides in detail)

Higher Entailment regimes.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Blank nodes in Basic Graph patterns

The treatment in [ESWC 2007 Tutorial, Unit 2a, slide 32], gives a correct
semantic specification for this corner case.

However, this is NOT according to the spec [Prud’hommeaux and Seaborne,
2007, Appendix A6]:

“The same blank node label may not be used in two separate basic
graph patterns with a single query.”

This restriction allows us to treat all blank nodes just as variables, so no extra
care for blank nodes is needed, normally.

Bottom line:

Preprocessing step 1:
Blank nodes in queries can be replaced equally using a unique, “fresh” variable
for each blank node, the semantics of the query stays the same.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Blank nodes in Basic Graph patterns – Example

An example to illustrate this issue:
query9 : “SELECT all persons known who have a homepage.”

SELECT ?X
FROM <http://www.polleres.net/foaf.rdf>
WHERE { { __ :b foaf:knows ?X } {?X foaf:homepage __ :b } }

That one would not be compliant with the current spec!
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Blank nodes in Basic Graph patterns – Example

An example to illustrate this issue:
query9b: “SELECT all persons known who have a homepage.”

SELECT ?X
FROM <http://www.polleres.net/foaf.rdf>
WHERE { __ :b foaf:knows ?X . ?X foaf:homepage __ :b }

Different meaning: SELECT all persons known by their homepage.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Blank nodes in Basic Graph patterns – Example

An example to illustrate this issue:
query9c: “SELECT all persons known who have a homepage.”

SELECT ?X
FROM <http://www.polleres.net/foaf.rdf>
WHERE { { __ :b1 foaf:knows ?X } {?X foaf:homepage __ :b2 } }

That one would work!
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Blank nodes in Basic Graph patterns – Example

An example to illustrate this issue:
query9d: “SELECT all persons known who have a homepage.”

SELECT ?X
FROM <http://www.polleres.net/foaf.rdf>
WHERE { { ?B1 foaf:knows ?X } { ?X foaf:homepage ?B2 } }

That one is equivalent! Bnodes can be “treated” as variables
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Blank nodes in CONSTRUCT queries

As shown in [ESWC 2007 Tutorial, Unit 2a, slide 31]:

CONSTRUCT queries allow an arbitrary BGP which is used to
construct a new graph as the RDF merge, of all solution mappings
applied to the construct template.

This semantics ensures that
blank nodes in CONSTRUCT pattern are treated correctly (fresh bnode for
each solution)
only valid RDF triples are constructed ( UB × U × UBL)

Some examples to understand this treatment. . .
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Blank nodes in CONSTRUCT queries – Example 1
query10: “Anonymizing the people Alice knows”
G11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .
ex:alice foaf:name "Alice".
ex:alice foaf:knows __ :d.
__ :d foaf:name "Dorothy".

CONSTRUCT { ex:alice foaf:knows __ :b }
FROM G11

WHERE { ex:alice foaf:knows ?X }

Result graph:
ex:alice foaf:knows __ :genid1 .
ex:alice foaf:knows __ :genid2 .
ex:alice foaf:knows __ :genid3 .

The blank node labels, i.e., variable names, in the result graph can differ from implementation
to implementation. . .

. . . in Turtle syntax also possible here: anonymous blank nodes.
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Blank nodes in CONSTRUCT queries – Example 1
query10: “Anonymizing the people Alice knows”
G11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .
ex:alice foaf:name "Alice".
ex:alice foaf:knows __ :d.
__ :d foaf:name "Dorothy".

CONSTRUCT { ex:alice foaf:knows __ :b }
FROM G11

WHERE { ex:alice foaf:knows ?X }

Result graph:
ex:alice foaf:knows [] .
ex:alice foaf:knows [] .
ex:alice foaf:knows [] .

The blank node labels, i.e., variable names, in the result graph can differ from implementation
to implementation. . .

. . . in Turtle syntax also possible here: anonymous blank nodes.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Blank nodes in CONSTRUCT queries – Example 2
query11 : “What is the node ex:alice connected to?”
G11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .
ex:alice foaf:name "Alice".
ex:alice foaf:knows __ :d.
__ :d foaf:name "Dorothy".

CONSTRUCT { ex:alice ex:connectsTo ?N }
FROM G11

WHERE { ex:alice ?P ?N }

Result graph:
ex:alice ex:connectsTo ex:bob .
ex:alice ex:connectsTo ex:charles .
ex:alice ex:connectsTo [] .
ex:alice ex:connectsTo "Alice".

In subject position, no literals allowed, the following “solution triple” is surpressed:
"Alice" ex:connectedTo ex:alice.

Note: the output graph can be non-lean!
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Blank nodes in CONSTRUCT queries – Example 2
query11b: “What is the node ex:alice connected to?”
G11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .
ex:alice foaf:name "Alice".
ex:alice foaf:knows __ :d.
__ :d foaf:name "Dorothy".

CONSTRUCT { ?N ex:isConnectedTo ex:alice }
FROM G11

WHERE { ex:alice ?P ?N }

Result graph:
ex:bob ex:isConnectedTo ex:alice .
ex:charles ex:isConnectedTo ex:alice .
[] ex:isConnectedTo ex:alice .

In subject position, no literals allowed, the following “solution triple” is surpressed:
"Alice" ex:connectedTo ex:alice.

Note: the output graph can be non-lean!
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Bag semantics

Shown in [ESWC 2007 Tutorial, Unit 2a, slide 33].
Essentially:

SPARQL allows dublicate solutions, these may arise from
• UNION patterns
• Projections (i.e., variables projected away in the result form)

Some examples on that. . .
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Bag semantics – Example 1: Duplicates from UNION

query12 : “Who knows bob OR Charles”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

SELECT ?X
FROM G11

WHERE { { ?X foaf:knows ex:bob }
UNION { ?X foaf:knows ex:charles} }

Result:

?X
ex:alice
ex:alice
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Bag semantics – Example 1: Duplicates from UNION

query12b: “Who knows bob OR Charles”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

SELECT DISTINCT ?X
FROM G11

WHERE { { ?X foaf:knows ex:bob }
UNION { ?X foaf:knows ex:charles} }

Result:

?X
ex:alice
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Bag semantics – Example 1: Duplicates from UNION

query12c: “Who knows bob OR Charles”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

CONSTRUCT { ?X rdf:type ex:BobOrCharlesKnower }
FROM G11

WHERE { { ?X foaf:knows ex:bob }
UNION { ?X foaf:knows ex:charles} }

Result graph:
ex:alice rdf:type ex:BobOrCharlesKnower .
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Bag semantics – Example 1: Duplicates from UNION

query12d: “Who knows bob OR Charles”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

CONSTRUCT { __ :X rdf:type ex:BobOrCharlesKnower }
FROM G11

WHERE { { ?X foaf:knows ex:bob }
UNION { ?X foaf:knows ex:charles} }

Result graph:
__ :genid1 rdf:type ex:BobOrCharlesKnower .
__ :genid2 rdf:type ex:BobOrCharlesKnower .

Note here: Blank nodes in CONSTRUCT also are affected by duplicate solutions!
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Bag semantics – Example 1: Duplicates from UNION

query12d: “Who knows bob OR Charles”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

CONSTRUCT { __ :Y rdf:type ex:BobOrCharlesKnower }
FROM G11

WHERE { { ?X foaf:knows ex:bob }
UNION { ?X foaf:knows ex:charles} }

Result graph:
__ :genid1 rdf:type ex:BobOrCharlesKnower .
__ :genid2 rdf:type ex:BobOrCharlesKnower .

Note here: Blank nodes in CONSTRUCT also are affected by duplicate solutions!

The blank node id in a construct template is completely irrelevant
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Bag semantics – Example 1: Duplicates from UNION

query12d: “Who knows bob OR Charles”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

CONSTRUCT { [] rdf:type ex:BobOrCharlesKnower }
FROM G11

WHERE { { ?X foaf:knows ex:bob }
UNION { ?X foaf:knows ex:charles} }

Result graph:
__ :genid1 rdf:type ex:BobOrCharlesKnower .
__ :genid2 rdf:type ex:BobOrCharlesKnower .

Note here: Blank nodes in CONSTRUCT also are affected by duplicate solutions!

The blank node id in a construct template is completely irrelevant
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Bag semantics – Example 2: Duplicates from projection

query12e: “Who knows whom?”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

SELECT ?X ?Y
FROM G11

WHERE { ?X foaf:knows ?Y }

Result:

?X ?Y
ex:alice ex:bob
ex:alice ex:charles
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Bag semantics – Example 2: Duplicates from projection

query12f: “Who knows somebody?”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

SELECT ?X
FROM G11

WHERE { ?X foaf:knows ?Y }
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?X
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Bag semantics – Example 2: Duplicates from projection

query12g: “Who knows somebody?”
G′11:
ex:alice foaf:knows ex:bob .
ex:alice foaf:knows ex:charles .

SELECT ?X
FROM G11

WHERE { ?X foaf:knows [] }

Result:

?X
ex:alice
ex:alice
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Unsafe FILTERs and Errors in FILTERs

For patterns of the form (P FILTER R)
variables, appearing in R but not in P are problematic.
complex filter expression, i.e. if R uses ¬, ∧, ∨ follow a 3-valued
logic (>, ⊥, err)

Unsafe FILTER expression

Given a pattern (P FILTER R) we call R unsafe if it contains a variable
not occurring in P .
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Unsafe FILTERs – Examples

G12:
ex:bob a foaf:Person; foaf:homepage ex:hp1; ex:age 20 .
ex:charles a foaf:Person; foaf:homepage ex:hp2; ex:age 40 .

query13:

SELECT ?X ?H
WHERE { ?X rdf:type foaf:Person. ?X foaf:homepage ?H .

?X ex:age ?A FILTER( ?A > 30 ) }

Result:

?X ?H
ex:charles ex:hp2

“Unsafe” variables in FILTERs just have to be treated as unbound, so the FILTER evaluates

to “unbound > 30” which is an error, thus the FILTER expression always fails, independent of

the input graph.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Unsafe FILTERs – Examples

Note: unbound variables do not always yield the overall FILTER
expression to fail!
G12:
ex:bob a foaf:Person; foaf:homepage ex:hp1; ex:age 20 .
ex:charles a foaf:Person; foaf:homepage ex:hp2; ex:age 40.

query13c:

SELECT ?X ?H
WHERE { ?X rdf:type foaf:Person. ?X foaf:homepage ?H

FILTER( ! bound(?A) ) }

Result:

?X ?H
ex:bob ex:hp1

ex:charles ex:hp2

That one is no problem!

Hovewer, there are exceptions concerning unsafe FILTERs. . .
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

“Unsafe” FILTERs – Exception 1: Filters within a group

[Prud’hommeaux and Seaborne, 2007, Section 5.2.2] “A constraint, expressed by
the keyword FILTER, is a restriction on solutions over the whole group in which
the filter appears.”
G12:
ex:bob a foaf:Person; foaf:homepage ex:hp1; ex:age 20 .
ex:charles a foaf:Person; foaf:homepage ex:hp2; ex:age 40.

query14:

SELECT ?X ?H
WHERE { ?X rdf:type foaf:Person. FILTER( isIRI(?H) ) ?X foaf:homepage ?H }

Result:

?X ?H
ex:bob ex:hp1

ex:charles ex:hp2
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“Unsafe” FILTERs – Exception 1: Filters within a group

[Prud’hommeaux and Seaborne, 2007, Section 5.2.2] “A constraint, expressed by
the keyword FILTER, is a restriction on solutions over the whole group in which
the filter appears.”
G12:
ex:bob a foaf:Person; foaf:homepage ex:hp1; ex:age 20 .
ex:charles a foaf:Person; foaf:homepage ex:hp2; ex:age 40.

query14d: BUT:

SELECT ?X ?H
WHERE { { ?X rdf:type foaf:Person. FILTER( isIRI(?H) ) } ?X foaf:homepage ?H }

Result:

?X ?H
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

“Unsafe” FILTERs – Exception 1: Filters within a group

Actually, this is not really an “exception”, but just a matter of translation to the
relational syntax, where FILTERs are always moved last and are concatenated.

Normalization, i.e. exhaustive application of the following rules:

P1 FILTER R P2 ⇒ ( ( P1 AND P2) FILTER R )

(P FILTER R1) FILTER R2 ⇒ ( P FILTER (R1 ∧R2) )

Intuitively: move FILTERs always to the end within a group, before evaluating
the semantics.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Unsafe FILTERs – Exception 2: FILTERs in OPTIONALs

“select Persons, and homepages only of those older than 30”
G12 as before.

query15:

SELECT ?X ?H
WHERE { ?X rdf:type foaf:Person. ?X ex:age ?A

OPTIONAL { ?X foaf:homepage ?H FILTER( ?A > 30 ) } }

Result:

?X ?H
ex:bob

ex:charles ex:hp2
{µ1 = {X → bob}, µ2 = {X → charles, H → hp2}

In the original semantics of [Pérez et al., 2006] this would never return any homepage, since
the FILTER is considered unsafe, i.e. would fail, and the OPTIONAL pattern would never
return any solutions.
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Unsafe FILTERs – Exception 2: FILTERs in OPTIONALs

How to fix this?
Semantics in [ESWC 2007 Tutorial, Unit 2a, slide 3] for OPTIONALs:

Semantics of OPT
[[(P1OPTP2)]]G = [[P1]]G=./ [[P2]]G = ([[P1]]G ./ [[P2]]G) ∪ ([[P1]]G \ [[P2]]G)

Problem: This def. assumes a compositional semantics, i.e., that [[(P1 ◦ P2)]]
can always be defined modularly with respect to [[P1]] and [[P2]] . . .

. . . Unfortunately, for [[(P1 OPT P2)]], if there is an unsafe FILTER in P2,the
official SPARQL semantics is not compositional!
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Unsafe FILTERs – Exception 2: FILTERs in OPTIONALs

How to fix this? Solution:
[Prud’hommeaux and Seaborne, 2007, Section 12.5] rather says:

Semantics of OPT
A mapping µ is in [[(P1 OPT (P2 FILTER R)]]G if and only if:

µ = µ1 ∪ µ2, s.t. µ1 ∈ ([[P1]]G and µ2 ∈ [[P2]]G are compatible, and µ
satisfies R, or

µ ∈ ([[P1]]G and there is no compatible µ2 ∈ [[P2]]G for µ, or

µ ∈ ([[P1]]G and for any compatible µ2 ∈ [[P2]]G, µ ∪ µ2 does not satisfy
R.

Important: As opposed to the compositional definition, now the definition of
OPT has 3 components!

Positive message: Can be emulated with SPARQL with safe FILTERs by a
rewriting! [Angles and Gutierrez, 2008, Theorem 1].
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Complex FILTERs

Attention! ∧ (&&), ∨ (||), ¬ (!), in SPARQL FILTERs are not evaluated with
respect to the usual boolean algebra, but (similar to SQL) in a 3-valued logic.
e.g. eval("40"∧∧xs:integer > "30"∧∧xs:integer) = true,
eval("20"∧∧xs:integer > "20"∧∧xs:integer) = false,
eval("old" > "30"∧∧xs:integer) = err

(cf. query16), similar for query13b before

Since a FILTER constraint R can result not only in true and false, but also in
err, the semantics of FILTERs has to reflect that:

eval(R):

R ¬R
true false
false true
err err

R1 R2 R1 ∧R2

true true true
true false false
false true false
false false false
true err err
err true err
false err false
err false false
err err err

R1 R2 R1 ∨R2

true true true
true false true
false true true
false false false
true err true
err true true
false err err
err false err
err err err
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Complex FILTERs – Example

query17:

SELECT ?X ?A
WHERE { ?X rdf:type foaf:Person. ?X ex:age ?A

FILTER ( !(?A > ?X ) && (?A > 20) ) }
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Complex FILTERs – Example

query17:

SELECT ?X ?A
WHERE { ?X rdf:type foaf:Person. ?X ex:age ?A

FILTER ( !(?A > ?X ) && (?A > 20) ) }

This will not return a result, because comparison of a literal and a
resource yields err:

eval(¬err ∧ true) = err

eval(¬err ∧ false) = false

eval(¬err ∧ err) = err
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Complex FILTERs – Example

query17b:

SELECT ?X ?A
WHERE { ?X rdf:type foaf:Person. ?X ex:age ?A

FILTER ( !( (?A > ?X ) && (?A > 20) ) )}

This one works for µ = {?X → ex:bob, ?A→ 20}:

?X ?A
ex:bob 20

eval(¬(err ∧ false) = true
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Unit 2 – RDF & SPARQL foundations 3. Semantics of SPARQL

Higher Entailment regimes

All the semantics of SPARQL relies on the definition of BGP matching
being built “on-top” of RDF simple entailment.

What if we want to consider “higher” entailments (RDF-, RDFS-, D-,
OWL-entailment)?

As we will see, some problems with that. . .
We will talk about this, after we have talked about RDF- RDFS- and
OWL-Entailment.
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Unit 2 – RDF & SPARQL foundations 4. Complexity of simple RDF entailment and SPARQL

Unit Outline

1. RDF Graph – Formal Definitions

2. RDF Interpretations and Simple Entailment

3. Semantics of SPARQL

4. Complexity of simple RDF entailment and SPARQL

5. From SPARQL to Rules

6. Simple RDF Entailment acyclic graphs
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Unit 2 – RDF & SPARQL foundations 4. Complexity of simple RDF entailment and SPARQL4.1 Simple RDF Entailment is NP-complete

Simple RDF Entailment is NP-complete: Membership

Recall, we had that before already: We can test entailment G |=?G′ by
1 guessing a mapping µ and

2 test whether µ(G′) ⊆ G (this is obviously polynomial)

Membership in NP - done
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Unit 2 – RDF & SPARQL foundations 4. Complexity of simple RDF entailment and SPARQL4.1 Simple RDF Entailment is NP-complete

Simple RDF Entailment is NP-complete: Hardness

To proof hardness we have to reduce another NP-hard problem to RDF entailment (in
polynomial time). Let’s “adapt” the proof from [Chandra and Merlin, 1977].

3-colorability: Given an undirected Graph Gr, can all nodes be colored with 3 colors
red, green, blue without two adjacent nodes having the same color?

Reduction (the “trick” is we have to convert an undirected to a directed RDF graph):
Graph G1: simply encodes all "allowed" edges:

:red :edge :green. :green :edge :red.
:green :edge :blue. :blue :edge :green.
:blue :edge :red. :red :redge :blue.

Graph G2: for each (node1, node2) ∈ Gr we add two triples:
__ :n1 :edge __ :n2. __ :n2 :edge __ :n1.

to the graph G2, i.e, we model the nodes as blank nodes.

Now, it is easy to see that:

Proposition
Gr is 3-colorably if and only if G1 |= G2
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Unit 2 – RDF & SPARQL foundations 4. Complexity of simple RDF entailment and SPARQL4.2 Complexity of SPARQL is PSPACE

Complexity of SPARQL evaluation

Time allowed (this is NOT subject of the exam!)
http://www.polleres.net/sparqltutorial/ESWC2007_SPARQL_
Tutorial_unit4.pdf
Slides from M. Arenas C. Gutierrez, J. Pérez, ESWC 2007 Tutorial
Complexity of SPARQL evaluation, slides: 40–46.
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From SPARQL to Rules

Time allowed (this is NOT subject of the exam!)
http://www.polleres.net/presentations/20080109talk-cosenza.pdf
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Simple Entailment is polynomial for ground and acyclic
graphs

Time allowed (this is NOT subject of the exam!)
http://www.polleres.net/presentations/20080605dRDF_ESWC2008.pdf
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Recommended Reading

[Gutiérrez et al., 2004], excellent article on the logical foundations of
RDF
[de Bruijn et al., 2005], relating RDF entailment to normal first-order
logic.
[Pérez et al., 2006], SPARQL Semantics.

A bit more tough reading (specs), but also recommended:
[Hayes, 2004, Sections 1–2], official RDF semantics specification.
[Prud’hommeaux and Seaborne, 2007, Section 12], official SPARQL
semantics specification.
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W3C Recommendation, available at
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.
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