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Abstract

Conversational interfaces that allow for intuitive and comprehensive access to digitally stored

information remain an ambitious goal. In this thesis, we lay foundations for designing conver-

sational search systems by analyzing the requirements and proposing concrete solutions for

automating some of the basic components and tasks that such systems should support. We

describe several interdependent studies that were conducted to analyse the design requirements

for more advanced conversational search systems able to support complex human-like dialogue

interactions and provide access to vast knowledge repositories. In the �rst two research chapters,

we focus on analyzing the structures common to information-seeking dialogues by capturing

recurrent patterns in terms of both domain-independent functional relations between utterances

as well as domain-speci�c implicit semantic relations from shared background knowledge.

Our results show that question answering is one of the key components required for e�cient

information access but it is not the only type of dialogue interactions that a conversational

search system should support. In the third research chapter, we propose a novel approach for

complex question answering from a knowledge graph that surpasses the current state-of-the-art

results in terms of both e�cacy and e�ciency. In the last research chapter, we turn our attention

towards an alternative interaction mode, which we termed conversational browsing, in which,

unlike question answering, the conversational system plays a more pro-active role in the course

of a dialogue interaction. We show that this approach helps users to discover relevant items that

are di�cult to retrieve using only question answering due to the vocabulary mismatch problem.
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CHAPTER 1

Introduction

Progress is not made by �nding the “right answers”, but by asking meaningful
questions – ones that evoke an openness to new ways of being.
— TerryWinograd and Fernando Flores, Understanding computers and cognition:
A new foundation for design, 1986

People are overwhelmed with screens and the amount of visual information they project [149].

Both desktop and mobile devices engage their users predominantly through visual and tactile

interactions [89, 160]. Human-computer interfaces have a major impact on many aspects of

personal and professional life including consequences for individual physical health due to

long-hours sitting in front of a desktop screen and the dynamics of social interactions, such as

attending to mobile phone screens in transport, meetings and in the street [170]. The “virtual

life” within the information space has become richer and more dynamic but at the same time

more demanding by drawing more attention and energy, which are also required for balanced

functioning within the physical space [75, 95].

Conversational interfaces aim at addressing the issues of usability and balancing information

load more evenly across di�erent senses by engaging the human auditory perception system

more actively by means of speech-based and multimodal interactions [135]. Dialogue inter-

actions, both voice-based and text-chat, are minimalistic and concise by design. Enabling

interactive retrieval, contextual semantics and robust summarisation as the key technologies

can provide �exibility and e�ciency, which are characteristic of a human dialogue [18].

Another major bene�t that the idea of a conversational interface based on a natural language

provides, is a universal multipurpose communication protocol, which should be intuitively

accessible for every language speaker without any additional training required. In practice,

however, all modern conversational systems are able to interpret only a bounded set of com-

mands, which e�ectively makes them reminiscent of the traditional command-line interfaces

enhanced with some paraphrasing and speech-recognition features. Users need to know the
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1. Introduction

commands that the system supports to be able to use it e�ciently. This type of interaction

resembles a dialogue, but it is very far from a real conversation, which humans are capable of.

More complex conversations tend to be multi-turn, coherent, contextualized and grounded in a

shared background knowledge, such as common sense and situational awareness [84, 197].

One of the major applications for dialogue-based interfaces, which we consider in this work,

is the role of a knowledge communication medium that is designed to facilitate information

exchange between people [170]. The traditional broadcasting model of main-stream mass media,

in which informational content is produced exclusively by a few central nodes and transmitted

to the rest of the network, was recently replaced by a more decentralized communication model

enabled by social media platforms, in which every consumer-node can play the role of an

information producer as well [154]. This paradigm shift contributed to the massive surge of

the information stream, which is being constantly shared on-line. Whilst the current level of

technological developments allows us to scale information publishing and accumulation, it does

not yet provide any reliable means to gain a comprehensive overview and discover relevant

content [65]. Human cognition e�ectively serves as a bottleneck in the information consumption

and knowledge sharing process [144]. Thus, our goal will be to develop intelligent systems with

human-computer interfaces designed to account for the cognitive limitations of their users and

able to assist them, when navigating and consuming shared knowledge sources. Such intelligent

assistants, however, do not constitute autonomous agents, but are mere mediators that facilitate

communication between the autonomous members of the community by providing a high-

speed bus for sharing knowledge. E�cient communication is the key allowing people to act as

community members, align their knowledge about the shared environment and collaborate in

common creative projects.

Thus, we see a clear need for a more e�cient access mechanism to shared digital information

spaces, such as the Web. This motivation leads us to the main question “How to design an

e�cient communication interface to a vast knowledge repository?” (Figure 1.1). Thereby,

we are confronting two complex issues at the same time: (1) knowledge representation and

(2) communication interfaces. Our motivation for such a systematic take on this problem as a

whole is that we consider knowledge representation approaches as a means to a goal, which

for us is enabling an e�cient communication medium through interactive natural-language

interfaces inspired by human dialogue. Our main question is further decomposed into more

concrete research questions that are outlined in the next section.

1.1 Research Outline and Questions

We tackle the overall composite problem along four directions formulated as research questions,

which we aim to answer in this thesis. We begin with an analysis of information-seeking

dialogue transcripts to extract basic structural patterns that hold true across speci�c domains

and datasets.

RQ 1 What is the general structure of an information-seeking dialogue?

Furthermore, we hypothesize that besides having certain structural properties, which are

2



1.2. Main Contributions

Seeker

CommunicationKnowledge

?
Figure 1.1: How to design an e�cient communication interface to a knowledge repository?

common across di�erent information-seeking conversations, each conversation also has an

innate semantic structure, meaning that the set of semantic concepts and the order in which they

are used in the conversation are not random but determined by the structure of the underlying

semantic space, i.e., the background knowledge of the conversation participants.

RQ 2 What are the relations between concepts mentioned in the course of a conversation and

how can we detect them?

Question answering is one of the main components of a conversational search system. Knowl-

edge graphs provide a convenient data structure that allow for modeling, sharing and accessing

explicit knowledge representations.

RQ 3 How to design a system able to answer complex questions using information stored in a

knowledge graph?

Finally, we turn our attention towards the other functionality expected from a conversational

search system beyond the question answering task. Query formulation has been shown to

constitute a bottleneck hindering e�ectiveness of information retrieval systems [97]. A similar

problem has been reported for conversational search as well [210].

RQ 4 How to design a conversational system able to support information retrieval without the

need to explicitly formulate a search query?

1.2 Main Contributions

In this section, we summarize the main theoretical, algorithmic and empirical contributions of

this thesis.

3
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1.2.1 Theoretical contributions

1. We propose a novel data-driven model of information-seeking dialogues addressing RQ
1. Cf. Chapter 3.

2. We design the task of measuring semantic coherence of a conversation to evaluate the

ability of a model to distinguish between original human conversations and adversar-

ial examples generated by perturbing the original conversations addressing RQ 2. Cf.

Chapter 4.

3. We introduce and formally de�ne the task of conversational browsing addressing RQ 4.

Cf. Chapter 6.

1.2.2 Algorithmic contributions

4. We propose a message-passing algorithm for con�dence score propagation and aggre-

gation for answering complex questions from knowledge graphs addressing RQ 3. Cf.

Chapter 5.

5. We propose the �rst approach to the conversational browsing task based on information

theoretic criteria of optimality addressing RQ 4. Cf. Chapter 6.

1.2.3 Empirical contributions

6. We show empirically that our model of information-seeking dialogues generalizes to

unseen dialogues and is able to detect dialogue break-downs addressing RQ 1. Cf. Chap-

ter 3.

7. We test the e�ectiveness of di�erent knowledge representation models: word embeddings,

knowledge graphs and knowledge graph embeddings, for the task of measuring semantic

coherence of a conversation addressing RQ 2. Cf. Chapter 4.

8. We evaluate the proposed message-passing algorithm on a large-scale benchmark for

complex question answering from knowledge graphs and show a signi�cant performance

improvement over the previously proposed approach, in terms of both e�ectiveness and

e�ciency, addressing RQ 3. Cf. Chapter 5.

9. We conduct a �st user study to collect human conversations as examples for the conver-

sational browsing task addressing RQ 4. Cf. Chapter 6.

10. We conduct a second user study to evaluate our approach to conversational browsing

addressing RQ 4. Cf. Chapter 6.

4



1.3. Thesis Overview

1.3 Thesis Overview

We outline the research described in this thesis in Chapter 1. Next, Chapter 2 lays out the

background with the main concepts addressed in this thesis, namely analysis of the communica-

tion process that supports the design of natural-language dialogue interfaces, as well as a brief

description of the main characteristics and the structure of the prevalent knowledge models

that were used in this thesis for conversation analysis and knowledge retrieval.

In Chapter 3 we focus on analyzing the structure of communication processes in terms of the

interaction types that are characteristic for conversations in which one of the participants

is seeking access to a part of the knowledge that may be available to the other conversation

participant (Figure 1.2). We present the resulting QRFA model that was empirically derived from

a systematic semi-automated study conducted over four independent datasets and describes the

general structure of an information-seeking dialogue. It is the �rst step that helps us to argue

for the functions that a conversational search system should support.

Seeker

CommunicationKnowledge

Q

R

F

A

Figure 1.2: Chapter 3 analyzing the structure of the communication process.

In Chapter 4 we con�rm our hypothesis that relations between concepts in the knowledge

models are also re�ected in the structure of the conversation (Figure 1.3). The obtained results

are empirical in nature, showing that it is possible to predict the dialogue coherence based on

relations stored in the knowledge model. But the major implications are of a more theoretical

nature: (1) there is an immediate connection between the dialogue structure and the structure of

the background knowledge even if the dialogues were not explicitly designed to communicate

parts of this background knowledge; (2) the existing knowledge models are incomplete; and (3)

one of the major challenges is aligning natural language to semantic concepts, i.e., linking and

disambiguation tasks.

In Chapter 5 we follow up and integrate the previous two lines of research that were started in

parallel by focusing on the key interaction identi�ed in Chapter 3, namely question answering

(QA), and applying it to the knowledge graph as one of the main knowledge models motivated

in Chapter 4 (Figure 1.4). Our approach outperforms the baseline, achieving state-of-the-art

results on a complex QA benchmark, and demonstrates the limitations of the ground-truth

sampling method, while improving recall even over the original answer sets provided by human

annotators.
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Seeker

CommunicationKnowledge

Q

R

F

A

Figure 1.3: Chapter 4 showcases that semantic relations from the knowledge model are re�ected

in the conversation structure.

Seeker

CommunicationKnowledge

Q

R

F

A

Figure 1.4: Chapter 5 describes our novel approach to complex question answering over knowl-

edge graphs.

There are natural limits to how complex a single question can get. A conversational search

system should provide a good balance between complexity and simplicity by supporting inter-

active knowledge retrieval. In Chapter 6 we describe conversational browsing as an alternative

interaction mode, which allows one to access a knowledge source iteratively without the need

to formulate a single complete question-query at once (Figure 1.5). Conversational browsing

was designed to complement the question answering mode described in the previous chapter by

completing the requirements prescribed by the QRFA model. Moreover, we further extend the

interaction model by considering not only the model of the knowledge source but also modeling

the information seeker (user) to automate some parts of the system evaluation and algorithm

tuning via a user simulation.

Finally, in Chapter 7, we conclude the thesis and discuss the limitations and promising directions

for future work.

6



1.4. Origins

Seeker

CommunicationKnowledge

Q

R

F

A

Figure 1.5: Chapter 6 introduces the novel task of conversational browsing and the �rst approach

that allows one to iteratively search and discover the content of a knowledge source.

1.4 Origins

The chapters of the thesis are based on the following publications, all of which were �rst-

authored by Vakulenko as the main contributor.

Chapter 3 is based on Svitlana Vakulenko, Kate Revoredo, Claudio Di Ciccio and Maarten de

Rijke. QRFA: A Data-Driven Model of Information Seeking Dialogues. In ECIR. 2019. Best User
Paper Award. Vakulenko designed the main algorithm. Vakulenko and Di Ciccio conducted

the initial experiments. Vakulenko and Revoredo annotated the datasets and performed the

evaluation. All authors contributed to the text, Vakulenko did most of the writing.

Chapter 4 is based on Svitlana Vakulenko, Maarten de Rijke, Michael Cochez, Vadim Savenkov

and Axel Polleres. Measuring Semantic Coherence of a Conversation. In ISWC. 2018. Spotlight
Paper. Vakulenko designed the main algorithm and ran most of the experiments. Savenkov

contributed to the implementation. Cochez ran additional experiments. All other authors

contributed to writing the paper.

Chapter 5 is based on Svitlana Vakulenko, Javier Fernandez, Axel Polleres, Maarten de Rijke

and Michael Cochez. Message Passing for Complex Question Answering over Knowledge

Graphs. In CIKM. 2019. Vakulenko designed the main algorithm and conducted the main

experiments. Fernandez contributed to the implementation and evaluation design. All other

authors contributed to the writing.

Chapter 6 is based on Svitlana Vakulenko, Vadim Savenkov and Maarten de Rijke. Con-

versational browsing: Dialog-based Access to Structured Information Sources. Under review.

Vakulenko designed the main algorithm, wrote code and ran the experiments. All authors

contributed to the development of the theoretical model and writing the paper.

The thesis also indirectly builds on the following publications that helped to form a general

understanding of the problem space and shaped the ideas presented in this thesis:

• Sophia Keyner, Vadim Savenkov, and Svitlana Vakulenko. Open data chatbot. In The
Semantic Web: ESWC 2019 Satellite Events, Portorož, Slovenia, 2019
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• Svitlana Vakulenko, Ilya Markov, and Maarten de Rijke. Conversational exploratory

search via interactive storytelling. In Proceedings of the Workshop on Search-Oriented
Conversational AI (SCAI), 2017

• Svitlana Vakulenko and Vadim Savenkov. Tableqa: Question answering on tabular data. In

Proceedings of the Posters and Demos Track of the 13th International Conference on Semantic
Systems (SEMANTiCS 2017), Amsterdam, The Netherlands, September 11-14, 2017., 2017

• Sebastian Neumaier, Vadim Savenkov, and Svitlana Vakulenko. Talking open data. In The
Semantic Web: ESWC 2017 Satellite Events, Portorož, Slovenia, May 28 - June 1, 2017, pages

132–136, 2017
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CHAPTER 2

Background

The world’s in trouble. There’s no communication.
— Joan Jett, Bad Reputation, 1981

A human being, after all, is only what it is de�ned to be.
— Isaac Asimov, Robots and Empire, 1985

This chapter introduces the main concepts concerning knowledge and communication that form

the basis for understanding previous work and highlight the gaps that the research contributions

we describe in the next chapters �ll. We provide a foundation covering existing viewpoints

and current research directions. Additionally, we will discuss speci�c related work within the

following chapters directly when we explain our approaches to tackle the speci�c sub-problems

addressed in this thesis.

Communication is an important social phenomenon necessary for establishing relationship,

trust and successful collaboration
1

[5]. The study of communication is one of the cornerstones

that falls within the scope of several scienti�c disciplines: psychology, sociology and linguistics.

Understanding the structure, dynamics and roles that communication plays in private and social

lives, are among their main research goals. We are interested in communication as a process

that enables knowledge exchange.

2.1 Communication Process

There are di�erent types of communication, e.g., synchronous/asynchronous, verbal/non-

verbal [121]. In this thesis we focus speci�cally on verbal communication, i.e., the one conducted

1https://ncase.me/trust/
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2. Background

by means of a natural language, as a system of symbols with assigned semantics. Human lan-

guage is an e�ective communication tool, �exible and able to evolve so as to adopt to new

domains and purposes [61, 85].

De�nition 2.1. A conversation is a sequence of natural language expressions (utterances)
made by several conversation participants in turns.

We consider sample conversations as individual instances of a general communication process.

Our goal is to design a human-computer interface that resembles a human dialogue. We believe

the �rst legit step in this direction is understanding the properties and functions of human

conversations, which we are trying to reproduce, as the patterns of language usage that support

human communication.

2.1.1 Understanding conversations

We brie�y review the main theories of linguistic communication and link them to the studies

of information-seeking behavior. Further on, we describe how Chapters 3 and 4 of this thesis

extend and empirically evaluate these theories using large datasets of conversational transcripts.

We use these insights to propose concrete solutions to question answering and conversational

browsing in Chapters 5 and 6, respectively.

The main bottleneck in traditional approaches to discourse analysis, especially ones grounded in

social and psychological theories [e.g., 51], is context-dependence of the conversational seman-

tics. Many studies rely on a handful of sampled or even arti�cially constructed conversations to

illustrate and advocate their discourse theories, which limits their potential for generalization.

Discourse analysis Interviews and observation of naturally occurring social interactions

that involve recording of conversation transcripts are the traditional research methods of

anthropologists and other social scientists used to collect data for their analysis [127, 141]. This

research motivation also stimulated early attempts at developing methodologies for systematic

analysis of conversational data, such as standardized categorization schemes used as tools for

manual annotations, which help not only to summarize and generalize �ndings across di�erent

studies but also record an extra dimension of the expression, such as an intent or an attitude of

the speaker [192].

A plethora of approaches to analyse language use have been proposed over decades, focusing on

di�erent aspects of the communication process [178]. Some of them are grounded in social and

psychological theories [e.g., 51], while relying only on a handful of illustrative conversations or

arti�cially constructed examples. Discourse analysis further evolved as a study of regularities in

language composition, such as frequent structures and relations between individual sentences.

For example, Conversational Analysis (CA) [177] proposed to analyze regularities such as

adjacency pairs and turn-taking in conversational structures, and Speech Act Theory [4, 181]

to identify utterances with functions enabled through language (speech acts). Among the

more recent developments are attempts at standardizing annotation schemes for conversations

10
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(dialogue acts) and statistical models for automatic annotations [193] aimed at dramatically

scaling the analysis of conversation transcripts.

Discourse analysis also leads to formulating theories and models of discourse structure, which

attempt to explain how a sequence of sentences forms a coherent discourse [73, 129]. Discourse

structure theories were successfully applied to characterize a dialogue phenomena and inform

the design of dialogue systems [171].

Information-seeking dialogues Another large research area devoted to the study of information-

seeking behavior has unfolded in parallel to discourse analysis. Information-seeking behavior

is a complex process that has been extensively studied in the literature and several models have

been proposed as an attempt to describe its structure and characteristics [11, 53, 109]. A search

session is an instance of this process, which may include several interaction turns (information

exchanges) between the user and a search engine as an information source [76].

“Naturally occurring” conversations have often served as evidence and a source of inspiration

for developing theoretical models and prototypical implementations in the area of information

retrieval (IR) [see, e.g., 184, 200, 213]. For example, observations of information-seeking dia-

logues with a reference librarian, which is a classic example of a help-desk information service,

suggest that a process of negotiation is an important component that helps to better understand

and adjust the information need when discussing it with an expert [198]. The observations

derived from these studies were extensively discussed in the research literature. “There has

been a great deal written about information seeking behavior, but there is little consensus as

to a speci�c conceptual model. This presents di�culties for a deeper understanding of the

process” [108].

The key properties of an information-seeking dialogue are asymmetry of roles and cooperation

— the information seeker and provider (intermediary) cooperate to better understand and satisfy

the information need of the seeker. An information provider has access to the information

source and plays the role of an intermediary for the information seeker who has an information

need. Let us have a closer look at a sample information-seeking dialogue. It is an excerpt from

a real chat-based conversation that occurred between a pair of students during a lab study

that we conducted, which is described in more detail in Chapter 6. One of the students seeks

information (S – Seeker) and the other one is trying to help using the Austrian Open Data portal

(I – Intermediary):

(I) - opendataportal.at contains more than 417 data sets.

(S) - Is there data about universities?

(I) - Yes, especially about WU.

(S) - How many courses are there at WU?

(I) - For which semester?

(S) - I want to have the latest data possible.

(I) - There were 2,576 courses o�ered at WU in the SS17
2
.

2

SS17 refers to Summer Semester 2017. The background knowledge necessary to correctly interpret natural

language is discussed in Section 2.2.
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(S) - Thank you.

This dialogue exempli�es the question negotiation process. The students exchange knowledge

about the content of the data sets for the details of the information need. This language exchange

is governed by certain conversational rules, which is evident from the relations between the

utterances in conversation, e.g., questions are either followed by answers or clarifying questions

in-between [177].

2.1.2 Theoretical models of information-seeking dialogues

Several models have been proposed as an attempt to describe the structure and characteristics

of the information seeking process as a whole [11, 53, 109], such as the berrypicking model [12].

The berrypicking model of search behavior suggests that the understanding of an information

need evolves during the search process as more information becomes available to the seeker

and browsing interfaces are the key enablers for supporting this kind of a dynamic search

process [12]. These models, however, are too high-level and cannot be applied to describe the

pattern of interactions within a single information-seeking dialogue [176, 201].

The �rst theoretical model of an information-seeking dialogue has been proposed by Winograd

and Flores [229] and further extended by Sitter and Stein [189] to form the COnversational Roles

(COR) model, which has remained de facto the only established model of an information-seeking

conversation until today. The authors envision an implementation of a human-computer dia-

logue system that could support necessary functionality to provide e�cient information access

and illustrate it as a transition network over a set of speech acts (Figure 2.1). This model de-

scribes a use case of a “conversation for action” and is mainly focused on tracking commitments

rather than analyzing language variations. The COR model describes a conversation in terms of

commitments and operates the corresponding set of utterance labels: request, promise, o�er,

accept, be contended etc. (see Figure 2.1). In Chapter 3 we show in an empirical evaluation on

four publicly available datasets that this model does not adequately re�ect the structure of an

information-seeking dialogue, such as the example provided above, and propose a new QRFA

model as an alternative.

Belkin et al. [16] argue for a modular structure of an interactive information retrieval (IR)

system that would be able to support various dialogue interactions. The system should be

able to compose interactions using a set of scripts, which provide for various information-

seeking strategies (ISSs) that can be described using the COR model. The authors introduce

four dimensions to describe di�erent ISSs and propose to collect cases for each of the ISSs to

design the scripts.

More recently, Radlinski and Craswell [161] have also proposed a theoretical model for a

conversational search system. They propose a set of �ve actions available to the agent and a

set of �ve possible user responses to describe the user-system interactions. However, they do

not describe in detail the conversation �ow between these actions. In contrast, Trippas et al.

[200] empirically derived a model of Spoken Conversational Search (SCS) from conversational

transcripts collected in a Wizard of Oz study for informing the design of speech-only interfaces to

a web search engine (Figure 2.2). The SCS model captures patterns of interactions that generalize
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2.1. Communication Process

Figure 2.1: COnversational Roles (COR) model of information-seeking dialogues proposed by

Sitter and Stein [189].

Figure 2.2: Spoken Conversational Search (SCS) model by Trippas et al. [200] (SERP is short for

Search Engine Results Page.)

across the individual dialogues: information requests are followed by result presentation or

clarifying questions. However, the SCS model is limited to sequences of three conversational

turns. Inspired by the data-driven approach of Trippas et al. [200] we continue this line of

work by proposing a methodology that allows us to scale analysis of conversational transcripts
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in Chapter 3. We also extend the analysis to other publicly available conversational datasets

and de�ne a new label set integrating di�erent annotation schemes. In Chapter 3 we show

how such an empirical approach to analyzing and structuring conversation transcripts into

conversation models can be performed at scale on multiple conversational datasets (including

SCS) using process mining techniques. The resulting QRFA model is a grounded theory of

information-seeking dialogues that motivates and lays the foundation for the follow-up studies

described in the next chapters. This model should not be treated as a �nal result but rather as

an initial hypothesis and the basis for the development of a conversational knowledge model,

which can be shared and discussed within the community, refuted or further extended by

providing additional sources of evidence, i.e., more conversational datasets. Thereby we also

closely follow the line of work proposed by Belkin et al. [16] by accumulating empirical evidence

from publicly available conversational datasets to validate both the COR model and the ISS

dimensions proposed by Sitter and Stein [189] that form the basis for accumulating the body of

sample scripts describing various ISSs. Chapter 4 describes the study that analyses dialogues by

annotating them with entities from an external knowledge source and explains the phenomenon

of dialogue coherence by the regularities in the structure of semantic relations manifested in

the background knowledge.

The search engines that are being used today do not re�ect the complexity and challenges

inherent in human information seeking behavior, and the research community continues to

work on aligning the priorities and developing viable alternatives [36]. In the next section we

brie�y review the main approaches proposed to design conversational interfaces and dialogue

systems, as an alternative tool for enabling more advanced human-machine interactions, and

motivate their adoption for automating information-seeking dialogues as well, in the context of

conversational search.

2.1.3 Conversational systems

Due to recent advances in speech recognition and natural language generation technologies

conversational interfaces experience a surge of interest from both industry and academia [see,

e.g., 47, 208, 228]. There are two major types of dialogue system application considered now:

chit-chat dialogues and task-oriented dialogues [67]. The idea of an automated system being

able to communicate by means of a natural language goes back to the beginning of computing.

The seminal paper by Alan Turing [203], which introduced a human-machine dialogue as a test

for arti�cial intelligence, is still regarded as an ambitious goal and drives the development of

systems capable to hold an open-domain (chit chat) conversation. The chatbot history began

with ELIZA [224], a rule-based system that followed a prede�ned script of a psychotherapy

interview. The next famous chatbot simulated a schizophrenic patient
3

[46]. In practice, this

kind of conversational systems are being used predominantly for entertainment [164], in more

radical cases even aiming to replace a human companion
4

[55]. However, none of the systems

proposed to date has so far proven to be capable of “maintaining a coherent and engaging

conversation for 20 minutes” [77].

3https://web.stanford.edu/group/SHR/4-2/text/dialogues.html
4https://replika.ai
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Another direction for conversational systems are task-oriented dialogues, in which one of the

main measures of conversation success is the task completion ratio that makes evaluation more

straight-forward. Classic examples of task-oriented dialogue systems are in the restaurant

reservation and trip planning domains [228]. In this case the dialogues that the system is able

to support are more specialized and domain-speci�c, in comparison with their chitchatting

counterparts. Task-oriented dialogues rely on a domain speci�cation, which can be de�ned in

terms of an ontology, a table or a set of annotated dialogue samples that provide a frame for

linking slots and intents to possible replies. This ontology enumerates all concepts and attributes

(slots) that a user can specify or request information for [143]. The dialogue models are then

designed to jointly perform the tasks of parsing the input utterances, slot matching/�lling and

belief state tracking [227]. Today, most of the small-scale commercial chatbots are task-oriented

and hard-coded to support a very limited functionality �tted to a speci�c use case, such as make

a purchase or check the weather forecast [86, 87]. Digital assistants embedded in smartphones

and smart home devices, such as Siri, Alexa and Cortana [38], play the role of a hub that can

serve di�erent chatbots (skills) from the same interface.

Every conversational system both for open-domain and task-oriented dialogues relies on knowl-

edge, de�ned in terms of the information stored to assist in understanding the user input and

formulating a response. This information can be dynamically updated and should be e�ciently

accessible from the dialogue model.

De�nition 2.2. The task of retrieving relevant information using a conversational interface
is termed conversational search.

The main goal in conversational search, which is the same as for the discipline of information

retrieval in general, is to satisfy an information need, which makes it distinct from both open-

domain and task-oriented dialogues. Conversational search systems have a diverse set of

applications, including such challenging scenarios as recommendation and education [39, 161].

Lately, conversational search systems are becoming increasingly popular [219]. So far, how-

ever, such systems mainly focus on question answering and simple search tasks, those that

are to a large extent solved by web search engines. Question answering (QA) is one of the

central functionalities required for conversational search (interactive question answering) [106].

E�ectively it is mirroring the already existing querying mechanism of the traditional search

engines into a new conversational interface coupled with more advanced speech-recognition

and natural language processing technologies, such as machine reading comprehension and

summarisation. QA systems have been evolving since the early 1960s with the e�orts in the

database community to support natural language queries by translating them into structured

queries [see, e.g., 25, 70, 230]. In Chapter 5 we describe our contribution as a novel approach to

complex QA that pushes the state-of-the-art in this direction on a recent benchmark dataset.

Instead of attempting to translate questions into queries, our approach applies probabilistic

reasoning directly on the graph structure of the background knowledge.

As already discussed in the previous section, QA is not the only type of interaction that a

conversational search system has to provide in order to support comprehensive information-
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seeking dialogues [213]. Vocabulary mismatch (aka vocabulary or semantic gap) is a common

phenomenon that occurs when two parties, e.g. user in queries and system in collection

documents, use di�erent words to describe the same concepts [217]. Morover, due to the

anomalous state of knowledge (ASK) [15] an information seeker is unable to precisely and

unambiguously formulate a question when searching for something previously unknown. We

argue that conversational agents and search systems should also provide support for exploratory

search and provide a detailed description of this relatively under-explored direction in Chapter 6

reporting the results of our �rst attempt when applying it to design an alternative conversational

interface to a database. Our empirical study of the information-seeking dialogues and strategies

that humans employ to communicate content of an information source informs the design of a

conversational browsing model. Our experiments show that a dialogue system design based on

this model is e�ective in providing basic exploratory search (browsing) functionality.

In summary, we consider e�cient information access, communication and knowledge transfer

to be the key functions of a conversational search system. Knowledge, which is required to

interpret natural language, understanding the context and formulating an appropriate answer

to support a human conversation — all these have to be at the center of such systems.

2.2 Knowledge Models

There are several alternative representation methods to encode, store and accumulate infor-

mation over time. The purpose of information gathering is to be able to use and re-use it at a

later stage, and also share it with others as a knowledge repository. We consider two of the

most popular types of knowledge models that di�er in terms of their sources and structure:

(1) language models that learn co-occurrence patterns from unstructured text corpora, such as

word embeddings; and (2) knowledge bases as curated structures that explicitly de�ne relations

between concepts, such as tables, databases, ontologies and knowledge graphs.

2.2.1 Language models

Language is a major tool for communication and knowledge transfer. Massive amounts of

information expressed in natural language are being recorded on a daily basis as text and speech.

This information is split between separate individual narratives of di�erent kinds, such as stories

(monologues) and discussions (conversations) [9].

The usage patterns of language recorded in texts re�ect the structure of the background knowl-

edge used to generate them. Statistical models are able to capture and extract such patterns

from a text corpus [110]. Textual documents contain sequences of symbols. Therefore, the basic

language patterns that can be extracted from text are frequent co-occurrences of groups of

symbols (n-grams). Knowledge of such regular patterns can be accumulated, compressed and

stored as a language model, which encodes conditional probabilities of the next symbol given

the preceding ones [93].
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De�nition 2.3. A language model is a probability distribution over word sequences.

Current state-of-the-art approaches to language modeling rely on neural network embed-

dings [137], such as word2vec [138], which are trained to predict each word given its neigh-

bouring words as context. Co-occurrence relations are encoded as word vectors that also re�ect

similarities between words. More recently, transformer-based architectures, which encode

patterns observed in texts into the weights of multiple hidden layers of a neural network, were

shown to boost performance on a variety of natural language processing tasks, as an alternative

to the word embeddings input layer [45].

Though natural language is an often-used medium to express human knowledge that can

be condensed using state-of-the-art pattern recognition techniques, it has certain limitations

in its practical applications. Firstly, texts are not self-explanatory and usually require some

prerequisites for adequate interpretation, such as commonsense knowledge [40]. Secondly, it

is hard to control which patterns are being learned by language models [21, 174]. An e�ect

prominent in dialogue systems is the di�culty to maintain the speaker consistency (persona)

in neural models trained on diverse conversation samples [118]. Unawareness of the model

structure may also lead to undesirable biases being propagated from the input distribution and

re�ected in the model predictions, such as gender-based discrimination [21]. These challenges

in training neural language models motivate the need for careful sampling and data curation.

The need to perform data engineering leads us directly to the motivation for constructing and

maintaining knowledge bases that help to accommodate and edit explicit knowledge models.

2.2.2 Knowledge bases

Beyond learning patterns from naturally occurring communication traces it is also possible to

explicitly specify models that can encode distinct concepts from a vocabulary and semantic

relations between them. This knowledge can be stored in manually or semi-automatically con-

structed data structures, such as tables or databases that can connect several related tables [90].

De�nition 2.4. A knowledge base is a structured information repository used for knowledge
sharing and management.

The practice of organizing knowledge into meaningful structures goes back to Ancient Greece.

Ontology is a �eld of philosophy concerned with de�ning “a particular system of categories

accounting for a certain vision of the world” [74]. In computer science, ontologies refer to models

that enumerate and describe entities in terms of their properties, classes and relations [194].

Tree-like structures, called taxonomies, list entities grouped due to similar properties into a

single hierarchy and are commonly used for building browsing interfaces, e.g. product catalogs

in e-commerce applications.

DBpedia [117] and Wikidata [218] are famous examples of large-scale graph-structured knowl-

edge bases, also called Knowledge Graphs (KGs). DBpedia describes entities that correspond to

the Wikipedia pages. It is automatically populated from Wikipedia, while Wikidata imitates
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the editing mechanism of Wikipedia but for structured data. All entities are assigned Unique

Resource Identi�ers (URIs) that allow to unambiguously reference them and link across di�erent

datasets thereby bridging the semantic (vocabulary) gap. The entities of DBpedia and Wikidata

are interlinked. Both graphs form an important part of the Linked Open Data (LOD) cloud
5

that

groups all the datasets published in the RDF format [81].

KGs were successfully applied for disambiguating natural language text in a variety of tasks,

such as information retrieval [19, 80] and textual entailment [185]. They serve an important role

by providing additional relations that help to bridge the lexical gap and gain a more complete

understanding of the context in comparison with shallow approaches based on lexical features

alone. There was also a recent surge in development of question answering interfaces to

KGs [2, 125, 205].

The term “Knowledge Graph” was proposed as a medium to accumulate and integrate knowledge

from heterogeneous data sources [22]. In contrast with LOD, KG is an abstraction, which does

not prescribe any particular format or standard on handling data. Thereby, tables, taxonomies

and texts can be seen as a special kind of relational knowledge and transformed into graph-like

structures [226]. Then, graph algorithms can be applied on this structure directly or the nodes

can be embedded into a vector space for neural network approaches [169].

Let us go back to the information-seeking dialogue example that we introduced before. Both

conversation participants share common knowledge about the conversation domain (Figure 2.3).

This shared knowledge allows them to recognize the semantic relations between the concepts

mentioned in the conversation, such as universities, courses and semesters and produce ap-

propriate responses. For someone who does not possess the prerequisite knowledge necessary

for a correct interpretation this conversation will appear nonmeaningful or even misleading.

Figure 2.3 includes a snippet of the real Open Data table released by the Economic University of

Vienna (WU).
6

Clear advantages of using knowledge models with explicit structure and relation types lie mostly

in interpretability and transparency. KGs give control over the representation and reasoning

process that can be traced directly to the visited nodes in case of graph traversal algorithms,

which is important for explainability [126, 223]. The downside is the di�culty to scale curated

knowledge resources in comparison with neural language models that can be trained on existing

text corpora [114, 119]. Semi-automated knowledge base construction is an on-going research

direction useful for integration of heterogeneous information sources [165].

In Chapter 4 we evaluate the potential of di�erent knowledge models (word embeddings, KGs

and KG embeddings) to predict coherent dialogues. This analysis shows the limitations of

current knowledge representation approaches and identi�es implications for conversational

system design. There is a clear need for hybrid approaches that could leverage knowledge

encoded in both symbolic and neural representations. In Chapter 5 we present a novel approach

that leverages a language model to answer complex questions using a knowledge graph. The

language model helps to disambiguate natural language questions and retrieve relevant relations

5https://lod-cloud.net
6https://data.wu.ac.at/portal/dataset/all_course_events_2017s
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All Courses during SS17 at WU Vienna

course_id semester name

4001 17S Marketing

4002 17S Marketing

4003 17S Betriebliche IS

4004 17S Betriebliche IS

university

WUcourse

semester

SS17

offers
isA

isA

dates

2017year There were 2,576 courses offered at WU in the SS17

For which semester?

How many courses are there at WU?

Yes, especially about WU.

Is there data about universities?

I want to have the latest data possible.

Figure 2.3: Aligning knowledge and conversation.

that are stored in a knowledge graph. In Chapter 6 we show how basic information-theoretic

measures can be applied to the graph structure of a background knowledge to create a novel

conversational browsing interface for exploratory search. This idea transcends the boundaries of

the standard query-response paradigm and is based on the analysis of real information-seeking

dialogues reported in Chapter 3 introducing the QRFA model.

The approaches we present in this thesis are designed to be domain independent. We analyse

patterns and design functionality that can be applied in di�erent scenarios where information-

seeking dialogues can occur. Chapter 3 validates the hypothesis that information-seeking

dialogues across di�erent domains (Open Data search, web search, querying bus schedules or

restaurant reservation databases) share common structural properties. The running example

of Open Data search introduced in this chapter, i.e. providing access to publicly available

structured data sources, is further developed through Chapters 3 and 6.

We foresee that individual tables will be integrated in the future through an annotation process

providing links between the datasets on the level of columns, rows and entities they contain [146,

147]. Therefore, our goal is enabling dialogue-based access to knowledge graphs. In Chapter 5 we

show how a large-scale knowledge graph, which contains billions of facts [117], can be e�ciently

used to provide answers to complex questions posed in natural language, which is the task

relevant for any conversational system that aims to support access to encyclopedic knowledge.

Finally, we consider human conversations, such as Ubuntu trouble-shooting discussions in an on-

line chat room (Chapter 4), to be an important source of real-life samples of information-seeking

dialogues that should inspire and inform design of conversational search systems.
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CHAPTER 3

Functional Structure of a
Conversation

- Ask me a question. . .
- I really like when you ask the questions.
- Tell me something. . .
- I read on Wikipedia that in the stage version of “The Wizard of Oz”, Dorothy’s
little dog Toto was replaced by a cow named Imogene.
— from a conversation with Google Assistant, 27 April 2019

We believe that the goal for conversational systems is not to replicate already existing search

functionalities enhanced with voice control and speech recognition features but to aim at creating

qualitatively di�erent interaction experiences that can resemble negotiation processes that occur

between humans in real-life settings. This process should lead to a better understanding of what

the information need is and what information there is to satisfy this need. The ability to maintain

balance in mixed-initiative interactions is crucial for the conversational success and for the

usability of a dialogue system [220]. Both participants of an information-seeking dialogue should

be able to ask clarifying questions that can help to understand the position and intentions of the

conversation partner. There is still a limited understanding of how mixed-initiative interactions

in the context of information-seeking behaviour actually occur [176, 201]

We propose a novel approach to analyse information-seeking conversations that aim at under-

standing the structure of the interaction processes and developing a grounded theory, which

can help to improve conversational search systems. Analyzing an interaction process boils

down to discovering patterns in sequences of alternating utterances exchanged between a user

and an agent. Process mining techniques have been successfully applied to analyze structured

This chapter was published as [213].
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event logs, discovering the underlying process models or evaluating whether the observed be-

havior is in conformance with a known pre-speci�ed process. In this chapter, we apply process

mining techniques to discover patterns in conversational transcripts and extract a new model

of information-seeking dialogues, QRFA, for Query, Request, Feedback, Answer. Our results

are grounded in an empirical evaluation across multiple conversational datasets from di�erent

domains, which was never attempted before. We show that the QRFA model better re�ects

conversation �ows observed in real information-seeking conversations than models proposed

previously. Moreover, QRFA allows us to identify malfunctioning in dialogue system transcripts

as deviations from the expected conversation �ow described by the model via conformance

analysis.

3.1 Introduction

Interest in information-seeking dialogue systems is growing rapidly, in information retrieval,

language technology, and machine learning. There is, however, a lack of theoretical under-

standing of the functionality such systems should provide [201]. Di�erent information-seeking

models of dialogue systems use di�erent terminology as well as di�erent modeling conventions,

and conversational datasets are annotated using di�erent annotation schemes [see, e.g., 200, 228].

These discrepancies hinder direct comparisons and aggregation of the results. Moreover, the

evaluation of conversational datasets has largely been conducted based on manual e�orts.

Clearly, it is infeasible to validate models on large datasets without automated techniques.

In this chapter we describe and demonstrate the application of a data-driven approach that can

be applied to a large volume of conversational data, to identify patterns in the conversation

dynamics. It is directly rooted in Conversational Analysis (CA) [177], which proposes to analyze

regularities such as adjacency pairs and turn-taking in conversational structures, and Speech Act

Theory [4, 181] to identify utterances with functions enabled through language (speech acts). To

this end we leverage state-of-the-art techniques developed in the context of process mining [215],

which has traditionally been applied in the context of operational business processes such as

logistics and manufacturing, to discover and analyze patterns in sequential data.

Against this background, we create a new annotation framework that is able to generalize

across conversational use cases and bridge the terminology gap between diverse theoretical

models and annotation schemes of the conversational datasets collected to date. We develop and

evaluate a new information-seeking model, which we name QRFA, for Query, Request, Feedback,

Answer, which shows better performance in comparison with previously proposed models and

helps to detect malfunctions from dialogue system transcripts. It is based on the analysis of

15,931 information-seeking dialogues and evaluated on the task of interaction success prediction

in 2,118 held-out dialogues. We use the COR model [189] as our baseline (see Section 2.1.2)

and show in an empirical evaluation that it is not able to adequately re�ect the structure of

information-seeking dialogues across four publicly available datasets and propose an alternative

model.

The QRFA model is derived and evaluated using process mining techniques [215], which makes

this approach scalable. We view every conversation to be an instance of a general information-
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seeking process. This inclusive perspective helps us to extract and generalize conversation

�ows across conversations from di�erent domains, such as bus schedules and dataset search.

To the best of our knowledge, we present the �rst grounded theory of information-seeking

dialogues that is empirically derived from a variety of conversational datasets. Moreover, we

describe the methodology we used to develop this theory that can be used to revise and further

extend the proposed theory. We envision that the model and the approach that we describe

in this chapter will help not only to better understand the structure of information-seeking

dialogues but also to inform the design of conversational search systems, their evaluation

frameworks and conversational data sampling strategies. More concretely, we discovered a set

of functional components for a conversational system as di�erent interaction patterns and the

distribution over the space of next possible actions.

The remainder of the chapter is organized as follows. Section 3.2 provides a gentle introduction

to process mining. In Section 3.3 we discuss related work in the context of process mining

from conversations. Section 3.4 provides details of our approach to mining processes from

conversations. In Section 3.5 we report on the results of applying our conversation mining

approach to several conversational datasets and we describe the model we obtained as a result.

We conclude in Section 3.6.

3.2 Background

Process mining (PM) has been designed to deal with structured data organized into a process

log rather than natural language, such as conversational transcripts. However, we view a

conversation as a sequence of alternating events between a user and an agent, thus a special

type of process, a communication or information exchange process, that can be analyzed using

PM by converting conversational transcripts into process logs. Basic concepts and techniques

from PM, which we adopt in our discourse analysis approach, are described below.

A process is a structure composed of events aligned between each other in time. The focus

of PM is on extracting and analyzing process models from event logs. Each event in the log

refers to the execution of an activity in a process instance. Additional information such as a

reference to a resource (person or device) executing the activity, a time stamp of the event, or

data recorded for the event, may be available.

Two major tasks in PM are process discovery and conformance checking. The former is used to

extract a process model from an event log, and the latter to verify the model against the event

log, i.e., whether the patterns evident from the event log correspond to the structure imposed

by the model. It is possible to verify conformance against an extracted model as well as against

a theoretical (independently constructed) model.

In this work, we adopt state-of-the-art PM techniques to analyze conversational transcripts by

extracting process models from publicly available datasets of information-seeking dialogues,

and to verify and further extend a theoretical model of information-seeking dialogues based on

the empirical evidence from these corpora.
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3. Functional Structure of a Conversation

3.3 Related Work

There are relatively few prior publications that demonstrate the bene�t of applying process

mining (PM) techniques to conversational data. Di Ciccio and Mecella [48] use a corpus of

e-mail correspondence to illustrate how the structure of a complex collaborative process can be

extracted from message exchanges. Wang et al. [221] analyze a sample of discussion threads

from an on-line Q&A forum by applying process mining and network analysis techniques

and comparing patterns discovered across di�erent thread categories based on their outcomes

(solved, helpful and unhelpful threads).

Richetti et al. [166] analyze the performance of a customer support service team by applying

process mining to conversational transcripts that were previously annotated with speech acts

using a gazetteer. Their results reveal similar structural patterns in the conversational �ow of

troubleshooting conversations with di�erent durations, i.e., less and more complex cases, which

require additional information seeking loops.

To the best of our knowledge, there is no prior work going beyond the individual use cases

mining conversations from a speci�c domain. In contrast, we analyze multiple heterogeneous

conversational datasets from various domains to be able to draw conclusions on structural

similarities as well as di�erences stemming from variance introduced by labeling approaches

and speci�c characteristics of the underlying communication processes.

Before applying the proposed approach, utterances have to be annotated with activity labels,

such as speech acts [182]. The task of utterance classi�cation is orthogonal to our work. Dialogue

corpora to be used for process mining can be manually annotated by human annotators or

automatically by using one of the classi�cation approaches proposed earlier [30, 91, 92, 193].

3.4 Conversation Mining

We consider every conversationC in a transcript C to be an instance of the same communication

process, the model of which we aim to discover. A conversation is represented as a sequence

of utterances C = 〈u1, u2, . . .〉. An utterance, in this case, is de�ned rather broadly as a text

span within a conversation transcript attributed to one of the conversation participants and

explicitly speci�ed during the annotation process (utterance labeling step). We denote the set

of all utterances as U = {u1, u2, . . .}. Our approach to conversational modeling consists of

three steps: (1) utterance labeling, (2) model discovery, and (3) conformance checking, which is

useful for model validation and error detection in conversation transcripts.

3.4.1 Utterance labeling

A utterance ui in a conversation C can be mapped to multiple labels l1i , . . . , l
n
i , each belonging

to pre-de�ned label sets L1, . . . , Ln
, respectively. The label sets, not necessarily disjoint, may

correspond to di�erent annotation schemes. We denote the general multi-labeling of utterances

as a mapping function λ̂ : U → L1×· · ·×Ln. It can stem from manual annotations of di�erent

human analysts, or categories returned by multiple machine-learned classi�ers. For the sake of
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3.4. Conversation Mining

readability, we assume in the remainder of this section that all annotations share a single set of

labels L, thus the mapping function used henceforth is reduced to λ : U → L.

3.4.2 Extracting the model of the conversation �ow

We apply a process discovery approach to collect patterns of the conversation structure from

transcripts. The goal of process discovery is to extract a model that is representative of empir-

ically observed behavior stored in an event log [215]. Event logs can be abstracted as sets of

sequences (traces), where each element in the sequence (the event) is labeled with an activity

(event class) plus optional attributes. We reduce a conversation transcript C along with its

labeling to an event log, as follows: a conversation C is a trace, an utterance u is an event, and

the label of u, λ(u) = l, is the event class.

There is a wide variety of algorithms that can be applied for process discovery. Imperative

work�ow mining algorithms, such as the seminal α-algorithm [215] or the more recent Inductive

Miner (IM) [116], extract procedural process models that depict the possible process executions,

in the form of, e.g., a Petri net [214]. Other approaches, such as frequent episode mining [115] or

declarative constraints mining [27, 49], extract local patterns and aggregate relations between

activities. One such relation is the succession between two activities, denoting that the second

one occurs eventually after the �rst one. In our context, succession between li and lj holds

true in a sub-sequence 〈ui, . . . , uj〉, with i < j, if uj 7→ lj and ui 7→ li. The frequency of such

patterns observed across conversations can indicate dependencies between the utterance labels

li and lj . Those dependencies can be used to construct a model describing a frequent behavior

(model discovery) as well as to detect outliers breaking the expected sequence (error analysis),

upon the setting of thresholds for minimum frequency. The discovery algorithm described

in [27] requires a linear pass through each sequence to count, for every label l ∈ L, (1) its

number of occurrences per sequence, and (2) the distance at which other labels occur in the

same sequence in terms of number of utterances in-between.

3.4.3 Conformance analysis and model validation

The goal of the model validation step is conformance checking, i.e., to assess to which extent

the patterns evident from the transcript �t the structure imposed by the model. We use it here

to also evaluate the predictive power of the model, i.e., the ability of the model to generalize to

unseen instances of the conversation process. A good model should �t the transcripts but not

over�t it. The model to be validated against can be the one previously extracted from transcripts,

or a theoretical model, i.e., an independently constructed one. In the former case, we employ

standard cross-validation techniques by creating a test split separate from the development set

that was used to construct the model.

Model quality can be estimated with respect to a conversation transcript. Likewise, the quality

of the conversation can be estimated with respect to a pre-de�ned model. In other words,

discrepancies between a conversation model and a transcript indicate either inadequacy of the

model or errors (undesired behavior or recording malfunctions) in the conversation.
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3. Functional Structure of a Conversation

To compute �tness, i.e., the ability of the model to replay the event log, we consider the measure

�rst introduced in [216], based on the concept of alignment. Alignments keep consistent the

replay of the whole sequence and the state of the process by adding so-called non-synchronous

moves if needed. The rationale is, the more non-synchronous moves are needed, the lower

the �tness is. Thus, a penalty is applied by means of a cost function on non-synchronous

moves. For every sequence �tness is computed as the complement to 1 of the total cost of the

optimal alignment, divided by the cost of the worst-case alignment. Log �tness is calculated by

averaging the sequence �tness values over all sequences in a log.

3.5 QRFA Model

In this section, we apply the approach to extraction and validation of a conversational model

proposed in Section 5.3 to develop a new model (QRFA). We (1) collect datasets of publicly

available corpora with information-seeking dialogue transcripts; (2) analyze and link their

annotation schemes to each other and to the COR model (Figure 2.1); (3) analyze the conversation

�ows in the datasets; and (4) evaluate QRFA and compare the results with COR as a baseline.

3.5.1 Conversational datasets

We used publicly available datasets of information-seeking dialogues that are annotated with

utterance-level labels (see the dataset statistics in Table 3.1).

Table 3.1: Dataset statistics.

Dataset Dialogues Utterances Labels

SCS 39 101 13

ODE 26 417 20

DSTC1 15,866 732,841 37

DSTC2 2,118 40,854 21

Table 3.2: New functional annotation schema for information-

seeking conversation utterances.

Proactive Reactive

User Query Information Feedback Positive

Prompt Negative

Agent Request O�er Answer Results

Understand Backchannel

Empty

Spoken Conversational Search. This dataset
1

[SCS, 200] contains human-human conversa-

tions collected in a controlled laboratory study with 30 participants. The task was designed

to follow the setup, in which one of the conversation participants takes over the role of the

1https://github.com/JTrippas/Spoken-Conversational-Search

26

https://github.com/JTrippas/Spoken-Conversational-Search


3.5. QRFA Model

information Seeker and another of the Intermediary between the Seeker and the search engine.

It is the same dataset that was used to develop the SCS model illustrated in Figure 2.2. All

dialogues in the dataset are very short and contain at most three turns, with one label per

utterance. The e�ciency of the interaction and the user satisfaction from the interaction are

not clear.

Open Data Exploration. This dataset
2

(ODE) was collected in a laboratory study with 26

participants and a setup similar to the SCS but with the task formulated in the context of

conversational browsing, in which the Seeker does not communicate an explicit information

request. The goal of the Intermediary is to iteratively introduce and actively engage the Seeker

with the content of the information source. All dialogues in this dataset contain one label per

utterance. The majority of the conversation transcripts (92%) exhibit successful interaction

behavior leading to a positive outcome, such as satis�ed information need and positive user

feedback (only 2 interactions were unsuccessful), and can be considered as samples of e�ective

information-seeking strategies.

Dialog State Tracking Challenge. These datasets
3

[DSTC1 and DSTC2, 228] provide anno-

tated human-computer dialogue transcripts from an already implemented dialogue system for

querying bus schedules and a restaurant database. The transcripts may contain more than one

label per utterance, which is di�erent from the previous two datasets. The e�ciency of the

interaction and user satisfaction from the interaction with the agent are not clear.

3.5.2 QRFA model components

Since all datasets and the theoretical model that we consider use di�erent annotation schemes,

we devise a single schema to be able to aggregate and compare conversation traces. To the best

of our knowledge, no such single schema that is able to unify annotations across a diverse set

of information-seeking conversation use cases has been proposed and evaluated before. Our

schema is organized hierarchically into two layers of abstraction to provide a more simple and

general as well as more �ne-grained views on the conversation components.

First, we separate utterances into four basic classes: two for User (Query and Feedback) and two

for Agent (Request and Answer). This distinction is motivated by the role an utterance plays in

a conversation. Some of the utterances explicitly require a response, such as a question or a

request, while others constitute a response to the previous utterance, such as an answer. Such

a distinction is reminiscent of the Forward and Backward Communicative Functions that are

foundational for the DAMSL annotation scheme [31]. The labels also re�ect the roles partners

take in a conversation. The role of the Agent is to provide Answers to User’s Queries. During

the conversation the Agent may Request additional information from the User and the Agent

may provide Feedback to the Agent’s actions.

The initial set of four labels (QRFA) are further subdivided to provide a more �ne-grained level

of detail. See Table 3.2 and the descriptions below:

2https://github.com/svakulenk0/ODExploration_data
3https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge
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Query provides context (or input) for Information search (question answering), as the default

functionality provided by the agent (e.g., “Where does ECIR take place this year?”), but can also

Prompt the agent to perform actions, such as cancel the previous query or request assistance,

e.g., “What options are available?”

Request is a pro-active utterance from the agent, when there is a need for additional information

(Feedback) from the user. It was the only class that caused disagreement between the annotators,

when trying to subdivide it into two groups of requests: the ones that contain an O�er, such as

an o�er to help the User or presenting the options available (e.g., “I can group the datasets by

organization or format”), and the ones whose main goal is to Understand the user need, such as

requests to repeat or rephrase the Query (e.g., “Sorry I am a bit confused; please tell me again

what you are looking for”).

Feedback from the user can be subdivided by sentiment into Positive, such as accept or con�rm,

and Negative, such as reject or be discontented.

Answer corresponds to the response of the agent, which may contain one of the following:

(1) Results, such as a search engine result page (SERP) or a link to a dataset, (2) Backchannel
response to maintain contact with the User, such as a promise or a con�rmation (e.g., “One

moment, I’ll look it up.”), and (3) Empty result set (e.g., “I am sorry but there is no other Indian

restaurant in the moderate price range”).

Two authors of the paper on which this chapter is based independently aligned the annotation

schemes of the datasets and the COR model to match the single schema with an inter-annotator

agreement of 94%. We found the �rst more abstract level of annotation su�cient for our

experiments to make the conversation models easier to interpret. The complete table containing

alignments across the schemes is made available to the community to enable reproducibility

and encourage future work in this direction (Tables 3.3 and 3.4).
4

The sample conversation introduced in Chapter 2 will receive the following annotations in

accordance with the QRFA schema

Q How many courses are there at WU?

R For which semester?

Q I want to have the latest data possible.

A There were 2,576 courses o�ered at WU in the SS17.

F Thank you!

3.5.3 QRFA model dynamics

The next step of conversation mining is building a process model given the dialogue annotations.

For the running example introduced in Section 3.5.2 the process model corresponds to the

sequence of labels that models a single trace, i.e. an instance of the information-seeking process:

START→ Q→ R→ Q→ A→ F→ END. For brevity we collapse all duplicate labels into a

single node, i.e. one node per label, and obtain a directed cyclic graph (see Figure 3.1).

4https://github.com/svakulenk0/conversation_mining/blob/master/
annotations/alignments_new.xls
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Q

A

F

R

Figure 3.1: A process model extracted from a sample conversation.

We used the ProM Episode Miner plug-in [115] and a declarative process mining tool, MINER-

ful
5

[27, 49], to discover frequent sequence patterns in the conversation transcripts. Figure 3.2

illustrates the conversation �ows in each of the three datasets used for model discovery (one

of the datasets, DSTC2, is held out for model evaluation). Color intensity (opacity) indicates

the frequency of the observed sequences between the pairs of utterances within the respective

dataset (the frequency counts for all transitions across all the datasets are available on-line
6
). An

empirically derived information-seeking conversation model would be the sum of the models

extracted from the three conversation transcripts.

However, an empirically derived model guarantees neither correctness nor optimality since

the transcripts (training data) may contain errors, i.e., negative patterns. Instead of blindly

relying on the empirical “as is” model, we analyze and revise it (re-sample) to formulate our

theoretical model of a successful information-seeking conversation (Figure 3.3). For example,

many conversations in the SCS and DSTC1 datasets are terminated right after the User Query

(Q→END pattern) for an unknown reason, which we consider to be undesirable behavior: the

User’s question is left unanswered by the Agent. Therefore, we discard this transition from our

prescriptive model, which speci�es how a well-structured conversation “should be” (Figure 3.3).

Analogously to discarding implausible transitions, the power of the theoretical modeling lies

in the ability to incorporate transitions are still considered legitimate from a theoretical point

of view even though they were not observed in the training examples. Incompleteness in

empirically derived models may stem from assumptions already built into the systems by their

designers, when analyzing dialogue system logs, or also di�erences in the annotation guidelines,

e.g., one label per utterance constraint. In our case, we noticed that adding the FQ transition,

which was completely absent from our training examples, will make the model symmetric. The

symmetry along the horizontal axes re�ects the distribution of the transitions between the two

dialogue partners. Hence, the FQ transition mirrors the AR transition, which is already present

in our transcripts, but on the User side. The semantics of an FQ transition is that the User can

�rst give feedback to the Agent and then follow up with another question. Trippas et al. [201,

Figure 1, Example 1] empirically show that utterances in information-seeking dialogues tend to

contain multiple moves, i.e., can be annotated with multiple labels.

5https://github.com/cdc08x/MINERful
6https://github.com/svakulenk0/conversation_mining/tree/master/

results/
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Figure 3.2: Conversation �ows in the SCS, ODE and DSTC1 datasets. Color intensity indicates

frequency.

The �nal shape of a successful information-seeking conversation according to our model is

illustrated in Figure 3.3. To analyze this model in more detail, we decompose it into a set of

connected components, each containing one of the cycles from the original model. We refer to

them as “four virtuous cycles of information-seeking,”
7

representing the possible User-Agent

exchanges (feedback loops) in the context of: (a) question answering, (b) query re�nement,

(c) o�er re�nement, and (d) answer re�nement. To verify that the loops actually occur and

estimate their frequencies, we mined up to 4-label sequences from the transcripts using the

Episode Miner plug-in.

3.5.4 QRFA model evaluation

Our evaluation of the QRFA model is twofold. Firstly, we measure model �tness with respect to

the conversational datasets including a held-out dataset (DSTC2), which was not used during

model development, to demonstrate the ability of the model to �t well across all available

datasets and also generalize to unseen data. Secondly, we hypothesize that deviations from the

conversation �ow captured in the QRFA model signal anomalies, i.e., undesired conversation

turns. Therefore, we also compare the model’s performance on the task of error detection in

conversational transcripts with human judgments of the conversation success.

7

A virtuous cycle refers to complex chains of events that reinforce themselves through a feedback loop. A

virtuous circle has favorable results, while a vicious circle has detrimental results.
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Q 

A 

F 

R 

Q 

A 

F 

R 

Q 

A 

F 

R 

Q 

A 

F 

R 

Q 

A 

F 

R 

(a)

(b)

(c)

(d)

Figure 3.3: The QRFA model for conversational search composed of the “four virtuous cycles

of information-seeking”: (a) question answering loop, (b) query re�nement loop, (c) o�er

re�nement loop, (d) answer re�nement loop.
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3. Functional Structure of a Conversation

Fitness and generalization. To analyze the model �t with respect to the actual data we applied

the conformance checking technique proposed by Adriansyah et al. [1], available as a ProM

plug-in under the name “Replay a Log on Petri Net for Conformance Analysis.” To this end,

we translated the COR and QRFA models into the Petri net notation and ran a conformance

analysis for each model on every dataset. Exit and Restart activities are part of the “syntactic

sugar” added for the Petri net notation and we set them to invisible in order to avoid counting

them, when assigning the costs during analysis. Table 3.5 (top) contains the �tness measures

of the COR and QRFA models for all the datasets. We use the default uniform cost function

that assigns a cost of 1 to every non-synchronous move. Fitness is computed separately for

each sequence (dialogue) as a proportion of the events that are in alignment with the model

speci�cation. For the sample conversation introduced in the end of Section 3.5.2 the �tness

measure of the QRFA model is 1 (6/6) since all 6 events (transitions) within the dialogue sequence

START → Q → R → Q → A → F → END can be completely replayed (simulated) on this

model as a �nite-state automaton (Figure 3.3). Assume that one of the events in the sequence

deviates from the model speci�cation, e.g., START → Q → R → Q → A → Q → END. In

this case the �tness of the QRFA model with respect to this dialogue sequence is 0.83 (5/6) since

one out of 6 events in the sequence (Q→ END) does not conform to the model speci�cation.

We measure generalization as the �tness of a model on the sequences that were not used to

develop the model. The ability of the model to generalize to a di�erent held-out dataset is

signi�cant (0.99 on average). This result demonstrates the out-of-sample generalizability of the

model, which is a more challenging task than testing the model on the held-out (test) splits from

the same datasets (label frequency distributions) used for the model development. Remarkably,

the baseline COR model managed to fully �t only a single conversation across all four datasets.

This comparison clearly shows the greater �exibility that the QRFA model provides, which in

turn indicates the requirement for information-seeking dialogue systems to be able to operate

in four di�erent IR modes (Figure 3.2) and seamlessly switch between them when appropriate.

Conversation success and error detection. Since only one of the datasets, namely ODE,

was annotated with a success score, we add manual annotations for the rest of the datasets

(2 annotators, inter-annotator agreement: 0.85). We produced annotations for 89 dialogues in

total, for the full SCS dataset and a random sample for each of the DSTC datasets.
8

Criteria for

the success of a conversational interaction are de�ned in terms of informational outcomes, i.e.,

the search results were obtained and the information need was satis�ed, as well as emotional

outcomes, i.e., whether the interaction was pleasant and e�cient.

Results of the conversation success prediction task are summarized in Table 3.5 (bottom);

QRFA correlates well with human judgments of conversation success based on the model

�tness obtained via conformance checking (Cases with value 1). We also took a closer look

at the cases annotated as unsuccessful in terms of �tness to the QRFA model and reported

Precision/Recall metrics for the conversation failure detection task. For example, the model

predicted all conversations in the ODE corpus as success (100% success rate) and overlooked 8%

that actually failed, hence the Recall for conversation failure detection is 0 in this case.

8https://github.com/svakulenk0/conversation_mining/tree/master/
annotations
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3.6. Conclusion

Table 3.5: Evaluation results of QRFA and COR models of information-seeking dialogues on

the conversational datasets in terms of model �tness/generalization (top) and error detection

abilities (bottom). The gold standard (GS) column refers to the manual annotations of the

conversational datasets with the conversation success score (inter-annotator agreement: 0.85).

Dataset SCS ODE DSTC1 DSTC2 Average

Metric/Model COR QRFA GS COR QRFA GS COR QRFA GS COR QRFA GS COR QRFA

Average/case 0.58 0.89 0.74 1 0.66 0.96 0.7 0.99 0.67 0.96

Max. 0.8 1 1 1 1 1 0.91 1 0.93 1

Min. 0.4 0.8 0.6 1 0 0 0.53 0.8 0.38 0.65

Std. Deviation 0.17 0.1 0.09 0 0.08 0.05 0.05 0.02 0.10 0.04

Cases with value 1 0 0.46 0.37 0.04 1 0.92 0 0.14 0.07 0 0.83 0.79 0.01 0.61

Error detection Precision 1 1 1 0.67 0.92

Error detection Recall 0.78 0 0.83 0.57 0.55

Table 3.5 shows that half of the errors a�ecting conversation success are due to a violation of

structural requirements formulated via the QRFA model. The model overestimates the success

rate of a dialog agent since only syntactic information in some cases is not enough to evaluate

the overall performance, such as the quality of the answer obtained. However, it shows very

promising results, clearly indicating the faulty cases, such as the situations when the user’s

query was left unanswered by the agent (SCS and DSTC1). Our evaluation shows that the QRFA

model re�ects the patterns of successful information-seeking conversations and the deviations

from its shape likely indicate �aws in the conversation �ow. These results are demonstrated

across four conversational datasets from di�erent domains. In particular, then, QRFA does not

over�t the errors from the datasets used for development and it generalizes to the held-out

dataset.

We conclude that the QFRA model satis�es the four quality criteria for a process model de�ned

by van der Aalst [215]: (1) �tness – it �ts across four conversational datasets without over�tting,

which allows it to successfully detect deviations (errors) in the information-seeking process

(Table 3.5); (2) precision – all types of interaction described by the model are observed in the

conversation transcripts; (3) generalization – the model is able to describe the structure and

deviations in previously unseen conversations; and (4) simplicity – it contains a minimal number

of elements necessary to describe the conversation dynamics in information-seeking dialogues.

3.6 Conclusion

We have proposed an annotation schema and a theoretical model of information-seeking

dialogues grounded in empirical evidence from several public conversational datasets. Our

annotation schema resembles the approach used in DAMSL, where utterances are classi�ed into

Forward and Backward Communicative Function, but adopts labels to our information-seeking

setting, where roles are more distinct due to information asymmetry between participants.

The patterns that we have discovered extend and correct the assumptions built into the COR

model and also incorporate frameworks previously proposed within the information retrieval

community.
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3. Functional Structure of a Conversation

Our empirical evaluation indicates that, however simple, the QRFA model still provides a better

�t than the most comprehensive model proposed previously by explaining the conversational

�ow in the available information-seeking conversational datasets. Moreover, we have described

an e�cient way to provide sanity checking diagnostics of a dialogue system using process

mining techniques (conformance checking) and have shown how the QRFA model helps to

evaluate the performance of an existing dialogue system from its transcripts.

In future work, we plan to evaluate the QRFA model against new conversational datasets

and further extend it to a �ner granularity level if required. Our experiments so far have

utilized hand-labeled conversation transcripts. Introducing automatically generated labels may

propagate errors into the model extraction phase. Nevertheless, discovering patterns in raw

conversational data that is automatically tagged with semantic labels is an exciting research

direction [211]. In addition, the predictions of the QRFA model may be an informative signal

for evaluating or training reinforcement learning-based dialogue systems [120].

Wide adoption of information-seeking dialogue systems will lead to a massive increase in

conversational data, which can potentially be used for improving dialogue systems. We believe

that QRFA and similar models will become important for informing the design of dialogue

systems, motivating the collection of new information-seeking conversational data, specifying

the functional requirements the systems should satisfy, and providing means for their evaluation.

The analysis we performed in this chapter is speci�cally focused on the functional structure of

an information-seeking dialogue. The discovered patterns re�ect regularities that are common

for this type of dialogues in general, regardless of the domain. The QRFA model provides a level

of abstraction that does not take into account semantic relations between concepts mentioned in

a dialogue. We de�ne the semantic structure of a conversation as another important dimension

of the communication process, which is orthogonal to its functional structure. In Chapter 4 we

describe how the structure of the background knowledge is re�ected in a conversation and has

an e�ect on its coherence.
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CHAPTER 4

Semantic Structure of a Conversation

- What is the weather in Heidelberg?
- Today is 90% chance of rain...
- Tell me about the castle.
- The Castle is a 1926 novel by Franz Kafka. . .
— from a conversation with Apple Siri, 10 May 2019

Human conversations tend to be concise and leave out a lot of detail by relying on shared

background knowledge(indirect illocution) [71, 140, 183, 191]. It is still possible to correctly

interpret ambiguous statements with implicit relations based on the context due to the assump-

tion postulated in Grice’s maxim of relevance (relation) that all conversation participants under

the cooperative principle should contribute to the ongoing conversation topic [72]. In other

words, the focus of a conversation is not expected to constantly jump from one topic to another

but gradually evolve by smoothly transitioning between related concepts within the semantic

space. This transition happens in parallel to the dynamics of the functional transitions that we

analysed in Chapter 3, such as question-answer pairs. We attempt to measure the rhythm of a

“healthy” conversation by traversing a knowledge graph and identify situations in which an

“o�beat” can signal anomalies or a rapid topic switch. The implications are manifold: on the

one hand, this measure can inform a response selection procedure of which concepts should be

considered relevant based on the conversation context; on the other hand, anomalies discovered

during a conversation can indicate a knowledge gap, as an inability to correctly interpret the

conversation partner, that needs to be resolved.

Thus, we introduce the task of measuring semantic (in)coherence in a conversation with respect

to background knowledge, which relies on the identi�cation of semantic relations between

concepts introduced during a conversation. We propose and evaluate graph-based and machine

learning-based approaches for measuring semantic coherence using knowledge graphs, their

This chapter was published as [211].

37



4. Semantic Structure of a Conversation

vector space embeddings and word embedding models, as sources of background knowledge.

We demonstrate how these approaches are able to uncover di�erent coherence patterns in

conversations on the Ubuntu Dialogue Corpus.

4.1 Introduction

Conversational interfaces are seeing a rapid growth in interest. Conversational systems need

to be able to model the structure and semantics of a human conversation in order to provide

intelligent responses. The requirement conversations be coherent is meant to improve the

probability distribution over possible dialogue states and candidate responses.

A conversation is an information exchange between two or more participants.
1

An essential

property of a conversation is its coherence; De Beaugrande and Dressler [41] describe it as

a “continuity of senses.” Coherence constitutes the outcome of a cognitive process, and is,

therefore, an inherently subjective measure. It is always relative to the background knowledge

of participants in the conversation and depends on their interpretation of utterances. Coherence

re�ects the ability of an observer to perceive meaningful relations between the concepts and

to be critical of the new relations being introduced. Meaning emerges through the interaction

of the knowledge presented in the conversation with the observer’s stored knowledge of the

world [158]. In other words, a conversation has to be assigned an interpretation, which depends

on the knowledge available to the agent.

In this chapter we focus on analyzing semantic relations that hold within dialogues, i.e., relations

that hold between the concepts (entities) mentioned in the course of the same dialogue. We

call this type of relation semantic coherence. We focus on semantic relations but ignore other

linguistic signals that make a text coherent from a grammatical point of view. A classic example

to illustrate the di�erence is due to Chomsky [26]: “Colorless green ideas sleep furiously” – a

syntactically well formed English sentence that is semantically incoherent.

Our hypothesis is that, apart from word embeddings, recognizing concepts in the text of a

conversation and determining their semantic closeness in a background knowledge graph can

be used as a measure for coherence. To this end, we propose and evaluate several approaches to

measure semantic coherence in dialogues using di�erent sources of background knowledge:

both text corpora and knowledge graphs. The contributions that we make in this chapter are

threefold: (1) we introduce a dialogue graph representation, which captures relations within the

dialogue corpus by linking them through the semantic relations available from the background

knowledge; (2) we formulate the semantic coherence measuring task as a binary classi�cation

task, discriminating between real dialogues and generated adversary samples,
2

and (3) we

investigate the performance of state-of-the-art and novel algorithms on this task: top-k shortest

path induced subgraphs and convolutional neural networks trained using vector embeddings.

1

We use the terms “dialogue” and “conversation” interchangeably, while “dialogue” refers speci�cally to a

two-party conversation.

2

As there is no standard corpus available for this task, we test against 5 ways to generate arti�cial negative

samples.
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4.2. Related Work

The main challenge in applying structural knowledge to natural language understanding be-

comes apparent when we do not just try to di�erentiate between genuine conversations and

completely random ones, but create adversarial examples as conversations that have similar

characteristics compared to the positive examples from the dataset. Then, the results achieved

using word embeddings are usually best and suggest that knowledge graph (KG) embeddings

would potentially be an e�cient way to harness the structure of entity relations. However, KG

embedding-based models rely on entity linking being correct and cannot easily recover from

errors made at the entity linking stage compared to other graph-based approaches that we use

in our experiments.

Our goal is to examine the relation between the structure stored in a background knowledge

source, such as a knowledge graph or word vectors, and the structure of a conversation. To the

best of our knowledge, the only available resource for real examples of incoherent conversations

is the datasets that accompany the Dialogue System Technology Challenge (DSTC) Dialogue

Breakdown Detection shared task [83]. However, the aforementioned dialogues are examples

of chit-chat conversations that usually do not contain any entity mentions that we could use to

link to an external knowledge graph, such as DBpedia. Ubuntu dialogues, in contrast, do contain

many software-related terminology that can be associated with knowledge graph entities. Since

the Ubuntu dialogues dataset does not have any coherence or dialogue break-down annotations,

we had to resort to develop strategies. The generated dialogues can exhibit di�erent degrees

of incoherence: from uniformly random entity sets to topic shifts. The latter are also likely to

occur within a real conversation setting, when the topic of a conversation is abruptly changed

by one of the conversation partners. The bene�t of generating such samples is that we know

exactly when the topic change occurs. We believe that these automated techniques of generating

negative samples from unlabeled data – in the light of non-availability of human-annotated

datasets – are a contribution as such. There are likely to occur many other types of incoherence

in dialogues. However, the study of this phenomenon requires a systematic collection and

analysis of empirical data, which is a promising direction for future work but is well beyond

the scope of this chapter.

4.2 Related Work

Previous work on discourse analysis demonstrates good results in recognizing discourse struc-

ture based on lexical cohesion for speci�c tasks such as topic segmentation in multi-party

conversations [64]. Term frequency distribution on its own already provides a strong signal for

topic drift. A more sophisticated approach to assess text coherence is based on the entity grid

representation [10], which represents a text as a matrix that captures occurrences of entities

(columns) across sentences (rows) and indicates the role entity plays in the sentence (subject,

object, or other). This approach relies on a syntactic (dependency) parser to annotate the

entity roles and is, therefore, also targeted at measuring lexical cohesion rather than semantic

relations between concepts. The de facto standard testbed for discourse coherence models is the

information (sentence) ordering task [113]; it was recently extended to a convolutional neural

network-based model for coherence scoring [150]. The best results to date were demonstrated

by incorporating a fraction of semantic information from an external knowledge source (entity
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4. Semantic Structure of a Conversation

types classi�cation) into the original entity grid model [54]. Cui et al. [34] push the state-of-

the-art on the sentence ordering task by incorporating word embeddings at the input layer of a

convolutional neural network instead of the entity grid. In summary, background knowledge

has been found to be able to provide a strong signal for measuring coherence in discourse. In

contrast to previous research focused on measuring coherence in a monologue, we consider the

task of evaluating coherence in a written dialogue setting by analyzing the largest multi-turn

dialogue corpus available to date, the Ubuntu Dialogue Corpus [123].

Research in dialogue systems focuses on developing models able to generate or select from

candidate utterances, based on previous interactions. Lowe et al. [124] evaluated several baseline

models on the Ubuntu Dialogue Corpus for the next utterance classi�cation task. Their error

analysis suggests that the models can bene�t from an external knowledge of the Ubuntu domain,

which could provide the missing semantic links between the concepts mentioned in the course

of the conversation. These results motivated us to consider evaluating whether relations

accumulated in large knowledge graphs could provide missing semantics to make sense of a

conversation. Our work seeks to discover the potential and limitations of KGs to support natural

language understanding beyond single search queries or factoid question answering towards a

holistic interactive experience, which recognizes and supports the natural (coherent) �ow of a

conversation.

4.3 Measuring Semantic Coherence

In this section, we describe several approaches to modeling a conversation and measuring its

coherence. We use dialogues, i.e., a two-party conversation to illustrate our approaches. Our

approaches could also be applied to multi-party conversations.

We propose to measure dialogue coherence with a numeric score that indicates more coherent

parts of a conversation and provides a signal for topic drift. Our approach is based on the

assumption that naturally occurring human dialogues, on average, exhibit more coherence than

their random permutations.

4.3.1 Dialogue graph

We model a dialogue as a graph D, which contains 4 types of nodes P,U,W,C and edges E
between them. P refers to the set of conversation participants, U – the set of utterances, W –

the set of words and C – the set of concepts.

The words w in a conversation are grouped into utterances ∀w ∈ W, ∃(u,w) ∈ E such that

u ∈ U ,
3

which belong to one of the conversation participants ∀u ∈ U∃(p, u) ∈ E such that

p ∈ P . Every utterance can belong to only one of the participants, while the same words can

be re-used in di�erent utterances by the same or di�erent participants. Words may refer to

concepts from the background knowledge (w, c) ∈ E, where w ∈ W, c ∈ C . Several words

3

For simplicity, we ignore the role of word order; it can be re-constructed from the order within the conversation

T if needed, see below.
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4.3. Measuring Semantic Coherence

p1

u1

u3

p2

u2

u4

w1
w2

w4

w5

w3

c1

c* 

c4

c2

mdg: gksudo gedit /etc/apt/source.list  
(type from command line) crunchbang666: the text editor has opened the file 

source.list but there is no content 
i typed source instead of sources ... ok so i have it open 

mdg: see the line  # deb http://gb.archive.ubuntu 
all you have to do is delete the ""#"" character 

crunchbang666: just the deb or the deb-src line too?

dbr:Ubuntu(OS)

dbr:Deb(file format)

dbr:Text editor

dbr:Gedit

wikiPageWikiLink

wikiPageWikiLink

wikiPageWikiLink

dbr:GNOME

genre

c3

w1
w2 w3

w4 w5

w4

Figure 4.1: Dialogue graph example along with the annotated dialogue. We focus speci�cally

on the layer of concepts in the middle [c1, . . . , c4] attempting to bridge the semantic gap in the

lexicon of a conversation using available knowledge models: word embeddings and a knowledge

graph.

may refer to a single concept, while the same concept may be represented by di�erent sets of

words. The sequence in which words appear in a conversation is given by the consecutive set

of edges T = {(w1, w2), (w2, w3), . . .} such that T ⊂ E, indicating the dialogue �ow.

The �rst three types of nodes P , U , and W together with their relations are available from the

dialogue transcript itself, while the set of concepts C and relations between them constitute the

semantic representation (meaning) of a dialogue. The meaning is not directly observable, but

is constructed by an observer (one of the dialogue participants or a third party) based on the

available background knowledge. The background knowledge supplies additional links, which

we refer to as semantic relations. They link words to concepts they may refer to: (w, c) (see

footnote 3) and di�erent concepts to each other (ci, cj). These external relations provide the

missing links between words, which explain and justify their co-occurence. The absence of such

links gives an important signal to the observer, and may indicate a topic switch or discourse

incoherence. However, some of the valid links may also be missing from the background

knowledge.

An example dialogue graph is illustrated in Fig. 4.1. The dialogue consists of four utterances
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represented by nodes u1–u4. In the graph we also illustrate a subgraph extracted from the

background knowledge, which links the concepts c1dbr:Gedit and c4dbr:Ubuntu(OS)
to the concept c∗ dbr:GNOME, which was not mentioned in the conversation explicitly. This

link represents semantic relation between the dialogue turns: (u1, u2) and (u3, u4), indicating

semantic coherence in the dialogue �ow. In this example, the semantic relation extracted from

the background knowledge corresponds to the shortest path of length 2, i.e., the distance between

the concepts mentioned in the dialogue was two relations introducing one external concept

from the background knowledge. c∗ can consist of more than one entity, but encompass a whole

subgraph summarizing various relations, which hold between entities, and are represented via

alternative paths between them in a knowledge graph. In the next section, we describe our

approach to empirically learn semantic relations that are characteristic for human dialogues,

using di�erent sources of background knowledge and di�erent knowledge representation

models.

4.3.2 Semantic relations

We collect semantic relations between concepts referenced in a dialogue from our background

knowledge. We consider two common sources of background knowledge: (1) unstructured

data: word co-occurrence statistics from text corpora; (2) semi-structured data: entities and

relations from knowledge graphs. In order to be able to use a KG as a source of background

knowledge we need to perform an entity linking step, which maps words to semantic concepts

(w, c), where concepts refer to entities stored in KG. We consider two approaches to retrieve

relations between the entities mentioned in a dialogue, namely vector space embeddings and

subgraph induction via the top-k shortest paths algorithm.

Embeddings

Embeddings are generated using the distributional hypothesis by representing an item via its

context, i.e., its position and relations it holds with respect to other items. Embeddings are

multi-dimensional vectors (of a �xed size), which encode the distributional information of an

item (a word in the a or a node in a graph), i.e., its position and relations to other items in

the same space. This is achieved by computing vector representations towards an optimality

criteria de�ned with a certain output function, which depends on the embedding vectors being

trained. Thus, embeddings e�ciently encode (compress) an original sparse representation of

the relations (e.g., an adjacency matrix) for each of the items. It provides an easy and fast way

to access this information (relationship structure). Following this approach, every concept ci in

our dialogue graph 4.1 is assigned to an n-dimensional vector, which encodes its location in the

semantic space, and loses all the edges, which explicitly speci�ed its relations to other concepts

in the space.

We consider two types of embeddings to represent concepts mentioned in a dialogue, one for

each of our background knowledge sources: word embeddings trained on a text corpus, and

entity embeddings trained on a KG. For word embeddings, we use word2vec [138], in particular

the skip-gram variant, which aims to create embeddings such that they are useful for predicting

words which are in the neighborhood of a given word. GloVe [157] is a word embedding method,

42



4.3. Measuring Semantic Coherence

with the explicit goal of embedding analogies between entities. This method does not work

directly on the text corpus, but rather on co-occurrence counts which are derived from the

original corpus.

For graph embeddings, we use two methods that can be scaled to large graphs, such as DBpe-

dia and Wikidata: biased RDF2Vec [29] (using random walks) and Global RDF Vector Space

Embeddings [28]; we refer to the latter ones as KGlove embeddings. RDF2Vec is based on

word2vec. It works by �rst generating random walks on the graph, where the edges have

received weights which in�uence the probability of following these edges. During the walk, a

sentence is generated consisting of the identi�ers occurring on the nodes and edges traversed.

For each entity in the graph, many walks are performed and hence a large text is generated.

This text is then used for training word2vec. KGlove is based on GloVe, but instead of counting

the co-occurrence counts from text, they are computed from the graph using personalized

PageRank scores starting from each node or entity in the graph. These counts (i.e., probabilities)

are then used as the input to an optimization problem that aims to encode analogies by creating

embedding vectors corresponding to the co-occurrences.

Subgraph induction

An embedding (usually) carries a single representation for an item (word or entity), which is

designed to capture all relations the item has regardless of the task or the context in which the

item occurs. For example, an embedding representation may neglect some of the infrequent

relations, which can become more relevant than others depending on the situation (context).

In order to contrast the embedding-based approach, we also implement a more traditional

graph-based approach to represent entity relations in a KG. Given a sequence of entities, as they

appear in a dialogue, i.e., [c1, c2 . . . cn], we extract relations, as top-k shortest paths, between

every entity ci and all the entities that were mentioned in the same dialogue before ci, i.e.,

(c1, ci), (c2, ci), . . . , (ci−1, ci).

For the top-k shortest path computation, we apply an approach based on bidirectional breadth-

�rst search [175] using the space-e�cient binary Header, Dictionary, Triples (HDT) encod-

ing [56] of the KG. This approach maps entities discussed in the dialogue to KG concepts, and

then interprets paths between concepts in the KG as semantic relations between the respective

entities. Many such relations are never mentioned in the conversation and only become explicit

through the path enumeration over the KG. By increasing the number of desired shortest paths

k and the maximum path length `, one can discover more relations, including those that might

be omitted or obscured in the entity embedding representation in the case of a random walk

or frequency-based embedding algorithms. An obvious downside of this increase in recall is

reduced e�ciency.

4.3.3 Dialogue classi�cation

We measure semantic coherence by casting the task into a classi�cation problem. The score

produced by the classi�er corresponds to our measure of semantic coherence.
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Since human dialogues are expected to exhibit a certain degree of incoherence due to topic

drift and since relations are missing from our background knowledge, we cannot assume

every concept in our dialogue dataset to be coherent with respect to the other concepts in

the same dialogue. However, it is reasonable to assume that on average a reasonably large

set of concepts extracted from a human dialogue exhibits a higher degree of coherence than a

randomly generated one. We build upon this assumption and cast the task of measuring semantic

coherence as a binary classi�cation task, in which real dialogues have to be distinguished from

corrupted (incoherent) dialogues. We consider positive and negative examples for whole

conversations, represented as a sequence of words or entities, which constitute the input for

the binary classi�er. E�ectively, these examples provide a supervision signal for measuring and

aggregating distances between words/concepts by learning the weights for the neural network

classi�er.

Negative sampling

To produce negative (adversarial) examples for the binary classi�cation task we propose �ve

sampling strategies:

• RUf: Random uniform. For every positive example we choose a sequence of entities (or

words for training on word embeddings) of the same size from the vocabulary uniformly

at random; so, we double the size of the dataset e�ectively by supplementing it with

completely randomly generated (i.e., presumably incoherent) counterexamples.

• SqD: Sequence disorder. Randomly permute the original sequence, which is similar in

spirit to the sentence ordering task for evaluating discourse coherence [113]. The key

di�erence is that we rearrange the order of words (entities), which may also occur within

the same sentence (utterance), rather than permuting whole sentences.

• VoD: Vocabulary distribution. For every positive example choose a sequence of entities

of the same length from the vocabulary using the same frequency distribution as in the

original corpus; so, VoD is very similar to RuF, but tries to emulate “structure” to some

extent by choosing similar term frequencies.

• VSp: Vertical split. Create a negative example by permuting two positive examples replac-

ing utterances of one of the conversation participants with utterances of a participant

from a di�erent conversation.

• HSp: Horizontal split. Create a negative example by permuting two positive examples

merging the �rst half of one conversation with the second half of a di�erent conversation.

Data augmentation is a powerful technique that helps to take advantage of a vast unlabeled

data source without requiring expensive manual annotation e�orts for model training and

evaluation. For example, application of di�erent perturbation techniques to naturally occurring

data, such as rotations and clipping, proved useful for image recognition. This approach does

not guarantee resemblance to any naturally occurring data points but is designed to better

explore the boundaries of the manifold on which the natural data points are located, i.e., study

their properties in terms of similarities and di�erences to arti�cially constructed samples.

In this chapter we apply the same idea to study the properties of human dialogues. The most
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straight-forward and realistic approach to generating negative samples of incoherent conver-

sations is appending another dialog chosen at random to the end of each dialog (“horizontal

split”). This kind of perturbation constitutes a controlled “topic drift,” when the subject of

conversation shifts to another subject in the middle of a conversation. Sampling perturbations

(“random distribution” and “vocabulary distribution”) were designed to provide a lower bound

and evaluate the data distribution by measuring how likely a randomly generated dialog is

to appear coherent to the model. The last type of negative samples presented to the model

(“vertical split”) evaluates the ability of the model to pick on the asymmetric property of a

conversation, i.e., utterance distribution between the conversation participants.

Convolutional neural network

To solve the binary classi�cation task we train a classi�er using a convolutional neural network

architecture, which is applied to sequences of words and entities to distinguish irregular semantic

drift, which was deliberately injected into conversations, from smooth drift which occur within

real conversations.

It is a standard architecture previously employed for a variety of natural language tasks, such

as text classi�cation [101]. The network consists of (1) an input layer, which appends the pre-

trained embeddings for each of the word (entity) from the dialogue sequence; (2) a convolutional

layer, which consist of �lters (arrays of trainable weights) sliding over and learning predictive

local patterns in the previous layer of the input embeddings; (3) a max pooling layer, which

aggregates the features learned by the neighboring �lters; (4) the hidden layer, a fully connected

layer, which allows combining features from all the dimensions with a non-linear function; and

(5) the output layer is a fully connected layer, which aggregates the scores to make the �nal

prediction. See also Section 4.4.2 for details.

4.4 Evaluation Setup

The source code of our implementation and evaluation procedures is publicly accessible.
4

We

also release our dataset used in the evaluation, which contains dialogue annotations with

DBpedia entities and shortest paths, for reproducibility and further references.
5

4.4.1 Dataset

Dialogues

Our experiments were performed on a sample of dialogues from the Ubuntu Dialogue Cor-

pus
6

[123], which contains 1,852,869 dialogues in total, with one dialogue per �le in TSV format,

and is the largest conversational dataset to date. There are multiple challenges related to using

this corpus, however. The dialogues were automatically extracted from a public chat using

4https://github.com/vendi12/semantic_coherence
5https://github.com/vendi12/semantic_coherence/tree/master/data
6https://github.com/rkadlec/ubuntu-ranking-dataset-creator

45

https://github.com/vendi12/semantic_coherence
https://github.com/vendi12/semantic_coherence/tree/master/data
https://github.com/rkadlec/ubuntu-ranking-dataset-creator
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several heuristics selecting two user handles and segmenting based on the timestamps. The

dialogues cannot be considered as perfectly coherent since some of the related utterances are

missing from the dialogues; there can be several di�erent topics discussed within the same

conversation and the asynchronous nature of on-line communication often results in semantic

mismatch in the dialogue sequence. While we cannot guarantee local coherence of the real

dialogues, we expect them to be on average more coherent, when comparing to the dialogues

randomly generated by sampling entities (words) from the vocabulary or merging entities

(words) from di�erent dialogues, which we refer to as negative samples, or adversaries, in our

binary classi�cation task.

We proceed by annotating a sample of 291,848 dialogues from the Ubuntu Dialogue Corpus with

the DBpedia entities using the DBpedia Spotlight public web service
7

[37]. The input to the

entity linking API is the text for each utterance in a conversation. Next, we considered only the

dialogues where both participants contribute at least 3 new entities each, i.e., every dialogue in

our dataset contains minimum 6 entities shared between the dialogue partners. The threshold

for entities per conversation was chosen to ensure there is enough semantic information for

measuring coherence. This way, we end up with a sample of 45,510 dialogues, which we regard

as true positive examples of coherent dialogue. It contains 17,802 distinct entities and 21,832

distinct words that refer to these. The maximum size of a dialogue in this dataset is 115 entities

or 128 words referring to them. We shu�ed the dialogues and selected 5,000 dialogues for

our test set. While this procedure means we cannot test our approach on short conversations,

with fewer entities, we consider 45K dialogues to be a representative dataset for evaluating our

approach.

The negative samples for both training and test set were generated using �ve di�erent sampling

strategies described in Section 4.3.3. Each development set consists of 81,020 samples (50%

positive and 50% negative). We further split it into a training and validation set: 64,816 and

16,204 (20%) samples, respectively. Our test set comprises the remaining 5,000 positive examples,

and 5,000 generated negative samples.

Knowledge models

We compared the performance on our task across two types of embeddings models trained on

two di�erent knowledge source types: GloVe [157] and Word2Vec [138] for the word embeddings,

and biased RDF2vec [29] and KGloVe [28] for the knowledge graph entity embeddings.

We utilise two publicly available word embedding models: GloVe embeddings pre-trained on

the Common Crawl corpus (2.2M words, 300 dimensions)
8

and Word2Vec model trained on the

Google News corpus (3M words, 300 dimensions).
9

1,578 words from our dialogues (7%) were

not found in the GloVe embeddings dataset and received a zero vector in our embedding layer.

Thus, GloVe embeddings cover 20,254 words from our vocabulary (93%). Word2Vec embeddings

cover only 73% of our vocabulary.

7http://model.dbpedia-spotlight.org/en/annotate
8https://nlp.stanford.edu/projects/glove/
9https://code.google.com/archive/p/word2vec/
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For RDF2Vec and KGloVe we used publicly available pre-trained global embeddings of the

DBpedia entities (see [29] and [28], respectively). For KGlove we used all di�erent embeddings,

while for RDF2Vec we experimented with the embeddings that gave the best performance

in [29]. KGlove embeddings cover 17,258 entities from our vocabulary (97%), while Rdf2Vec

provides 62–77% due to di�erent importance sampling strategies of the embedding approaches.

The shortest paths used were extracted from dumps of DBpedia (April 2016, 1.04 billion triples)

and Wikidata (March 2017, 2.26 billion triples).
10

4.4.2 Implementation

Our neural network model is implemented using the Keras library with a TensorFlow backend.

The one-dimensional (temporal) convolutional layer contains 250 �lters of size 3 and stride

(step) 1. The max pooling layer is global, the hidden layer is set to 250 dimensions. There are

two activation layers with recti�ed linear unit (ReLU) after the convolutional and the hidden

layers to capture also non-linear dependencies between input and output, and two dropout

layers with rate 0.2 after the embeddings and hidden layers to avoid over�tting. The last ReLU

activation is projected onto a single-unit output layer with a sigmoid activation function to

obtain a coherence score on the interval between 0 and 1.

The network is trained using the Adam optimizer with the default parameters [102] to mini-

mize the binary cross-entropy loss between the predicted and correct value. All models were

trained for 10 epochs in batches of 128 samples and early stopping after 5 epochs if there is no

improvement in accuracy on the validation set.

To compute the shortest paths we merged the dumps of DBpedia and Wikidata into a single

36GB binary �le in HDT format [56] (DBpedia+Wikidata HDT), with an additional 21GB index

on the subject and the object components of triples. We set the parameters of the algorithm in

our experimental evaluation as follows: k for the number of shortest paths to be retrieved from

the graph to 5, the maximum length ` of a path to 9 edges (relations) and a timeout terminating

the query after 2 seconds to cope with the scalability issues of the algorithm. Our top-k shortest

paths algorithm implementation is available via a SPARQL endpoint
11

using the syntax shown

in Fig. 4.2.

The function at.ac.wu.arqext.path.topk is a user de�ned extension available as a

Jena ARQ extension.
12

4.5 Evaluation Results

Table 4.1 reports the most common entities and relations, which while not being mentioned in

the course of a dialogue, were on the shortest paths (in the KG) between other entities that were

explicitly mentioned in the dialogue, i.e., which constitute an implicit dialogue context. While

10http://www.rdfhdt.org/datasets/
11http://wikidata.communidata.at
12https://bitbucket.org/vadim_savenkov/topk-pfn
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[fontsize=\small]
PREFIX ppf: <java:at.ac.wu.arqext.path.>
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT * WHERE {
?X ppf:topk ("--source" dbr:Directory_service

dbr:Gnome dbr:GNOME
dbr:Desktop_environment

"--target" dbr:Desktop_computer
"--k" 5 "--maxlength" 9 "--timeout" 2000) }

Figure 4.2: k-shortest path query (cf. [175] to extract relevant connections between entities

from the knowledge graph

Dbpedia Spotlight dereferenced “Ubuntu” mentions to the concept related to philosophy rather

than to the popular software distribution, the graph-based approach succeeds in recovering the

correct meaning of the word by extracting this concept from the shortest paths that lie between

the other entities mentioned in dialogues. Almost all relations obtained from the KG correspond

to the links between the corresponding Wikipedia web pages (wikiPageWikiLink).

Table 4.1: The top 5 most common entities and relations in the Ubuntu Dialogue dataset:

mentioned entities – from linking dialogue utterances to DBpedia entities via Dbpedia Spotlight

Web service; context entities and relations – from the shortest paths between the mentioned

entities in DBpedia.

Top Mentioned entities Context entities Relations

# Label Count Label Count Label Count

1 Ubuntu(philosophy) 1605 Ubuntu(OS) 1058 wikiPageWikiLink 51014

2 Sudo 708 Linux 725 gold/hypernym 319

3 Booting 676 Microsoft_Windows 208 ontology/genre 178

4 APT(Debian) 405 FreeBSD 175 operatingSystem 140

5 Live_CD 314 Smartphone 171 rdf-schema#seeAlso 116

4.5.1 Semantic distance

The length of the shortest path (number of edges, i.e., relations on the path) is a standard

measure used to estimate semantic (dis)similarity between entities in a knowledge graph [142].

We observe how it correlates with a standard measure to estimate similarity between vectors

in a vector space, cosine distance, de�ned as: 1 − cos(x, y) = 1 − xyᵀ

||x||||y|| Fig. 4.3 showcases

di�erent perspectives on semantic similarity (coherence) between the entities in real and

generated dialogues as observed in di�erent semantic spaces (w.r.t. the knowledge models),

alignments and di�erences between them. The barplots re�ect the distributions of the semantic

distances between entities in dialogues. The semantic distances are measured using cosine
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Figure 4.3: Distribution of cosine distances for di�erent data splits using Word2Vec and GloVe

word embeddings (left), and RDF2Vec KG embeddings (top right), compared with the distribution

of shortest path lengths in DBpedia+Wikidata KG (bottom right). Words in real dialogues (True

positive) are more related than frequent domain words (Vocabulary distribution), and much

more than a random sample (Random uniform).

distances between vectors in the vector space for word (Word2Vec and GloVe) and KG (RDF2Vec)

embeddings, and in terms of the shortest path lengths in the DBpedia+Wikidata KG. We observe

that the real dialogues (True positive) tend to have smaller distances between entities: 1–2 hops

or at most 0.3 cosine distance, while randomly generated sequences are skewed further o�.

Embeddings produce much more �ne-grained (continuous) representation of semantic distances

in comparison with the shortest path length metric. Distributions produced by di�erent word

embeddings are very similar in shape, while the one from KG embeddings is steeper and skewed

more to the center, there are only a few entities further than 0.7, while this is the top for the

random distances in word embeddings.

We also discover the bottleneck of our shortest path algorithm at length 5. Since the set of

relevant entities for which the paths are computed grows proportionally to the dialogue length,

depending on the degree of the node the number of expanded nodes quickly reaches the limit
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on the memory size. In our case, the algorithm retrieved the paths of length at most 5 due to

the 2-second timeout, while the parameter for the maximum length of the path ` was set to 9.

4.5.2 Classi�cation results

Our evaluation results from training a neural network on the task of measuring (in)cohe-

rence in dialogues are listed in Table 4.2. It summarizes the outcomes of models trained on

di�erent embeddings using di�erent types of adversarial samples (negative sampling strategies

are described in Section 4.3.3). For the KG embeddings, we report only the approaches that

performed best across di�erent test splits.
13

From the results we observe that the easiest task was to distinguish real dialogues from randomly

generated sequences. When the model was trained with randomly generate dialogues, accuracies

often reach close to 100%. However, this same model performs poorly when used for any other

type of non-genuine messages we created. In the best case (KGloVe Uni), still only 10% of

messages randomly sampled from the vocabulary distribution were correctly detected. This

indicates that there is a need to experiment with the other types as well. We also observe

that the models that are trained with speci�c adversarial examples are best in separating that

type. However, even when the model is not explicitly trained to recognize a speci�c type of

dialogue, but instead trained on other types of adversarial examples, it is sometimes still able to

classify messages correctly. This happens, for example, in the case of KGloVe Uniform where

the adversarial messages are sampled from the Vocabulary distribution and the model is still

able to detect around 70% of randomly generated messages.

The dialogues generated by permuting the sequence of entities (words) in the original dialogues

(the sequence ordering task) were harder to distinguish (The best performing model resulted

in an accuracy of 0.79). Finally, the hardest task was to discriminate the adversarial examples

generated by merging two di�erent dialogues together (vertical and horizontal splits). This was

expected as these dialogues have short sequences of genuine dialogue inside, making them hard

to classify.

The best performance across all test settings was achieved using the word embeddings models,

especially GloVe performed well. KG embeddings, while performing reasonably well on the

easier tasks (RUf and VoD), fell short to distinguish more subtle changes in semantic coherence.

For the KG embedding weighting approaches, we noticed that the ones which performed well

in earlier work, also worked better in this task. In particular, it was noticed that the weighting

biased by PageRank computed on the Wikipedia links graph results in better results in machine

learning tasks.

As discussed in Section 4.4, RDF2vec has fewer entity embeddings than KGloVe, when trained

from the same original graph (DBpedia). KGloVe will provide an embedding, even when not

much is known about a speci�c entity. In case of a node that does not have any edges, KGloVe

will assign a random vector to it. In contrast, RDF2Vec will prune infrequent nodes. Another

13

The full result table is available on-line: https://github.com/vendi12/semantic_
coherence/blob/master/results/results.xls
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Table 4.2: Accuracy on the test set across di�erent embedding and sampling approaches. The

table shows for 7 di�erent embedding strategies (4 types), how the embedding performs when

trained with data from di�erent generated adversarial examples. For example, the underlined

value in the table (0.92), means that GloVe word embeddings, when trained with genuine

and Vertical split (VSp) adversarial examples, is able to correctly �nd 92% of the Vocabulary

distribution (VoD) adversarial examples in the test set. In the same row, in the TPos column, it

can be seen that 60% of the genuine messages were correctly identi�ed. Hence, this results in

an average accuracy of 0.76. In blue highlight, we indicate the results where the adversarial

examples for training the model where of the same type as for testing the model. In bold, we

indicate the best result for each adversarial example type. Abbreviations: TPos – True Positive,

TNeg – True Negative, RUf – Random uniform, VoD – Vocabulary distribution, SqD – Sequence

disorder, VSp – Vertical split, HSp – Horizontal split, Avg – Average, PRS – PageRank Split, PR

– PageRank, Uni – Uniform, PrO – Predicate Object.

Accuracy

Data TNeg

Embeddings split TPos RUf Avg VoD Avg SqD Avg VSp Avg HSp Avg Avg

Word2Vec RUf 0.99 0.99 0.99 0.02 0.50 0.02 0.50 0.01 0.50 0.01 0.50 0.60

VoD 0.89 0.62 0.75 0.90 0.89 0.53 0.71 0.18 0.54 0.20 0.54 0.69
SqD 0.75 0.65 0.70 0.88 0.81 0.81 0.78 0.27 0.51 0.29 0.52 0.66

VSp 0.59 0.50 0.55 0.82 0.71 0.41 0.50 0.59 0.59 0.61 0.60 0.59

HSp 0.62 0.39 0.50 0.71 0.66 0.38 0.50 0.55 0.58 0.63 0.63 0.58

GloVe RUf 0.99 0.99 0.99 0.00 0.50 0.01 0.50 0.00 0.50 0.00 0.50 0.60

VoD 0.93 0.38 0.66 0.93 0.93 0.39 0.66 0.19 0.56 0.08 0.51 0.66

SqD 0.76 0.71 0.73 0.91 0.84 0.82 0.79 0.16 0.46 0.15 0.45 0.66

VSp 0.60 0.25 0.42 0.92 0.76 0.43 0.51 0.65 0.62 0.66 0.63 0.59

HSp 0.71 0.34 0.52 0.81 0.76 0.30 0.50 0.55 0.63 0.66 0.68 0.62

rdf2vec PRS RUf 0.98 0.99 0.99 0.02 0.50 0.02 0.50 0.02 0.50 0.01 0.50 0.60

VoD 0.79 0.68 0.73 0.83 0.81 0.34 0.57 0.36 0.57 0.35 0.57 0.65

SqD 0.59 0.48 0.54 0.72 0.66 0.67 0.63 0.43 0.51 0.40 0.50 0.56

rdf2vec PR HSp 0.57 0.59 0.58 0.72 0.64 0.43 0.50 0.59 0.58 0.67 0.62 0.58

KGloVe Uni RUf 0.92 0.97 0.94 0.11 0.51 0.09 0.50 0.08 0.50 0.07 0.50 0.59

VoD 0.54 0.88 0.71 0.73 0.64 0.61 0.58 0.51 0.52 0.52 0.53 0.60

SqD 0.55 0.62 0.58 0.64 0.59 0.63 0.59 0.47 0.51 0.45 0.50 0.56

KGloVe PrO HSp 0.31 0.81 0.56 0.75 0.53 0.69 0.50 0.77 0.54 0.70 0.51 0.53

KGloVe PR HSp 0.47 0.69 0.58 0.61 0.54 0.54 0.50 0.57 0.52 0.65 0.56 0.54

problem that a�ects KG embeddings are incorrectly recognized entities. There is no linking

required for needed word embeddings since it represents di�erent meanings of the word in a

single vector.

Overall, we want to be able not only to tell to which degree a dialogue is (in)coherent but

also to identify the regions in the dialogue where coherence was disrupted, or to partition the

dialogue into coherent segments indicating the shifts between di�erent topics. Visualization of
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Figure 4.4: Heatmap of the activations on the output of the word embeddings layer. Notice

the vertical-bar pattern indicating a stronger semantic relation between the words in a real

dialogue (top) in comparison with a random word sequence (middle). The topic drift e�ect can

be observed when two di�erent dialogues are concatenated (horizontal split – bottom): the

bars at the top are shifted in comparison with the bars in the second half of the conversation,

comparing to the coherence patterns observed in the real dialogue (top).

the activations in the output of the convolutional layer of the Glove word embeddings-based

model exhibits distinct vertical activation patterns, which can be interpreted as traces of local

coherence the model is able to recognize (See Fig. 4.4).

4.6 Conclusion

We considered the task of measuring semantic coherence of a conversation, which introduces

an important and challenging problem that requires processing vast amounts of heterogeneous

knowledge sources to infer implicit relations between the utterances, i.e., bridging the semantic

gap in understanding natural language. We proposed and evaluated several approaches to this

problem using alternative sources of background knowledge, such as structured (knowledge

graph) and unstructured (text corpora) knowledge representations. These approaches detect

semantic drift in conversations by measuring coherence with respect to the background knowl-

edge. Our models were trained for dialogues but the approach does not restrict the number of
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conversation participants. The model’s performance depends to a large extent on the choice

of background knowledge source, with respect to the conversation domain. The conversation

needs to contain a su�cient number of recognized entities to signal its position within the

semantic space. Using entity annotations in the processing mining approach for analysing and

evaluating conversation success introduced in Chapter 3 also constitutes a promising direction

for the future work.

The theory of indirect illocutionary acts introduced by Searle (1979) suggests that conversation

participants are able to infer the intention of a speaker even when it is not expressed directly.

This is achieved by applying reasoning based on a shared background knowledge. We took this

idea a step further by hypothesizing that there is a direct relation between an utterance and a

response to it that can be tracked using the background knowledge.

In our experiments we track latent relationships between utterances adjacent in a conversation

by projecting them upon a large knowledge graph. Every response in a conversation is likely to

have a relation to the previous utterance that can be described as a set of top-k shortest paths

between the �rst utterance and the next responses. The idea is that the latent relationships are

represented and thereby can be made explicit through the background knowledge graph. The

subgraph extracted as a result of the traversal between these sets of concepts may re�ect the

reasoning process behind the response explicitly surfacing the indirect illocution “in-between

the lines” of a conversation.

Our results indicate promising directions as well as challenges in applying structural knowledge

to analyse natural language. We show that the use of word embeddings in text classi�cation is

superior to some existing knowledge graph embeddings. This is an important insight, advanc-

ing research by uncovering limitations of state-of-the-art knowledge graph embeddings and

indicating directions for improvements.

Knowledge graph embeddings constitute a potentially powerful method to e�ciently harness

entity relations for tasks that require estimates of semantic similarity. However, their use relies

on the correctness of the entity linking performance. Errors made at this stage in the pipe-

line approach do propagate into the classi�cation results, but we noticed that they are rather

consistent, which partially mitigates the problem. Our experiments showed that graph-based

approaches are more robust to errors in entity linking than knowledge graph embeddings,

which is an important insight for future work.

We follow up on these �ndings in Chapter 5 and show how to make question answering over

knowledge graphs more robust to uncertainty in entity linking and relation detection. Our

approach integrates word embeddings to interpret a question and �nd parts of the knowledge

graph that can be relevant to this question. It is able to consider several alternative interpretations

in parallel and aggregate their scores via message-passing directly on the graph structure.
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CHAPTER 5

Question Answering

When it is not in our power to determine what is true, we ought to act according
to what is most probable.
— Descartes, Discourse on Method, 1637

Natural language is an inherently ambiguous communication tool. Therefore, any attempt at

interpreting a natural language utterance requires a probabilistic model capable of reasoning

under uncertainty. Moreover, natural language understanding and interpretation is often

context-dependent and require access to background knowledge that provides a set of relevant

concepts and relations between them. This chapter introduces an approach that estimates and

incrementally aggregates con�dence scores over the structure of a knowledge graph in the

context of a natural language understanding task. Our approach mitigates the issue previously

discussed in Chapter 4 when all alternative interpretations were discarded at an early linking and

disambiguation stage. Instead, we show how to maintain and deliver a large pool of candidate

interpretations ranked by the corresponding con�dence scores in a scalable manner. We

demonstrate the performance of the proposed approach in the context of a question answering

task, which is one of the core AI tasks and provides su�cient evaluation criteria.

More speci�cally, we focus on the task of question answering over knowledge graphs (KGQA),

which has evolved from simple single-fact questions to complex questions that require graph

traversal and aggregation. In this chapter we propose a novel approach for complex KGQA

that uses unsupervised message passing, which propagates con�dence scores obtained by

parsing an input question and matching terms in the knowledge graph to a set of possible

answers. First, we identify entity, relationship, and class names mentioned in a natural language

question, and map these to their counterparts in the graph. Then, the con�dence scores of

these mappings propagate through the graph structure to locate the answer entities. Finally,

these are aggregated depending on the identi�ed question type. We demonstrate that this

This chapter was published as [212].

55



5. �estion Answering

approach can be e�ciently implemented as a series of sparse matrix multiplications mimicking

joins over small local subgraphs. Our evaluation results show that the proposed approach

outperforms the state-of-the-art on the LC-QuAD benchmark. Moreover, we are able to show

that the performance of the approach depends only on the quality of the question interpretation

results, i.e., given a correct relevance score distribution, our approach always produces a correct

answer ranking. Our error analysis reveals correct answers missing from the benchmark dataset

and inconsistencies in the DBpedia knowledge graph. Finally, we provide a comprehensive

evaluation of the proposed approach accompanied with an ablation study and an error analysis,

which showcase the pitfalls for each of the question answering components in more detail.

5.1 Introduction

The amount of data shared on the Web grows every day [66]. Information retrieval systems are

very e�cient but they are limited in terms of the representation power for the underlying data

structure that relies on an index for a single database table, i.e., a homogeneous collection of

textual documents that share the same set of attributes, e.g., web pages or news articles [130].

Knowledge graphs (KGs), i.e., graph-structured knowledge bases, such as DBpedia [117] or Wiki-

data [218], can interlink datasets with completely di�erent schemas [22]. Moreover, SPARQL is a

very expressive query language that allows us to retrieve data from a KG that matches speci�ed

graph patterns [79]. Query formulation in SPARQL is not easy in practice since it requires

knowledge of which datasets to access, their vocabulary and structure [62]. Natural language

interfaces can mitigate these issues, making data access more intuitive and also available for

the majority of lay users [82, 96]. One of the core functionalities for this kind of interfaces is

question answering (QA), which goes beyond keyword or boolean queries, but also does not

require knowledge of a specialised query language [204].

QA systems have been evolving since the early 1960s with e�orts in the database community

to support natural language queries by translating them into structured queries [see, e.g.,

25, 70, 230]. Whereas a lot of recent work has considered answering questions using unstructured

text corpora [162] or images [69], we consider the task of answering questions using information

stored in KGs. KGs are an important information source that provide a convenient intermediate

representation that can integrate information from di�erent sources and di�erent modalities,

such as images and text [42]. The resulting models are at the same time abstract, compact, and

interpretable [226].

Question answering over knowledge graphs (KGQA) requires matching an input question to a

subgraph, in the simplest case matching a single labeled edge (triple) in the KG, a task also called

simple question answering [23]. The task of complex question answering is de�ned in contrast to

simple KGQA and requires matching more than one triple in the KG [202]. Previously proposed

approaches to complex KGQA formulate it as a subgraph matching task [8, 128, 190], which is

an NP-hard problem (by reduction to the subgraph isomorphism problem) [234], or attempt

to translate a natural language question into template-based SPARQL queries to retrieve the

answer from the KG [50], which requires a large number of candidate templates [187].
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We propose an approach to complex KGQA, called QAmp, based on an unsupervised message-

passing algorithm, which allows for e�cient reasoning under uncertainty using text similarity

and the graph structure. The results of our experimental evaluation demonstrate that QAmp is

able to manage uncertainties in interpreting natural language questions, overcoming inconsis-

tencies in a KG and incompleteness in the training data, conditions that restrict applications of

alternative supervised approaches.

A core aspect of QAmp is in disentangling reasoning from the question interpretation process.

We show that uncertainty in reasoning stems from the question interpretation phase alone,

meaning that under correct question interpretations QAmp will always rank the correct answers

at the top. QAmp is designed to accommodate uncertainty inherent in perception and interpre-

tation processes via con�dence scores that re�ect natural language ambiguity, which, just like

for humans, depends on the ability to interpret terms correctly. These ranked con�dence values

are then aggregated through our message-passing in a well-de�ned manner, which allows us

to simultaneously consider multiple alternative interpretations of the seed terms, favoring the

most likely interpretation in terms of the question context and relations modeled within the KG.

Rather than iterating over all possible orderings, we show how to evaluate multiple alternative

question interpretations in parallel via e�cient matrix operations.

Another assumption of QAmp that proves useful in practice is to deliberately disregard subject-

object order, i.e., edge directions in a knowledge graph, thereby treating the graph as undirected.

Due to relation sparsity, this model relaxation turns out to be su�cient for most of the questions

in the benchmark dataset. We also demonstrate that due to insu�cient relation coverage of

the benchmark dataset any assumption on the correct order of the triples in the KG is prone

to over�tting. More than one question-answer example per relation is required to learn and

evaluate a supervised model that predicts relation directionality.

Our evaluation on LC-QuAD
1

[202], a recent large-scale benchmark for complex KGQA, shows

that QAmp signi�cantly outperforms the state-of-the-art, without the need to translate a natural

language question into a formal query language such as SPARQL. We also show that QAmp is

interpretable in terms of activation paths, and simple, e�ective and e�cient at the same time.

Moreover, our error analysis demonstrates limitations of the LC-QuAD benchmark, which was

constructed using local graph patterns.

The rest of the chapter is organized as follows. Section 5.2 summarizes the state of the art in

KGQA. Section 5.3 presents our approach, QAmp, with particular attention to the question inter-
pretation and answer inference phases. In Section 5.4, we describe the setup for the experimental

evaluation of QAmp on the LC-QuAD dataset. We also provide a detailed ablation, scalability

and error analysis in Section 5.5. Finally, Section 5.6 concludes and lists future work.

5.2 Related Work

The most commonly used KGQA benchmark is the SimpleQuestions [23] dataset, which con-

tains questions that require identifying a single triple to retrieve the correct answers. Recent

1http://lc-quad.sda.tech
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results [159] show that most of these simple questions can be solved using a standard neural

network architecture. This architecture consists of two components: (1) a conditional random

�elds (CRF) tagger with GloVe word embeddings for subject recognition given the text of the

question, and (2) a bidirectional LSTM with FastText word embeddings for relation classi�cation

given the text of the question and the subject from the previous component. Approaches to

simple KGQA cannot easily be adapted to solving complex questions, since they rely heavily on

the assumption that each question refers to only one entity and one relation in the KG, which is

no longer the case for complex questions. Moreover, complex KGQA also requires matching

more complex graph patterns beyond a single triple.

Since developing KGQA systems requires solving several tasks, namely entity, relation and

class linking, and afterwards query building, they are often implemented as independent

components and arranged into a single pipeline [52]. Frameworks such as QALL-ME [60],

OKBQA [100] and Frankenstein [186], allow one to share and reuse those components as a

collaborative e�ort. For example, Frankenstein includes 29 components that can be combined

and interchanged [188]. However, the distribution of the number of components designed for

each task is very unbalanced. Most of the components in Frankenstein support entity and

relation linking, 18 and 5 components respectively, while only two components perform query

building [187].

There is a lack of diversity in approaches that are being considered for retrieving answers

from a KG. OKBQA and Frankenstein both propose to translate natural language questions

to SPARQL queries and then use existing query processing mechanism to retrieve answers.
2

We show that using matrix algebra approaches is more e�cient in case of natural language

processing than traditional SPARQL-based approaches since they are optimized for parallel

computation, thereby allowing us to explore multiple alternative question interpretations at the

same time [88, 98].

Query building approaches involve query generation and ranking steps [128, 231]. These

approaches essentially consider KGQA as a subgraph matching task [8, 128, 190], which is an

NP-hard problem (by reduction to the subgraph isomorphism problem) [234]. In practice, Singh

et al. [187] report that the question building components of Frankenstein fail to process 46%

questions from a subset of LC-QuAD due to the large number of triple patterns. The reason

is that most approaches to query generations are template-based [50] and complex questions

require a large number of candidate templates [187]. For example, WDAqua [50] generates 395

SPARQL queries as possible interpretations for the question “Give me philosophers born in

Saint Etienne.”

In summary, we identify the query building component as the main bottleneck for the develop-

ment of KGQA systems and propose QAmp as an alternative to the query building approach.

We also observe that the pipeline paradigm is ine�cient since it requires KG access �rst for

disambiguation and then for query building again. QAmp accesses the KG only to aggregate the

con�dence scores via graph traversal after question parsing and shallow linking that matches

an input question to labels of nodes and edges in the KG.

2http://doc.okbqa.org/query-generation-module/v1/
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The work most similar to ours is the spreading activation model of Treo [63], which is also a no-

SPARQL approach based on graph traversal that propagates relatedness scores for ranking nodes

with a cut-o� threshold. Treo relies on POS tags, the Stanford dependency parser, Wikipedia

links and TF/IDF vectors for computing semantic relatedness scores between a question and

terms in the KG. Despite good performance on the QALD 2011 dataset, the main limitation of

Treo is an average query execution time of 203s [63]. In this chapter we show how to scale

this kind of approach to large KGs and complement it with machine learning approaches for

question parsing and word embeddings for semantic expansion.

Our approach overcomes the limitations of the previously proposed graph-based approach in

terms of e�ciency and scalability, which we demonstrate on a compelling benchmark. We

evaluate QAmp on LC-QuAD [202], which is the largest dataset used for benchmarking complex

KGQA. WDAqua is our baseline approach, which is the state-of-the-art in KGQA as the winner of

the most recent Scalable Question Answering Challenge (SQA2018) [145]. Our evaluation results

demonstrate improvements in precision and recall, while twice reducing average execution

time over the SPARQL-based WDAqua, which is also orders of magnitude faster than the results

reported for the previous graph-based approach Treo.

There is other work on KGQA that uses embedding queries into a vector space [78, 222].

The bene�t of our graph-based approach is in preserving the original structure of the KG

that can be used for both executing precise formal queries and answering ambiguous natural

language questions at the same time. The graph structure also makes the results traceable and,

therefore, interpretable in terms of relevant paths and subgraphs in comparison with vector

space operations.

QAmp uses message passing, a family of approaches that were initially developed in the context

of probabilistic graphical models [105, 156]. Recently, graph neural networks trained to learn

patterns of message passing have been shown to be e�ective on a variety of tasks [13, 68],

including KG completion [179]. We show that our unsupervised approach to message passing

performs well on the complex question answering task and helps to overcome sampling biases

in the training data, which supervised approaches are prone to.

5.3 Approach

QAmp, our KGQA approach, consists of two consecutive phases: (1) question interpretation,

and (2) answer inference. In the question interpretation phase we identify the sets of entities

and predicates that we consider relevant for answering the input question along with the

corresponding con�dence scores. In the second phase these con�dence scores are propagated

and aggregated directly over the structure of the KG, to provide a con�dence distribution over

the set of possible answers.

Our notion of a KG is inspired by common concepts from the Resource Description Framework

(RDF) [180], a standard representation used in many large-scale knowledge graphs, e.g., DBpedia

and Wikidata:
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De�nition 5.1. We de�ne a (knowledge) graph K = 〈E,G, P 〉 as a tuple that contains
sets of entities E (nodes) and properties P , both represented by Unique Resource Identi�ers
(URIs), and a set of directed labeled edges 〈ei, p, ej〉 ∈ G, where ei, ej ∈ E and p ∈ P .

The set of edges G in a KG can be viewed as a (blank-node-free) RDF graph, with subject-

predicate-object triples 〈ei, p, ej〉. In analogy with RDFS, we refer to a subset of entities C ⊆ E
appearing as objects of the special property rdf:type as Classes. We also refer to classes,

entities and properties collectively as terms. We ignore RDF literals, except for rdfs:labels
that are used for matching questions to terms in KG.

The task of question answering over a knowledge graph (KGQA) is: given a natural language

question Q and a knowledge graph K , produce the correct answer A, which is either a subset

of entities in the KG A ⊆ E or a result of a computation performed on this subset, such as the

number of entities in this subset (COUNT) or an assertion (ASK). These types of questions are

the most frequent in existing KGQA benchmarks [23, 202, 206]. In the �rst phase QAmp maps a

natural language question Q to a structured model q, which the answer inference algorithm

will operate on then.

5.3.1 Question interpretation

To produce a question model q we follow two steps: (1) parse, which extracts references (entity,

predicate and class mentions) from the natural language question and identi�es the question

type; and (2) match, which assigns each of the extracted references to a ranked list of candidate

entities, predicates and classes in the KG.

E�ectively, a complex question requires answering several sub-questions, which may depend

on or support each other. A dependence relation between the sub-questions means that an

answer A1
to one of the questions is required to produce the answer A2

for the other question:

A2 = f(A1,K). We call such complex questions compound questions and match the sequence

in which these questions should be answered to hops (in the context of this chapter, one-variable

graph patterns) in the KG. Consider the sample compound question in Figure 5.1, which consists

of two hops: (1) �nd the car types assembled in Broadmeadows Victoria, which have a hardtop

style, (2) �nd the company, which produces these car types. There is an intermediate answer

(the car types with the speci�ed properties), which is required to arrive at the �nal answer (the

company).

Accordingly, we de�ne (compound) questions as follows:

De�nition 5.2. A question model is a tuple q = 〈tq, Seqq〉, where tq ∈ T is a question type
required to answer the question Q, and Seqq = (〈Ei, P i, Ci〉)h

i=1 is a sequence of h hops
over the KG, Ei is a set of entity references, P i – a set of property references, Ci – a set of
class references relevant for the i-hop in the graph, and T – a set of question types, such as
{SELECT,ASK,COUNT}.

60



5.3. Approach

Which     company     assembles     its     hardtop     style      cars      in      Broadmeadows, Victoria ?

dbo:assembly 0.9 
dbp:assembly 0.9

dbr:Ford_Falcon_Cobra 

dbr:Hardtop

dbo:bodyStyle dbp:assembly

dbr:Broadmeadows,_Victoria

dbo:parentCompany

dbo:Automobile

rdf:type 

dbr:Ford_Motor_Company 

dbo:Automobile 1 
dbr:Car 1 

dbo:company 1 
dbp:companyLogo 0.8 

dbo:parentCompany 0.8 

dbr:Hardtop 1 dbr:Broadmeadows,_Victoria 0.9
dbr:Victoria 0.2

dbo:bodyStyle 0.5

(a) Q:

(b)

1st hop2nd hop

Figure 5.1: (a) A sample question Q highlighting di�erent components of the question interpre-

tation model: references and matched URIs with the corresponding con�dence scores, along

with (b) the illustration of a sample KG subgraph relevant to this question. The URIs in bold are

the correct matches corresponding to the KG subgraph.

Hence, the question in Figure 5.1 can be modeled as: 〈SELECT, (〈E1 = {“hardtop”, “Broad-

meadows, Victoria”}, P 1 = {“assembles”, “style”}, C1 = {“cars”}〉, 〈E2 = ∅, P 2 = {“company”},

C2 = ∅〉)〉, where Ei
, P i

, Ci
refer to the entities, predicates and classes in hop i.

Further, we describe how the question model q is produced by parsing the input question Q,

after which we match references in q to entities and predicates in the graph K .

Parsing. Given a natural language question Q, the goal is to classify its type tq and parse it

into a sequence Seqq of reference sets according to De�nition 5.2. Question type detection is

implemented as a supervised classi�cation model trained on a dataset of annotated question-type

pairs that learns to assign an input question to one of the prede�ned types tq ∈ T .

We model reference (mention) extraction Seqq as a sequence labeling task [111], in which a

question is represented as a sequence of tokens (words or characters). Then, a supervised

machine learning model is trained on an annotated dataset to assign labels to tokens, which we

use to extract references to entities, predicates and classes. Moreover, we de�ne the set of labels

to group entities, properties and classes referenced in the question into h hops.

Matching. Next, the question model (De�nition 5.2) is further updated with an interpreted
question model I(q) = (tq, SEQq) in which each component of Seqq is represented by sets of

pairs from (E ∪P ∪C)× [0, 1] obtained by matching the references to concrete terms in K (by

their URIs) as follows: for each entity (or property, class, resp.) reference in Seqq , we retrieve a

ranked list of most similar entities from the KG along with the matching con�dence score.

Fig. 5.1 also shows the result of this matching step on our example. For instance, the property

references for the �rst hop are replaced by the set of candidate URIs: P 1 = {P 1
1 , P

1
2 } ∈
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W (    ) = 2 * (0.5 * 1.0 + 0.9 * 0.9) / (2 + 2) = 0.66

dbr:Ford_Falcon_Cobra 

dbr:Hardtop

dbo:bodyStyle dbp:assembly

(a)
0.9

0.91.0

(b)

dbo:assembly
0.9

0.2

(c)

dbr:Broadmeadows,_Victoria

dbr:Car1 

0.5

dbr:Car2 

dbp:assembly
0.9

dbr:Victoria

dbo:bodyStyle
0.5

Activation sums normalized (see Alg.1, lines 5&9)

W (    ) = 2 * (0.5 * 1.0 + 0.9 * 0.2) / (2 + 2) = 0.34

A (    ) = (0.66 + 2 + 2) / (2 + 2 + 1) = 0.93
A (    ) = (0.34 + 2 + 2) / (2 + 2 + 1) = 0.87

Aggregated scores (see Alg.1, line 11)

W (    ) = 2 * (0.9 * 0.9) / (2 + 2) = 0.41

A (    ) = (0.41 + 1 + 1) / (2 + 2 + 1) = 0.48

Figure 5.2: (a) A sample subgraph with three entities as candidate answers, (b) their scores after

predicate and entity propagation, and (c) the �nal aggregated score.

SEQq within I(q), where P 1
1 = {(dbo:assembly, 0.9), (dbp:assembly, 0.9)}, P 1

2 =
{(dbo:bodyStyle, 0.5)}.

5.3.2 Answer inference

Our answer inference approach iteratively traverses and aggregates con�dence scores across

the graph based on the initial assignment from I(q). An answer set Ai
, i.e., a set of entities

along with their con�dence scores E × [0, 1], is produced after each hop i and used as part

of the input to the next hop i + 1, along with the terms matched for this hop in I(q), i.e.,

SEQq(i + 1) = 〈Ei+1, P i+1, Ci+1〉. The entity set Ah
produced after the last hop h can be

further transformed to produce the �nal answer: Aq = ftq (Ah) via an aggregation function

ftq ∈ F from a prede�ned set of available aggregation functions F de�ned for each of the

question types tq ∈ T . We compute the answer set Ai
for each hop inductively in two steps: (1)

subgraph extraction and (2) message passing.

Subgraph extraction. This step refers to the retrieval of relevant triples from the KG that

form a subgraph. Thus, the URIs of the matched entities and predicates in the query are used

as seeds to retrieve the triples in the KG that contain at least one entity (in subject or object

position), and one predicate from the corresponding reference sets. Therefore, the extracted

subgraph will contain n entities, which include all entities from Ei
and the entities adjacent to

them through properties from P i
.

The subgraph is represented as a set of k adjacency matrices with n entities in the subgraph:

Sk×n×n
, where k is the total number of matched property URIs. There is a separate n × n

matrix for each of the k properties used as seeds, where Spij = 1 if there is an edge labeled p
between the entities i and j , and 0 otherwise. All adjacency matrices are symmetric, because

I(q) does not model edge directionality, i.e., it treats K as undirected. Diagonal entries are

assigned 0 to ignore self loops.
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Algorithm 5.1: Message passing for KGQA

Input: adjacency matrices of the subgraph Sk×n×n
,

entity El×n
and property reference activations Pm×k

Output: answer activations vector A ∈ Rn

1: Wn, Nn
P ,YE

l×n = ∅
2: for Pj ∈ Pm×k, j ∈ {1, ...,m} do
3: Sj =

⊕k
i=1 Pj ⊗ S . property update

4: Y = E⊕⊗Sj . entity update

5: W = W +
⊕l

i=1 Yij . sum of all activations

6: NPj =
∑l

i=1 1 if Yij > 0 else 0
7: YE = YE ⊕ Y . activation sums per entity

8: end for
9: W = 2 ·W/(l +m) . activation fraction

10: NE =
∑l

i=1 1 if YEij > 0 else 0
11: return A = (W ⊕NE ⊕NP )/(l +m+ 1)

Message passing. The second step of the answer inference phase involves message passing,
3

i.e., propagation of the con�dence scores from the entities Ei
and predicates P i

, matched in

the question interpretation phase, to adjacent entities in the extracted subgraph. This process

is performed in three steps, (1) property update, (2) entity update, and (3) score aggregation.

Algorithm 5.1 summarizes this process, detailed as follows.

For each of m property references Pj ∈ Pm×k, j ∈ {1, . . . ,m} where m = |P i|, we

1. select the subset of adjacency matrices from Sk×n×n
for the property URIs if pij > 0, where

pij ∈ Pj , and propagate the con�dence scores to the edges of the corresponding adjacency

matrices via element-wise multiplication. Then, all adjacency matrices are combined into a

single adjacency matrix Sn×n
j , which contains all of their edges with the sum of con�dence

scores if edges overlap (property update: line 3, Algorithm 5.1).

2. perform the main message-passing step via the sum-product update, in which the con�dence

scores from l entity references, where l = |Ei|, are passed over to the adjacent entities via

all edges in Sn×n
j (entity update: line 4, Algorithm 5.1).

3. aggregate the con�dence scores for all n entities in the subgraph into a single vector A
by combining the sum of all con�dence scores with the number of entity and predicate

reference sets, which received non-zero con�dence score. The intuition behind this score
aggregation formula (line 11, Algorithm 5.1) is that the answers that received con�dence

from the majority of entity and predicate references in the question should be preferred. The

computation of the answer scores for our running example is illustrated in Fig. 5.2.

The minimal con�dence for the candidate answer is regulated by a threshold to exclude partial

and low-con�dence matches. Finally, we also have an option to �lter answers by considering

3

The pseudocode of the message passing algorithm is presented in Algorithm 5.1.
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only those entities in the answer set Ai
that have one of the classes in Ci

.

The same procedure is repeated for each hop in the sequence using the corresponding URI

activations for entities, properties and classes modeled in SEQq(i) = 〈Ei, P i, Ci〉 and aug-

mented with the intermediate answers produced for the previous hop Ai−1
. Lastly, the answer

to the question Aq is produced based on the entity set Ah
, which is either returned ‘as is’ or put

through an aggregation function ftq conditioned on the question type tq .

Our message passing algorithm e�ectively de�nes a breadth-�rst search procedure through

a knowledge graph. A simple example of message passing for complex question answering

over a knowledge graph is given in Figure 5.3. The initial weights of the nodes originate from

the question interpretation phase, which includes parsing and matching of the question text

to the entities and relations stored in knowledge graph. The matching function also assigned

scores to each of the mention spans parsed from the question text. In our example, “founder”

was matched to the relation with the label “foundedBy” with the con�dence score 0.8, the

mention span “Tesla” to the entity with the label “Tesla” with the score 1, etc. In the �rst hop the

activation scores from the two nodes “Tesla” and “SpaceX” are being propagated to the adjacent

node “Elon Musk”. The basic operator in message passing is implemented via the sum-product

rule that can be e�ciently performed using matrix multiplications: 1× 0.8 + 1× 0.9 = 1.52.

Next, the score is normalised to 1 by dividing by the number of triples: 1.52/2 = 0.76. Finally,

the score is further adjusted to account for the fraction of the matched entities and properties:

(0.76 + 2 + 1)/(1 + 2 + 1) = 0.94. Exactly the same procedure is repeated for the second hop.

The node in the knowledge graph corresponding to the entity labeled “Elon Musk”, which was

obtained as an intermediate answer from the previous hop with the con�dence score of 0.94,

and the relation parsed from the question text as the relation to be expanded during the second

hop and matched to the relation with the label “bornIn” with the con�dence score of 0.9 are to

be considered in the second hop: (0.94× 0.9 + 1 + 1)/(1 + 1 + 1) = 0.95. Thus, the message

passing procedure iteratively explores the structure of the knowledge graph and aggregates the

scores assigned to the entities and properties in the graph based on the question interpretation

procedure.

5.4 Evaluation Setup

We evaluate QAmp, our KGQA approach, on the LC-QuAD dataset of complex questions

constructed from the DBpedia KG [202]. First, we report the evaluation results of the end-to-end

approach, which incorporates our message-passing algorithm in addition to the initial question

interpretation (question parser and matching functions). Second, we analyze the fraction and

sources of errors produced by di�erent KGQA components, which provides a comprehensive

perspective on the limitations of the current state-of-the-art for KGQA, the complexity of

the task, and limitations of the benchmark. Our implementation and evaluation scripts are

open-sourced.
4

4https://github.com/svakulenk0/KBQA
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Figure 5.3: A sample subgraph illustrating the message passing algorithm.

Baseline. We use WDAqua [50] as our baseline; to the best of our knowledge, the results

produced by WDAqua are the only published results on the end-to-end question answering task

for the LC-QuAD benchmark to date. It is a rule-based framework that integrates several KGs

in di�erent languages and relies on a handful of SPARQL query patterns to generate SPARQL

queries and rank them as likely question interpretations. We rely on the evaluation results

reported by the authors [50]. WDAqua results were produced for the full LC-QuAD dataset,

while other datasets were used for tuning the approach.

Metrics. We follow the standard evaluation metrics for the end-to-end KGQA task, i.e., we

report precision (P) and recall (R) macro-averaged over all questions in the dataset, and then

use them to compute the F-measure (F). Following the evaluation setup of the QALD-9 chal-

lenge [206] we assign both precision and recall equal to 0 for every question in the following

cases: (1) for SELECT questions, no answer (empty answer set) is returned, while there is an

answer (non-empty answer set) in the ground truth annotations; (2) for COUNT or ASK ques-

tions, an answer di�ers from the ground truth; (3) for all questions, the predicted answer type

di�ers from the ground truth. In the ablation study, we also analyze the fraction of questions

with errors for each of the components separately, where an error is a not exact match with the

ground-truth answer.

Hardware. The computational setup in our experiments is comparable to the setup used

for evaluating WDAqua [50]. That is, all experiments were performed on a single commodity
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Table 5.1: Dataset statistics: number of questions

across the train and test splits; number of complex

questions that reference more than one triple; num-

ber of complex questions that require two hops in the

graph through an intermediate answer-entity.

Questions

Split All Complex Compound

all 4,998 (100%) 3,911 (78%) 1,982 (40%)

train 3,999 (80%) 3,131 (78%) 1,599 (40%)

test 999 (20%) 780 (78%) 383 (38%)

server equipped with Intel Core i7-8700K CPU 3.70GHz, RAM 16 GB and 240 GB SSD, which is

comparable to the setup reported for the competing approach: Intel Xeon E5-2667 CPU 3.2GHz,

RAM 16 GB and 500 GB SSD [50]. All message-passing operations are being performed on a

CPU since they require sparse matrix multiplications.

5.4.1 The LC-QuAD dataset

The LC-QuAD dataset
5

[202] contains 5K question-query pairs that have correct answers in the

DBpedia KG (2016-04 version). The questions were generated using a set of SPARQL templates

by seeding them with DBpedia entities and relations, and then paraphrased by human annotators.

All queries are of the form ASK, SELECT, and COUNT, �t to subgraphs with diameter of at most

2-hops, contain 1–3 entities and 1–3 properties.

We used the train and test splits provided with the dataset (Table 5.1). Two queries with

no answers in the graph were excluded. All questions are also annotated with ground-truth

reference spans
6

to evaluate performance of entity linking and relation detection [52].

5.4.2 Implementation details

Our implementation uses the English subset of the o�cial DBpedia 2016-04 dump losslessly

compressed into a single HDT �le
7

[56]. HDT is a state-of-the-art compressed RDF self-index,

which scales linearly with the size of the graph and is, therefore, applicable to very large graphs

in practice. This KG contains 1B triples, more than 26M entities (dbpedia.org namespace only)

and 68,687 predicates. Access to the KG for subgraph extraction and class constraint look-ups is

implemented via the Python HDT API.
8

This API builds an additional index [132] to speed up

all look-ups, and consumes the HDT mapped in disk, with ∼3% memory footprint.
9

5https://github.com/AskNowQA/LC-QuAD
6https://github.com/AskNowQA/EARL
7http://fragments.dbpedia.org/hdt/dbpedia2016-04en.hdt
8https://github.com/Callidon/pyHDT
9

Overall, DBpedia 2016-04 takes 18GB in disk, and 0.5GB in main memory.
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Our end-to-end KGQA solution integrates several components that can be trained and evaluated

independently. The pipeline includes two supervised neural networks for (1) question type

detection and (2) reference extraction; and unsupervised functions for (3) entity and (4) predicate

matching, and (5) message passing.

Parsing. Question type detection is implemented as a bi-LSTM neural-network classi�er

trained on pairs of question and type. We use another biLSTM+CRF neural network for extract-

ing references to entities, classes and predicates for at most two hops using the set of six labels:

{“E1”, “P1”, “C1”, “E2”, “P2”, “C2”}. Both classi�ers use GloVe word embeddings pre-trained on

the Common Crawl corpus with 840B tokens and 300 dimensions [157].

Matching. The labels of all entities and predicates in the KG (rdfs:label links) are indexed

into two separate catalogs and also embedded into two separate vector spaces using the English

FastText model trained on Wikipedia [20]. We use two ranking functions for matching and

assigning the corresponding con�dence scores: index-based for entities and embedding-based

for predicates. The index-based ranking function uses BM25 [130] to calculate con�dence scores

for the top-500 matches on the combination of n-grams and Snowball stems.
10

Embeddings-

based con�dence scores are computed using the Magnitude library
11

[155] for the top-50 nearest

neighbors in the FastText embedding space.

Many entity references in the LC-QuAD questions can be handled using simple string similarity

matching techniques; e.g., “companies” can be mapped to “dbo:Company”. We built an Elastic-

Search (Lucene) index to e�ciently retrieve such entity candidates via string similarity to their

labels. The entity labels were automatically generated from entity URIs by stripping the domain

part of the URI and lower-casing, e.g., entity “http://dbpedia.org/ontology/Company” received

the label “company” to better match question words. LC-QuAD questions also contain more

complex paraphrases of the entity URIs that require semantic similarity computation beyond

fuzzy string matching, such as “movie” refers to “dbo:Film”, “stockholder” to “dbp:owner” or

“has kids” to “dbo:child”. We embeded entity and predicate labels with FastText [20] to detect

semantic similarities beyond string matching.

Index-based retrieval scales much better than nearest neighbour computation in the embedding

space, which is a crucial requirement for the 26M entity catalog. In our experiments, syntactic

similarity was su�cient for entity matching in most of the cases, while property matching

required capturing more semantic variations and greatly bene�ted from using pre-trained

embeddings.

5.5 Evaluation Results

Table 5.2 shows the performance of QAmp on the KGQA task in comparison with the results

previously reported by Diefenbach et al. [50].

10https://www.elastic.co/guide/en/elasticsearch/reference/current
11https://github.com/plasticityai/magnitude
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Table 5.2: Evaluation results. (*) P of the WDAqua baseline is

estimated from the reported precision of 0.59 for answered

questions only. Runtime is reported in seconds per question

as an average across all questions in the dataset. The distribu-

tion of runtimes for QAmp is Min: 0.01, Median: 0.67 Mean:

0.72, Max: 13.83

Approach P R F Runtime

WDAqua 0.22* 0.38 0.28 1.50 s/q

QAmp (our approach) 0.25 0.50 0.33 0.72 s/q

Our results demonstrate a noticeable improvement in recall (we were able to retrieve answers

to 50% of the benchmark questions), while maintaining a comparable precision score. For the

most recent QALD challenge the guidelines were updated to penalize systems that miss the

correct answers, i.e., that are low in recall, which gives a clear signal of its importance for this

task [206]. While it is often trivial for users to �lter out a small number of incorrect answers

that stem from interpretation ambiguity, it is much harder for users to recover missing correct

answers. Indeed, we showed that QAmp is able to identify correct answers that were missing

even from the benchmark dataset since they were overlooked by the benchmark authors due to

sampling bias.

5.5.1 Ablation study

Table 5.3 summarizes the results of our ablation study for di�erent setups. We report the fraction

of all questions that have at least one answer that deviates from the ground truth (Total column),

questions with missing term matches (No match) and other errors. Revised errors is the subset

of other errors that were considered as true errors in the manual error analysis.

Firstly, we make sure that the relaxations in our question interpretation model hold true for

the majority of questions in the benchmark dataset (95%) by feeding all ground truth entity,

class and property URIs to the answer inference module (Setup 1 in Table 5.3). We found that

only 53 test questions (5%) require one to model the exact order of entities in the triple, i.e.,

subject and object positions. These questions explicitly refer to a hierarchy of entity relations,

such as dbp:doctoralStudents and dbp:doctoralAdvisor (see Figure 5.4
12,13

), and

their directionality has to be interpreted to correctly answer such questions. We also recovered

a set of correct answers missing from the benchmark for relations that are symmetric by

nature, but were considered only in one direction by the benchmark, e.g., dbo:related,

dbo:associatedBand, and dbo:sisterStation (see Figure 5.5).

12

The numbers on top of each entity show its number of predicates and triples.

13

All sample graph visualizations illustrating di�erent error types discovered LC-QuAD dataset in Figures 5.4,

5.5, 5.7 were generated using the LODmilla web tool, http://lodmilla.sztaki.hu [136], with data from

the DBpedia KG.
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Figure 5.4: Directed relation example (dbp:doctoralStudents and

dbp:doctoralAdvisor hierarchy) that requires modeling directionality of the rela-

tion. LC-QuAD question #3267: “Name the scientist whose supervisor also supervised Mary

Ainsworth?” (correct answer: Abraham Maslow) can be easily confused with a question: “Name

the scientist who supervised also the supervisor of Mary Ainsworth?” (correct answer: Lewis

Terman). The LC-QuAD benchmark is not suitable for evaluating directionality interpretations,

since only 35 questions (3.5%) of the LC-QuAD test split use relations of this type, which

explains high performance results of QAmp that treats all relation as undirected.

These results indicate that a more complex question model attempting to re�ect structural

semantics of a question in terms of the expected edges and their directions (parse graph or

lambda calculus) is likely to fall short when trained on this dataset: 53 sample questions are

insu�cient to train a reliable supervised model that can recognize relation directions from text,

which explains poor results of a slot-matching model for subgraph ranking reported on this

dataset [128]. Given the parse of an input question as a query graph, the best slot-matching

approach achieves F1 0.7 for the LC-QuAD dataset, which is well below the performance of the

message-passing algorithm when given the correct question parse (F1 0.98 in Table 5.3)

There were only 8 errors (1%) due to the wrong question type detected caused by misspelled or

grammatically incorrect questions (row 2 in Table 5.3). Next, we experimented with removing

class constraints and found out that although they generally help to �lter out incorrect answers
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Figure 5.5: Undirected relation example (dbo:sisterStation) that re�ects bi-

directional association between the adjacent entities (Missouri radio stations). LC-

QuAD question #4486: “In which city is the sister station of KTXY located?” (cor-

rect answer: dbr:California,Missouri, dbr:Missouri; missing answer:

dbr:Eldon,Missouri). DBpedia does not model bi-directional relations and the re-

lation direction is selected at random in these cases. LC-QuAD does not re�ect bi-directionality

either by picking only one of the directions as the correct one and rejecting correct solutions

(dbr:KZWY → dbr:Eldon,Missouri). QAmp was able to retrieve this false negative

sample due to the default undirectionality assumption built into the question interpretation

model.

(row 3) our matching function missed many correct classes even using the ground-truth spans

from the benchmark annotations (row 4).

The last four evaluation setups (5–8) in Table 5.3 show the errors from parsing and matching

reference spans to entities and predicates in the KG. Most errors were due to missing term

matches (10–34% of questions), which indicates that the parsing and matching functions con-

stitute the bottleneck in our end-to-end KGQA. Even with the ground-truth span annotations

for predicate references the performance is below 0.6 (34% of questions), which indicates that

relation detection is much harder than the entity linking task, which is in line with results

reported by Dubey et al. [52] and Singh et al. [187].
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Figure 5.6: Processing times per question from the LC-QuAD test split (Min: 0.01s Median: 0.68s

Mean: 0.72s Max: 13.97s).

The experiments marked GT span+ were performed by matching terms to the KG using the

ground-truth span annotations, then down-scaling the con�dence scores for all matches and

setting the con�dence score of the match used in the ground-truth query to the maximum

con�dence score of 1. In this setup, all correct answers according to the benchmark were ranked

at the top, which demonstrates the correctness of the message passing and score aggregation

algorithm.

5.5.2 Scalability analysis

As we reported in Table 5.2, QAmp is twice as fast as the WDAqua baseline using a comparable

hardware con�guration. Figure 5.6 shows the distribution of processing times and the number

of examined triples per question from the LC-QuAD test split. The results are in line with

the expected fast retrieval of HDT [56], which scales linearly with the size of the graph. Most

of the questions are processed within 2 seconds (with a median and mean around 0.7s), even

those examining more than 50K triples. Note that only 10 questions took more than 2 seconds

to process and 3 of them took more than 3 seconds. These outliers end up examining a large

number of alternative interpretations (up to 300K triples), which could be prevented by setting

a tighter threshold. Finally, it is worth mentioning that some questions end up with no results

(i.e., 0 triples accessed), but they can take up to 2 seconds for parsing and matching.

5.5.3 Error analysis

We sampled questions with errors (P < 1 or R < 1) for each of the setups and performed an

error analysis for a total of 206 questions. The most noticeable result was that half of the errors

were due to the incompleteness of the benchmark dataset and inconsistencies in the KG (column

Revised in Table 5.3). Since the benchmark provides only a single SPARQL query per question
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Figure 5.7: Alternative entity example that demonstrates a missing answer when only a single

correct entity URI is considered (dbr:Rome and not dbr:Pantheon,Rome). LC-QuAD ques-

tion #261: “Give me a count of royalties buried in Rome?” (correct answer: dbr:Augustus;

missing answer: dbr:Margherita_of_Savoy). QAmp was able to retrieve this false neg-

ative sample due to the string matching function and retaining a list of alternative URIs per

entity mention.

that contains a single URI for each entity, predicate and class, all alternative though correct

matches are missing, e.g., the gold-truth query using dbp:writer will miss dbo:writer,

or match all dbo:languages triples but not dbo:language, etc.

QAmp was able to recover many such cases to produce additional correct answers using: (1)

missing or alternative class URIs, e.g., dbr:Fire_Phone was missing from the answers for

technological products manufactured by Foxconn since it was annotated as a device, and

not as an information appliance; (2) related or alternative entity URIs, e.g., the set of

royalties buried in dbo:Rome should also include those buried in dbr:PantheonRome (see

Figure 5.7); (3) alternative properties, e.g., dbo:hometown as dbo:birthPlace.

We discovered alternative answers due to the majority vote e�ect, when many entities with low

con�dence help boost a single answer. Majority voting can produce a best-e�ort guess based on

the data in the KG even if the correct terms are missing from the KG or could not be recovered

by the matching function, e.g., “In which time zone is Pong Pha?” – even if Pong Pha is not in

the KG many other locations with similar names are likely to be located in the same geographic

area.

Overall, our evaluation results indicate that the answer set of the LC-QuAD benchmark can be

used only as a seed to estimate recall but does not provide us with a reliable metric for precision.
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Therefore, attempts to further improve performance on such a dataset can lead to learning the

biases embedded in the construction of the dataset, e.g., the set of relations and their directions.

We showed that QAmp is able to mitigate this pitfall by resorting to unsupervised message

passing that collects answers from all local subgraphs, which contain terms matching the input

question, in parallel.

5.6 Conclusion

We have proposed QAmp, a novel approach for complex KGQA using message passing, which

sets the new state-of-the-art results on the LC-QuAD benchmark for complex question answer-

ing. In the experimental evaluation we showed that QAmp is scalable and can be successfully

applied to very large KGs, such as DBpedia, which is one of the biggest cross-domain KGs.

QAmp does not require supervision in the answer inference phase, which helps to avoid the

pitfalls of over�tting the training data and helps to discover correct answers missing from the

benchmark due to the limitations of its construction. Moreover, the answer inference process

can be explained by the extracted subgraph and the con�dence score distribution. QAmp re-

quires only a handful of hyper-parameters to model con�dence thresholds in order to stepwise

�lter partial results and trade o� recall for precision.

QAmp is built on the basic assumption of considering edges as undirected in the graph, which

proved reasonable and e�ective in our experiments. The error analysis revealed that, in fact,

symmetric edges were often missing in the KG, i.e., the decision on the order of entities in KG

triples is made arbitrarily and is not duplicated in the reverse order. However, there is also a

(small) subset of relations, e.g., hierarchy relations, for which relation direction is essential.

QAmp is not without limitations. It is designed to handle questions where the answer is a subset

of entities or an aggregate based on this subset, e.g., questions for which the expected answer is

a subset of properties in the graph, are currently out of scope.

Question answering over KGs is a hard task due (1) ambiguities stemming from question

interpretation, (2) inconsistencies in knowledge graphs, and (3) challenges in constructing a

reliable benchmark, which motivate the development of robust methods able to cope with

uncertainties and also provide assistance to end-users in interpreting the provenance and

con�dence of the answers. Also, complex question answering over KGs is a relatively new

task and LC-QuAD is the �rst dataset dedicated to training and evaluating performance of

this speci�c task. At this stage, to the best of our knowledge, WDAqua is the only end-to-end

system that claims to support complex questions and was evaluated on the LC-QuAD dataset.

The lack of other baselines in this area is partially due to the fact that development and evaluation

of a large-scale question answering system is a very challenging task that requires interaction

between di�erent components used for question answering: entity matching, relation matching

and answer retrieval. There are several on-going community initiatives designed to consolidate

the e�orts required to set up and maintain adequate benchmarks [186, 205, 207]. We are

currently working on integrating QAmp (our approach) with the GERBIL QA benchmarking

framework [207], which will not only make evaluation against existing but also future KGQA
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approaches easier. Such frameworks are also important for enabling interchange and evaluation

of the individual components.

Evolution and versioning of knowledge graphs is an important and interesting topic which is

being discussed in the semantic web community [43, 57–59]. Approaches to take versions and

updates into account for query answering of structured (SPARQL) queries exist but require

additional annotations on a temporal dimension for the validity of the triples in the graph.

Along the same lines we assume it is possible to extend the proposed approach to cope with

versioned (temporally annotated) graphs by introducing an additional constraint that will

either pre-�lter relevant triples based on the question interpretation or generating answers

within associated validity intervals. In the latter case the complete answer to our sample

question would be “Ford until October 2016”. Ideally, such approaches should also include

provenance information, e.g., “according to SBS: https://www.sbs.com.au/news/
more-than-100-ford-jobs-cut-in-victoria”

An important next step is to use QAmp to improve the recall of the benchmark dataset by com-

plementing the answer set with missing answers derived from relaxing the dataset assumptions.

Recognizing relation directionality is an important direction for future work, which requires

extending existing benchmark datasets and the addition of more cases where an explicit order is

required to retrieve correct answers. Another direction is to improve predicate matching, which

is the weakest component of the proposed approach as identi�ed in our ablation study. Finally,

we believe that unsupervised message passing can be adopted for other tasks that require uncer-

tain reasoning on KGs, such as knowledge base completion, text entailment, summarization, and

dialogue response generation. In particular, we are interested in using this approach to identify

relevant concepts also in response to utterances that do not contain a question. In Chapter 3

we showed that there are other interactions besides question answering that are characteristic

of information-seeking dialogues. Next, in Chapter 6 we formulate the task of conversational

browsing as an alternative type of interaction that does not require explicit query formulation

upfront.
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CHAPTER 6

Conversational Browsing

- Good morning, Sir... What can I do for you, Sir?..
- I want to buy some cheese. . .
- Certainly, sir. What would you like?
- Well, eh, how about a little Red Leicester.
- I’m, afraid we’re fresh out of Red Leicester, sir. . .
- Greek Feta?
- Uh, not as such.
- Uuh, Gorgonzola?
- No
- Parmesan?
- No...
— The Cheese Shop sketch, Monty Python’s Flying Circus, 1972

In many real-world situations an information seeker is not in a position to adequately assess

content of an underlying information source. Consequently, formulating a query in this case

boils down to a best-e�ort guess solely based on the background knowledge already available

to the seeker. When a collection is sparse and an information seeker is unaware of its content, a

more e�cient strategy is for an information provider (intermediary) to present the collection

content. This task becomes more challenging as the size of the collection grows. Foremost,

presentation of a large information space requires explicit structures in place that help to

organize content of the collection for a more e�cient navigation. Furthermore, exposing

the whole content of a vast information collection at once may be too overwhelming for a

human cognition. Therefore, structural properties and information content should be presented

interactively, while considering cognitive load on the mechanisms enabling human information

processing.

The Cheese Shop sketch https://youtu.be/Hz1JWzyvv8A
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To this end, we explore the interaction patterns manifested in multi-turn information seeking

dialogues and use these insights to design a dialogue system that does not require explicit query

formulation upfront as in the question answering task. We collected observations of human

participants performing a similar task to obtain inspiration for the system design. Then, we

studied the structure of conversations that occurred in these settings and used the resulting

insights to develop a grounded theory, design and evaluate a �rst system prototype. Evaluation

results show that our approach is e�ective and can complement query-based information

retrieval approaches. We contribute new insights about information-seeking behavior by

analyzing and providing automated support for a type of information-seeking strategy that is

e�ective when the clarity of the information need and familiarity with the collection content

are low.

6.1 Introduction

Conversational search has evolved as a new paradigm with the goal of making information

retrieval interfaces feel more natural and convenient for their users [161]. Ongoing research and

development e�orts in this direction are now heavily skewed towards the question answering

task [163, 173, 219]. However, there is ample evidence that conversational search interfaces

need to support a more diverse set of interactions to be able to assist their users [12, 14, 213].

The limitation of the question answering interaction paradigm is in its inherent bias towards

knowledge that the user already has: users need to be able to formulate an appropriate question

before they can engage with a question answering interface in a meaningful way [15]. A similar

issue occurs also in situations when a system poses questions to its user [233].

In this chapter we focus on the task of information presentation in conversational search in-

terfaces designed to communicate all available knowledge to the user. While similar to the

information presentation task required for traditional spoken dialogue systems, which list avail-

able options in response to a user query [44], what we have in mind goes beyond this paradigm.

Vakulenko et al. [210] have proposed to apply the concept of interactive storytelling [172] to

conversational search systems for exploratory search [225]. Interactive storytelling is an exten-

sion of computational storytelling that makes the story generation process dynamicaly adopt

in response to the user input [167]. We are interested in applying interactive storytelling to

explore the content of an information source thereby forming a conversation between a user

and a system. Conversational exploratory search can be useful in a range of knowledge access

scenarios, including education and e-commerce. For example, an intelligent shopping assistant

should be able to �uently guide a customer through the whole product catalog, carefully picking

up on the user’s reactions to form a preference model and adopt the exploration direction that

optimizes customer satisfaction.

We view conversational browsing as a �rst step towards the bigger agenda of enabling conversa-

tional exploratory search via interactive storytelling [210]. It focuses primarily on supporting

navigation control, where a user can in�uence and change the direction of exploration. Conver-

sational browsing is a task designed to enable conversational exploratory search for structured

information sources, such as a database table or a knowledge graph. The goal of the conversa-
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tional interface is to unfold the content of the collection to the user in an interactive manner,

that is, in response to their chosen exploration direction. Explicit structure of an information

source allows us to model it as a graph abstraction and evaluate di�erent navigation strategies,

i.e., the sequences in which the nodes can be visited.

We start with the basic setup in which an “interactive story” is to be generated from a single

database table. Our main research question is how to enable e�cient information access in a

situation where the information goal of the user is implicit or vaguely de�ned. Examples include

cases in which the user is not familiar with the domain vocabulary, wants to understand the

available content and structure of the information source, or is simply looking for inspiration

and serendipitous discovery. In this chapter we describe and evaluate the design of an automated

dialogue system that helps users to acquire knowledge about the structure and content of a

catalogue through dialog-based interaction without the requirement to specify their information

need in advance. The kind of system we have in mind has to be considerate of the user, in the

sense that it should account for:

• cognitive load to determine and regulate a reasonable pace of the information �ow; and

• user preferences for the user to regulate the direction of the information �ow, i.e., conver-

sation topic.

To this end, we follow an end-to-end methodology from collecting and analyzing dialogue

transcripts through model design, implementation and evaluation.

To be able to formulate an informed hypothesis of what kind of interaction the envisaged system

should provide we seek to get inspiration from human-to-human conversations collected in a

controlled laboratory study. In this study one of the students seeks information (S – Seeker)

and the other one is trying to help using the Austrian Open Data portal (I – Intermediary):

(I) data.gv.at is an Austrian Open Data portal.

(S) What kind of data can you �nd there?

(I) You can search for datasets in economics and politics categories, but also education, sports,

culture etc.

(S) What exactly do you mean?

(I) Statistics about birth rates, kindergartens locations, public transport, for example.

(S) What data do you have related to birth rates?

(I) I can tell you statistics about the places where newborn live or the names they get.

(S) That sounds all right. I’m curious about the names...

We collected and analyzed this kind of dialogue transcripts (see Section 6.5) to come up with a

general framework, which we formalized into a conversational browsing model. This model

describes a general information-seeking process and is applicable across di�erent use cases,

in contrast to supervised models trained directly on dialogue transcripts [168]. We design a

prototype based on the main concepts of our conversational browsing model and evaluate the

prototype in a user study by contrasting it against a traditional conversational search system

that follows request-response paradigm. Thus, our conversational browsing model provides a
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general framework that not only provides a theoretical understanding of an information-seeking

dialogue but also forms the basis for system design.

In summary, our main contributions in this chapter are:

• a dataset of dialogue transcripts that provide insights on human strategies in information-

seeking conversations, in which an information provider takes on a pro-active role;

• a model that systematizes these insights as a set of requirements, components and

functionality they should support to automate such information-seeking conversations;

and

• an evaluation of a proof-of-concept implementation of a conversational browsing system.

We �nd that conversational browsing can be a powerful tool able to mitigate the vocabulary

mismatch problem and assist search. Vocabulary mismatch (aka vocabulary or semantic gap)

is a common phenomenon in information retrieval, when two parties, e.g. user in queries

and system in collection documents, use di�erent words to describe the same concepts [217].

Based on the conversational data that we collect, we discover that the essence of conversational

browsing interaction lies in the recurrent process of vocabulary exchange that attempts to

iteratively reduce the search space and bring an information seeker closer to their information

goal removing the burden to formulate the search query.

We proceed by introducing the concepts of exploratory search and interactive storytelling in

Section 6.2. Section 6.3 provides an overview of the methodology that we followed to design and

evaluate our conversational browsing system. For our empirical evaluation and data collection

steps we instantiated the task of conversational browsing with a concrete use case described in

Section 6.4. We proceed by describing the setup and the outcomes of a user study organized

to collect a dataset of human-to-human conversations (Section 6.5), which served as a blue-

print for our dialogue system design (Section 6.6). Finally, we describe the evaluation of our

conversational browsing prototype in Section 6.7. We consider two evaluation setups: (1) a

user simulation, which helps us to tune the hyper-parameters of the model and estimate the

system performance, and (2) a user study to test our modeling assumptions with target users.

We conclude by discussing the relation of our �ndings to previous work in Section 6.8.

6.2 Background

One of the major challenges in information seeking is query formulation [97]. The concept of

the anomalous state of knowledge (ASK) suggests that it is not reasonable to expect “that it is

possible for the user to specify precisely the information that she/he requires.” [15] Recognition

of this phenomena is an important step towards considering alternative solutions that may help

information seekers in practice.

Most of the on-going work in conversational search is still focused on the question answering

task, which is an important interaction type in the context of an information seeking conversa-
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Figure 6.1: Communicating knowledge via an interactive storytelling process.

tion but not the only one a conversational system has to provide support for [213]. We argue

that conversational agents and search systems should also support exploratory search.

6.2.1 Conversational exploratory search

The goal in exploratory search is to provide guidance for seekers who are exploring unfamiliar

information landscapes [131, 225]. White and Roth [225] distinguish between two main activities

within the exploratory search paradigm: exploratory browsing and focused searching. Exploratory

browsing is an initial step that provides necessary domain understanding required for focused

searching activities. It is related to Radlinski and Craswell [161]’s system revealment property:

“The system reveals to the user its capabilities and corpus, building the user’s expectations

of what it can and cannot do.” Browsing is one of the information-seeking activities that is

de�ned as “semi-directed or semi-structured searching" [53], i.e., the information need is vague

and the goals include general collection understanding and serendipitous discovery [134]. The

purpose of browsing interface design is to make aspects of the collection apparent to the user

and provide the means to traverse (navigate) between di�erent options, which requires making

the choice of the interaction modes and de�nition of a closed set of eligible operations available

to the system and its user in advance [151].

Conversational agents and search systems are becoming increasingly popular [219]. However,

such systems mainly focus on question answering and simple search tasks, i.e., those that are

to a large extent solved by web search engines. Conversational agents and search systems

should also support exploratory search [210]. A conversational exploratory search system is

represented in Figure 6.1. It has a number of key components: Document Collection, Knowledge

Model, Story Space, Dialog System and User. These components are connected through the

Reader, Composer, and Guide modules. The interplay of the system components and modules

happens at di�erent stages.

Knowledge representation

Knowledge representation consists of a Reader module that extracts concepts and relations from

the Document Collection and embeds them into a single Knowledge Model. The Knowledge

Model integrates di�erent elements (words, concepts or entities) and describes relations between
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them. The knowledge can be explicitly modeled by means of a taxonomy or ontology (knowledge

graph) but it can also be embedded into a latent structure.

Story generation

Story generation consists of the Composer module that is able to generate stories by combining

elements of the Knowledge Model. To create a story, the Composer has to select elements

(characters, words, facts, concepts, relations), choose their ordering, arrange selected elements

in time and/or space. The set of all possible stories constitutes the Story Space.

Interactive storytelling

Interactive storytelling includes a Guide module that helps the User to navigate through the

Document Collection via the Story Space. The Guide can change the current position within

a single story or traverse the space across di�erent stories. Interactive storytelling integrates

the Dialogue System to communicate a story to the User and to receive an input from the User.

Supporting such a conversation with the User requires natural language (utterance) generation

and understanding. Note that the input/output modalities do not have to be restricted to

text and speech only and may include images, videos, interactive visualization, virtual reality

interactions, etc.

A conversational exploratory search system should support the following types of the user-

system interactions:

• Navigation Control – a user chooses a direction (branch) for exploration and is also able

to in�uence and change the current direction of the narrative at any point in time;

• Feedback – a user may provide feedback to the system (positive, neutral, negative) that

may help to correct and steer the direction of the story that shall maximize the user

satisfaction with the system;

• Question – a user may pose questions to the system, e.g., a request for a de�nition, look

up query, etc.

In this chapter we focus on mechanisms for navigation control in conversational browsing,

which is a version of conversational exploratory search speci�cally designed for structured

information sources, such as databases and knowledge graphs. We ground our model design in

observations of information-seeking dialogues, paying special attention to the ability of human

information providers to prioritize and structure information into coherent chance to balance

the cognitive load of an information seeker.

6.2.2 Cognitive load

Cognitive information processing (CIP) theory [3] is a popular model that describes diverse

cognitive processes. The central idea in CIP is that the human mind can be modeled as an
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information processor that receives information from the senses (input), processes it, and

then produces a response (output). Learners are viewed as active seekers and processors of

information. CIP focuses mainly on the information processing task, in particular the aspects of

memory encoding and retrieval.

Cognitive load theory (CLT) [196] builds upon the information processing model. “Cognitive

load” relates to the amount of information that working memory can hold and operate on at

one unit of time. The capacity of the human working memory is very limited. When too much

information is presented at once, it becomes overwhelmed and much of that information is

subsequently lost. CLT aims at making learning more e�cient, calling for communication

strategies that take into account cognitive limitations of the human mind.

Span theory [7] is a behavioral theory describing the relation between performance and span

load, a fundamental task characteristic. In particular, several researchers studying the limits of

human cognitive abilities point to the average number of objects a human brain can hold in

working memory, i.e., the working memory capacity. The famous “magic number” originally

suggested by Miller [139] was 7±2 objects, while more recent research shows that this estimate

is too optimistic and suggests a new limit close to 4 objects [32].

One other process that seems to be limited at about 4 elements is subitizing, the rapid enumera-

tion of small numbers of objects. When a number of objects are �ashed brie�y, their number

can be determined very quickly, at a glance, when the number does not exceed the subitizing

limit, which is about 4 objects. Larger numbers of objects must be counted, which is a slower

process.

However widely criticized as a single number not re�ecting the task di�culty and individual

di�erences, this number is supported by a remarkable degree of similarity in the capacity limit

of working memory observed in a wide range of procedures and is likely to re�ect a reasonable

distribution mean able to inform chunking decisions for e�cient information processing by

humans. Research also shows that the size, rather than the number, of chunks that are stored in

short-term memory is what allows for enhanced memory in individuals. A chunk is de�ned

as a collection of concepts that have strong associations to one another and much weaker

associations to other chunks acting as a coherent, integrated group [32]. It is believed that

individuals create higher order cognitive representations of the items on the list that are more

easily remembered as a group than as individual items themselves.

Over the years various readability formulas have been proposed to predict comprehension

di�culty of a text passage [33]. For example, one of the early studies [133] reports a negative

correlation between reading e�ciency and the count of polysyllable words, de�ned as words of

three or more syllables.

The combination of linguistic features capturing two elements of text di�culty (lexical and

syntactic complexity) constitutes a good predictor for the time required to process text and

comprehension [33], e.g.,

• texts are more comprehensive if the words are less sophisticated, there are fewer verbs,

and lower text cohesion; and
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Figure 6.2: End-to-end methodology for designing a dialogue system.

• a larger number of unique trigrams and proper nouns per sentence slows processing.

Another important set of features that describe the intrinsic properties of the reader’s mental

model, as an essential part and a prerequisite for the success of the text comprehension process,

include individual reading ability, background knowledge, etc.

We draw upon results in cognitive science to inform our model and design an e�ective dialog

system for conversational exploratory search. More speci�cally, we explore the structure of

messages exchanged in an information-seeking conversation – the number of, and relations

between, the concepts contained within a single message, as part of an important mechanism

designed to support human information processing abilities with respect to the cognitive

properties of the human mind.

6.3 End-to-end Methodology for Designing a Dialogue System

We follow an end-to-end methodology for designing a dialogue system outlined in Figure 6.2.

It is a data-driven approach that helps us to formulate a general theoretical framework for

conversational browsing and demonstrate its e�ectiveness on a sample scenario of open data

exploration. We follow a mixed method approach to structure the design and evaluation of our

conversational browsing system.

We start with a user study to collect samples of conversations and learn from the strategies

human participants employ in the context of a conversational browsing task, which results in a

dataset of dialogue transcripts (1. Data collection). These empirical observations inform the

design of a theoretical framework for conversational browsing that we propose in this chapter

(2. System design). The model is formally de�ned on a higher level of abstraction to separate

the details inherent for the particular scenario from the general structure that can be reused

across other use cases. In the �nal stage (3. System evaluation), we implement a prototype of a

conversational browsing interface following the proposed framework and evaluate it via: (1)
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a user simulation; and (2) a laboratory study with real users [107]. We start the �nal stage by

estimating an expected number of turns and tune the hyper-parameters in a user simulation.

Then, we conduct a second user study with real users to evaluate the assumptions behind our

model’s design.

6.4 Use Case: Open Data & Dataset Search

This research was conducted in the context of the CommuniData project
1

that focused on

making open data, i.e., publicly available datasets, more accessible for lay users to support

citizen participation and transparency in decision making. Making data public does not equate

enabling citizens to make use of the data [17]. Dataset search evolved as a new research direction

to address the challenges of data heterogeneity [103, 104].

Google Dataset Search aggregates metadata of 14M datasets from 3k repositories.
2

One of the

�rst features users asked for was to extend the interface beyond a search box to support a

browsing functionality [24]. A recent study of open data portal logs [94] also highlights that

open data sources “are used exploratively, rather than to answer focused questions.”

We started by designing a simple conversational search interface, which allows a user to submit

a query and returns a list of matching datasets [148]. The chatbot attracted a lot of attention

but many users were not able to formulate adequate queries since they were not aware of

the structure and terminology of the underlying repository. In this case such conversational

search interfaces turn out to be of little use. This motivated us to look for alternative types of

interaction that could allow users to understand which information a system can provide.

We formulated this task as conversational browsing, which is reminiscent of web browsing, which

allows users to explore a vast web graph by traversing links between pages. However, use cases

for the conversational browsing functionality are not limited to the dataset search/exploration

scenarios. This type of functionality is relevant to other applications in which a conversational

interface relies on a large-scale structured information source, e.g., a database, table or index.

Such use cases arise in product search or content recommendation scenarios, when a user is

willing to learn about the underlying structure of the collection and explore the alternatives to

get a comprehensive overview of the available options.

6.5 Data Collection

We conducted a Wizard of Oz experiment to better understand the types of dialogue interactions

that occur in the context of conversational browsing. Sample tasks illustrating conversational

browsing scenario, as detailed in Section 6.5.1, were completed by 26 student participants

grouped in pairs. The volunteers were recruited among the undergaduate students taking a

Data Processing course at the Vienna University of Economics and Business. All participants

had previous experience with web search interfaces, but no previous experience with the web

1https://www.communidata.at
2https://toolbox.google.com/datasetsearch
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sites they were instructed to access during the user study. Every participant was assigned an

individual working place in a lab equipped with a desktop PC. The pairs of students were seated

apart from each other and had a separate web-based chat-room with a full-screen chat window,

which served as the only channel for communication.
3

The conversational dataset that we

collected consists of 26 conversation transcripts with a total of 416 messages (minimum: 6,

maximum: 36, mean: 16 messages per conversation).
4

6.5.1 Task description

We designed two di�erent tasks using two open data portals with faceted search interfaces so

that every participant would have a chance to play both roles. For one of the two portals they

assumed the role of the Intermediary (I), and for the other the role of the Seeker (S). Seekers

were assigned speci�c information goals (to �nd one of the datasets from the portal) but were

explicitly instructed not to share the goal with the Intermediary but try to reach it by providing

relevant feedback to the Intermediary, that is, choosing from the relevant exploration directions

suggested by the Intermediary. Open data portals are particularly suited for such an experiment,

since they provide a ready-made user search interface as well as a machine-readable API to

access the same data repository, both publicly available.

The experimental procedure consisted of two phases:

1. a learning phase, and

2. a teaching (or knowledge sharing) phase.

After each phase a quiz was completed to assess the knowledge acquired by the Intermediary

and the Seeker. During the learning phase the Intermediary studied the structure and content

of the collection using the web site of the open data portal, which provides a faceted search

interface. The Intermediary completed the quiz designed to evaluate the extent of the acquired

knowledge about the structure and content of the collection by browsing the web site. After

completion of the learning phase, the Intermediary shared the acquired knowledge with the

Seeker in a conversation. The Seeker completed a quiz to assess the extent to which they acquired

knowledge about the structure and content of the collection through dialogue interactions with

the Intermediary.

6.5.2 Dataset description

The conversational dataset that we collected in the manner described in Section 6.5 consists

of 26 conversation transcripts with a total of 416 messages (minimum: 6, maximum: 36, mean:

16 messages per conversation). Most of the conversations (24 out of 26) were identi�ed as

successful based on the Seeker’s explicit feedback and the correct dataset link provided by

the Intermediary by the end of a conversation. However, little additional knowledge beyond

3https://tlk.io/
4

The data is available at https://github.com/svakulenk0/ODExploration_data
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6.5. Data Collection

the speci�c information goal provided in the task was shared between the study participants

(Seekers indicated that the topics were not discussed in the conversation).

One of the authors annotated each message in every transcript with the speaker identi�er (a

Seeker or an Intermediary role), clustered similar utterances and annotated them with labels

re�ecting the function they play in the conversation (dialogue act types), e.g., greeting or

question. In total, we identi�ed 15 distinct utterance types in this dataset shared across di�erent

conversations (see the full list with descriptions in Table 6.1). Messages were also annotated

with span-level labels to keep the count for the number of concepts per message and their types.

To understand the structure of the conversations collected in the dataset and relations between

di�erent dialogue acts, we extracted a model of the conversation �ow from the conversation

transcripts by feeding the transcript as sequences of annotated utterances into the ProM frame-

work
5

[215], which is a popular process mining software toolkit. The directed graph of the

conversation model was constructed and visualized using the Inductive Visual Miner ProM

plugin [116]. We provide a snapshot of the core of the extracted conversation process model (see

Figure 6.3), which describes the information exchange loop used by the conversation partners

to traverse the information model in the direction of the information goal.

Many conversations begin with a “hand-shaking” message exchange, which may include mutual

greetings, introductions and goal statements that provide the context for the rest of the conver-

sation. For example, for the Seeker it would include a general question about the content of the

information source, while for the Intermediary it would be a short description of the information

source, an o�er of the information service and a request about the concrete information goal of

the Seeker.

The conversations that we observe are mostly a vocabulary exchange aimed at traversing the

information space towards the subset of items containing the information goal. The Intermediary

(I) lists keywords, which correspond to a set of related concepts in the information space, and

the Seeker (S) chooses one or more of these concepts to continue exploration. To illustrate, here

is a snippet of a sample conversation:

(I) It is an Open Data source that contains data about various topics: work, culture, education,

population, . . . What would interest you the most?

(S) Population.

(I) Okay, is there a speci�c region for which you would like to �nd a dataset (Steiermark,

Vorarlberg, Vienna etc.)?

(S) I’m interested in the population of Upper-Austria.

5http://www.promtools.org

87

http://www.promtools.org


6. Conversational Browsing

T
a
b
l
e

6
.1

:
T

y
p

e
s

o
f

u
t
t
e
r
a
n

c
e
s

e
x
c
h

a
n

g
e
d

b
e
t
w

e
e
n

t
h

e
I
n

t
e
r
m

e
d

i
a
r
y

a
n

d
t
h

e
S
e
e
k

e
r
.

Ty
pe

O
cc
ur

re
nc

es
D
es
cr
ip
ti
on

Ex
am

pl
e

R
ol
e

l
i
s
t
(
k

e
y

w
o

r
d

s
)

1
0
2

(
2
4
.5

%
)

S
u

g
g
e
s
t

a
v
a
i
l
a
b
l
e

o
p

t
i
o

n
s

f
o

r
a
n

e
x
p

l
o

r
a
t
i
o

n
W

e
h

a
v
e

d
a
t
a

o
n

c
u

l
t
u

r
e
,
�

n
a
n

c
e
.

A

d
i
r
e
c
t
i
o

n

s
e
t
(
k

e
y

w
o

r
d

s
)

8
5

(
2
0
.4

%
)

C
h

o
o

s
e

a
n

e
x
p

l
o

r
a
t
i
o

n
d

i
r
e
c
t
i
o

n
I

a
m

i
n

t
e
r
e
s
t
e
d

i
n

c
u

l
t
u

r
e
.

U

c
o

n
�

r
m

(
)

5
1

(
1
2
.3

%
)

C
o

n
�

r
m

a
n

e
x
p

l
o

r
a
t
i
o

n
d

i
r
e
c
t
i
o

n
T

h
a
t

w
o

u
l
d

b
e

p
e
r
f
e
c
t
!

U
A

s
u

c
c
e
s
s
(
)

3
6

(
8
.7

%
)

I
n

d
i
c
a
t
e

r
e
a
c
h

i
n

g
a
n

i
n

f
o

r
m

a
t
i
o

n
g
o

a
l

T
h

a
n

k
y

o
u

v
e
r
y

m
u

c
h

!
U

A

q
u

e
s
t
i
o

n
(
d

a
t
a
)

3
1

(
7
.5

%
)

I
n

d
i
c
a
t
e

a
g
e
n

e
r
a
l

i
n

f
o

r
m

a
t
i
o

n
n

e
e
d

W
h

a
t

d
a
t
a

d
o

y
o

u
h

a
v
e
?

U

p
r
o

m
p

t
(
k

e
y

w
o

r
d

s
)

2
6

(
6
.3

%
)

R
e
q

u
e
s
t

t
o

s
p

e
c
i
f
y

t
h

e
i
n

f
o

r
m

a
t
i
o

n
g
o

a
l

A
n

y
s
t
a
t
e

t
h

a
t

i
n

t
e
r
e
s
t
s

y
o

u
?

A

r
e
j
e
c
t
(
)

1
9

(
4
.6

%
)

R
e
j
e
c
t

a
n

e
x
p

l
o

r
a
t
i
o

n
d

i
r
e
c
t
i
o

n
T

h
i
s

i
s

n
o

t
w

h
a
t

I
a
m

l
o

o
k

i
n

g
f
o

r
.

U

g
r
e
e
t
i
n

g
(
)

1
9

(
4
.6

%
)

C
o

m
m

o
n

s
t
a
r
t

o
f

t
h

e
c
o

n
v
e
r
s
a
t
i
o

n
H

e
l
l
o

!
U

A

b
o

o
l
(
d

a
t
a
)

1
3

(
3
.1

%
)

R
e
p

o
r
t

w
h

e
t
h

e
r

r
e
q

u
e
s
t
e
d

s
u

b
s
e
t

e
x
i
s
t
s

Y
e
s
,
w

e
h

a
v
e

d
a
t
a

a
b

o
u

t
t
h

i
s

y
e
a
r
.

A

c
o

u
n

t
(
d

a
t
a
)

1
3

(
3
.1

%
)

R
e
p

o
r
t

t
h

e
s
i
z
e

o
f

a
s
u

b
s
e
t

T
h

e
r
e

a
r
e

3
1
4

d
a
t
a
s
e
t
s

i
n

C
S
V

.
A

l
i
n

k
(
d

a
t
a
s
e
t
)

9
(
2
.2

%
)

R
e
p

o
r
t

l
i
n

k
t
o

a
d

a
t
a
s
e
t

T
h

e
r
e

y
o

u
g
o

:
h
t
t
p
:
/
/
d
a
t
a

A

v
e
r
i
f
y

(
)

4
(
1
.0

%
)

P
r
o

m
p

t
t
o

c
o

n
�

r
m

a
n

e
x
p

l
o

r
a
t
i
o

n
d

i
r
e
c
t
i
o

n
I
s

t
h

a
t

w
h

a
t

y
o

u
a
r
e

l
o

o
k

i
n

g
f
o

r
?

U
A

m
o

r
e
(
)

3
(
0
.7

%
)

R
e
q

u
e
s
t

t
o

c
o

n
t
i
n

u
e

i
n

t
h

e
s
a
m

e
e
x
p

l
o

r
a
t
i
o

n
I
s

t
h

e
r
e

o
n

l
y

o
n

e
d

a
t
a
s
e
t
?

U

d
i
r
e
c
t
i
o

n

t
o

p
(
k

e
y

w
o

r
d

s
)

3
(
0
.7

%
)

R
e
p

o
r
t

a
s
u

b
s
e
t

o
f

t
h

e
m

o
s
t

f
r
e
q

u
e
n

t
T

h
e

m
o

s
t

p
o

p
u

l
a
r

l
i
c
e
n

s
e

i
s

C
C

.
A

c
o

n
c
e
p

t
s

p
r
o

m
p

t
(
l
i
n

k
)

2
(
0
.5

%
)

S
u

g
g
e
s
t

o
r

r
e
q

u
e
s
t

t
h

e
l
i
n

k
t
o

a
d

a
t
a
s
e
t

S
e
n

d
m

e
t
h

e
l
i
n

k
,
p

l
e
a
s
e
.

U
A

88

http://data


6.5. Data Collection

?
ti
me
: 
ra
nd
om

H
ig

hl
ig

ht
in

g 
al

l t
ra

ce
s.

ex
po

rt
 v

ie
w

ex
po

rt
 m

od
el

tr
ac

es

hi
gh

lig
ht

in
g 

fil
te

rs

tr
ac

e 
co

lo
ur

in
g

Sh
ow

ed
it 

m
od

el

M
in

er

pr
e-

m
in

in
g 

fil
te

rs

C
la

ss
ifi

er

0.
7

pa
th

s:

0.
7

ac
tiv

iti
es

:

F
i
g
u

r
e

6
.3

:
M

o
d

e
l

o
f

t
h

e
c
o

n
v
e
r
s
a
t
i
o

n
a
l

b
r
o
w

s
i
n

g
i
n

t
e
r
a
c
t
i
o

n
p

r
o

c
e
s
s

e
x
t
r
a
c
t
e
d

f
r
o

m
t
h

e
c
o

n
v
e
r
s
a
t
i
o

n
t
r
a
n

s
c
r
i
p

t
s
.

N
o

d
e
s

o
f

t
h

e

g
r
a
p

h
c
o

r
r
e
s
p

o
n

d
t
o

t
h

e
u

t
t
e
r
a
n

c
e

t
y

p
e
s

d
e
s
c
r
i
b

e
d

i
n

T
a
b
l
e

6
.1

a
n

d
t
h

e
a
r
r
o
w

s
b

e
t
w

e
e
n

t
h

e
m

(
t
r
a
n

s
i
t
i
o

n
s
)

s
h

o
w

t
h

e
d

i
r
e
c
t
i
o

n
o

f
t
h

e

c
o

n
v
e
r
s
a
t
i
o

n
�

o
w

.
T

h
e

t
y

p
e
s

m
a
y

f
o

l
l
o
w

e
a
c
h

o
t
h

e
r

i
n

a
s
e
q

u
e
n

c
e
,
i
n

p
a
r
a
l
l
e
l

(
j
o

i
n

t
s

m
a
r
k

e
d

w
i
t
h

“
+

”
s
y

m
b

o
l
,
m

e
a
n

i
n

g
t
h

a
t

t
h

e
o

r
d

e
r

v
a
r
i
e
s

b
e
t
w

e
e
n

t
h

e
c
o

n
v
e
r
s
a
t
i
o

n
s
)
,
a
l
t
e
r
n

a
t
e

o
r

f
o

r
m

l
o

o
p

s
.

T
h

e
n

u
m

b
e
r
s

a
b

o
v
e

t
h

e
a
r
r
o
w

s
i
n

d
i
c
a
t
e

t
h

e
n

u
m

b
e
r

o
f

t
i
m

e
s

e
a
c
h

t
r
a
n

s
i
t
i
o

n

t
y

p
e

o
c
c
u

r
s

i
n

t
h

e
t
r
a
n

s
c
r
i
p

t
s
.

C
o

l
o

r
i
n

t
e
n

s
i
t
y

i
n

d
i
c
a
t
e
s

r
e
l
a
t
i
v
e

f
r
e
q

u
e
n

c
y

o
f

t
h

e
t
r
a
n

s
i
t
i
o

n
s

a
n

d
u

t
t
e
r
a
n

c
e

t
y

p
e
s

i
n

t
h

e
c
o

r
p

u
s
.

(
B

e
s
t

v
i
e
w

e
d

i
n

c
o

l
o

r
.)

89



6. Conversational Browsing

We collect the most frequent patterns of concept types used within the same message and

analyze their relations. Communicating a subset of entities that belong to the same attribute (or

facet – a general category of the attribute) with or without mentioning the name of this attribute

as well is the most common pattern we observed. For convenience, we mark such attribute

names with boldface: e.g., topic, or publisher. Another frequent pattern is listing several

attributes or facets within the same message for the Seeker to choose from, e.g., “I can group

the datasets by organization, format or topic.” A common strategy for the Intermediary is to

make an attempt to reduce the subset of items for exploration by prompting the Seeker to select

one of the shared attribute values (subset search). We mark values with italics in dialogs: e.g.,

education, or The City of Vienna. When the subset of items is small and more homogeneous,

i.e., many datasets have the same values of multiple attributes, the Intermediary starts listing

values of unique dataset attributes (linear search), such as title, description, or link.

In summary, the action space used by the Seeker has three operations:

• select – provides positive feedback towards one or more of the exploration directions

(facets, or attributes), e.g., “Yes, population sounds interesting”;

• skip – provides negative feedback towards one or more of the exploration directions, e.g.,

“I do not care about the data format”;

• prune – provides negative feedback towards a subset of items, e.g., “Is it about education?

– No.”

The average number of turns per dialogue in our dataset is 5, with a minimum of 1 and a

maximum of 14. The one turn dialogues consist of answers to direct questions expressing

the information need, i.e., the user query. It usually takes 2–3 turns when the Intermediary

also describes the information source before or after answering the user query. If the Seeker

smoothly follows the options o�ered by the Intermediary, the minimum number of turns for

the conversational browsing scenario is 4; it is at least 6 turns if the Seeker rejects some of the

options o�ered by the Intermediary. Ine�cient strategies leading to an increase in the number

of turns required to satisfy the information need include asking general questions and providing

an insu�cient number of options.

The majority of messages composed by the human Intermediaries contain up to 8 concepts.

The maximum number of concepts per message was 16; this was an extreme case in which the

Intermediary listed all available categories. The number of concepts per message positively

correlates with the performance of the interaction; Seekers were more likely to �nd one of the

options useful when supplied with more options.

6.6 System Design

We de�ne conversational browsing as a collaborative exploration search task with asymmetric

roles with an uneven distribution of goals and information available to the conversation partici-

pants. One of the conversation participants (the Intermediary) has access to the information
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6.6. System Design

model I , while the other participant (the Seeker) has access to the information goal G. While

the goal of the Intermediary is to help the Seeker satisfy the information goal, only the Seeker

is in a position to de�ne the goal and/or tell when it is reached. More formally, the task for

the Intermediary is to communicate a subset of I to the Seeker in a sequence of messages
M = 〈M1, . . . ,Mn〉 to form the knowledge state K in alignment with G so as to satisfy the

success condition G ⊆ K .

We design a dialogue agent to play the role of an Intermediary in this task and the user to take on

the role of the Seeker. A model of the conversational browsing task is illustrated in Figure 6.4.

Intermediary

(Agent)

Seeker

(User)Information


Model, I
Information


Goal, G

Knowledge

State, K

User

Model, U

Selection 

Strategy, S

Navigation 

Strategy, N

Message,

M

Message,

M

Action,

a

Action,

a

Figure 6.4: Conversational browsing model (CBM). The user model U maintained by the agent is

expanded on the right-hand side of the �gure consisting of the knowledge state K , information

goal G and a navigation strategy N .

The actual knowledge state K and the information goal G of the Seeker are not directly

observable by the Intermediary. Instead, the Intermediary maintains a user model U that re�ects

the Intermediary’s belief about the Seeker’s state based on the Seeker’s action a. The Seeker

chooses one of the actions from the set of available actions a ∈ A using the navigation strategy
de�ned as a function N , which is a generative process also hidden from the Intermediary.

The Intermediary is assumed to be able to adequately model both the user state U and the

information model I in order to choose an optimal selection strategy S to compose messages

M = 〈M1, . . . ,Mn〉. The goal in this case is to satisfy the success condition G ⊆ K using a

minimal number of messages.

6.6.1 User model

Cognitive load corresponds to the amount of information that working memory can hold and

operate on at a unit of time t. We model cognitive load as a function L(t) that de�nes the bound

on the available cognitive resource of the user, which can represent time, memory, attention

span, motivation, patience or user fatigue.

If too much information is presented at once, at time t (that is, if |Mt| � lt), the user becomes

overwhelmed and much of the information is lost. Therefore, a naïve brute force selection

strategy S that simply pushes the entire information model into a single message is likely to fail

according to CLT. We ground our assumptions about the shape of L(t) in results from cognitive

science. Various experiments suggest the working memory limit to be close to 7±2 [139] objects,
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6. Conversational Browsing

or even less [32]. While these bounds have been debated, we assume them as a reasonable

average l to inform our user model.

The concept of cognitive load motivates the design of a selection strategy S that takes into

account the cognitive resource limitation of the human brain, L(t), to make human learning

more e�cient. In particular, it motivates the need for partitioning the message M into a

sequence of messages distributed in time M = 〈M1, . . . ,Mn〉 with the upper-bound on every

message size provided by the cognitive load function such that |Mut| ≤ lut.

We assume that the Seeker employs a rational navigation strategy N and is more likely to

choose an action aut that is expected to maximize the knowledge gain with respect to the

information goal: Mut+1 ∩Gut. If none of the available actions has any expected value with

respect to the information goal Gut, the Seeker will choose the action that triggers the default

exploration direction selected by the Intermediary based on the structure of the information

model.

6.6.2 Information model

We assume a relational structure of the information source, in which a set of items are charac-

terized by a set of attributes. This grid-like structure is a common data model used in tables

and databases across di�erent domains to characterize a group of homogeneous elements, e.g.,

movies or other products. In Figure 6.5 we represent this data model as a graph with three

distinct sets of nodes: attributes F , entitiesE and itemsR. Individual itemsR correspond to the

rows of the table or records in a database; and their attributes F correspond to the columns or

facets. The intersection of a row r ∈ R and a column f ∈ F contains at least one of the entities
e ∈ E, which corresponds to the value of the attribute f for the item r: f(r) = e. Entities can

provide unique identi�ers for speci�c items, e.g., a name or a URL, or can be shared between

several items, e.g., location or time dimensions. Shared entities provide the structure useful for

search and browsing of the collection.

We de�ne a ranking function that calculates the score vc, which allows us to compare the

importance of every concept c according to the structure of the information model I .

6.6.3 Selection strategy

The selection strategy Sut takes into account the user model Uut and the information model I
described in the previous sections. It allows the dialogue agent to construct message Mut to be

sent to user u at time t. The task of the selection strategy Sut is to �nd the optimal order of

the messages. The objective is to maximize the amount of information per unit of time while

respecting the limit of cognitive resource of the user.

The entities are ranked by the number of items they belong to. Thus, the unique entities (titles)

receive the lowest scores and the most frequent entity in the dataset receives the highest score.

The messages are composed from choosing a subset of top l entities that belong to the same

attribute.
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f1 f2

e1 e3 e5

r4 r5

e2 e4

r3r2 r6r1 r7

f1 f1 f1 f1 f2f2f2f2f2f2f2

isa isa isa isa isa

F

E

R

f1f1

e3

f1 f2

e2e1 e4 e5

r1 r2 r3 r4 r5 r6 r7

Figure 6.5: Information model with subsets of nodes for attributes F = {f1, f2}, entities

E = {e1, . . . , e5} and items R = {r1, . . . , r7}.

6.7 System Evaluation

We advance to Step 3. System evaluation in Figure 6.2 and provide details of the implementation,

and two types of evaluation: a user simulation and a user study. In a user simulation we evaluate

the trade-o� between the expected number of dialogue turns and the maximum message size

and then evaluate the performance of our system in a user study.

All experiments were performed using the dataset downloaded from one of the open data portals,

as an information source, that was also used in Step 1. Data collection. This dataset contains

more than 2,000 items described by 74 di�erent attributes. Using the conversational transcripts

collected in Step 1 we identi�ed a set of 5 attributes that were used by human intermediaries to

describe the items: title, license, organization, categorization and tags.

6.7.1 User simulation

Baseline. The baseline for comparison with the proposed conversational browsing interface

was implemented to provide basic search functionality with a standard BM25 ranking function.

The search system was exposed via a text-chat interface, where for each user query the generated

response is shown below the original query in the same text-chat window. This setup is similar

to the demonstration system proposed and evaluated earlier [148]. We chose to use a text-based

interface to avoid errors from a speech recognition component, which still remains one of the

major sources of errors in state-of-the-art spoken dialogue systems [195].

Setup. We evaluate the robustness of our approach to conversational browsing by simulating

several user models with di�erent information goals. We simulate the Seeker in the following

manner. In every run a new information goal of the Seeker is initialized by picking one of the

items (all of its entities) from the database uniformly at random. We assume the knowledge
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state of the Seeker is updated every time the Intermediary sends a message without any loss in

the perception channel: Kt+1 = Kt ∪Mt.

The performance metric we used for evaluation was the number of turns the Intermediary

needs to satisfy the latent information goal of the Seeker. A user simulation was applied to

tune the cognitive resource capacity l, which is the upper bound on the number of concepts the

Intermediary can send to the Seeker within a single message M : |M | < l. Integer values in

the range 3..8 were considered, guided by the related work in cognitive load theory [32, 139] as

well as our own observations drawn from the analysis of the user study in Section 6.5.

Table 6.2: Simulation results for di�erent values of the cognitive

resource l (500 independent runs).

Cognitive resource l
Number of turns per dialog

Minimum Average Maximum

3 5 18 67

4 2 15 50

5 5 12 80

6 2 11 38

7 2 9 29

8 2 9 27

Results. The results were aggregated across 500 independent simulation runs used for the

metric to converge and are listed in Table 6.2. The minimum number of turns to satisfy the

simulated information need is 2, when the �rst message contains an entity that is able to

uniquely identify the item G and the second message contains all the entities that belong to the

item G. The average number of turns required to reach G monotonically decreases with the

increase of the parameter l. All the simulations were run in parallel.

The simulation results show that a greedy heuristic maximizing the out-degree in our infor-

mation model performs reasonably well in the selection strategy for conversational browsing

but is sensitive to the value of parameter l. Based on these estimates we chose the value of

hyperparameter l = 6 as an estimate of the cognitive resource limit in our user model that

determines the maximum number of concepts per message. In this case, a simulated user

will require 11 actions, on average, to reach any item in the dataset using our conversational

browsing system.

6.7.2 User study

For the user study we designed two conversational interfaces (see Figure 6.6). The �rst one

(left) provides a typical conversational search functionality: the user query is used to produce

a ranked list of the matching items retrieved from the index. The alternative interface (right)

implements conversational browsing functionality by interactively revealing the subsets of the

most discriminative attributes based on the user feedback.

94



6.7. System Evaluation

Figure 6.6: Two types of interaction with the system: conversational search (left) versus conver-

sational browsing (right).

The goals of browsing, as an information-seeking strategy, can vary from general collection

understanding and learning to exploratory search [12]. It is very challenging to evaluate the

success of learning and the level of understanding. We focus on the latter goal of exploratory

search instead, de�ned as the ability to discover relevant information via browsing. Moreover,

in this setup we can directly compare the results achieved using the proposed conversational

browsing interface on the same search tasks that can be completed using the query-based

conversational search interface, which serves us as a baseline.

Setup. A total of 24 participants took part in the experimental evaluation of our conversational

browsing approach. The volunteers were recruited among the university students and none of

them participated in our data collection study. All participants had previous experience with

basic web search interfaces, such as keyword- and faceted search, but no previous experience

with the repositories, web sites or our conversational interfaces used in this user study.

Each participant �lled out a questionnaire that included a competency question for assessing

their prior domain knowledge, accommodated search results for two search scenarios, and

asked for participant’s feedback at the end of the experiment. In this way we collected two

types of feedback: (1) subjective feedback by the participants re�ecting on their experience
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using the systems; and (2) objective feedback re�ecting the average performance on the search

task using di�erent systems.

Table 6.3: User study success rates: proportion of the users who successfully

completed the search and browsing tasks.

Task

System (1) Immigration Vienna (2) Retirement Linz Total

Search 0.33 0.08 0.21

Browse 1.00 0.33 0.67

Total 0.67 0.21

To design the sample information seeking scenarios we picked two items from the dataset at

random and formulated the tasks for the user based on these items. We carefully phrased the

search task so as to re�ect the vocabulary mismatch problem, which often occurs in real-world

settings, by rephrasing some of the keywords in the title and other attributes of the target items:

1. Population by country of birth since 2011 municipal districts Vienna:6 locate datasets that
can provide information about immigration in Vienna; and

2. Private retirement homes:7 locate datasets that can provide important information especially
for the older generation of adults living in and around Linz.

We evaluate performance on the tasks using a success rate that corresponds to the number of

participants who manage to successfully complete the task by �nding at least one of the correct

datasets and analyzing the number of turns it took users to complete the task to compare it

with the expected performance from our simulation. It took our user simulation between 5 and

9 turns to reach the item for every item in the pool of correct results, with 6 and 8 turns on

average, respectively, for the di�erent tasks.

Results. On average, participants performed better using our conversational browsing system

in comparison with the basic search functionality. Only 5 out of 24 participants managed to

complete the search task using the baseline system, in comparison with a success rate of more

than 50% for the conversational browsing system (16 out of 24). Table 6.3 displays the task

success rate, i.e. the ratio of users who successfully completed the task. The recall for both

tasks was also higher for the conversational browsing system than for the search interface

(see Figure 6.7). We compared the means of the recall values using the Tukey test [199]. The

di�erence in recall between Search and Browsing interfaces is 1.08, with Browsing interface

resulting in higher average recall. The 95% con�dence interval of this di�erence is between

-0.24 and 2.41 points.

6https://www.data.gv.at/katalog/dataset/0a0f2617-3609-42ca-97bc-2f8a8be98cbf
7https://www.data.gv.at/katalog/dataset/8421a66f-dc80-4bd3-8253-de532bc5b67c
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Figure 6.7: Distribution of recall results from the user study.

Moreover, by analysing incorrect answers submitted by the participants we found that the

users of the conversational search prototype tend to submit incorrect answers much more often

than the users of the conversational browsing prototype (Figure 6.8). This is a statistically

signi�cant result with p-value = 9× 10−6
. This observation suggests that the conversational

browsing interface was able to provide users with a better understanding of the collection

content, su�cient to make a better distinction between relevant and non-relevant results. When

using the proposed browsing system, participants submitted more answers and more of these

answers were correct, in comparison with the answers submitted when using the baseline

search system.

In addition, we made a qualitative analysis of the logs to extract the most successful strategies

and contrasted them with the approaches other participants employed when using the provided

interfaces to complete each of the tasks. Participants who managed to �nd correct answers

using the search interface had to reformulate their search queries at least 5 times before hitting

the correct result space. That is why many participants submitted less relevant results while

they could �nd them much faster giving up when �ne-grained search queries did not return

any results. In the browsing scenario, however, many participants could immediately �nd the

logical path leading to the relevant search space where the correct answers are located. They

would still frequently explore other facets to get a feeling of their semantics and the full search

space. The most successful browsing experiment explored the variety of facets at �rst and then

picked the answers from several di�erent paths with a restart. Query formulation is a di�cult

task and automated approaches, such as query expansion, are prone to failures since they rely

on the availability of external knowledge, such as thesauri or query logs [6, 35, 217]. We see

browsing as a viable alternative to explicit query formulation and demonstrate how it can be
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Figure 6.8: Distribution of the submitted and correct answers for search and browsing interfaces.

implemented in a conversational setting.

The second task (“Retirement Linz”) turned out to be much harder to complete than the �rst

one (“Immigration Vienna”) as evident from the di�erence in success rates. All participants

succeeded when using conversational browsing for the �rst task, and a third of them – for

the second task, in comparison with the third of the participants for the �rst task and a single

person only for the second task, when using the baseline search system.

We created a pool of results submitted by participants for each of the tasks to enrich our subset

of results marked as correct. Two independent annotators marked correct answers in the

pool with an inter-annotator agreement of 0.95 and resolved disagreements by discussing the

content of the datasets. Statistics for each of the tasks completed via the browsing interface are

summarized in Table 6.4 with the number of all unique results submitted by the users (row 1),

the number of correct results among those marked as relevant with respect to the task by the

annotators (row 2), the average number of turns produced by the user simulation (row 3), the

average number of turns in conversations with human evaluators (row 3) and the number of

restarts initiated by human evaluators (row 4).

For the more di�cult task the fraction of incorrect results submitted is higher. Also the users

took more dialogue turns and restarts to complete the more di�cult task (16 versus only 2 for

the simpler task). The number of turns predicted in the simulation is also higher for the more

di�cult task, but the gap is much bigger for the real users, which is likely due to the restarts

the users take when they are not sure that they are navigating in the right direction.
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Table 6.4: Conversational browsing results for two evaluation tasks.

Statistics

Task

(1) Immigration Vienna (2) Retirement Linz

All results 19 28

Correct results 15 7

#Turns simulated 6 8

#Turns user study 8 21

#Restarts 2 16

Simulation User study Simulation User study

10
20

30
40

50

Search task 1                                                       Search task 2

#T
ur

ns

Figure 6.9: Number of turns taken to complete the conversational browsing task (simulation

and human participants).

Figure 6.9 shows that the items ranked high with our ranking function, i.e., the items with the

most frequent attributes, are much easier to �nd than the items with less frequent attributes.

The average number of turns for the �rst search task was 8 (vs. 6 turns in the user simulation)

and 21 for the second task (vs. only 8 in simulation).

6.7.3 Discussion

The user study results showed that the conversational browsing functionality helps users to

mitigate the vocabulary mismatch problem and �nd relevant information, even in the case

of limited domain knowledge. We observed a striking di�erence in search performance: the

success rates of the browsing interface are three times higher than the query-based search

interface on the same search tasks (see Table 6.3 and Figure 6.7). Among the positive feedback
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for the conversational browsing system were the ease of use and clarity, and the possibility to

explore the data when the search criteria are not clear.

The majority vote, however, showed the opposite result in favor of the baseline: 70% of the study

participants preferred the conversational search interface rather than conversational browsing,

when they were explicitly asked for their subjective feedback with the question “Which system

did you like more?”. We attribute this result to several factors: (1) all participants had previous

experience with query-based search engines, which are similar to the functionality and the

interaction type that our conversational search interface provides; (2) the participants received

a description of the information goal, which they could use to formulate the search query faster

than browse the entire collection; (3) �nally, the participants were not able to adequately assess

their search performance since the correct results were not provided, which in turn led to a

misconception about the system performance that likely in�uenced the preference choice.

More experiments are needed to evaluate usability and integration of browsing components

into the conversational search interfaces. Also, the selection strategy should be able to integrate

alternative ranking functions beyond the information-theoretic objective only. The results of

the user study showed that some of the attributes identi�ed as highly discriminative for the

given dataset, such as data license, could not help users to decide on relevance. User preferences,

such as perceived attribute relevance, can be either collected in a separate survey or a user

feedback form, or harvested from the logs of the conversational search system directly.

Our experimental results support previous �ndings and claims that dialogue systems can be

an e�ective instrument for information retrieval also without the need to explicitly formulate

the query, which can be especially relevant in situations promoting serendipitous discovery

and general collection understanding [152]. We complement previous work in this direction by

providing an extensive description of the approach we used and various aspects of its evaluation

extended with an analysis of the challenges that arise in the design and evaluation of this kind

of systems.

6.8 Related Work

The problem of query formulation was previously analysed and explained in terms of the

Anomalous State of Knowledge (ASK) [15]. It is di�cult for an information seeker to precisely

describe something that was not encountered before. Often an information seeker is in a

situation when he is “not able to formulate a precise query, and yet will recognize what he has

been looking for when he sees it” [152]. We built upon the idea of surfacing the underlying

search space and bring it into the conversational settings by proposing a set of techniques

that can allow users to explore the content of the document collection without an access to a

reach graphical user interface or navigation control mechanisms. Finally, we developed and

successfully evaluated a dialogue-based interface, where all interactions between a user and a

system are con�ned to a single text-chat window.

Zhang and Marchionini [232] proposed a new interface, which they called Relation Browser++

(RB++), that combined search and browsing functionalities. They also reported lower error
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rates in comparison with the traditional search interface used as a baseline. RB++ has a rich

graphical interface with several panels displaying the facets available for �ltering and the

result set. In our experiments we showed that a browsing interface can be also implemented

in a much more constrained space of a single text-chat window. Meaning that we attempt to

reproduce their results of improving search interfaces by introducing browsing functionality

but we restrict all interactions to a single chat window rather than two separate windows for

�lters and results. This modi�cation is important because we aim to gradually move away from

desktop applications to mobile and speech interfaces which have only a single communication

channel. These constraints however also require more interaction turns between the system

and the user because the channel width is narrower, i.e., a mobile phone screen can not �t as

much information as the desktop screen, i.e., ability of the system and the user to successfully

interact while navigating the vast information space becomes even more crucial. This limitation

we imposed on the width of the communication channel is due to the cognitive limit theory,

which motivated our approach in the �rst place.

Our initial experiments suggest that the proposed conversational browsing interface is e�ective

at surfacing shallow queries, i.e., search results that require a few traversal steps, but also fails to

provide a reliable guidance to the user when looking for less obvious directions. By decoupling

browsing and search functionalities we can complement the results of the previous work [232]

and con�rm that the lower error rate is indeed due to providing browsing functionality rather

than the combination of search with browsing. In future work we would like to further explore

how search and browsing functionalities can be better combined within a conversational setting.

Conversational browsing is also similar to the information presentation subtask of a dialogue

system designed to optimise the display of available options to a user [44, 168]. However,

conversational browsing does not assume an initial user query, i.e., available options always

equate to the whole information space. With the amount of information that can be potentially

communicated to a user getting larger, a major design challenge arises with respect to taking in

account cognitive limitations of the human brain for partitioning the information space into

messages and using structural properties of the information space to allow a more e�cient

traversal.

Conversational browsing is conceptually di�erent from a task-oriented dialogue, where an

agent tries to pin-point an item or an information subspace relevant to the user’s query [161].

In this respect, conversational browsing is hard to optimize, since there is no single correct

answer.

6.9 Conclusion

We introduced a novel conversational dataset illustrating an asymmetric collaborative information-

seeking scenario, in which an Intermediary, having access to an information source, plays a

pro-active role by interactively revealing and dynamically adjusting the possible exploration

directions based on the feedback from an information Seeker. This scenario, which we cast as

the conversational browsing task, is appropriate when the Seeker is not su�ciently familiar with
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the domain of interest to formulate their information need as a concise search query, or prefers

to explore available options.

We proposed a formalization of conversational browsing as an interactive process in which

the Intermediary guides the Seeker in discovering the relevant attributes (facets) and �ltering

conditions (entities) to single out a subset within the information source model that contains the

information goal of the Seeker. Our experiments indicate that conversational browsing is a viable

paradigm able to mitigate challenges in query formulation and assist users in conversational

search.

The dataset and the model that we proposed indicate much broader implications for conver-

sational system design than we could utilize in the �rst set of experiments. Despite these

limitations, we believe that our initial results showcase conversational browsing as a useful

component for conversational search, which is able to complement the already established

question answering task and encourage development for the set of more advanced interaction

patterns with a dialogue system.

While similar ideas were already discussed decades ago [152], they were abandoned at the time,

not matched by adequate technology for natural language understanding [14]. We believe that

it is time to revisit these ideas. The combination of novel techniques for semantic parsing and

information retrieval with more advanced information-seeking models constitutes a promising

direction for future work.

Thus, we showed how conversational browsing can support request-based interactions intiated

by the information provider, which �lls the research gap identi�ed in the QRFA model described

in Chapter 3. Our ultimate goal is to design a single conversational interface that integrates

both browsing and question answering functionalities that naturally complement each other

fusing into a single interaction model supporting various information-seeking strategies. An

important direction for future work is to extend the information model to handle arbitrary graph

structures beyond a single table, such as a web graph or a knowledge graph as in Chapters 4

and 5. Further research is needed to integrate semantic coherence criteria based on the graph

structure as presented in Chapter 4. There is also room for a learning component able to learn

from interactions with users to improve the overall performance and maintain personalized

user models.
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CHAPTER 7

Conclusions

I believe the dreamers come �rst, and the builders come second. A lot of the
dreamers are science �ction authors, they’re artists... They invent these ideas,
and they get catalogued as impossible. And we �nd out later, well, maybe it’s
not impossible. Things that seem impossible if we work them the right way for
long enough, sometimes for multiple generations, they become possible.
— Je� Bezos, Heinlein Prize award ceremony, 2016

The �rst two chapters of the thesis aim at understanding the structure of a conversation from a

general perspective, while the last two chapters utilise the insights about both structural and

contextual dependencies (relations) between utterances in a conversation, and propose concrete

approaches to designing conversational search interfaces. As for the �rst two chapters, the

structure of an information-seeking dialogue was examined from two orthogonal perspectives.

The QRFA model introduced in Chapter 3 extracts patterns of structural similarities between

conversations about di�erent topics and from various domains (e.g., bus schedules and restaurant

reservations), while the approach to measuring semantic coherence from Chapter 4 focuses

on the structure of relations between speci�c semantic concepts mentioned in a conversation

that can allow to distinguish a topic shift, i.e., di�erent conversations, within the same domain

(Ubuntu).

Furthermore, the QRFA model revealed that (1) question answering is the key component

essential for being able to de�ne the information need and retrieve the answer; (2) often

question answering alone is not su�cient to retrieve the answer, e.g., in the situations, when

the information need is vague or unde�ned, or/and the information seeker is unfamiliar with

the collection content. Therefore, in Chapter 5 we examine the current state of the art for

question answering over knowledge graphs and contribute an original approach that alleviates

the major bottle-neck of the existing systems for complex QA, namely query generation used for

answer retrieval. Chapter 5 also heavily builds upon the empirical results discussed in Chapter

4: maintaining alternative interpretations associated with uncertainties from matching natural
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language to labels in a knowledge graph and the scalability limitations of the breadth-�rst

search. Finally, Chapter 6 provides the �rst insights on the promising direction of extending

conversational search systems with browsing functionality, which does not require explicit

query formulation and is designed to mimic alternative types of interactions captured in the

QRFA model.

In this thesis, we have reported on the results obtained from several complementary studies,

to analyse di�erent requirements and components to design advanced conversational search

systems able to support advanced dialogue-based interactions, namely:

• understanding the structure and processes behind conversations;

• maintaining semantic coherence of conversations;

• complex question answering;

• conversational browsing.

We believe that all these requirements should be covered within a comprehensive conversational

system.

Some of the key contributions presented in this thesis also promise to spark important directions

outside of the knowledge-based conversational search frame. The process mining approach for

extracting a compact theoretical model from empirical data that we proposed can be applied

more broadly for developing grounded theories by capturing patterns of similarity and variance

in process data [112]. Existing process mining algorithms normally prioritize precision and

recall over simplicity, which often results in producing “spaghetti models” that are able to �t

the data present in the logs but are not interpretable by humans.

The message-passing approach introduced in Chapter 5 is an important step towards natural

language interfaces for knowledge graphs. We show a viable alternative to translating a natural

language question into a structured query. Our approach operates directly on the compressed

version of the graph and is able to compute multiple alternative question interpretations in

parallel via matrix multiplications. These results can hopefully provide inspiration for developing

other algorithms that leverage knowledge graph structure in a scalable fashion without explicit

query formulation.

Design of conversational search systems requires integration of advances from several research

disciplines, including natural language processing (NLP), information retrieval (IR), knowledge

management (KM), and human-computer interaction (HCI). We analysed the structure of

information-seeking dialogues through the lens of cognitive load theory and showed how

neural language models and indexed entity catalogs can be used to retrieve answers from a

knowledge graph. Our �ndings uncover the limitations of the state-of-the-art approaches and

propose alternatives. Below, we provide answers to the research questions posed in Chapter 1

and outline possible directions for future work.
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7.1 Main Findings

In Chapters 3 and 4, we analysed relations that hold between utterances in a conversation

from two orthogonal perspectives – in terms of a domain-independent functional role and

domain-speci�c semantic coherence – to derive conversational knowledge models that describe

structural properties of a generic information-seeking dialogue.

Chapter 3 introduced conversation mining as a framework that allows us to collect and aggregate

frequent patterns across conversational transcripts, treating each as an individual instance of a

single underlying generative process shared between the conversation participants. We used

conversation mining to analyse the general structure of an information-seeking dialogue, and

answer the following question:

RQ 1 What is the general structure of an information-seeking dialogue?

Our results unveil the types of interactions typical for information-seeking dialogues, which

we consider as functional requirements for a conversational search system. We discovered a

common structure that persists across information-seeking dialogues from di�erent domains.

The QRFA model we proposed is simple and interpretable, describing the interaction patterns

from a high level of abstraction.

In Chapter 4 we described a novel evaluation setup for the semantic coherence task that tests

the ability of a knowledge model, both vector embeddings and a knowledge graph, to predict

concept relevance with respect to the conversation context. We raised the following question:

RQ 2 What are the relations between concepts mentioned in the course of a conversation and

how can we detect them?

Our results show that proximity relations in a knowledge graph and a vector space are indicative

of entities co-occurring in a conversation. Adjacent entities that are 1 or 2 hops away are much

more likely to occur within the same conversation than entities that are further away in the

graph. It is an important property that should inform the design of a dialogue system based on

relations stored in a knowledge graph. Our analysis revealed that the major source of errors

when establishing semantic coherence using a knowledge graph are incorrect entity linking

and relation sparsity. We also showed that language models carry semantic relations that are

missing from a knowledge graph.

Chapter 5 introduced a novel approach for question answering over knowledge graphs. We

addressed the following question:

RQ 3 How to design a system able to answer complex questions using information stored in a

knowledge graph?

Our approach to question answering incorporates three stages, question parsing, linking, and

answer retrieval, that are based on approximate reasoning under the uncertainty inherent in

natural language question interpretation. We show that our approach is able to improve upon

the state-of-the-art performance results, especially in terms of recall and computation speed,

by leveraging e�cient knowledge compression technologies and pre-trained language models
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for linking questions to a knowledge graph. Our results also demonstrate that combining

evidence from both structured (knowledge graphs) and unstructured (text) data sources has a

great potential to mitigate knowledge sparsity, increase support and interpretability of semantic

relations.

In Chapter 6 we introduced a new conversational browsing task that releases users from the

burden of having to formulate a precise search query when accessing an information source.

To come up with the conversational system design we organized a laboratory study to collect

dialogue transcripts that exemplify human strategies in the context of an information-seeking

task, in which an information provider assists an information seeker by enumerating available

exploration directions. Next, we systematically analysed the dialogue transcripts to formalise

a conversational browsing model as a hypothesis for the basic structure and properties that

the conversational system should have to support users with limited domain knowledge and

collection understanding. We veri�ed the model assumptions and the proposed setup by running

a user simulation and another laboratory study, in which human intermediaries were replaced

by our system prototypes.

RQ 4 How to design a conversational system able to support information retrieval without the

need to explicitly formulate a search query?

In contrast with the question answering task, users assume a passive role by providing feedback

to the requests from a conversational system. According to the aforementioned settings and

concepts from cognitive load theory the task is to partition the information model into coherent

messages that should be communicated to the user interactively, i.e., in a sequence conditioned

on the user input. In the absence of a user model we proposed to base the optimality criteria on

the structure of the information model, i.e. more informative concepts should be communicated

�rst to reduce the average traversal time. We showed that this type of interaction allows for a

su�cient control of the exploration direction and discovery of the content of an information

source.

Our long term goal is to enable conversational exploratory search via interactive storytelling.

The research work presented in this thesis achieves some important milestones in this di-

rection. Our �ndings provide a better understanding of the structure of human information-

seeking dialogues. We also discovered promising approaches for development and evaluation

of knowledge-based conversational search systems.

7.2 Future Work

We believe that it is worthwhile to continue development of each of the proposed tasks (con-

versation mining, coherence measurement, question answering and conversational browsing)

individually but also integrate them as components into a single dialogue system enabling a

wide set of interactions to support conversational search. It is also interesting to verify and

further extend our results by applying the proposed frameworks to other conversational datasets

and annotation types.
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An end-to-end evaluation of a dialogue system remains a big challenge. None of the approaches

proposed in this thesis incorporates natural language generation (NLG) components, which is

an important direction considered for the future work. NLG evaluation requires a large number

of human participants since automatic evaluation metrics, such as BLEU [153] that is also used

in machine translation, fall short in capturing synonyms and paraphrases [122]. Developing

a good dialogue evaluation model is likely to be as hard as developing the dialogue agent

itself [122]. In this situation user studies remain irreplaceable for understanding conversation

success criteria. To ensure the quality of empirically collected data it is crucial to establish

realistic settings able to provide su�cient context for an interaction. Experiments should be

centered around a use case scenario that is particularly relevant for the study participants. This

setup can help to reproduce the kind of information-seeking behaviour, which occurs in natural

environment and driven by a genuine information need.

To ensure maximum user engagement the future work towards interactive storytelling should

ideally involve an everyday activity in which potential users may engage voluntarily, such as

self-education and learning. Wikipedia as a reference corpus and DBpedia or Wikidata as a

knowledge graph are the largest collections available at the moment. More data can also be

harvested from on-line news sources or the cultural heritage domain.

The next steps include development of the three consecutive stages: story (narrative) compo-

sition, story generation and interactive storytelling. Story composition involves producing a

sequence of concepts as the building blocks of a plot (storyline). Then, a plot as an abstract

representation can be used to generate text of the story. Finally, interactive storytelling will

produce dialogues in which the story composition and generation are conditioned on the user

input.

We believe that approaches presented in this thesis, such as adversarial dialogue generation and

message passing in a knowledge graph, can be further adopted for the interactive storytelling

subtasks. This line of research will also require more work on knowledge integration from both

structured and unstructured data sources. In particular, machine reading and summarisation

approaches are important to harvest knowledge from textual documents.

Conversational search interfaces should support interactive information retrieval functionality

spanning across multiple dialogue turns, similar to the question negotiation process, which helps

both the system and the user to better understand the collection content and the information

need. Other relevant subtasks that were not considered in the scope of this thesis include

sequential (conversational) question answering and question generation.

Another important element that we did not discuss yet in the context of this thesis is continuous

learning and updating the conversational model. It is crucial to develop mechanisms that allow

a conversational system to correct and further extend its behaviour model based on interactions

with its users. These updates should not be limited to extending only the knowledge model

component of the system by adding new or missing concepts and relations between them but

also allow the system to discover and adopt new ways and modes of interaction altogether.
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