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Abstract

The Linked Data philosophy extends the Web through standards
promoting semi-structured data publication, exchange and consump-
tion. In this regard, the predominant standard for modeling data on
the Web is RDF, which is a graph-based model to represent relation-
ships between resources. However, with increasing size, compressibil-
ity and queryability of RDF graphs become an issue. These challenges
are addressed by the HDT (Header-Dictionary-Triples) format, which
is a well-known compressed representation of RDF datasets that sup-
ports retrieval features without prior decompression. Yet, data often
contains additional graph information, such as the origin or version of
a triple. Traditional HDT is not capable of handling this additional
parameter. This work introduces HDTQ (HDT Quads), an extension
of HDT, which is able to represent additional graph information while
still being highly compact and queryable. Two approaches of this
extension, Annotated Triples and Annotated Graphs, are introduced
and their performance is compared to the leading open-source RDF
stores on the market, Apache Jena and Virtuoso. Results show that
HDTQ is a competitive alternative to these two established systems.



1 Introduction

In the last decades, the Web evolved from a space of linked documents to a
space where documents and data are both linked. This fostered the forma-
tion of a set of best practices for publishing and connecting structured data
on the Web, commonly referred to as Linked Data. The spread of Linked
Data enabled the extension of the Web connecting data from various do-
mains such as films, music, people, companies, genes, statistical data and
online communities [26]. In recent years the use of the Resource Descrip-
tion Framework (RDF) [1] on the Web has also experienced an impressive
growth. To describe facts about arbitrary fields of knowledge in the Web,
RDF became the de facto standard [31].

RDF does not impose any physical storage solution, it is only a logical
data model. For this reason, RDF stores are either based on existing (re-
lational or not only SQL (noSQL) database management systems) or are
designed from scratch [68]. RDF graphs, consisting of a set of triples, each
having a subject, a predicate and an object, can reach millions or billions of
nodes. As an example, the Linked Open Data (LOD) cloud contains datasets
with more than 55 billion triples (the openlink-lod-cache), 20 billion triples
(the uniref graph) and about 1.5 billion triples (the DBpedia graph) [42].
Even though the transmission speed increases and storage capacity grows,
such graphs can quickly become cumbersome to share with others. This is of
specific interest when it comes to mobile devices where memory constraints
and transmission costs still play a non negligible role [92].

Therefore, it is important to compress RDF data. Compression becomes
particularly interesting if one does not even need to decompress data before
querying it. One representation format for such RDF graphs, which achieves
large spatial savings is Header-Dictionary-Triples (HDT). It is based on the
three main components Header (includes metadata), Dictionary (organizes
identifiers) and Triples (contains triple data) [46].

In its most basic form, all triples in an RDF dataset belong to the same
graph, the default graph. However, it is also possible that triples in a dataset
belong the different graphs, so-called named graphs. With the basic subject
- predicate - object structure, it is not possible to store this additional graph
information. For this reason, triples are enriched with a fourth component,
namely the graph. Such extended triples consisting of a subject, a predicate,
an object and a graph are called RDF quadruples, or RDF quads [3].

By storing information about the origin of the RDF data in this fourth
component, one can combine data from different sources in a single RDF
dataset. The combined dataset can be queried for getting the context of a
triple, for example, provenance information. One particular application of



quads is RDF versioning [48]. In the same manner in which databases or
Web pages are not static, RDF data changes, too. Thus, instead of storing
information about the origin in the fourth part of the quads, one could also
store information about the version of a triple.

Several RDF storage strategies exist to handle such version information.
The first one is called independent copies (IC) where for each version an entire
graph is stored. The second one is called changed-based (CB) approach, in
which only the first version of the graph is stored completely, while the
others are stored as differences to their previous version. When using the
third strategy, the timestamp-based (TB) approach, triples are enriched with
additional information which determines the versions in which the triple is
valid. Lastly, there are hybrid approaches which are a combination of the
aforementioned techniques [48].

The IC and the TB approach are also suitable to be applied on RDF data
in which the fourth component is the origin and not a version. Of these two,
the TB approach is of particular interest for this thesis. Section 3.2 deals
with this matter in detail.

The HDT format was not constructed to handle quads. Yet, for the afore-
mentioned reasons, it is very favorable to work with such extended triples.
In the course of this paper, the HDT format is extended, so it can cope with
quads and is still compact and queryable.

In a nutshell, this paper covers:

e Theoretical background about the Semantic Web and RDF in Section 2.

e A study on existing RDF triple stores (with a focus on Jena and Vir-
tuoso) and more details on RDF versioning approaches in Section 3.

e Background information on HDT, including the header, dictionary and
triples parts in Section 4.

e The proposed extension of HDT to handle RDF quads in Section 5.

e An overview of the actual implementation of this extension in Java is
given in Section 6.

e An evaluation of the extended HDT format in Section 7.
e Summary, limitations and thoughts on future research in Section 8.

Furthermore, a running example for an RDF graph will be introduced
in Section 2.2.1 and will be used for better comprehension in subsequent
sections of this work.



1.1 Research Question

The goal of this work is to extend HDT with the functionality to handle
quads. The resulting format should still be compressed and the generation
still be fast. Moreover, it should be queryable without the need to decompress
it first. After the HDT representation is extended to cater for quads, a
performance evaluation in comparison to Apache Jena [98] and Virtuoso [41],
regarding space requirements, creation time and querying speed for different
datasets is conducted.

The research question of this thesis is: "How can compressed RDF for-
mats like HDT be extended to handle quad information and keep its compact
and queryable features?”.

Although our proposal must be general enough to cope with general quad
information, we particularly focus our decisions in supporting quads where
the graph information denotes the version of each triple.

1.2 Research Method

We applied a Design Science Research (DSR) methodology [115] as a research
method to investigate and solve well-identified problems in IT. First, a lit-
erature research is performed to get an overview of other available systems
and to understand HDT in detail. Then, the existing Java implementation of
HDT is extended, such that it can handle graph information data (i.e. it can
handle quads). The focus should be on performance and good compression.
Still, the resulting code should be easily understandable, maintainable and
extensible.

After that, the performance of the system will be tested in a server envi-
ronment. The performance (space requirement, creation time and querying
speed) will be compared to other systems handling quads. Results will be
reported in this thesis and should be the basis for further development.

2 Theoretical Background

This section introduces important concepts used throughout this work. In
particular, the Semantic Web, RDF and SPARQL Protocol and RDF Query
Language (SPARQL) are introduced and linked data applications are dis-
cussed.



2.1 Semantic Web

While the hypertext Web is a technology for sharing documents, the Semantic
Web [73] is for sharing data [23]. It is a highly interconnected network of
data which can easily be accessed and understood by any desktop or handheld
machine. Originally, Tim Berners-Lee, James Hendler and Ora Lassila had
the vision of software agents which use the World Wide Web to update
medical records, book flights and hotels for trips and retrieve customized
answers to particular questions without searching for information or poring
through results [44].

In order for this visions to become true, they presented the following
technologies:

e A common language: this is needed to represent data that can be
understood by all kinds of software agents.

e Ontologies: sets of statements that translate information from dis-
parate databases into common terms.

e Rules: these allow software agents to reason about the information
described in those terms.

Together, these technologies would analyze the raw data stored in online
databases and all the data about text, images, video and communications on
the Web.

The Semantic Web can only be a success if there are well established stan-
dards to express shared meanings. Such common conceptualizations have
been developed in multiple domains and are commonly referred to as ontolo-
gies [126].

Broadly speaking, the Semantic Web is an enhancement to the World
Wide Web which gives it far greater utility. When people agree on a common
scheme to represent information they care about, the Semantic Web comes
to life [44].

Besides the need of common schemes to represent information, a common
approach for publishing and connecting structured data on the Web is also
needed. For this, Tim Berners-Lee published the Linked Data principles [20],
which provide guidelines on how to use standardized Web technologies to link
between data from different sources on a data-level. By linking such data, a
global data space is formed, similar to the classic Web. This Web is called the
Web of Linked Data. The idea behind Linked Data is to use HT'TP Uniform
Resource Identifiers (URIs) to identify Web documents as well as arbitrary
real world entities. The RDF is used to represent data about these entities.
The URIs can then be resolved by Web clients and an RDF description of the



identified entity is provided by a Web server. These descriptions can even
contain links to entities in other data sources [25].

A practical and widely used vocabulary to annotate web resources is
schema.org. Developed by an open community process, it is used in over 12
million sites to markup web pages and email messages [63].

Not only companies, but also consumers are beginning to use the data
language and ontologies directly. One example is the Friend of a Friend
(FOAF) [28] project, a decentralized social-networking system. There is
Semantic Web vocabulary for describing people, their name, age, location,
job and their relationship to other people. While MySpace’s and Facebook’s
fields are incompatible and not open to translation, FOAF users can post
information and images in any format they like and still connect it all. More
than a million users already interlinked their FOAF profiles [44].

2.2 RDF

Information on the Web can be represented with the Resource Description
Framework (RDF). The abstract syntax of RDF uses triples as its core
structure. Each triple consists of exactly one subject, one predicate and one
object. An RDF graph is a set of such triples. Such a graph can be visualized
as a directed graph, where the subject and object are nodes and the predicate
is the edge between them [2].

An RDF graph can consist of three kinds of nodes:

e IRIs: Internationalized Resource Identifiers (IRIs) are similar to URIs [21].
However, the characters they can contain additionally include charac-
ters from the Universal Coded Character Set (UCS) [40].

e Literals: The range of possible values for a literal is restricted by its
datatype, which can be, but is not limited to strings, numbers and
dates.

e Blank nodes: No specific resources are identified by Blank nodes.
Blank nodes act as local existential variables in a dataset.

Items denoted by IRIs and literals are called resources or entities. These
resources can be anything from physical objects, documents and abstract
concepts to numbers and strings. While resources denoted by an IRI are
called referent, resources denoted by a literal are called literal value. RDF
graphs are static, they are snapshots of information (atemporal) [2].

As noted above, RDF graphs are sets of RDF triples. An RDF triple
always consists of three components:
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Figure 1: Graphs. An RDF graph in graphical representation.

e Subject: The subject can either be an IRI or a blank node.
e Predicate: The predicate is always an IRI.
e Object: The object can either be an IRI, a literal or a blank node.

The order in which the triple’s components are written is by convention
subject, predicate, object [2].

For denoting RDF graphs, several concrete syntaxes exist, for example
Notation3 (N3) [22], N-Triples [19], N-Quads [29], JSON-LD [131], RD-
F/XML [17] and Turtle [18]. Some of these syntaxes will be discussed in
further detail in Section 2.2.2.

2.2.1 Running Example

An example for an RDF graph can be seen in Figure 1. The figure shows
a graphical representation of an RDF graph containing information about
two universities, including their location and participants (a teacher and a
student) as well as some information about the participants. The highlighted
area marks one basic triple. Its subject is "WU Vienna”, its predicate is
"located in” and its object is " Vienna”.

The exemplary RDF graph, which will be referred to as Graphy, consists
altogether of 15 triples. As can be seen in the figure, the object of one triple
can also be the subject of another triple. This is the case for the ”Vienna”
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Figure 2: Graphg. An RDF graph consisting of two graphs.

node. It is the object of the highlighted triple, and the subject of the ” Vienna
- part of - Europe” triple. Furthermore, nodes can be the subject of multiple
triples as well as the object of multiple triples. What is more, predicates can
be used as predicates in multiple triples (like the "born in” predicate in the
example).

The graph is directed, which is a result of the subject - predicate - object
structure of triples of RDF graphs. It is multi edged (”Lea” both, teaches and
likes " Programming Basics”) and contains a cycle ("TU Vienna” is located
in ”Vienna” and ”Vienna” sponsors "TU Vienna”).

For legibility reasons, the graph only contains literals in the graphical
representation. All subjects, predicates and objects in this graph are in fact
IRIs, their exact values can be seen in further examples in the subsequent
sections.

Another graph, from now on referred to as Graphg, can be seen in Fig-
ure 2. Basically, the graph is the same as Graphs. However, this graph
consists of two subgraphs coming from different sources, where the blue back-
ground marks the triples from the WU database and the yellow background
marks the triples from the TU database. The overlapping area contains sub-
jects / objects that are contained in both graphs (”Europe”, ”Vienna” and
”Programming Basics”).

Graph and Graphg will be used as running examples throughout this
work.



2.2.2 Notations

Traditionally, an RDF dataset consisted of a single graph. This view was
soon superseded to consider datasets conformed by multiple graphs. That
is a mechanism to group RDF statements into multiple graphs (as shown in
Figure 2) and associate each of the graphs with an IRI. The extension is a
result of the need for a mechanism to talk about subsets of a collection of
triples. First, multiple graphs were introduced in the RDF query language
SPARQL. Consequently, the RDF data model was extended with a notation
for multiple graphs, closely aligned with SPARQL [1].

There are different serialization formats for writing down RDF graphs.
All of them lead to the very same triples and are therefore logically equivalent.
However, not all of the existing formats are capable of multiple graphs [1].

There is a group of closely related RDF languages. It is called the " Turtle
family of RDF languages”. Members of the group are N-Triples, Turtle, N-
Quads and TriG. The former two do not support multiple graphs, while the
latter two, which are extensions of the former ones, do support multiple
graphs [1].

N-Triples is a very simple line-based, plain-text format. A triple is repre-
sented by a line, IRIs are enclosed in angle brackets. Each line is delimited
by a period, which also marks the end of a triple. Literals are followed by a
delimiter and its datatype, where the string datatype can be omitted [1].

N-Quads is very similar to N-Triples. However it allows to add a fourth
element to a line. The fourth element (the graph) specifies in which graph
the triple of this very line is contained. The graph itself is also denoted as
an IRI [29].

The third member of the Turtle family is called Turtle. Turtle extends
the N-Triples syntax with a number of syntactic shortcuts. This includes
support for namespace prefixes, lists and shorthands for datatyped literals.
In doing so, Turtle is more compact than N-Triples and provides a trade-off
between ease of writing, ease of parsing and readability [1].

While Turtle only supports the specification of a single graph, its exten-
sion TriG supports the specification of multiple graphs in the form of an RDF
dataset. Note that Turtle and TriG could be seen as one language, as in RDF
1.1 (which is the most recent version at the time of writing) any legal Turtle
document is a legal TriG document as well [1]. Graphg can be seen in TriG
syntax in Figure 3. Note that the two listings shown are actually one physical
file. As can be seen, the names of the graphs in the graphset are "http://-
graph.org/graphWU” and "http://graph.org/graphTU”. The triples of the
respectively named graph are placed in between matching curly braces.

Other RDF notations exist that support naming of graphs, like TriX [30],



BASE <http://example.org/> GRAPH <http://graph.org/graphTU>

PREFIX rel: <http://relation.org/> <entity#Lea>

rel:bornln <location#Helsinki> ;

rel:teaches <course#ProgrammingBasics> ;

rel:teachesAt <entity#TUVienna> ;

rel:likes <course#ProgrammingBasics> .
<course#ProgrammingBasics>

rel:offeredAt <entity#TUVienna> .
<entity#TUVienna>

rel:locatedIn <location#Vienna> .
<location#Helsinki>

rel:partOf <location#Europe> .
<location#Vienna>

rel:partOf <location#Europe> ;

rel:sponsors <entity#TUVienna> .
<entity#WUVienna>

rel:locatedIn <location#Vienna> .

}

GRAPH <http://graph.org/graphWU>

<entity#Luke>

rel:takes <course#ProgrammingBasics> ;

rel:studiesAt <entity#WUVienna> ;

rel:bornln <location#Budapest> .
<course#ProgrammingBasics>

rel:offeredAt <entity#WUVienna> .
<entity#WUVienna>

rel:locatedIn <location#Vienna> .
<location#Budapest>

rel:partOf <location#Europe> .
<location#Vienna>

rel:partOf <location#Europe> .

Figure 3: Graphg in TriG syntax.

which stores RDF triples in XML.
Another highly compact RDF representation format is HDT, which is in
the focus of this work, and will be described in detail in Section 4.

2.3 SPARQL

There are a number of query languages for RDF data, like RQL, RDQL and
SeRQL which where competing to become the W3C standard [66]. Another
prominent example is SquishQL [102]. In the end, SPARQL [116] arose as
the winner [76], becoming a W3C recommendation in 2008 [118]. In 2013,
the latest release at the time of writing, SPARQL 1.1 was published as a
W3C recommendation [62].

SPARQL 1.1 covers a set of specifications that provides protocols and
languages to query and manipulate RDF graph content. As such, not only
queries against an RDF store are covered, but also different result formats,
federated queries, update languages, service descriptions and test cases [62].
What is more, extensions to SPARQL exist, like SPARQLT, a temporal ex-
tension for SPARQL [54].

The SPARQL queries are built under the notion of graph pattern match-
ing. The smaller component of a graph pattern is a triple pattern, i.e. triples

SELECT ?s ?g WHERE {
GRAPH ?g {
?s <http://relation.org/locatedIn> <http://example.org/location#Vienna>

Figure 4: An example of a SPARQL query.




in which each of the subject, predicate and object may be a variable (these
are the atomic queries that will be used in our experiments in Section 7.6.

An example SPARQL statement, querying Graphg for all entities located
in Vienna is shown in Figure 4.

2.4 Linked Data Applications

On the one hand, Linked Data can be used in various domains, including
biology [152], statistics [71], software engineering [82], multimedia [72] and
finance [94]. On the other hand, Web applications can be built on top of
Linked Data [69]. The Linked Data community provides a list of such
datasets and links between datasets in the Linked Open Data cloud '. The
mentioned two options surely are intertwined, yet in this section the examples
mostly fall into the latter category.

As a rough categorization, Linked Data applications can be grouped into
four categories, which highlight the main aspects from a Linked Data usage
point-of-view [69]:

e Content reuse. These are applications that mainly reuse existing con-
tent of datasets in the LOD cloud in order to save time and resources.
An example application of this category is the Understanding Advertis-
ing (UAd) Analyzer [128]. It is a research prototype of a Linked Data
Web application for market researchers built to trace discussions on the
Web. It interlinks discussions throughout a couple of Web-based discus-
sion forums (via SIOC [27] and FOAF [28]) and uses DBPedia [36, 13]
categories to pull in domain-specific information. Another example in
this category is BBC music [15] which pulls data from other sources
like Musicbrainz [133] and DBPedia [87].

e Semantic tagging and rating. Applications of this category make
use of HT'TP URISs in the datasets to unambiguously talk about things.
The reviewing and rating site Revyu [74] applies the Linked Data prin-
ciples. Besides publishing Linked Data, the Web application exploits
the interlinking with DBPedia.

e Integrated question-answering systems. Answering a user’s ques-
tion is in the focus of the applications of this category. CrunchBase [81]
is a free dictionary of technology companies, people and investors.
Around its public API a Linked Data wrapper was built [43]. The
CrunchBase Twitter bot [107] uses this data to answer questions about

thttp://linkeddata.org/

10



Silicon Valley companies. Another example is DBpedia mobile [16],
which is basically a location-centric DBpedia for mobile devices [70].
Based on the GPS of the device a map is rendered that shows nearby lo-
cations from the DBpedia dataset. In doing so, the application answers
the question ”What places are around my current location?”.

e Event data management systems. This category covers applica-
tions which allow people to organize and query event-related data. For
the European Semantic Web Conference 2009 the so called ” confx” tool
was created. It is a Linked Data dashboard which allows users to view
papers, sessions and discussions in and during a conference [108]. What
is more, OpenLink Data Spaces (ODS) [130], a distributed collabora-
tive application platform for creating presence in the Semantic Web,
supports a range of applications, including a calendar. A number of
query services such as SPARQL are supported, too.

Virtuoso is an example for a data store for Linked Data. It is further de-
scribed in Section 3.1.2 and has been used for several projects in the Linking
Open Data Project [24], including Dbpedia [12], Musicbrainz [133], Geon-
ames [148] and PingTheSemanticWeb [56] [41].

3 Related Work

In this section, we briefly review the state of the art of RDF triple stores,
with a focus on Jena [99] and Virtuoso [41], the two most popular open
RDF stores. The focus is on their capability of handling RDF graphs and
especially their used indexes for RDF query resolution.

After that, different approaches for versioning of RDF graphs are dis-
cussed, namely independent copies, change based and timestamp based as
well as hybrid approaches.

3.1 RDF Triple Stores

RDF data can be persisted in relational databases [129, 112] to make the
data not only modifiable, but also queryable. However, as relational database
management systems (RDBMSs) were not built to support the distinct struc-
ture of RDF graphs, several problems arise for the triple storage. These in-
clude difficult to calculate query costs and the fact that cast rules are more
permissive than in Structured Query Language (SQL) [41].

Besides the widely used relational model, newer formats like noSQL emerged
and are becoming increasingly popular, especially in niche areas. Such databases
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store data in a nonrelational way, which includes column-oriented stores (like
Facebook’s Cassandra [89]), key-value stores (like Amazon’s Dynamo [38] and
Amos II [120]), document-based stores (like CouchDB [8] and MongoDB [32])
and graph databases (like Neo4j [121]) [93].

In addition to that, there are native stores, that is, stores specifically
designed for RDF. These are commonly based on B-tree indexes over multiple
orders of the triples (e.g. SPO, POS, OPS). Two popular representatives are
RDF3x [106] and Hexastore [146].

Although RDF graphs can be stored in such noSQL databases [35], it is
still a valid and popular approach to persist RDF graphs in RDBMS systems
and even to run SPARQL queries against them [145, 78]. Two RDF triple
stores, Apache Jena and Virtuoso, are briefly introduced in the subsequent
sections.

3.1.1 Apache Jena

Jena is a toolkit for Semantic Web programmers [99]. With the use of Jena,
an API in the Java programming language, one can create and manipulate
RDF graphs. Moreover, Jena includes a data publishing server which is very
convenient as it is a common requirement to publish data over the Internet in
modern applications. The server is called Fuseki and can present and update
RDF models over the Web using SPARQL and HTTP [52]. Open source
implementations of Jena are available on the Web [98, 149].

Jena uses a JDBC connection to an SQL database to persist RDF graphs.
It supports a number of database engines (e.g. PostgreSQL, MySQL, Oracle)
and has a flexible architecture that makes it possible to port to new SQL
database engines [149].

A Jena TDB store, the Jena component for storing and querying RDF
graphs, is stored in a single directory in the filing system and consists of
a node table, triple and quad indexes and the prefixes table. The first of
these, the node table, stores the representation of RDF terms. It can be
called a dictionary as it maps nodes to node IDs and vice versa. A large
cache is usually provided by node table implementations, as node ID to node
mapping is heavily used in query processing [53].

To resolve queries efficiently, Jena makes use of indexes. A total of 9
indexes are created in a TDB store. 3 of them are for triples, namely: SPO,
POS and OSP. The other 6 are for quads, namely the SPOG, POSG, OSPG,
GSPO, GPOS and GOSP. As can be seen, the 3-component indexes and
the 4-component indexes have the same order, except that the 4-component
indexes additionally have the graph component as their first or last element.
While in Virtuoso secondary (partial) indexes are used to answer queries (as
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explained below), in Jena each index has all information about a triple [53].

The third main part of TDB is the prefixes table, which uses a node
table and an index for GPU (Graph-Prefix-URI). It does not take part in
query processing and is usually small. Mainly it is used for presentation and
serialisation of triples in RDF /XML or Turtle [53].

3.1.2 Virtuoso

Virtuoso is a server providing ODBC/JDBC access to relational data. Data
can either be stored in Virtuoso itself or in an external relational database.
What is more, Virtuoso has a built-in HTTP server which provides several
protocol end points and supports a variety of scripting languages to build
dynamic Web pages. Because of the growing importance of the Semantic
Web, RDF functionality was incorporated into the system [41].

Quads are stored in Virtuoso in a quite simple way. There is a single
table of four columns, one for the subject, the predicate, the object and the
graph. While the subject, the predicate and the graph are IRI ID’s, for which
a custom data type exists, the object column is of SQL type ANY, so it can
hold any serializable SQL object [41]. If the RDF data consists of multiple
graphs, the data can either be stored in a single table or multiple tables (one
per graph). Which of these options is used depends on the number and size
of the graphs [129].

Virtuoso offers SPARQL inside SQL and inherits all the grouping and ag-
gregation functions of SQL, as well as user defined and any built-in functions.
All supported command-line interfaces directly work with SPARQL without
modifications. When the system is asked to evaluate a SPARQL query, the
query is first translated into SQL [41]. SPARQL goes wherever SQL does,
as a SPARQL statement is a valid top-level SQL select [129].

To be able to answer queries efficiently, a number of indexes are defined
on the tables storing the RDF data. Firstly, there are two full indexes over
the RDF quads. The first one, PSOG, is at the same time the primary
key. The second one, POGS, is a bitmap index for lookups on object value.
Secondly, there are 3 partial indexes. The SP index is for cases in which only
the subject is specified. The OP index, on the other hand, is for cases in
which only the object is specified. Lastly, the GS index is for cases where
only the graph is specified [135].

Consequently, Virtuoso favors queries where the predicate is specified.
Quads can be accessed efficiently if the predicate and at least either the
subject or the object is known. If only the subject is known, the SP index
is used to find the corresponding predicates. Then, the PSOG index can
be used to find the other quad parts. The same is true if only the object
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is known. Using the OP index, the predicates are found. Using the POGS
index the full quads are retrieved. If only the graph component is specified,
the GS index is used to find the respective subjects and subsequently the SP
index is used to find the corresponding predicates. Lastly, to find the whole
quads, the PSOG index is used [135].

3.2 RDF Versioning Approaches

Published data is continuously undergoing changes (not only on a data, but
also on a schema level) [141, 84]. Following the scale-free nature of the Web,
such changes neither happen with centralized monitoring nor pre-defined
policy. Applications and businesses that make use of the availability of data
over time and are interested in data changes and evolution, need to build
their own infrastructures to preserve and query data over time [48].

Aimed at assuring quality and traceability of Semantic Web data over
time, archiving policies of LOD collections are a novel challenge. The over-
all objective is the same as for traditional Web archives, like the Internet
Archive [10]. However, capabilities for time-traversing structured queries
should additionally be offered by archives for the Web of Data. Neither
SPARQL nor existing temporal extensions of it do natively support time-
based capabilities, such as knowing whether a dataset or a particular entity
has changed [134, 58, 117, 153]. Recent systems [47, 54|, however, are starting
to offer such time-based capabilities [48].

Because of the relative novelty of archiving and querying Semantic Web
data, retrieval needs are not broadly implemented in practical implemen-
tations. What is more, these retrieval needs are not even fully described.
However, first categorizations [132, 47, 88] distinguish six different types of
retrieval needs, which are version materialization, single-version structured
queries, cross-version structured queries, delta materialization, single-delta
structured queries and cross-delta structured queries [47]. These needs can
be classified by query type (materialization or structured queries) and by the
main focus (version or delta) of the query [48].

In order to satisfy the retrieval needs, one needs to store different ver-
sions of the same graph. Several research efforts address this challenge.
Mainly, there are three different storage strategies [138]: IC, CB and TB
approaches [47]. These approaches are described in the upcoming sections.

To explain the different versioning approaches, Graphc, a subgraph of
Graphy, is introduced. The graph and its three versions can be seen in
Figure 5. In the first version, Lea teaches the Programming Basics course
and Luke takes it. In the second version, Luke left the course and now Jyn
takes it instead. In the third version, Luke reappears, but now teaches the
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Figure 5: Graphc in its different versions.

course and therefore replaces Lea who is no longer part of the graph. In all
three versions, Programming Basics is offered at WU Vienna.

The subject of this work is to extend HDT with graph information, which
is not necessarily versioning information. However, in general a certain simi-
larity of versioning and adding graph information cannot be denied. Adding
version information to a graph can be seen as a special case of adding graph
information. For this reason, after introducing versioning approaches and
HDT in the upcoming sections, their suitability to add graph information to
HDT is discussed in Section 5.

3.2.1 Independent Copies

The IC policy [86, 109] stores and manages each version as a different, com-
pletely isolated dataset. This is shown for the three versions of Graph¢ in
Figure 6. Additionally, a metadata characterization can be built on top to
provide a catalogue of the different available versions, e.g. using the Prove-
nance Ontology (PROV) [60] and the Data Catalog Vocabulary (DCAT) [9].
As the so called ”static core”, which are triples that do not change, is fully
repeated across versions, 1C suffers from scalability problems [47]. In the
example this can easily be seen. The triple ” Programming Basics - offered
at - WU Vienna” is stored in all three versions of the graph.

While triples appearing in all versions of the RDF graph are the worst
case and lead to the biggest scalability inefficiencies, triples that appear in
several, but not all, versions are a scalability problem as well. Assuming that
there are 100 versions, where a triple appears in 99 of them and does not
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Figure 6: Independent copies of Graphc.

appear in the last version, the triple would be repeated 99 times across the
copies.

On the one hand, IC suffers from the aforementioned scalability problems
in space. However on the other hand, it is a very simple, straightforward
approach. Especially for basic retrieval purposes, like version materialization,
IC fits very well and comes with low effort. On the contrary, the rest of the
operations require medium or high processing efforts. To answer the other
queries, a retrieval mediator should be placed on top of the versions, which
has the challenging tasks of [47]:

e Calculating deltas at query time to satisfy delta-focused queries.

e Solving the structured queries after loading and accessing the appro-
priate version(s).

e Performing both previous tasks for the case of structured queries that
deal with deltas.

The IC approach is widely used to directly provide historical version
dumps (although typically compressed to reduce space needs of textual RDF
formats), like in DBpedia [36], the dynamic Linked Data Observatory [140]
as well as other projects serving Linked Open Data snapshots [47].

3.2.2 Change Based

The CB approach addresses the scalability problems of IC by storing the dif-
ferences (deltas) between versions [47]. One option is to store the differences
on the level of triples (so called low-level deltas [144, 79, 151]), which can
be seen in Figure 7. Here, only the first version is stored completely and
the other versions are expressed as the difference to the respective previous
version, i.e. as additions (A™) and deletions (A™).
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Figure 7: Change based archiving of Graphc.

The change operations are based on a basic language of changes, which
typically marks added and deleted triples and which can be shared in markup
languages like RDF Patch [125]. There are complementary works that focus
on computing dataset differences in a distributed way, like rdfDiff [77] and
G-Diff [4], which are both working on MapReduce [37]. Other approaches
work on extracting high-level deltas [114, 110] which are human readable.
These focus on obtaining a more concise explication on the whys and hows
of the changes. Low-level deltas apply to any RDF dataset and are easy
to detect and manage. In contrast, high-level deltas are more descriptive
and can be more concise. This comes at the cost of being more complex to
detect and manage and relying on underlying semantics (such as Resource
Description Framework Schema (RDFS) and the W3C Web Ontology Lan-
guage (OWL)) [150, 47].

On the one hand, required space is reduced compared to IC. On the other
hand, additional computational costs occur for delta propagation and there-
fore version-focused retrieving operations. Here, a query mediator accesses a
materialized version and the subsequent deltas. Using the CB approach leads
to a very cheap delta materialization operation. However, version-focused
queries can be quite costly because of the aforementioned delta materializa-
tion. Structured queries also require some effort, since the appropriate deltas
or re-created versions need to be loaded or accessed [47].

One advantage of this approach is its high configurability [47]:

e One can choose between different approaches to detect and store the
differences (e.g. low or high level deltas), as explained before.

e Deltas can be calculated backward (the changes of version V; with re-
spect to version V;_; are computed) or reverse (the changes of version
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V;_1 with respect to version V; are computed).

e Either only one fully materialized version is stored and all other versions
are represented as deltas, or some intermediate versions are stored fully
materialized, too.

Tradeoffs of the latter are much discussed in the literature. While there
are attempts to precompute an aggregation of all deltas to improve cross-delta
computation at the cost of augmenting space overheads [79], others propose
a theoretical cost model to adopt a hybrid (IC + CB) approach [132]. The
difficulties of constructing and reconstructing versions and deltas, which de-
pend on multiple and variable factors, are a driving factor for these costs.
Building a partial order index to keep a hierarchical track of changes is also
proposed [138]. This approach, however, is a limited variation of delta com-
putation and is not tested with datasets on a large scale. Also, there are
hypergraph-based solutions [80], which store the information of version in
hyperedges [47].

3.2.3 Timestamp Based

Three forms of annotating RDF respectively Linked Data with temporal in-
formation are distinguished by research works in the Semantic Web area [122,
7,47, 31]:

e Document-centric. Here, time points are associated with whole RDF
documents. This annotation can be implicit or explicit. An example
for the former one is HT'TP metadata which can be used to detect
changes [84]. Vocabularies to annotate metadata about datasets, like
the Vocabulary of Interlinked Datasets (VolD) can be used in the lat-
ter case. Because of the distributed nature of LOD, provenance in-

formation of data collections is of increasing interest. To query RDF
documents with time, the W3C PROV [60] standards can be used [124].

e Sentence-centric. Using sentence-centric annotation, temporal va-
lidity (a time point or interval) is defined at the level of statements or
triples [139, 134, 119, 65, 153].

e Relationship-centric. Here, time is encapsulated in n-ary relations [111].
Specific resources identify the time relation and make use of it to link
to other related resources [147, 101]. This is one special case of multi-
dimensional modeling [85, 55].
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Figure 8: Timestamp based archiving of Graphc.

The timestamp-based approach can be seen as a particular case of the
sentence-centric annotation to model the time in RDF. Each sentence locally
holds the timestamp of the version instead of explicitly defining the temporal
validity of statements or triples. Note that the static core of the archive would
again produce repetitions, since static triples would be labeled with all the
present timestamps. To avoid such repetitions and therefore save space,
practical proposals annotate the triples only when they are added or deleted.
So the triples are extended by two different fields, namely the created and
(if present) the deleted timestamps [105, 124, 59]. These approaches manage
versions/deltas under named/virtual graphs, so that a retrieval mediator,
which acts on top of the archive, can rely on existing solutions providing
named/virtual graphs [47].

While delta materialization can be satisfied with low effort, all other
retrieval demands can be done with medium processing efforts, given that
version materialization requires to rebuild the delta similarly to CB and
irrelevant triples may need to be skipped by structured queries [105, 47].

Figure 8 shows the timestamp based archiving of Graphc. Note that,
using this approach, each triple appears exactly once in the archive. The
figure shows the not so efficient way of marking each triple with all the
versions in which this very triple appears, instead of only highlighting the
created and deleted timestamps. For this reason, the triple " Programming
Basics - offered at - WU Vienna”, which appears in all three versions of the
graph, is marked with V;, V5 and V3.

3.2.4 Hybrid

To strike a balance between query performance and storage space, a hybrid
approach for archiving can be chosen. Stefanidis et al. suggest a solution
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where some of the versions are stored under full materialization, while others
are only stored as deltas. Applied correctly, this would lead to modest space
requirements while at the same time only a small overhead at storage and
query time is introduced, so the best of both worlds can be enjoyed. To
determine if a specific version should be stored fully materialized or only as
a delta is the challenge of this approach. Thus, an appropriate cost model
is needed which quantifies and compares additional time and space overhead
of the two policies. In other words, if an existing Version V;_; evolves into
V; it must be decided whether to store V; itself, or the appropriate 6; [132].

4 HDT Overview

Several challenges come up when processing huge real-world RDF graphs.
These challenges include [46]:

e Metadata about the graph (like statistics and a content summary) for
published RDF datasets is often neither complete nor systematically
published along with the dataset. An additional challenge is that such
data is often not published in a machine-readable format. Instead it is
e.g. in natural language posted on the Web page of the data.

e RDF graphs can have millions or billions of nodes and links. Graphs
of such sizes raise problems concerning management, exchange and
consumption.

e Already in 2012 the number of smartphones used around the globe ex-
ceeded 1 billion [123]. With the growing importance of mobile devices,
one needs to consider their memory constraints and transmission costs
when managing huge graph information [92].

e Basic data operations like simple lookups become very inefficient be-
cause of the sequentiality of information in the published files. To
evaluate a query, the entire data must be parsed.

From the problems listed above, one can derive some basic requirements
that need to be covered when publishing and exchanging large RDF datasets.
First, at the logical level, such huge datasets need standardized meta data
information. This information includes statistics (like size, quality and type
of data), intellectual property information (copyright), provenance (source,
providers, date of publication) and editorial data (publisher, version). Sec-
ond, at the physical level, an RDF representation should enable efficient ex-
change, management and processing. Third, at the operational level, simple
query patterns should be natively supported [46].
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R

HDT is an RDF publication and serialization format. It addresses the
issues outlined above. HDT modularizes the data and exploits the skewed
structure of big RDF graphs [39, 113, 137] to achieve large spatial savings. It
is based on three main components matching the levels outlined above [46]:

e Header: The header includes the metadata of the RDF dataset. It
can be seen as the entry point to the information of the graph. The
header component is described in more detail in Section 4.1.

e Dictionary: The dictionary organizes all identifiers of the RDF graph.
The RDF terms (IRIs, literals and blank nodes, described in Sec-
tion 2.2) mentioned in the graph are provided in a catalog with high
levels of compression. The dictionary component is described in more
detail in Section 4.2.

e Triples: The pure structure of the underlying RDF graph is comprised
in the triples component. It encodes the set of triples in a compact way,
while removing unnecessary repetition (redundancy) of long labels. The
triples component is described in more detail in Section 4.3.

The name Header-Dictionary-Triples (HDT) is deduced from the components
listed above.

The schematic steps of the process to obtain an HDT representation of
an RDF graph can be seen in Figure 9. The first steps extract information
from the graph necessary to build the header, the dictionary and the triples.
These components are then combined in HDT [46].

4.1 Header

The header component provides metadata information about the RDF dataset.
There are other approaches to store the metadata in the graph itself. Namely
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Figure 10: A potential use-case for the HD'T Header.

VoiD [5] or the OWL vocabulary, which lists various annotation proper-
ties [103]. However, this makes it difficult to automatically distinguish be-
tween data and metadata. Compared to other serialization formats, which
do not provide any means or at least best practices on how to provide meta-
data along with the datasets, HDT gives metadata a dedicated place as part
of the header information [46].

The data provider can include a desired set of features in the header
component, which makes it flexible. Four different kinds of metadata can be
stored in the header [46]:

e Publication information. This part contains information about the
publication act. It can contain the site of publication, dates (cre-
ation and modification), the version of the dataset, encoding, language,
namespaces etc. Additionally, authority information about the source
of data can be included.

e Dataset statistics. Statistics about the dataset which are often needed
can be precomputed and included. Examples are the total number of
triples and the number of distinct subjects in the graph.

e Format information. In this section information about the specific
format of the RDF dataset is stated. The concrete dictionary and
triples implementations (and their physical locations) are specified.

e Other information. Any other information that helps to understand
and manage the data can be included by the provider.

The HDT header for Graph, introduced in Section 2.2.1 can be seen in
Turtle syntax in Figure 11. In this human- and machinereadable format,
one can easily get an overview about the graph. There are 14 triples in the
graph and there are 8 distinct subjects, 10 distinct predicates and 7 distinct
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objects. Even though the graph is very small, HDT reduces the size to about
20% of the original file size. The compression ratio becomes far better with
a bigger graph.

@prefix void: <http://rdfs.org/ns/void#>

@prefix hdt: <http://purl.org/HDT/hdt#>

@prefix dc: <http://purl.org/dc/terms/>

@prefix w3: <http://www.w3.0rg/1999/02/22 —rdf —syntax—ns#>

<http://example.com/3.5> w3:type hdt:Dataset ;
hdt: publication _:publication ;
hdt:statisticallnformation _:statistics ;
hdt: formatInformation _:format

_:publication dc:issued ”2017—05—27T14:057Z"

_:statistics hdt:originalSize ”71630” ;
hdt: hdtSize 7327”7 ;
void: triples ”15” ;
void: properties ”710”
void:distinctSubjects 78" ;
void: distinctObjects 777
_:format hdt:dictionary ”_:dictionary” ;
hdt: triples ? _:triples”

_:dictionary dc:format hdt:dictionaryFour ;
hdt:dictionarynumSharedSubjectObject 76" ;
hdt: dictionarysizeStrings 7296”

_:triples dc:format hdt: triplesBitmap
hdt:triplesnumTriples 715”7 ;
hdt:triplesOrder ?SPO”

Figure 11: An example of an HDT header.

A potential use case of the HDT header can be seen in Figure 10. A
machine or a user visits the Web page of a provider. The headers of the
published datasets can either be queried online or the header is downloaded
(step 1 and 2 in the figure, the user requests the header and the server replies
with it). Consequently, the consumer can access publication information,
dataset statistics, format information and other metadata. The metadata
could inform the consumer that the data is available in different formats,
is distributed in several chunks and multiple versions are published. As a
result, consumers can retrieve [46]:

e The relevant chunk from the large collection of published datasets
(which minimizes the exchange).

e The best-fitting format for the consumers specific use-case (when con-
sidering the trade-off between functionality and compression ratio).
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e The desired version.

When the user chooses to download a specific HDT file, the server is asked
to send the rest of the HDT file (step 3). Consequently, the server replies
with the desired data (step 4).

The use case described above is what was envisioned for the header orig-
inally. However, current HDT libraries only support a more trivial use case,
where the full HDT is downloaded.

The operations over the header are not more complex than operations
over a general metadata file. Typically, the header is written once by the
publisher, but it could also be updated with newer information. Consumers
either consume the header using SPARQL queries or download and access
the header locally. There are only two constraints: The metadata should be
machine readable and it should be possible to query a given type of meta-
data [46].

4.2 Dictionary

A data dictionary may be defined as a centralized repository of information
about data such as meaning, relationships to other data, origin, usage, and
format [100].

Most RDF formats allow the abbreviation of long, repeated strings (IRIs,
Literals, etc.). One example for an entry in such an elementary version of a
dictionary for namespaces and prefixes is "http://www.w3.org/1999/02/22-
rdf-syntax-ns#type”, which is a very common component of triples in the
billion triple challenge dataset [67]. Abbreviations of this kind are provided
in XML (in the form of namespaces in conjunction with XML Base) as well
as in several RDF formats (@base, @prefix in N3 and Turtle) [46].

The fact that RDF datasets should be managed by automatic processes
favors a very effective replacement. This replacement is done by the dictio-
nary by assigning a unique ID to each distinct element in the dataset. In
doing so, long repeated strings in triples are replaced by short IDs, which
contributes to the goal of compactness. Often, the first step in RDF indexing
is this very assignment of IDs, referred to as URI to identifier mapping [33].
While there are other approaches which exploit the dictionary construction
besides the RDF stores [96, 142], HDT is the first proposed RDF represen-
tation syntax that includes a dictionary [46].

Multiple configurations and implementations of the dictionary component
are allowed in HDT. Usually RDF engines map shared elements (the sets
of subjects, predicates and objects in RDF are not disjoint) with the same
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Dictionary

Shared i Predicates
1| ProgrammingBasics | 1| bornin
2| TUVienna 2| likes
3| WUVienna : 3| locatedIn
4| Budapest 4| offeredAt
5| Helsinki : 5| partOf
6| Vienna : 6| sponsors
Subjects i 7| studiesAt
7| Lea i 8| takes
: 9| teaches

Objects 10| teachesAt

7| Europe

Figure 12: An HDT dictionary.

ID [11]. Elements within each set could be sorted by some property, for in-
stance the alphabetical order or frequency of use, or be in random order [46].

Figure 12 shows the dictionary created for Graph,. As can be seen,
the same ID is assigned multiple times (e.g. ID 77", which is simultane-
ously present in the subjects, objects and predicates list). However, with the
knowledge of the position in the triple and the ID, the dictionary can unam-
biguously resolve the ID and return the correct string. The ”Shared” section
contains values that appear in both the subjects and the objects. As the
example graph holds quite a number of such cases, this contributes greatly
to the compactness of the dictionary and therefore to the compactness of
HDT.

As the dictionary replaces IDs, two important and minimum operations
are required [46]:

e locate(element): If the given element appears in the dictionary, its
identifier is returned.

e extract(id): If there is an element behind the identifier id, it is re-
turned.

Apart from its compacting features, the dictionary can also help in query
evaluation and resolution. An example is SPARQL’s filter operation, which
restricts the final result by a given condition. The condition can be evaluated
first over the dictionary, as it usually refers to a regular expression, language
or datatype selection. What is more, the range to search in the structure of
triples will be delimited by the elements satisfying the condition [46].
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4.3 Triples

By using the dictionary component, one can express original RDF triples
as triples of IDs, where each element in the former triple is replaced by the
corresponding ID from the dictionary [46]. Looking at the highlighted triple
of Graph, in Figure 1 ”"WU Vienna - located in - Vienna” together with the
dictionary shown in Figure 12, the triple can be transformed to "3 - 3 - 6”.
Note that the triples are denoted in subject-predicate-object (SPO) order,
which resolves the ambiguity of the IDs with value 3. The first one must be
a subject, which leads to the ”"WU Vienna” entry of the shared section, the
second one must be a predicate, which therefore leads to the "located in”
entry in the predicates section.

The original stream of strings is now a stream of IDs. By this, the triple
component also contributes to the compactness of the information. Moreover,
the triple component is the key component to access and query RDF graph
information. Different configurations and implementations of the triple com-
ponent can focus on other aspects, like the compression ratio or the supported
operations over the triples. The RDF triples’ format should be designed to
optimize common operations and uses of them. Four fundamental operations
can be distinguished [46]:

e Exchange. The basic feature of an RDF triples component is to com-
pact the RDF statements of the graph, which optimizes the objective
of efficient exchange. An additional feature could be the functionality
to exchange only a subgraph instead of the entire graph, but this is not
yet implemented.

e Basic Search. RDF triples where one or more elements can be a
variable are called triple patterns. These patterns are an important
foundation for any search over RDF triples. Overall, there are eight
patterns (SPO, 7PO, S70, SP?, 7?70, ?7P?, S??, 777). As many of these
patterns as possible should be resolved efficiently by an RDF triples
component.

e Join Resolution. Joins, which imply matching two or more triples
patterns which share one or more variable, are among the most expen-
sive operations in RDF queries. The most common types of joins (i.e.
Subject-Subject, Object-Object, Subject-Object) should be supported
by RDF triples components.

e Complex Querying. Efficient answering of any SPARQL query would
be ideal. This addresses query evaluation optimization techniques as
well as many operations and modifiers (like union and optional).
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Figure 13: Three encodings for triples in HDT.

One of the keys for good RDF query performance is the efficient indexing
of the triples structure. As RDF data is usually exchanged in verbose, plain
formats, these indexes need to be created locally. The triples component
of HDT is designed in a way that the compressed triples can be queried
without the need to decompress it first, which encourages the exchange of
the data [6, 46].

Fernandez, et al. provide three different implementations for the triples
component encoding [46]. The different triple encodings (Plain Triples, Com-
pact Triples and Bitmap Triples) for Grapha can be seen in Figure 13.

Plain Triples. The Plain Triples encoding is the most basic of the three
shown encodings. Using the dictionary, each triple is translated into a triple

of IDs [46].

Compact Triples. For this option, triples are sorted by subject. Fur-
thermore, Compact Triples implies the creation of two adjacency lists, one
for the predicates and one for the objects. Such adjacency lists are compact
data structures that facilitate searching and maintaining [46]. Note that the
gray subjects list in Figure 13 is not created in HDT, it is only drawn for
better understandability.

After the triples are sorted by their subjects, they are grouped per subject,
while maintaining the established order. As the first group (list) belongs to
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the first subject, the second group to the second subject and so on, the
subject representation can be omitted, which leads to an immediate saving.

In the next step, two coordinated streams of predicates and objects are
created by splitting the representation. While maintaining the grouping or-
der, the first stream corresponds to the lists of predicates associated with
subjects. To mark the end of a predicate list, a zero is inserted. As the
dictionary does not assign zero as an ID, this is a valid separator. The so
marked end of a predicate list implies a change of the subject [46]. The zeros
are highlighted in Figure 13 to better illustrate the ending of a predicate list
and therefore the beginning of a new subject. Spaces between the figures are
inserted for legibility reasons, in fact in the example the predicates stream
contains less elements than the object stream (actually, the object stream
always contains the same number of or more elements than the predicate
stream).

The second stream, which represents objects, groups the list of objects for
each subject - predicate pair. In the same way zeros in the predicate stream
mark the end of a predicate list, a zero in the objects stream indicates the
end of an object list and indicates the need to move forward in the predicate
stream [46].

The Compact Triples representation is a compact ID-based triples repre-
sentation which reduces the classical three-dimensional view of RDF into a
two-dimensional view, by making the third dimension implicit [46].

Bitmap Triples. Compact Triples, described above, use two coordinated
ID-based streams (one for predicates, one for objects) to draw the RDF graph
using an implicit subject-grouping strategy. Both streams are basically se-
quences of non-negative integers, where zeros mark the end of the respective
adjacency list. The graph structure is denoted by the positive integers (pred-
icates and objects) and embedded auxiliary values (the zeros). The Bitmap
Triples representation splits these two parts [46].

The Bitmap Triples encoding extracts the zeros from the adjacency lists
of the predicate and object streams. Two bitsequences (B, and B,), one for
each adjacency list are created, in which ones mark the end of an adjacency
list [46].

In Figure 13 this transformation can be seen. The zeros are removed from
the predicates listed in the Compact Triples representation, which leads to
the sequence S, and the equal-length bitsequence B,. The same steps are
carried out for the objects, which leads to the sequences S, and B, [46].

The sequence of predicates and its corresponding bitmap can be inter-
preted as follows. The end of the predicate adjacency list of the i-th subject
(the list is referred to as F;) is marked by the i-th 1-bit of the bitmap. To
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get the number of predicates in the respective list, one needs to subtract the
position of two consecutive 1-bits [46]. When looking at the example, the 7t
1-bit marks the end of the predicate adjacency list of subject 7. By subtract-
ing the position of the 6 1-bit (7) from the position of the 7" 1-bit (11),
the length of the predicate list for subject 7 can be calculated (11 — 7 = 4).
Therefore, the 8", 9" 10" and 11*" predicate belong to subject 7, which
results in P, = {1,2,9,10}.

Note that in this representation too, the subjects are omitted. The sub-
ject IDs in the figure should help to understand the representation more
easily. The subjects are further highlighted in alternating colors. FEvery
highlighted area ends with a 1-bit in the predicate adjacency list (as the
1-bit marks the end of a subject).

The sequence list and the bitmap for the objects work in the same way as
the respective lists for the predicates. Here, the end of the object adjacency
list for the j-th subject/predicate pair is marked by the j-th 1-bit in B,. The
predicate can easily be found, it is represented by the j-th position in B,
and is retrieved from the j-th position in 5,. For example, the sixth 1-bit
in B, refers to the end of the object adjacency list of the sixth predicate in
Sp, which is related to the sixth subject, as can be seen in Figure 13 and as
explained above. The list therefore holds the objects o for all triples (6,5, 0)
in the graph [46].

The bitsequences that are used for B, and B, make use of succinct struc-
tures. Two important operations are supported by these [46]:

e rank. The rank operation counts the number of occurrences of a sym-
bol (in this case ”0” or ”1”) in a specific subsequence of the bitsequence.

e select. The select operation finds a specific occurrence of a symbol (in
this case ”0” or ”717”) in the bitsequence.

This has been solved with a space requirement of n+o(n) bits and a con-
stant query answering time [34]. Fernandez et al. make use of the approach
of Gonzalez et al. [57] to implement B, and B, [46].

The bitmap triples representation is the most compact solution of the
three encodings described above. Furthermore, it offers the possibility to
directly access the compressed data [46]. For this reason, the bitmap triples
encoding is the preferred triples representation and will be used for the rest
of the thesis.

To be able to resolve triple pattern queries efficiently, HDT makes use of
3 indexes. Firstly, the BT (Bitmap Triples) SPO index, further referred to
as subject index, which is used to resolve patterns with the subject compo-
nent given. The subject index is basically the HDT representation itself, as
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described above with its bitmaps and adjacency lists. A special case is the
570 pattern, which cannot directly be resolved using the subject index, but
needs an additional sequential iterator.

Secondly, the HDT-FoQ (HDT Focused on Querying) [97] PSO index,
further referred to as predicate index, which is used to resolve ?"P? queries.
For this, an additional integer sequence is created, which stores, for each
predicate, a sorted list of references to the subject-object pairs related to it.
By using this list, subject-object pairs related to a given predicate can be
retrieved efficiently. Thirdly, the HDT-FoQ OPS index, further referred to
as object index, which is used to resolve 7PO and 770 queries. The object
index works in the same way as the predicate index. For each object, it stores
a sorted list of references to the subject-predicate pairs related to it.

The pattern 777 can be resolved by any of the three indexes. In practice,
the subject index is used to resolve the pattern.

5 Adding Graph Information in HDT

RDF data can not only contain triples, but also quads. In this case, the
fourth component, the graph, assigns each triple to a particular graph. As
the same triple can appear multiple times in an RDF dataset, it can be
assigned to multiple graphs as well. If an RDF dataset contains a graph
component for its triples (and therefore quads), it is said to contain named
graphs.

While a SPARQL triple pattern ¢p is defined as (/UBUV) x (IUV) x
(IUBULUYV), where I is an IRI, B is a blank node, V' is a variable and
L is a literal, a quad pattern may be defined as tp x (I U V'), where the last
component denotes the graph of the triple pattern (an IRI or variable).

In the course of this work, we use the convention SPOG to refer to the
SPARQL query GRAPH G { SP O . } where G is the graph € (/U V') and
SPO is the triple pattern tp.

The graph components of the triples can for example represent the origin
of the given triple. Hence, a given triple can be assigned to a number of
potentially overlapping graphs (sources). What is more, the graph compo-
nent of the triples can be used for representing timestamps. So the fourth
component would indicate in which version a triple is valid.

Particularly if using the graph component as a timestamp, one can see a
similarity to the versioning approaches discussed in Section 3.2. Because of
this similarity, it is briefly discussed whether an adapted form of the presented
versioning approaches can be used to extend HDT with graph information.

The first versioning approach discussed above is the independent copies
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approach. At first glance, this approach can easily be applied to extend HD'T
with graph information. This is by creating one HDT instance per graph. On
the one hand, this would favor queries that ask for triples in a specific graph.
On the other hand, however, creating multiple HDT instances would not
favor HDT’s compactness. In an advanced approach, a common header and
dictionary could be used, but the triple’s section would still appear multiple
times and can include duplicates. For this reason, the independent copies
approach does fit well to extend HDT with graph information.

The second versioning approach is the change based approach. While
this approach can work well if the fourth component is used for versioning
information, it does not if it is used otherwise (e.g. for the origin of the
triple). If used as the origin, the different graphs will most likely be greatly
diverse. Because of that, the long list of additions and deletions in each
version would again stand against the desired compactness of HDT. The IC
and CB approaches in HDT have been evaluated by Ferndndez et al. [48].

The last versioning approach is the timestamp based approach. Adding
a list of graphs to each triple, which indicates in which graphs the respective
triple is present seems like a valid approach. No duplication of any of HDT’s
sections is necessary and thus the resulting representation would still be
compact. While querying for all triples in a given graph might not be as easy
as with the independent copies approach, this drawback can be mitigated
by using an appropriate data structure for the list, which can be searched
efficiently.

This section introduces an extended version of HDT, named HDT Quads
(HDTQ), which supports graph information on the basis of the timestamp
based versioning approach for RDF graphs. As such, HDTQ still supports
triples and keeps HDT’s compact form of storing them. Additionally, each
triple’s graph information is being represented in HDTQ. Two approaches
of how this additional information can be handled are described in the sub-
sequent section 5.1. After that, operations on HDTQ are discussed.

5.1 Graph Annotation

Two possibilities on how to store graph information in HDTQ based on
[31] are presented in this section, namely Annotated Triples and Annotated
Graphs. Both versions can represent any RDF dataset containing any number
of named graphs.

Also, both versions are based on the following key concepts, further de-
veloped below:

e RDF triples are ordered in HDT, hence we can implicitly assign a
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Dictionary

Shared . Predicates
1| ProgrammingBasics | 1] bornin
2| TUVienna 2| likes
3| WUVienna 3| locatedIn
4| Budapest 4| offeredAt
5| Helsinki : 5| partOf
6| Vienna : 6| sponsors

Subjects : 7| studiesAt
7| Lea 8| takes
8| Luke ; 9| teaches

Objects 10| teachesAt

7| Europe
1] GraphWu
2| GraphTU

Figure 14: An HDT dictionary with graph information.

sequential number 1..N to each of the triples, where N is the total
number of triples.

e We can use a dictionary to store the different graphs, and assign an
integer {1..G} to each of them, where G is the different number of
graphs in the dataset.

e The membership of a triple t (where ¢t € {1..N}) to a graph g (where
g € {1..G}) can be modeled with a boolean function graph(t,g) =
{0,1}, where 1 denotes that t appears in g, or 0 otherwise.

e Annotated Triples and Annotated Graphs use a different organization

of bitmaps to implement the graph function. In both cases, they use
N x G bits.

Efficient querying using quad patterns (which are combinations of a sub-
ject, a predicate, an object and a graph, where one or more of the components
may be variable) can be performed with both versions.

However, depending on the specific structure of the RDF graph, the query
to be executed and the particular implementation of HDTQ, one of the two
possibilities might be more favorable than the other.

For both approaches, Annotated Triples and Annotated Graphs, HDT’s
dictionary is extended with a fifth component, which holds the names of
the graphs. The dictionary compacts HDT by replacing long IRIs with IDs.
To be specific, the IDs, as assigned by the subject, predicate, object and
shared (subject + object) sections of the dictionary are used for replacing the
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Figure 15: Bitmap Triples for Graphg with graph information.

subject, predicate and object strings of the triples, which results in compact
triples of IDs, see Section 4.2.

In HDTQ, the graph names are stored in the dictionary for two reasons.
First, each graph name is only stored once. So, even if some hundreds or
thousands of triples have the same graph component, the graph’s name is
stored only once in the dictionary. This also supports HDT’s compact fea-
tures. Second, by storing the graph names in the dictionary, they are assigned
a specific ID. This ID is needed for both, Annotated Triples and Annotated
Graphs.

The dictionary for Graphg can be seen in Figure 14. When compared
to the dictionary shown in Figure 12 (which is the dictionary for Graphy,
which is, besides the graph information, equal to Graphg) one can notice the
additional section ”Graphs”. As Graphg consists of two named graphs, the
graph names are assigned the IDs 1 and 2.

In HDT the triples have a specific order. This can be seen in all of the
three encodings in Figure 13, where 71 - 4 - 2”7 is the first triple, "1 - 4 -
3”7 is the second and so on. By making use of this specific order and the
order induced by storing the graph names in the dictionary, one can create a
matrix which includes (for every triple - graph combination) the information
whether a specific triple appears in a specific graph. For Graphg this can
be seen in Figure 15. In the matrix, a 1 indicates that the respective triple
appears in the respective graph whereas a 0 indicates that the respective
triple does not appear in the respective graph.

To create the aforementioned matrix, two approaches are possible, namely
Annotated Triples and Annotated Graphs. For the former, one bitmap is
"attached” to each triple. The latter uses one bitmap per graph. In either
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case, the bitmap implementation used for the bitmap triples representation
in HDT (see Section 4.3) can be reused for the additional bitmaps in HDTQ.

For the rest of the paper HDTQ always refers to both approaches, HDT-
AG and HDT-AT. If HDT-AG or HDT-AT is mentioned, it is specifically
referred to the respective approach.

5.1.1 Annotated Triples

Using the Annotated Triples approach, a bitmap is assigned to each triple,
containing the information in which graphs this particular triple is present.
Thus, a graph containing N triples in G different graphs has N bitmaps each
of size G. The " position in the bitmap of triple ¢ marks that ¢ is (marked
with a 1) or is not (marked with a 0) present in the i"* graph.

For Graphg that means that 15 bitmaps each of size 2 must be created.
This can be seen in Figure 16a. In this example, the bitmap for the first triple
holds {0,1}, the second triple {1,0} and so on. This means that the first
triple appears in the first graph, which is GraphWU, but does not appear in
the second graph, GraphTU. For the second triple, the opposite is the case.
Of course there can be triples that appear in multiple or all of the graphs,
in the example this is the case for the 7% triple "6 - 5 - 77. It appears in all
graphs, so its bitmap contains only 1s.

Using Annotated Triples makes searches for patterns that have the graph
component as a variable, like SPO?, very efficient, as only a single bitmap
needs to be browsed. If, on the other hand, the graph is given, like in 777G,
all of the bitmaps need to be browsed. Further information on the pattern
resolution algorithms can be found in Section 5.2 and an evaluation on the
pattern resolution speed compared to other systems can be found in Section 7.

5.1.2 Annotated Graphs

Annotated Graphs is to some extend the inverse of the Annotated Triples
approach. The same matrix is constructed, but the bitmaps are now ”at-
tached” to the graphs instead of to the triples. That means, using the Anno-
tated Graphs approach, a bitmap is assigned to each graph, containing the
information which triples are present in the particular graph. Thus, a graph
containing N, triples in N, graphs has N, bitmaps each of size N;. The i
position in the bitmap of graph g marks that the i triple is (marked with
a 1) or is not (marked with a 0) present in g.

For Graphg that means that 2 bitmaps each of size 15 must be created.
This can be seen in Figure 16b. In this example, the bitmap for the first
graph, GraphWU, holds {0,1,0,1,1,0,1,0,0,0,0,0,1,1,1} and the bitmap
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Figure 16: Highlighted graph information bitmaps for Graphg.

for the second graph, GraphTU, holds {1,0,1,0,0,1,1,1,1,1,1,1,0,0,0}.
This means that GraphWU contains the 2°d, 4%h 5th 7th 13th j4th apnq
15" triple. On the other hand, GraphTU contains the 1%, 3" and 6" to
12 triple. Like in the Annotated Triples approach, triples can also appear
in multiple graphs. This is the case for the 7" triple, as both bitmaps hold
a 1 in their 7*" position.

Compared to Annotated Triples, Annotated Graphs makes search pat-
terns that have the graph component given, like 777G, very efficient, as only
a single bitmap (the bitmap of the given graph G) needs to be browsed.
On the other hand, patterns that have the graph component as a variable,
like SPO? are not so efficient, because all bitmaps need to be browsed to
answer the query. Further information on the pattern resolution algorithms
can be found in Section 5.2 and an evaluation on the pattern resolution speed
compared to other systems can be found in Section 7.

5.2 Operations

While HDT can handle 8 different search patterns (see Section 4.3), the
added component, graph, in HDTQ increases the number of search patterns
to 16. By adding the fourth component to each of the 8 patterns, once as a
variable, once as bounded term, one comes to the 16 quad patterns shown in
Figure 17.

For the 8 quad patterns in which the graph is not given, the same algo-
rithm can be applied in HDTQ to resolve the search pattern. The algorithm
and its supplement algorithms are described in Section 5.2.1.

For the 8 quad patterns in which the graph is given, different algorithms
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Figure 17: The 16 patterns of HDTQ.

need to be applied in HDTQ to resolve the search pattern. This is due
to the specific structure of HDT, in which subjects appear consecutively,
but predicates and objects do not. The algorithms and their supplement
algorithms are described in Section 5.2.2.

Important operations used in these algorithms are:

e getBitmap(position). The getBitmap operation returns the bitmap
identified by the supplied integer parameter from all bitmaps in the
GraphlInformation object. The GraphInformation object holds all bitmaps
that together compose the matrix of triples and graphs as described in
the previous sections.

e access(position). The access operation returns the value of a given
position in a bitmap (either ”0” or ”17).

e getNextl(position). The getNextl operation returns the next ”1” in
a bitmap, starting with a given position (see also the select operation
in Section 4.3).

5.2.1 Quad Pattern Queries with Unbounded Graph

The algorithm to resolve quad patterns in which the graph component is
not given, i.e. 7777 8777 7P?7, 7707, SP??, S?707, 7PO? and SPO?, makes
use of another algorithm, selectNextlTriple. selectNext1Triple retrieves for
a given triple in a given graph the next graph in which this triple appears.
This supporting algorithm is different for HDT-AT and HDT-AG, however
returns the same result. Below, these algorithms are discussed briefly, before
the "main” algorithm is introduced.

Algorithm 1: SELECTNEXT1TRIPLE (HDT-AT) retrieves the po-
sition of the next graph that the given triple appears in for HDT-AT.
Input: Graphlnformation G, int posTriple, int graph
Output: The position of the next graph
1 bitmap < G.get Bitmap(posTriple)
2 return bitmap.get Next1(graph)
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Both supporting algorithms are supplied with the graph information ma-
trix and a position in the matrix. The position determines a triple and a
graph. The algorithm then returns the next graph in which the given triple
appears, or null if does not appear in any further graphs.

Algorithm 1 shows this algorithm for HDT-AT. The algorithm is very
simple, first the bitmap corresponding to the given triple is retrieved from
the Graphlnformation object. Then, within this bitmap, the location of the
next 1 starting with the provided integer position is retrieved and returned.

Algorithm 2: SELECTNEXT1TRIPLE (HDT-AG) retrieves the po-
sition of the next graph that the given triple appears in for HDT-AG.

Input: Graphlnformation G, int posTriple, int graph
Output: The position of the next graph
bitmap < G.get Bitmap(graph)
while bitmap.access(posTriple) # 1 do
graph <« graph + 1
L bitmap < G.get Bitmap(graph)

NNV VN

return graph

[}

Algorithm 3: SEARCHQUADS retrieves all quads for 7777, S777,
P77, 7707, SP??7, 5?07, 7PO?, SPO?.

Input: BitmapTriples B, GraphInformation G, pattern p

Output: The quads matching the given pattern
1 result < ()
2 (triple, posTriple) < B.getNextSolution(p,0)
3 graph <0
4 while posTriple # null do
5 graph < G.select Next1Triple(posTriple, graph + 1)
6 if graph # null then
7
8
9

‘ result.append(quad(triple, graph))
else
L (triple, posTriple) < B.getNextSolution(p, posTriple)

10 graph < 0

11 return result

Algorithm 2 shows the algorithm for HDT-AG. There now is no single
bitmap associated with a triple, but instead one bitmap per graph. For this
reason, one bitmap after the other (starting with the provided one) must be
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accessed. In these bitmaps, it is checked whether the given triple appears in
the graph or not. The first graph that contains the triple is then returned,
if there is no graph that contains the triple, null is returned.

Algorithm 3 shows the main algorithm, searchQuads, to resolve quad
patterns where the graph component is not given. The algorithm first uses
the getNextSolution method from HDT to find a triple solution for the given
pattern (where the graph component is ignored). Then, the respective se-
lectNext1Triple algorithm described above is used to find one graph after
another in which the found triple appears. Each of the so found graphs is,
together with the triple, one solution. If the triple does not appear in any
further graphs, the next triple solution is retrieved. If no further triples can
be found, the algorithm ends and all found quads are returned.

5.2.2 Quad Pattern Queries with Bounded Graph

To resolve the eight quad patterns in which the graph component is given
(777G, S?7G, 7P?G, 770G, SP?G, S?0G, "POG and SPOG), three main
algorithms are needed.

The first one, searchQuadsG, resolves 777G, S?7G, SP?G, S?OG, and
SPOG and makes use of the subject index of HDT. The second one, SearchQuad-
sPG, resolves 7P?G and makes use of HD'T’s predicate index. The third one,
SearchQuadsOG, resolves 770G and 7POG and makes use of the object in-
dex.

The first two again make use of a supporting algorithm, selectNext1 Graph,
which is similar to the supporting algorithm in the previous section, Sec-
tion 5.2.1. It is again a slightly different algorithm for HDT-AT and HDT-
AG, but both are returning the same result. Again, both algorithms are
supplied with the graph information matrix and a position in the matrix,
where the position determines a triple and a graph. The algorithm then
returns the position of the next triple that appears in the given graph.

Algorithm 4 shows selectNext1Graph for HDT-AT. It retrieves one bitmap
after the other (where each bitmap belongs to a triple) until it finds a bitmap
that contains a 1 for the given graph. Then the position of the triple that
belongs to the graph is returned.

Algorithm 5 shows selectNext1 Graph for HDT-AG. It retrieves the bitmap
of the graph in question from the Graphlnformation object. Then, the get-
Nextl operation is applied to find the position of the next 1 in this bitmap.
Finally, this position is returned.

Algorithm 6 resolves the patterns 777G, S??G, SP?G, STOG and SPOG.
To do so, first, in line 2, the graph ID is retrieved from the GraphInformation
object. As the graph is given in the input quad pattern, this ID is part of all
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Algorithm 4: SELECTNEXT1GRAPH (HDT-AT) retrieves the po-
sition of the next triple that appears in the given graph for HDT-AT.
Input: Graphlnformation G, int posTriple, int graph
Output: The position of the next triple in the given graph
bitmap < G.get Bitmap(posTriple)
while bitmap.access(posGraph) # 1 do

posTriple < posTriple + 1
L bitmap < G.get Bitmap(posTriple)

U VN

[}

return posTriple

Algorithm 5: SELECTNEXT1GRAPH (HDT-AG) retrieves the po-
sition of the next triple that appears in the given graph for HDT-AG.
Input: Graphlnformation G, int posTriple, int graph
Output: The position of the next triple in the given graph
1 bitmap < G.get Bitmap(graph)
2 return bitmap.get Next1(posTriple)

results of the algorithm.

Then, the getRange operation of HDT is applied to find the range of triple
positions in which solution candidates appear, which is then stored as the
min and max positions. For 777G this is simply the full range of all triples
(as subject, predicate and object are all variables). For the other patterns
this limits the further search to a specific range of triples, i.e. the range of all
triples that have the given subject. For SP?G, it is further limited to those
triples that have the given predicate as well. For SPOG it is limited to a
single triple.

Then, starting with the min position, the selectNext! Graph algorithm is
used to find the next triple that appears in the given graph and its position
is stored in posTriple. Next, HDT’s getSolution operation is used to extract
the triple for the found position. As results are consecutive for the patterns
in question (except for STOG), it is not necessary to check again whether the
found triple is actually a solution, as long as posTriple is less or equal to the
upper range limit, it must be a solution.

The resulting quad (the found triple together with the graph) is added
to the list of solutions. After that, the selectNext1Graph algorithm is again
used to jump to the next solution. This is repeated until no more solutions
within the {min, maz} range can be found. The list of solutions (quads) is
then returned.
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For the special case of STOG the returned results are not necessarily
correct. As the objects do not appear consecutively in the bitmaps of HDT,
the range and therefore solutions can only be found for S??G. Most likely
the algorithm will return too many results for this pattern (probably some
will have the wrong object). Therefore, the found solutions are then filtered
using HDT’s Sequential Search Algorithm which filters those results that
really match the given pattern to get the correct results.

Algorithm 6: SEARCHQUADSG retrieves all quads for 777G, S?7G,
SP?G, S?70G, SPOG.
Input: BitmapTriples B, GraphInformation G, pattern p
Output: The quads matching the given pattern
result < ()
graph < G.getGraph(p)
(min, max) < B.getRange(p)
posTriple < G.select Next1Graph(min, graph)
while posTriple # null and posTriple < max do
triple <— B.getSolution(p, posTriple)
result.append(quad(triple, graph))
posTriple < G.select Next1Graph(posTriple + 1, graph)

® N O U AN W N R

return result

©

Algorithm 7 resolves 7P?G queries. As the subject is not provided, but
the predicate is, the range of solution candidates cannot be determined as
easily as in Algorithm 6 (because results do not appear consecutively). Thus,
to find the triples that have the given predicate, HDT’s predicate index is
used.

First, in line 2, the graph ID is retrieved from the GraphInformation
object. As the graph is given in the input quad pattern, this ID is part of
all results of the algorithm. Then, HDT’s getPredicateOccurences operation
is used to determine the number of occurrences of the given predicate in the
predicate adjacency list.

Now, in line 6, the triple position range for the first predicate occurrence
is retrieved from HDT (there is a range for each predicate occurrence be-
cause the predicate can be associated with multiple objects). As the search
is limited to a specific graph only, the triples in the range are not necessarily
solutions, but rather solution candidates. Next, the selectNext! Graph algo-
rithm is used to find the position of the first triple within the range that
appears in the graph.

The triple components are retrieved from HDT using the found triple
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position. Together with the graph, the quad is added to the lists of results.
Now the selectNext1Graph algorithm is used to find further triples in the
range that appear in the graph. Once there are no further triples in the
range that appear in the graph, the algorithm jumps to the next predicate
occurrence and again starts to determine the range of candidate solutions.
If there are no further predicate occurrences, the algorithm ends and the list
of solutions is returned.

Algorithm 7: SEARCHQUADSPG retrieves all quads for 7P?G.
Input: BitmapTriples B, GraphInformation G, pattern p
Output: The quads matching the given pattern
result < ()
graph < G.getGraph(p)
occurences <— B.get PredicateOccurences(p)
occurence <— 1
while occurence < occurences do
(min, max) < B.getRange(p, occurence)
posTriple < G.select Next1Graph(min, graph)
while posTriple # null and posTriple < max do
triple < B.getSolution(p, posTriple)
result.append(quad(triple, graph))
posTriple < G.select Next1Graph(posTriple + 1, graph)
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return result
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Algorithm 8 resolves 7POG and 770G queries. As the subject is not
provided, but the object is, the range of solution candidates can again not
be easily determined (because results do not appear consecutively). Thus,
to find the solution, the object index of HDT is used.

First, in line 2, the graph ID is retrieved from the Graphlnformation
object. As the graph is given in the input quad pattern, this ID is part of
all results of the algorithm. Then, HDT’s getIndexRange operation is used
to determine the range in the object index for the given object.

Then, the first triple position is retrieved from the index, using HDT’s get-
NextTriplePosition operation. The position returned by this function points
to a triple that fulfills the object (and if present also the predicate) require-
ment. However, it is still a candidate solution as it must be checked whether
the triple appears in the given graph. For this, the access operation is applied
to the triple position.
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If the triple at the triple position appears in the given graph, the triple
components are retrieved using HD'T’s getSolution operation. Then the triple
together with its graph is added to the list of solutions. If the triple does not
appear in the given graph, this step is omitted.

In any case, as a next step, the next position is retrieved from the index
and again the getNextTriplePosition operation is applied to retrieve the next
triple position. These steps are repeated until the end of the index range is
reached. The list of results is then returned.

Because the results are not consecutive and the index must be used to ef-
ficiently find the solution candidates, no jumping using the selectNext1Graph
algorithm is possible for the 7POG and 770G patterns.

Algorithm 8: SEARCHQUADSOG retrieves all quads for 7POG and
770G.
Input: BitmapTriples B, GraphInformation G, pattern p
Output: The quads matching the given pattern
result < ()
graph < G.getGraph(p)
(min, max) < B.getIndexRange(p)
posIndex < min
while posindexr < max do
posTriple < B.getNextTriple Position(p, posIndex)
if G.access(posTriple,graph) =1 then
triple <— B.getSolution(p, posTriple)
result.append(quad(triple, graph))
posIndex < posIndex + 1
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In the following, we present a practical implementation of these algo-
rithms (Section 6), which are then evaluated in Section 7.6.

6 Practical Implementation of HDTQ

In this section a java prototype implementation of HDTQ? is introduced. It
is extending the current HDT-java library®. Especially the differences to the
original HDT implementation are highlighted.

https://github.com/JulianRei/hdtq-java
3https://github.com /rdfhdt/hdt-java/
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To be capable of handling RDF graphs that contain named graphs (i.e.
RDF graphs that contain quads), HDT was extended to also support the
N-Quads and TriG syntax (see Section 2.2.2).

HDT’s four-section dictionary was extended by a fifth section to store
graph names. By this, long graph IRIs are replaced by short identifiers, as
described in Section 5.1. In HDT, when first parsing the triples of the input
graph, the subjects, predicates and objects are added to the dictionary. Also,
the triples are stored in a collection. In HDTQ, also the graph component
is added to the dictionary and instead of triples, quads are added to the
collection. Like the other dictionary sections, also the graph section is sorted,
so a better compression can be reached. Furthermore, triples are also sorted
by their IDs.

In a next step, HDT removes duplicates from the RDF graph data (two
triples are duplicates, if their subject, predicate and object components are
equal). As the triples are sorted by their IDs,; duplicates must be adjacent
to one another. In classic HDT such triples are simply removed in this step.
HDTQ merges the found duplicates to one triple and adds the graph of
each duplicate into a list (values in the list are unique, so duplicates where
even the graph is equal are removed). Once all duplicates of a triple are
found, the list contains all graphs in which the triple appears. The triple is
then processed further as in classic HDT. The list of graphs is handed over
to the graph information object, which uses the graph- or triple-annotator
(depending on which approach was chosen in the configuration) object to
add this information to the graph information matrix. The matrix itself
is implemented as a collection of bitmaps, each being attached either to a
triple or a graph. Navarros approach was chosen for the implementation of
the bitmaps [104].

Lastly the header section is extended by the number of graphs and the
annotation approach used (annotated graphs or annotated triples). To define
whether the annotated graphs or annotated triples approach should be used,
the configuration was extended by the optional variable graph.type. Pos-
sible values are <http://purl.org/HDT/hdt #AG> for annotated graphs
and <http://purl.org/HDT/hdt#AT> for annotated triples. If no value
is specified, annotated triples is chosen.

The implementation described above is optimized for speed and compared
to classic HDT no additional iteration over the triples is needed.

The algorithms described in Section 5.2 are implemented using the itera-
tor pattern. To reduce code clones, the implementation of classic HDT was
reused, where possible.

To test the HDTQ implementation, JUnit [83] tests were written. The
tasks take an arbitrary RDF graph (that has named graphs) as an input.
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The graph is imported into a Jena instance, into HDTQ using the annotated
graphs and into HDTQ using the annotated triple approach. Then, all sub-
jects, predicates, objects and graphs are extracted from the input graph and
for each of the 16 patterns each possible query (using the extracted compo-
nents) is executed against the three systems. Only if all three systems report
exactly the same results, the test is accepted.

7 Evaluation

In this section, the implementation of HDTQ, as described in the previous
section, is compared to Jena and Virtuoso regarding creation time, space
requirement and querying speed for various datasets.

7.1 Setup

All tests described in this section where run on a server running ”Ubuntu
14.04.5 LTS”. The machine has 16 sockets with 1 core per socket and 1
thread per core, which makes a total of 16 CPUs. Each of these processors
is a "Intel Xeon E312xx (Sandy Bridge)” and has a frequence of 2.6GHz.
What is more, the machine has 177GB of RAM and 150GB Swap space.

7.2 Systems

The performance of five different systems / configurations were tested and
compared. These systems include:

e HDT-AT. HDT-AT is the Java implementation of HDTQ using an-
notated triples, as described in Section 5.1.1. For each of the datasets,
a separate HDT-AT instance was created.

e HDT-AG. HDT-AG is the Java implementation of HDTQ using an-
notated graphs, as described in Section 5.1.2. For each of the datasets,
a separate HDT-AG instance was created.

e Jena. Jena refers to an Apache Jena TDB store. Data is imported
into the store and queried via SPARQL using the ARQ query engine
version 3.0.0. To create the TDB store, the tdbloader2 loader and index
builder [51] was used. For each of the datasets, a separate Jena TDB
instance was created.

e Virtuoso. Virtuoso refers to a Virtuoso database, version 7.2.4.2.3217.
Note however, that the datasets where not split into multiple files, as
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suggested by [136], but instead imported as one file per dataset (to
have equal conditions for all datasets). For each of the datasets, a
separate Virtuoso instance was created. What is more, the virtuoso.ini
was configured so that Virtuoso can use 180 gigabytes of RAM.

e Virtuoso-+. Virtuoso—+ refers to a Virtuoso database, version 7.2.4.2.3217.
Virtuoso+ is almost identical to Virtuoso, but Virtuoso+ is created by
copying the Virtuoso database (with all data imported) and after that,
creating an additional index. The Virtuoso performance tuning guide
[135] suggests to create an additional index (GPOS), that is, accord-
ing to the guide, sometimes helpful if the subject is not given, but the
predicate and graph are given. To see if this additional index has an
influence on the performance, it was created for Virtuoso+ after the
data was imported. For each of the datasets, a separate Virtuoso+
instance was created.

7.3 Datasets

Subjects Predicates Objects Graphs Triples Quads

A 74,908,887 41,209 64,215,355 58 378,476,570  2,071,287,964
BEAR | Bday | 100 1,725 69,650 89 82,401 3,460,896

B hour | 100 1,744 148,866 1,299 167,281 51,632,164
LUBM 500 10,847,183 17 8,072,358  1...9,998* 66,731,200  66,731,200+**

1000 | 21,673,510 17 16,126,103 1...7,000" 133,319,232 133,319,232+t
LDBC 668,711 16 2,743,645 190,961 5,000,197 5,000,197
Liddi 392,344 23 981,928 392,340 1,952,822 2,051,959

1, 10, 20,. .., 100, 1,000, 2,000,..., 9,000, 9,998
1,10, 20,..., 100, 1,000, 2,000...., 7,000
66,731,200 . . . 68,823,803

133,319,232 ...136,725,784

Table 1: Attributes of the datasets.

To test the performance of the systems described in Section 7.2, several
datasets where used. The datasets differ in various perspectives, including
their origin (whether it is real world data or generated), the number of sub-
jects, predicates, objects and graphs as well as the total number of triples
and quads. An overview of these figures can be seen in Table 1. Note that the
figures in the table show distinct values, e.g. the number of distinct subjects
in the dataset.

The table shows the number of triples and the number of quads. If a
triple appears in multiple (e.g. 5) graphs, it counts only one time in the
triple column, but multiple times (e.g. 5 times) in the quads column.

To have equal starting conditions, all data was (if not already provided
in this format) transformed to the N-Quads (see Section 2.2.2) format, as
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this is the rawest, uncompressed format for quads. The datasets and their
specifics are discussed below.

e BEAR-A. The Dynamic Linked Data Observatory [140] monitors more
than 650 different domains across time and does weekly crawl of these
domains. Fernandez et al. built an RDF archive on top of 58 of such
weekly snapshots [49]. Each of the snapshots is considered to be a
graph, resulting in the BEAR-A dataset which consists of 58 graphs.

The different versions grow slowly, except for the last versions which
mostly contribute to the growth of the dataset. The size of the last ver-
sion is more than double the initial size (the size of the first version).
What is also noticeable is the very small static core of 3.5 million en-
tries [49].

As can be seen, BEAR-A is by far the biggest dataset under review
with more than 2 billion quads. As there is a huge gap between the
number of triples and quads, that means that a lot of triples appear in
multiple graphs in this dataset.

e BEAR-B day and BEAR-B hour. DBPedia Live [75] records all
updates to Wikipedia articles and updates the respective DBpedia Live
resource descriptions. The BEAR-B dataset contains resource descrip-
tions of the 100 most volatile resources and their updates in the time
range of August to October 2015. The most volatile record in the
dataset changed 1,305 times, the least volatile in the dataset 263 times
over this timespan [49].

For every change in an Wikipedia article, DBPedia Live creates a new
version. In the respective timeframe the looked-at dataset changed
21,046 times. Note that changes also include added or deleted triples,
overall the dataset grew by 31%. BEAR-B day includes the aggregated
data on a daily level. It therefore contains 89 versions. BEAR-B hour
is the same on a hourly level and contains 1,299 versions [49].

For the course of this thesis, each of the versions in BEAR-B day and
BEAR-B hour is seen as a graph, therefore BEAR-B day consists of 89
graphs and BEAR-B hour of 1,299 graphs. As can be seen in Table 1
BEAR-B day and BEAR-B hour both include 100 distinct subjects.
These arise from the extraction of the 100 most frequent changing ar-
ticles. Both datasets include around 1,700 predicates, which is much
higher than the number of predicates of the rest of the datasets in our
evaluation. On the other hand, the number of objects is comparatively
low. One notes that the number of predicates and objects is lower for
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BEAR-B day than those of BEAR-B hour. This is due to the fact that
some changes are reverted so quickly that they are reflected in the more
frequent version BEAR-B hour but do not appear in BEAR-B day.

Like in BEAR-A, BEAR-B day and BEAR-B hour both show a huge
difference between the number of triples and the number of quads.
That means that a lot of triples appear in multiple graphs.

e LUBM500 and LUBM1000. The Lehigh University Benchmark for
OWL (LUBM) is a widely used benchmark to compare OWL engines.
As part of the benchmark, Guo et al. developed the UBA (Univ-Bench
Artificial data generator)?. Random and repeatable data can be gen-
erated using the tool. The minimum unit of data generation is a uni-
versity and for each university a set of OWL files, which describe the
departments of this very university are generated. To make the data
more realistic, some restrictions are applied, like a minimum and maxi-
mum number of departments per university, a meaningful ratio between
students and faculties and that students take at least one, but not too
many courses [64].

The tool allows to specify the number of generated universities, also
a seed can be provided to the random number generator. The uni-
versities are named University(ID) with an zero-based index as ID.
Thus, the first university is named ” University()”. The starting index
can also be defined by the user. The generated data is in OWL Lite
sublanguage [64].

To create the LUBM datasets, the following steps were taken. First, the
data generator UBA1.7 using 500 (for LUBM500) respectively 1000 (for
LUBM1000) universities, a starting index of 0 and a seed of 0 was used
to generate the data in RDF /XML format. With this input parameters,
the generator produces 9,998 (for 500 universities) and 19,992 (for 1,000
universities) files. Second, Apache Any23 [50] was used to convert each
of the files to the N-triples format. Third, as the UBA1.7 generator
is not capable of producing data in multiple named graphs, the files
were assigned to a number of graphs. To get n graphs, when having j
files, each file f; was assigned to a graph g by the following formula:
i mod n = g where ¢ = {0,...,5 — 1}. All files assigned to the same
graph were merged into a single file. Fourth, each of the triples in
such a merged file was now extended with a fourth component, namely
"http://www.example.org/graph/(ID)”, where ID is an incrementing

4http:/ /swat.cse.lehigh.edu/projects/lubm/
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unique number starting with 1. Finally, all files (that now already
contain N-quads) were merged into a single file.

To get not only one dataset for LUBMb500 and one for LUBM1000,
the generated data (the N-triples data, resulting from the second step
above), was assigned to a variety of different numbers of graphs. The
upper possible limit of number of graphs is the number of files gen-
erated by the UBA generator. For LUBM1000 the number of graphs
where limited to 7,000, as the server used in the evaluation did not
have enough RAM to generate HDTQ with a larger number of graphs
(Section 8.2 discusses this limitation of the current prototype). For the
smaller dataset LUBM500, although having a higher number of graphs
(9,998), RAM was sufficient.

The chosen number of graphs for LUBMb500 are: 1, 10, 20,..., 100,
1,000, 2,000,..., 9,000, 9,998.

The chosen number of graphs for LUBM1000 are: 1, 10, 20,..., 100,
1,000, 2,000,. .., 7,000.

All generated LUBM data only have 17 predicates, which is among
the lowest number in the compared datasets. However, there are a
considerable amount of about 11 million (for LUBMS500) and about 21
million (for LUBM1000) distinct subjects in the data and with 8 and
16 million distinct objects also a high number of objects respectively.

When extracting only a single graph, the number of triples and quads
are obviously the same, as no triple can appear in more than one graph.
With an increasing number of graphs, the number of quads slowly in-
crease for LUBM500 and LUBM1000, while the number of triples of
course stay the same. Given our approach to assign the graph to each
triple (based on the file it appears in), most triples only appear in one
graph, with very few triples occurring in multiple graphs. Nonetheless,
note that this assignation is the approach taken by other state of the
art approaches like LOD Laundromat ® or Slavov et al. [127]. However,
as there is only a small number of such multiple appearing triples, all
LUBMS500 and LUBM1000 datasets are considered to be equal (except
for the different number of graphs) for the rest of the thesis.

e LDBC. The Semantic Publishing Benchmark (SPB) is a benchmark
offered by the Linked Data Benchmark Council (LDBC). It is inspired
by the Media/Publishing industry and it considers a media or a pub-
lishing organization that deals with large colume of streaming content

®http://lodlaundromat.org/
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(news, articles or media assets) as its application scenario. Metadata,
which describes the content and links it to reference knowledge, enriches
the content [90].

The benchmark assumes that (mostly static) reference knowledge, but
also metadata that grows constantly is stored in an RDF database.
Main interactions are updates, that add new metadata or alter it or
queries to retrieve content [90].

The SPB offers a data generator to generate RDF data as described
above. For this thesis, the SPB version 2.0 generator, which is freely
available on GitHub [91], was used. The named graphs generated by
the generator where concatenated to receive the LDBC dataset.

Looking at Table 1 one can see that LDBC has only 16 distinct pred-
icates, which is the smallest number in the datasets used. With its
about 5 million triples, LDBC is the biggest of the smaller datasets
used.

As the number of triples and the number of quads are equal for LDBC,
that means that each triple appears only in one graph.

Liddi. Drug-drug interactions (DDI) occur when the effect of one drug
is altered by another drug, which leads to unpredictable effects. The
LInked Drug-Drug Interactions (LIDDI) dataset consolidates multiple
data collections of DDI predications from public databases and reports
and biomedical literature into one [14]. The Liddi dataset is based on
nanopublications [61] that closely link data to their provenance and
meta-data. As such, a nanopublication consists of:

— An assertion graph with triples expressing an atomic statement
(about drug-drug interactions in the case of Liddi).

— A provenance graph that reports how this assertion came about
(for example, where it was extracted from or what mechanism was
used to derive it).

— A publication information graph that provides meta-data for the
publication (like creators and a timestamp).

The Liddi dataset contains 98,085 nanopublications, each of which is
stored as 4 graphs (an assertion graph, a provenance graph, a publi-
cation graph and a head graph that "glues” these graphs together).
This results in a total of 392,340 graphs, which makes Liddi by far the
dataset with the greatest number of graphs in this work.
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As the gap between the number of triples and quads is quite small for
Liddi, most triples only appear in a single graph.

7.4 Space Requirement

As one of the desired features for HDTQ is being compact, in this section
the compactness of HDTQ is compared to the other systems listed in Sec-
tion 7.2. Table 2 lists the space requirements for the different datasets for the
respective uncompressed RDF graph in N-Quads notation (column ”Size”),
the gzipped N-Quads file (column ”gzip”) and the 5 systems under review.

The size of the uncompressed RDF graph is denoted in gigabytes, while
all other sizes are expressed as the ratio between the size for the respective
system and the uncompressed size.

For HDT-AG and HDT-AT the size contains the size of the respective
HDT file itself together with the size of its index file. For Jena, the size
comprises the sizes of all files in the Jena TDB store, including all .dat,
.idn, .jrnl, .opt and .lock files. For Virtuoso and Virtuoso+ the size
comprises the size of all files for the respective Virtuoso instance, containing
.db, .ini, .log, .pxa, .db and .trx files.

Looking at Table 2 one quickly sees that the compression with gzip out-
performes HDTQ, Jena and Virtuoso for all datasets except for the BEAR
datasets. This is most likely due to the additional indexes that are created
for the other systems, which are not created for the purely compressed gzip
format. While the compression of gzip is very handy especially when trans-
ferring the data, the downside of gzip is that the compressed data cannot be
easily searched through like in the HDTQ format or using by Jena / Virtu-
0so. Because of this inability, for the rest of this section gzip is excluded in
the comparison.

BEAR-A. BEAR-A is a considerably big dataset with more than 2 bil-
lion quads. It has been shown that RDF graphs at big scale are highly
compressible [45]. These results can be confirmed as HDT-AG compresses

Size (GB) gzip HDT-AG  HDT-AT Jena Virtuoso Virtuoso+

A 396.85 5.82% | 2.33% 2.75% 96.84% NA NA
BEAR | B day 0.64 4.83% | 0.65% 0.71% 97.73%  13.69% 33.75%

B hour 9.66 4.83% | 0.33% 0.25% 96.39%  4.35% 25.62%

500 (1 graph) 11.42 3.04% | 6.71% 11% 118.76% 17.23% 21%
LUBM 500 (9998 graphs) 11.61 3.02% | 675.58% 345.92% 120.1% 17.46% 27.51%

1000 (1 graph) 22.84 3.04% | 6.9% 11.18% 118.67% 16.23% 19.98%

1000 (7000 graphs) | 23.21 3.02% | 474.85% 236.44% 119.47% 16.38%  22.65%
LDBC 0.92 9.7% 12111.47% 6081.25% 126.28% 71.2% 80.77%
Liddi 0.67 3.74% | 13254.03% 6637.71% 78.06%  49.88%  53.36%

Table 2: Space requirements of different systems.
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the BEAR-A dataset very well. By reducing the size to only 2.33% it even
outperforms gzipping. Also, HDT-AT performs well, with 2.75% it is still
much better than gzipping. Jena only marginally reduces the size and there-
fore does not fit very well for the BEAR-A dataset. Virtuoso, in its tested
version, was not capable of importing the BEAR-A dataset at all. Thus,
no statement about its compression features can be made. As Virtuoso+ is
based on Virtuoso, it was not possible to import the data into this system
either.

BEAR-B day and BEAR-B hour. BEAR-B day has a very low num-
ber of graphs, 89, which seems to fit very well for HDT-AG, as it compresses
the data to only 0.65% of its original size. With 0.71% HDT-AT is also
compressing this data very well. Jena does only marginally reduce the space
required. While Virtuoso has a decent compression ratio, it is still by far
outperformed by HDTQ (about a factor of 20 for BEAR-B day and about 15
for BEAR-B hour). The additional index created for Virtuoso+ also needs
considerable space and more than doubles the size.

BEAR-B hour has considerable more graphs than BEAR-B day (1,299 vs.
89). All systems have a better ratio for this dataset than for BEAR-B day.
HDT-AT improved it’s compression to 0.25% and is therefore the system
that compressed the data the most. Jena still does not perform very well
and while Virtuoso improves it performance, it is still behind HDTQ.

LUBMS500 and LUBM1000. Looking at the results for LUBM500 and
LUBM1000 one notices that HDT-AG and HDT-AT both compresses very
well for a low number of graphs (the numbers for 1 graph are shown in the
table). However, for a bigger number of graphs the compression ratio de-
teriorates and the resulting HDTQ size exceeds the original data’s size. As
all LUBM500 and LUBM1000 datasets are equal except for the number of
graphs, this effect is due to the number of graphs. For LUBMb500 this can
also be seen in Figure 18. Until approximately 100 graphs, HDTQ outper-
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formes Jena and Virtuoso. With 1000 graphs, HDTQ is worse than Virtuoso
and Virtuoso+, but still better than Jena. Starting with about 2000-3000
graphs, HDTQ becomes the worst of the compared systems. The graph also
shows that Jena and Virtuoso have a very constant space requirement, almost
independent of the number of graphs. HDTQ needs considerable more space
with a higher number of graphs, which is a result of the used plain bitmap
implementation. Note that testing with different compressed bitmaps is left
for future work. Nonetheless, as we will show in Section 7.6, query perfor-
mance of HDT(Q is much better than the most compact Virtuoso approach
and similar to Jena.

For LUBM1000 only HDT-AG and HDT-AT, but not Jena or Virtuoso
were created. HDTQ’s compression shows a very similar picture like for
LUBMb500. The trend can be seen in Figure 19. As for LUBMb500, the
needed space first grows slowly and increases a lot between 100 and 1000
graphs. Obviously HDTQ’s size is bigger for LUBM1000 then for LUBM500,
as the LUBM1000 is about double the size. Apart from this shift in the
y-axes, the trend can be considered the same.

LDBC. The LDBC dataset has about 190,000 graphs and as expected
from the observations outlined above, HDTQ performs poorly for such a
dataset. The required space by far exceeds the original space. With its
5 million triples and 190,000 graphs, the graph information matrix has an
uncompressed size of 950 billion bits, or about 110 gigabytes. Virtuoso /
Virtuoso+ and Jena show far more promising results regarding compression,
ranging from about 70% to 126% of the original size.

Liddi. The Liddi dataset with its especially many graphs (about 392,000)
is the worst case for HDT(Q. Because of the bad compression of the bitmaps
of the graph information matrix, the result is not only not compressed, but
instead multiple times bigger than the original dataset, ranging from 66 times
(HDT-AT) to 132 times (HDT-AG) the size of the original data. While Jena
can reduce the size of the dataset to about 78%, Virtuoso (Virtuoso+) can
even reduce it to about 50% (53%) of the original size.

Regarding the needed space it can be said that HDTQ is compressing
datasets with a low number of graphs very well. However, as the LUBM500
datasets illustrates well, with a higher number of graphs together with a high
number of triples it scales badly. The reason for this is that NG (number of
triples times number of graphs) bits are required for the bitmaps in HDTQ.
The algorithms from Section 5.2 are still valid as soon as compression is used
in these bitmaps, but the application is devoted to future work.

HDTQ positions itself as the perfect candidate to deal with versioned
datasets such as the BEAR datasets, that is, hundreds of millions of triples
with hundreds of versions/graphs, or thousand of triples with thousands of
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versions/graphs. This can also be observed in Table 3, which compares space
requirements of HDTQ for the BEAR datasets against storing the BEAR
data with classic HDT using the IC and CB approaches (IC and CB numbers
are taken from [49]). Both approaches of HDTQ (HDT-AG and HDT-AT)
outperform classic HDT IC and CB. Even compared to the better performing
approach, CB, HDTQ outperforms CB by a factor of about 3 for BEAR-A,
about 1.7 for BEAR-B day and about 17 for BEAR-B hour.

Size (GB) gzip HDT-AG HDT-AT HDTIC HDT CB
A 396.85 5.82% | 2.33% 2.75% 12.1% 7.06%
BEAR | Bday | 0.64 4.83% | 0.65% 0.71% 22.63%  1.06%
B hour | 9.66 4.83% | 0.33% 0.25% 338.6%  5.32%

Table 3: Space requirements of versioning strategies.

7.5 Creation Time

The times to import the different datasets in the respective system can be
seen in Table 4. All times are denoted in seconds. The shown times were
measures from the beginning of the import, until all data is imported and
all indexes are created. That means, after the listed number of seconds of
processing, the system is ready to answer queries.

HDT-AG HDT-AT Jena Virtuoso Virtuoso+

A 34,212 42,876 93,918 NA NA
BEAR | B day 21 20 86 20 33

B hour 293 264 1,328 301 534

500 (1 graph) 770 776 1,912 337 432
LUBM 500 (9998 graphs) | 2,123 1,619 1,686 338 439

1000 (1 graph) 2,218 2,364 4,459 674 863

1000 (7000 graphs) | 4,447 4,808 3,745 679 877
LDBC 791 581 115 50 70
Liddi 838 576 56 26 33

Table 4: Creation times in seconds.

For HDT-AG and HDT-AT the shown times include the needed time to
create the standard HDT parts (header, dictionary and triples) as well as the
time to create the graph information matrix (the annotated graph bitmaps
or the annotated triple bitmaps). Additionally, it includes the time needed
to create the additional predicate and object index. For Jena, the denoted
time includes the time to create the tdb store and all indexes. For Virtuoso,
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the denoted time includes the creation of a new virtuoso instance, importing
all data and creating the indexes. For Virtuoso+ the time to create the
additional index was measured and added to the creation time of Virtuoso.

Virtuoso is the fastest system regarding creation time in nearly all cases.
Only for BEAR-B hour HDT-AT is faster and for BEAR-B day HDT-AT
takes the same time as Virtuoso. The slowest import is the combination
of Jena and BEAR-A, taking about 26 hours. As BEAR-A could not be
imported into Virtuoso, no times can be reported for Virtuoso and Virtuoso+.

It seems natural that with an increasing number of quads in the dataset,
the time to import data into any system increases. To see whether this really
is the case, the creation time for all of the systems are drawn in Figure 20.
Each mark in the plot stands for one dataset, the datasets were sorted by
their number of quads. While there are outliers, it can still be said that with
an increasing number of quads, the import time increases.

The two peaks of HDT-AG and HDT-AT (at around 2 million and 5
million quads) can be explained with the structure of the underlying datasets.
The 2 million quads dataset is the Liddi dataset, the 5 million quads dataset
is the LDBC dataset. These are the datasets with a very high number of
graphs (190,000 respectively 392,000). That indicates, that the creation time
of HDTQ is not only dependent on the number of quads, but also on the
number of graphs.

To verify this assumption, the creation times for the LUBM500 datasets
are drawn in Figure 21. One can see that Virtuoso and Virtuoso+ are largely
independent of the number of graphs. Jena on the other hand is even becom-
ing slightly faster with an increasing number of graphs. As expected, both,
HDT-AG and HDT-AT, need more time to import datasets if the number of
graphs grows. However, compared to Jena, HDT(Q is much faster if there is
a low number of graphs, that even after the increase it is still faster (HDT-
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AT) or only slightly slower (HDT-AG) for about 10,000 graphs. Moreover,
Virtuoso is faster than the other systems in any case.

7.6 Querying Speed

In this section, the querying speed of the systems under review are compared.
For this, random queries were generated® and then executed in all systems”.
As HDTQ is not capable of SPARQL queries, only simple query patterns,
where any of the quad components can be a variable, were tested. The testing
of simple query patterns only is supported by the Linked Data Fragment
approach [143], which promotes query APIs that only provide simple triple
(ultimately, quad) query patterns.

Random queries were generated for each of the datasets. However, only
those queries that provided the same number of results in all systems were
selected for the evaluation. While that should actually be the case anyway,
this ensures that if one system is faster than the other, this is really the case
because of the speed of the respective system and not because one of the
systems erroneously reports the wrong number of results (possibly a by far
smaller number of quads, which is found much faster).

The queries were generated by first finding the distinct number of pos-
sibilities for the first non-variable in the given pattern (for this, HDTQ is
queried, as it replies this information the fastest). One of the results was
chosen randomly. If there is another non-variable in the pattern, Virtuoso+
was queried to find the number of possibilities given the previously identified
component. One of the results was again chosen randomly. These steps are
repeated for all of the non-variables in the pattern.

If the so-found solution was not found before, it is checked whether all of
the systems report the same number of results for the query. If so, the query
was added to the query collection. Then the steps are repeated, starting with
the distinct number of possibilities for the first non-variable. If there are not
enough possibilities for the requested number of queries (e.g. it is asked for
P77 queries, but there are only 10 distinct predicates in the dataset), then
the algorithm comes to an end early. All possibilities are taken as candidates,
there results are checked and if they are equal, the query is accepted.

Note that this algorithm does not necessarily find a solution. It could
be the case that the same query is found over and over again and the query
generation never ends. Fortunately, this was not the case for any of the
datasets.

Shttps://github.com/JulianRei/hdtq-java-queryGeneration
"https://github.com/JulianRei/hdtq-java-performanceTests
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To test the performance of the systems, 100 queries were generated for
each query pattern. However, there are special cases were less than 100
queries were generated. One of them is the quad pattern 7777. As there is no
variable in the query, there is not more than 1 query (7777 itself) possible,
for any dataset. Also, some of the datasets contain only a very low number
of graphs, e.g. only 1 or 10 graphs. The pattern ?7??G therefore has only 1
or 10 queries. The last pattern for which sometimes less than 100 queries
were generated is 7P77, as some of the datasets do not contain 100 or more
distinct predicates. Also here, all predicates were taken as query candidates.

As it is often the case that some predicates appear in a lot of triples,
while other appear in only a very few ones, two additional query types where
considered. Both are actually the pattern 7P?7, but one of them contains only
queries with 100 or less results (further denoted as ?7P?7 (small)), while the
other one contains only those with more than 100 results (further denoted as
P77 (large)). Some of the datasets do not contain enough distinct predicates
to split the 7P?? into such two groups. For these datasets these special cases
were therefore not tested.

HDTQ’s function search can directly be called with a quad pattern’s com-
ponents to resolve the pattern. However, Jena and Virtuoso do not provide
for such a mechanism. Therefore, to test the patterns in these systems, the
pattern was translated to a SPARQL query and this query was then tested.

The SPARQL query differs depending on whether the graph is given or
not. If the graph <g> is given, then the query is:

SELECT ?s ?p 7?0 FROM <g> WHERE {?s ?p 20}

Where the variable subject, predicate and object are replaced by their re-
spective value if they are also given. Only the parts that are not given appear
in the select clause.

If the graph is not given, the basic structure is:

SELECT 7?s ?p 70 ?g WHERE {GRAPH 7?g {7?s ?p ?0}}

Again, the variable subject, predicate and object are replaced by their re-
spective value if they are given. Only the parts that are not given appear in
the select clause.

In the special case where all parts are given, i.e. SPOG, a dummy variable
is returned, as there are no other variables that could appear in the select
clause. In this case, the SPARQL query looks as follows:

SELECT ("a" as 7?7a) FROM <g> WHERE
{<s> <p> <o>}

56



Algorithm 9: MEASUREQUERYTIME measures the average cold
and warm execution times for a given query

Input: query, repetitions

Output: Average cold and warm times for the given query
for i «+ 1 to repetitions do

dropCache()

doW armup()

coldStart < now()

doSearch(query)

coldTime; < now() — coldStart

warmStart < now()

doSearch(query)

warmTime; < now() — warmsStart

© 00 N O ok W N =

10 averageColdTime < average(coldTime; . .. coldTime,cpetitions)
11 averageWarmTime < average(warmTime; . .. warmTime,cpetitions)
12 return averageColdTime, averageW armTime

To get a more robust result, each query was not only executed once,
but three times. Then, the average duration of the three measurements
was taken as a result for the respective query. What is more, as can be
seen in Algorithm 9 cold and warm times were measured. That means, for
every iteration, the system cache was first cleared by executing the following
statement:

sysctl vm.drop_caches=3

Then, a warmup was performed by querying any 100 quads using the 7777
pattern. After that, the query was performed and the time was measured,
this time is one of the three measurements of the cold time. Immediately
after that, the query was performed again and the measured time is one of
the three measurements of the warm time. After three iterations, the cold
and warm times were averaged and the next query was tested.

As suggested by [135] setting the system swappiness to 10 ensures a better
performance. This was therefore done before any queries were executed (not
only for Virtuoso, but for all tested systems).

Each of the upcoming subsections covers one of the datasets used for
the performance tests. The only exception is BEAR-A for which no query
speed evaluation was done, as it could not be imported into Virtuoso and
Virtuoso+. The bar charts, like Figure 22a compare the resolution speed of
different quad patterns in Jena, Virtuoso and Virtuoso+ against HDT-AG or
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HDT-AT. The bar height can be computed as g—’; where H), is the resolution
speed of HDT-AG/HDT-AT for the pattern p, O, and O, is the resolution
speed of one of the others systems for the pattern p. If the other system
(Jena, Virtuoso or Virtuoso+) is faster than HDT-AG/HDT-AT, then the
result is inversed and the bar is drawn below the x-axis. The range between
—1 and 1 is collapsed and forms the x-axis of the chart, indicated by a 1 on
the y-axis.

7.6.1 BEAR-B day

Figure 22a shows the performance of Jena, Virtuoso and Virtuoso+ against
HDT-AT for BEAR-B day when testing the systems cold. The bars are cut
at a factor of 100 for better legibility. For ?POG Virtuoso (Virtuoso+) has
a factor of 118 (116), for 770G 513 (514). This means that HDT-AT is 118
(116) times faster than Virtuoso (Virtuoso+) for 7POG queries and 513 (514)
times faster for 770G queries.

As can be seen, HDT-AT is faster than Virtuoso and Virtuoso+ in all
cases. Only the pattern S7O7? is resolved at almost the same speed, however
HDT-AT is still by factor of 1.04 (1.06) faster than Virtuoso (Virtuoso+). It
is interesting to see that Virtuoso+ is mostly slower than Virtuoso, especially
for SPOG. Virtuoso+ should be faster if a predicate and a graph is given,
but the subject is not, which is the case for 7P?G. But even for this pattern
Virtuoso—+ is slower than Virtuoso.

Jena’s performance is superior to Virtuoso and even outperforms HDT-
AT by a small factor in several cases (namely, SP?? S77?7 7?P?7 777G and
7777). Still, Jena is slower for the majority of the patterns, for 770G it is
even about 46 times slower than HDT-AT.

For 7POG and 770G HDT-AT is clearly faster than Jena, Virtuoso and
Virtuoso+. HDT-AT is more than 100 times faster than Virtuoso and Vir-
tuoso+ for 7POG and even more than 500 times faster than Virtuoso and
Virtuoso+ for ?70OG. Jena is much better for this patterns, but is still much
slower than HDT-AT.

One explanation for the bad performance of Jena, Virtuoso and Virtuoso+
is that these systems heavily utilize cache functionality. As the diagram
shows results for cold systems, no cache could be used. Therefore, Figure 22b
shows the same queries for warm systems.

When comparing warm systems, HDT-AT is still faster than Virtuoso
and Virtuoso+ in most cases, but is slower for S?O?7. Also, the factor of
being faster is reduced greatly. While HDT-AT cold is more than 500 times
faster for 770G it is warm only about 12 (12) times faster than Virtuoso
(Virtuoso+). Jena is faster than HDT-AT in a lot of cases and is especially
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Figure 22: BEAR-B day quad pattern resolution speed. A k number above
the x-axis means that HDT-AG/HDT-AT is k times faster than the compared
system. A k number below shows that the system is k times faster than
HDT-AG/HDT-AT.

faster for S?O? (about a factor of 7).

Figure 22c¢ and Figure 22d show the performance of Jena, Virtuoso and
Virtuoso+ against HDT-AG when testing the systems cold and warm. When
comparing the diagrams with the diagrams of HDT-AT, one notices that they
appear to be identical. Bars in Figure 22c¢ are again cut at 100. The actual
value for 7POG Virtuoso (Virtuoso+) is 107 (105) and for 770G 490 (491).

To highlight the differences in the performance of HDT-AG and HDT-
AT, the two approaches are compared in Figure 23a (cold) and Figure 23b
(warm). Most patterns show a very small difference between the two systems.
This is most likely to be attributed to the relatively small dataset. The
biggest differences are factors of about 1.2, which is fairly low compared to
the differences in the performance of the other systems. As discussed in
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Figure 23: BEAR-B day comparing HDT-AG to HDT-AT. A k£ number above
the x-axis means that HDT-AG is k times faster than HDT-AT. A k£ number
below shows that HDT-AT is k£ times faster than HDT-AG.

Section 5.1 HDT-AG should be faster than HDT-AT for those patterns that
have the graph as given. While this can be observed for some patterns (like
?77G) it is not the case for others (like 770G). Possibly this is also due to
the small dataset.

Looking at the patterns with bounded subject, that are resolved by the
subject index, one can see that HD'TQ outperforms Virtuoso and Virtuoso+
in all cases, except for S7O? (this might be attributable to the additional
sequential iterator needed in HDT, see Section 4.3). For Jena, no such clear
observation can be made. Conversely, access by predicate (7P?) served by
the predicate-based HDT index shows that HDTQ is faster than Virtuoso
and Virtuoso+, but slower than Jena in a warm state (except for in a cold
state where Jena is slower for 7P?G). Finally, object access patterns (?7PO
and 770) are resolved much faster by HDTQ than by the compared systems
(especially if the graph is given and systems are tested cold).

The performance of Jena, Virtuoso and Virtuoso+ was clearly affected by

32 2825 g s 888 Ege et

= 5 5 ¥ 5 % % ow & & & 0z £ T & &
HDT-AG |0.39 0.81 0.31 098 05 095 097 1 043 0.84 052 1.05 058 093 1 1.02
HDT-AT |0.39 0.74 0.36 0.97 047 095 095 1 0.5 087 0.64 091 048 091 1 1.01
Jena 038 0.12 0.29 0.76 0.05 0.05 043 095 0.03 022 0.04 0.7 003 0.06 0.89 1
Virtuoso 0.05 0.06 0.1 059 004 048 093 099 0.03 0.06 0.03 0.22 0.01 049 1.01 0.96
Virtuoso+ | 0.03 0.06 0.09 06 0.04 045 086 0.99 0.03 0.06 0.03 022 0.01 046 1.01 1.06

Table 5: Ratios of warm and cold times for BEAR-B day. The smaller the
ratio, the better is the performance of a system with respect to the cold
scenario.
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Figure 24: BEAR-B day quad pattern resolution speed (absolute).

the warm state, whereas HD'T'Q does not show this strong correlation. There
are a couple of possibilities why the systems performances are improving
compared to HDT(Q. One could be that HDT(Q makes no use of caches and
therefore does not become faster, but the others do. Another one is that all
systems make use of caches, but the other systems become more faster than
HDTQ becomes faster. To see why the performance of the other systems
increases so much, Table 5 compares the performance of all systems in a cold
and in a warm state.

The values in the table are calculated by dividing the average duration for
a query in a system in a warm state by the duration of the same query in the
same system in a cold state. The performance of Virtuoso and Virtuoso+
is especially improved in a warm state. Some queries need less than 10%
of their duration in a cold system. Jena also greatly profits from a warm
state, reducing the execution duration to a minimum. HDT-AG and HDT-
AT profit much less from a warm system. Their performance still improves,
but not as much as the performance of the other systems. Possibly this is
due the fact that HDT-AG and HDT-AT are also very fast in a cold state
and there is not so much room for improvement like for the other systems.

To see how fast the different systems resolve the patterns in absolute
values, the average resolution times are shown in Figure 24a (cold) and Fig-
ure 24b (warm). Note that the y-axis is denoted in ps. Most queries for
BEAR-B day are therefore executed in a fraction of a second. The diagram
shows patterns that have the same combination of subject, predicate and
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Figure 25: BEAR-B day small and large number of results for 7P?7. A k
number above the x-axis means that HDT-AG/HDT-AT is k times faster

than the compared system. A k number below shows that the system is k
times faster than HDT-AG/HDT-AT.

object given adjacent to each other (e.g. SP?7 and SP?G). The zigzag of the
lines is a result of this order. As patterns that have the graph component
given will most likely have less results than those were the graph component
is not given, the former queries are usually faster. Looking at the figures one
can also nicely see that the gap between the systems becomes much smaller
in a warm state.

BEAR-B day has enough distinct predicates to split the quadpattern
?P?7 into two groups, one with few results and one with many results (as
described in Section 7.6). Figure 25 compares the speed of Jena, Virtuoso
and Virtuoso+ against HDT-AG and HDT-AT, in a cold and a warm state.
Looking at ?P?7 (small) in the cold state, Jena performs almost the same as
HDT-AG and HDT-AT. However, Virtuoso and Virtuoso+ are much slower
(more than 60 times slower). This can, however, only be observed for a small
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number of results. If the number of results is high, all systems performed
more or less equally. As expected, the gap between the systems becomes
much smaller in a warm state. Jena outperformed HDTQ by a small factor
and Virtuoso and Virtuoso+ become much faster, but are still a bit slower
than HDTQ.

7.6.2 BEAR-B hour

The BEAR-B hour dataset is very similar to the BEAR-B day dataset an-
alyzed in the previous section (as both emerge from the same source, but
aggregate the data on a different timescale, see Section 7.3). Noticeable dif-
ferences are that BEAR-B hour has about twice as many objects and by far
more graphs (about 1,300 compared to only 89). Also, the BEAR-B hour
dataset contains about 6 times more quads than BEAR-B day.

Figure 26a shows the performance of Jena, Virtuoso and Virtuoso+ against
HDT-AT for BEAR-B hour when testing the systems cold. The bars are cut
at a factor of 100 for better legibility. For SPOG Virtuoso+ has a factor of
139, for S?70G 192. For 770G the values for Jena / Virtuoso / Virtuoso+
are 151 / 194 / 269.

While HDT-AT outperformed Virtuoso and Virtuoso+ in all cases for
BEAR-B day, for BEAR-B hour Virtuoso and Virtuoso+ are faster than
HDT-AT for S?07 (as for BEAR-B day, this is likely attributable to the
additional sequential iterator needed in HDT, see Section 4.3). In all other
cases, HDT-AT is still faster.

The effect that Virtuoso+ is slower than Virtuoso grew significantly, leav-
ing a large gap between the two systems, especially for SPOG, S?OG and
770G.

Similar to BEAR-B day, we can observe that HDT-AT clearly outper-
forms the compared systems. In contrast to the BEAR-B day dataset, Jena’s
performance decreases for SPOG, SP?G, S?0OG and ?7OG. While Virtuoso’s
and Virtuoso+’s performance improved for SPO?, 7POG, 7PO? and 7P?G,
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Jena 0.04 0.19 0.02 083 0.01 0.13 0.97 0.01 0.31 0.01 093 0.01 008 081 1
Virtuoso 0.04 0.38 041 0.96 0.04 0.57 1.02 0.1 054 0.18 098 0.02 058 1 1.01
Virtuoso+ | 0 0.34 0.35 0.96 0.01 0.58 1.03 0.08 0.54 0.07 098 0.02 0.52 097 1.02

Table 6: Ratios of warm and cold times for BEAR-B hour. The smaller
the ratio, the better is the performance of a system with respect to the cold
scenario.
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Figure 26: BEAR-B hour quad pattern resolution speed. A k& number above
the x-axis means that HDT-AG/HDT-AT is k times faster than the compared
system. A k number below shows that the system is k times faster than
HDT-AG/HDT-AT.

Virtuoso+’s performance decreased for SPOG, SP?G, STOG and S?7G.

Looking at Figure 26b one can see that the results differ only slightly from
those of BEAR-B day. The most significant difference is that the factors for
SP?G, S?07?, S??7G and 7P?G grew noticeably.

Figure 26¢ and Figure 26d show the performance of Jena, Virtuoso and
Virtuoso+ against HDT-AG when testing the systems cold and warm. Bars
in Figure 26¢ are again cut at 100. The actual values for Virtuoso+ are 121
(for SPOG) and 242 (for STOG). For 770G the factors for Jena / Virtuoso
/ Virtuoso+ are 115 / 148 / 206.

When comparing the results of HDT-AG for BEAR-B hour in a cold state
with the results for BEAR-B day, the same observations can be made as for
HDT-AT described above. In a warm state, factors also grew compared to
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Figure 27: BEAR-B hour comparing HDT-AG to HDT-AT. A k£ number
above the x-axis means that HDT-AQG is k times faster than HDT-AT. A &
number below shows that HDT-AT is k times faster than HDT-AG.

BEAR-B day, in the corner case of S?O? for Jena even to a factor of about
60.

The performance of HDT-AG and HDT-AT is compared in Figure 27a
(cold) and Figure 27b (warm). While the differences between HDT-AG and
HDT-AT for BEAR-B day were only marginal, for BEAR-B hour first dif-
ferences can be observed. While for the BEAR-B day dataset the maximum
difference was a factor of 1.2, now the maximum difference is a factor of 3.

Looking at the patterns with bounded subject, which are resolved by
HDT’s subject index, one can see similar results like in the previous section
for BEAR-B day. HDTQ outperforms Virtuoso and Virtuoso+ partly even
by a factor greater than 100 and is marginally slower for SPO?. Again,
Virtuoso and Virtuoso+ are faster for STO?. For Jena, no clear trend for
these patterns can be observed. Also, the queries that are served by the
predicate-based HDT index show a similar results. HDTQ is faster than
Virtuoso and Virtuoso+, but slower than Jena (except for in a cold state
where Jena is slower for 7P7?G). Finally, object access patterns (7PO and
770) are usually resolved faster by HDT(Q than by the compared systems
(again, especially in a cold state if the graph is given). Only in a warm state,
if the graph is given, Jena is faster than HDTQ.

Table 6 compares the performance of all systems in a cold and in a warm
state. Virtuoso and Virtuoso+ profit a lot from a warm state, but not as
much as for the BEAR-B day dataset. Jena also greatly profits from the
warm state, similar to the measured values for BEAR-B day. HDTQ profits
more from a cache with the bigger dataset.

To see how fast the different systems resolve the patterns in absolute
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Figure 28: BEAR-B hour quad pattern resolution speed (absolute).

values, the average resolution times are shown in Figure 28a (cold) and Fig-
ure 28b (warm). The observations for these diagrams are the same as for
BEAR-B day.

Figure 29 compares the speed of Jena, Virtuoso and Virtuoso+ against
HDT-AG and HDT-AT, in a cold and a warm state for the two groups
of ?7P?7. Differences to the results for the BEAR-B day dataset are that
Virtuoso and Virtuoso+ are significantly slower than HDTQ for 7P?? (small)
in a cold state. Furthermore, Jena’s performance for 7P?? (small) increases
marginally while the performance of Virtuoso and Virtuoso+ for 7P?7 (small)
marginally decreases in a warm state.

7.6.3 LDBC

The LDBC dataset is very different compared to the former analyzed datasets
BEAR-B day and BEAR-B hour. Looking at Table 1 one can see that LDBC
has much more distinct subjects, objects and graphs (190,000 compared to
89 respectively 1,299) and triples (5,000,000 compared to 82,000 respectively
167,000). However, LDBC has only 16 distinct predicates (compared to more
than 1,700 for BEAR-B day and BEAR-B hour). Also, the number of triples
and quads is the same for LDBC meaning that each triple appears in exactly
one graph.

Figure 30a shows the performance of Jena, Virtuoso and Virtuoso+ against
HDT-AT for LDBC when testing the systems cold. The bars are cut at a
factor of 100 for better legibility. The actual value of 777G for Virtuoso
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Figure 29: BEAR-B hour small and large number of results for 7P??. A k
number above the x-axis means that HDT-AG/HDT-AT is k times faster

than the compared system. A k number below shows that the system is k
times faster than HDT-AG/HDT-AT.

(Virtuoso+) is about 111 (130).

HDT-AT is much slower than the compared systems for the 777G pattern.
Apart from that, HDT-AT is also considerably slower for 7POG and 7P?G
and marginally slower for S??7 (only compared to Virtuoso), 7PO?, 7P?7
7707 (only compared to Virtuoso and Virtuoso+) and 77?7 (only compared
to Jena). The 3 patterns for which HDT-AT is the slowest system all have
the graph component given. As HDT-AT is not well suited for such patterns,
it is reasonable that is slower in these cases.

On the other hand, HDT-AT is much faster for S7OG and 770G (espe-
cially compared to Virtuoso and Virtuoso+), which is counterintuitive, as the
graph component is also given for these patterns. Compared to Jena, HDT-
AT is also considerably faster for SP?? and S?O?. For all other patterns, the
difference in the quad pattern resolution speed is negligible.
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Figure 30: LDBC quad pattern resolution speed. A k number above the
x-axis means that HDT-AG/HDT-AT is k times faster than the compared
system. A k number below shows that the system is k times faster than
HDT-AG/HDT-AT.

Figure 30b shows the warm results for Jena, Virtuoso and Virtuoso+
against HD'T-AT. Bars are again cut at 100 for better legibility. The actual
values for 777G are 1192 / 345 / 440 for Jena / Virtuoso / Virtuoso+, for
?P7G they are 414 / 282 for Jena / Virtuoso+ and for 7POG it is 162 for
Jena.

HDT-AT performs better than Jena, Virtuoso and Virtuoso+ in most of
the cases. Only in the corner cases (S?77, 7P?G and 7?77G) does HDT-AT
loose considerably against the compared systems. Also, it can be seen that
again the other systems were able to achieve greater performance gains in
the warm state than HDT-AT.

While for the datasets analyzed in the previous sections (BEAR-B day
and BEAR-B hour) Virtuoso+ was not significantly faster (often even slower)
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Figure 31: LDBC comparing HDT-AG to HDT-AT. A k number above the
x-axis means that HDT-AG is k£ times faster than HDT-AT. A k£ number
below shows that HDT-AT is k£ times faster than HDT-AG.

than Virtuoso, for LDBC there is a significant difference in the performance of
?P?G in a warm state. This difference can be explained as Virtuoso+ should
perform better than Virtuoso if the predicate and the graph are given, but
the subject is not, which is exactly the case for the pattern 7P7G.

Figure 30c and Figure 30d show the performance of Jena, Virtuoso and
Virtuoso+ against HDT-AG when testing the systems cold and warm. As
HDT-AG was not capable of answering 7PO?, 7P?? and 7777 queries within
a reasonable time (none of the patterns was resolved within 10 hours), the
execution was stopped. Therefore all bars show a value of 100 for these
patterns. Further cut values in Figure 30d are SP?? with a value of 185 for
Jena, S7TO? with values of 939 / 260 / 253 for Jena / Virtuoso / Virtuoso+,
S?7?G with a value of 364 for Jena, S?7? with values of 1837 / 261 / 287 for
Jena / Virtuoso / Virtuoso+, 7?07 with a value of 339 for Jena and 777G
with a value of 174 for Jena.

In a cold state, HDT-AG outperforms the compared systems for STOG
and SPOG as well as Virtuoso, Virtuoso+ for 770G and Jena for SP?G.
However, it is slower for all other patterns and three of the patterns did not
finish in reasonable time. This makes HDT-AG the worst of the compared
systems for the LDBC dataset in a cold state. In a warm state HDT-AG’s
performance is even worse, while still being faster in some cases (SPOG,
SP?G, S7OG and 7?70G), the performance for the other patterns is extremely
bad.

The bad performance of HDT-AG is a result of the huge graph informa-
tion matrix resulting from the high amount of graphs together with a relative
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high number of quads in the LDBC dataset. While searching for results for
most of the patterns the RAM of the testing environment was fully occupied
and swap space was being used. This slowed the system down, leading to
bad performance results.

As can already be assumed, the performance of HDT-AT is much bet-
ter than the one of HDT-AG for LDBC. For the sake of completeness, the
performance of HDT-AT and HDT-AG is depicted in Figure 31a (cold) and
Figure 31b (warm). The figures confirm the observations from Figure 30.
In a cold state, HDT-AT is way faster than HDT-AG in many cases. Only
for 7POG, 7P?G and 777G HDT-AG is marginally faster. Especially in the
warm state, one can nicely see that HDT-AT is faster if the graph component
is variable, while HDT-AG is faster if the graph component is given. In the
warm state there is one exception to this, namely S??G, where HDT-AT is
faster than HDT-AG.

Looking at the patterns with bounded subject, which are resolved by
HDT’s subject index, one can see that HDT-AT is superior in basically all
cases. Only for S??? Virtuoso is marginally faster when comparing cold
systems and Jena is marginally faster when comparing warm systems. The
queries that are served by the predicate-based HDT index are resolved at
equal speed if the graph is not given and faster by the compared systems
if the graph is given. Lastly, object access patterns are resolved faster by
HDT-AT if the predicate is not given (770G and ?707?) and faster by the
compared system if the predicate is given (TPOG and 7PO7). As HDT-AG
performs poor for basically all cases, no comparison for each of HDT’s indexes
is drawn.

Table 7 compares the performance of all systems in a cold and a warm
state. Values in the table denoted as 0 are actually values smaller than 0.005
and therefore rounded down to zero. Compared to the warm-cold ratios of
the datasets discussed in the previous sections, for LDBC HDT-AT profits
greatly from a warm system. HDT-AG does not profit as much and for

QW 5y U oz Yoy ouwo o o5 U o= O o= U oq

= 5 5 5 5 5 5 5 2 & & & 8 EE G
HDT-AG [0.02 082 001 098 002 101 324 092 032 NA 07 NA 0 056 123 NA
HDT-AT |0.03 0.03 0.03 0.08 0.03 0.11 0.03 0.04 0.74 095 093 096 001 002 1 092
Jena 0.03 0.02 0.01 0.01 001 001 0.0l 001 0.0l 051 0.02 086 001 001 0.03 097
Virtuoso | 0.04 0.07 0.24 033 0 038 015 031 088 095 075 099 0 044 032 1
Virtuoso+ | 0.05 0.11 0.2 021 0 029 02 017 086 096 005 099 0 043 029 0.99

Table 7: Ratios of warm and cold times for LDBC. The smaller the ratio,
the better is the performance of a system with
respect to the cold scenario.
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Figure 32: LDBC quad pattern resolution speed (absolute).

777G, S?07 and S?7?G the duration is getting even worse in a warm state.
Values denoted as NA could not be measured as the system did not finish
the queries in a reasonable timeframe. The ratios are, except for HDT-AG,
very similar, so all systems profit greatly from a warm state. Still, there are
patterns where no system becomes significantly faster in a warm state (7P?7?
and ?77?7) or only some of them do (?PO?, ?P7G, ?70? and 777G).

Figure 32 shows the average resolution times for all systems in a cold
and in a warm state. Note that some values (?PO?, 7P?? and 7777) are
missing for HDT-AG and are therefore omitted for the respective series in
the diagrams.

It is interesting to see that for some patterns HDT-AT, Jena, Virtuoso
and Virtuoso+ become faster if the graph component is variable. This is the
case for SPO, SP?, S?0, S?7 and 770 (each once with the graph component
given and once as a variable). While this is counterintuitive, as the respective
pattern with the graph component as a variable must have the same or more
number of results than their counterpart, this can be explained by the specific
structure of the LDBC dataset. As no triple appears in more than exactly
one graph, the difference in the number of results if the graph component is
given or not is minimal. In the extreme case of SPOG and SPO?, the number
of results is in both cases 1. Apparently, if there is only 1 result (or a very
small number of results), it is faster to query for all results in all graphs than
to specify in which graph to search. HDT-AG does not show this changed
behavior, it shows the same zigzag pattern that all systems show for the
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previously discussed datasets.

What is more, in the cold and the warm state, one can clearly see the very
good performance of HDT-AT compared to the other systems (especially for
those patterns that have the subject given). While the zigzag effect for HDT-
AG becomes stronger in a warm state (because fast patterns get even faster),
the differences between adjacent patterns (where the graph component is once
given, once variable) smoothens out in the warm state for all other systems.
Note that the y-axis is denoted in ps, which means that patterns that have the
subject given as well as 770G and 7707 are resolved by HDT-AT extremely
fast, in less than 0.1 milliseconds.

As there are no more than 16 distinct predicates in the LDBC dataset,
the pattern 7P?? cannot be split into two groups. Therefore, for this dataset,
diagrams showing two 7P??7 groups are omitted.

7.6.4 Liddi

Compared to the LDBC dataset, the Liddi dataset is relatively small. It has
about half the number of distinct subjects, and less than half the number
of objects and quads. However, the number of graphs is about double the
number of graphs of LDBC. With a little less than 400,000 graphs, Liddi has
the most graphs of all analyzed datasets.

Figure 33a shows the performance of Jena, Virtuoso and Virtuoso+ against
HDT-AT for Liddi when testing the systems cold. The bars are cut at a
factor of 100 for better legibility. The actual value of S7OG for Virtuoso
(Virtuoso+) is 182 (181). The value of 770G for Virtuoso (Virtuoso+) is
266 (266).

In contrast to the LDBC dataset, for the Liddi dataset HDT-AT out-
performs all other systems by far for almost all patterns when testing the
systems cold. For the few patterns in which one of the competing systems
is faster (?PO?, 7P?G, 7P77, 777G) the difference is only marginal. Partic-
ularly the performance of HDT-AT for 777G improved greatly, from being
more than 100 times slower compared to Virtuoso to being roughly the same.

Figure 33b shows the warm results for Jena, Virtuoso and Virtuoso+
against HD'T-AT. Bars are again cut at 100 for better legibility. The actual
values for 7P?G are 628 / 104 for Jena / Virtuoso+, for 77?G they are 1154
/ 152 / 201 for Jena / Virtuoso / Virtuoso+.

When comparing HDT-AT to the other systems in a warm state, the
results are very similar to the results of the LDBC dataset. Noticeable dif-
ferences are an improved performance of HDT-AT compared to Jena for
?POG and compared to Virtuoso and Virtuoso+ for 7P?? and 7777,

Figure 33c and Figure 33d show the performance of Jena, Virtuoso and
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Figure 33: Liddi quad pattern resolution speed. A k number above the
x-axis means that HDT-AG/HDT-AT is k times faster than the compared
system. A k number below shows that the system is k& times faster than
HDT-AG/HDT-AT.

Virtuoso+ against HDT-AG when testing the systems cold and warm. As
HDT-AG was again not capable of answering "PO?, ?7P?? and 7777 queries
within a reasonable time (none of the patterns was resolved within 10 hours),
the execution was stopped. Therefore all bars show a value of 100 for these
patterns. Further cut values in Figure 33c are STOG with a value of 102 (102)
for Virtuoso (Virtuoso+) and for 770G 180 (181) for Virtuoso (Virtuoso+).
In Figure 33d cut values include for STO? 2566 / 548 / 579 and for S777 1519
/ 199 / 194 each for Jena / Virtuoso / Virtuoso+ and additionally for Jena
for SPO? / SP?? / ?P?G / 7707 values of 153 / 158 / 174 / 519.

While HDT-AG was again not capable of answering certain queries within
a reasonable timeframe, the performance improved significantly for several
other patterns (S?TOG, S707, S?77, 770G and 7707?) when testing the systems
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Figure 34: Liddi comparing HDT-AG to HDT-AT. A k number above the
x-axis means that HDT-AG is k£ times faster than HDT-AT. A k£ number
below shows that HDT-AT is k£ times faster than HDT-AG.

cold. Yet, the warm results show a very similar picture to the warm LDBC
results, making HDT-AG practically unusable for datasets with a number of
triples and graphs in the range of the Liddi dataset.

The bad performance of HDT-AG can easily be explained, as, like for the
LDBC dataset, the systems memory was again completely occupied. As for
the LDBC dataset, this is caused by a very big graph information matrix
(consider that Liddi is the dataset with the most graphs under review). The
use of swap space slowed the system down, leading to the bad results for
HDT-AG.

The performance of HDT-AT and HDT-AG is depicted in Figure 34a
(cold) and Figure 34b (warm). The results are almost identical to the re-
sults for the LDBC dataset. Again, while their performance for queries with
bounded graph is basically equivalent, HDT-AT outperforms HDT-AG for
queries without bounded graph by far. Whereas for S?7G for the LDBC
dataset HDT-AT was unexpectedly faster than HDT-AG in a warm state,
this can not be observed for the Liddi dataset anymore.

Table 8 compares the performance of all systems in a cold and a warm
state. Values in the table denoted as 0 are actually values smaller than
0.005 and therefore rounded down to zero. The results are very similar to
those for LDBC. One exception to this is HDT-AG, which for the Liddi
dataset improves for S?7G and 777G and becomes worse for 7707 in a warm
state compared to the LDBC dataset. Another exception is Virtuoso and
Virtuoso+ for the 7POG and 7707 patterns, for which it noticeable improves
in a warm state.
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Table 8: Ratios of warm and cold times for Liddi. The smaller the ratio, the
better is the performance of a system with respect to the cold scenario.
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Figure 35: Liddi quad pattern resolution speed (absolute).

Looking at the absolute values of the performance of all systems for Liddi
in Figure 35 one can see the same effect like in the previous section again.
That is, for a couple of patterns the performance of HDT-AT (and partly
also the performance of other systems) improves if the graph is not given,
compared to when the graph is given. This is the case for SPO, SP?, S70,
S?? and 770 (each once with the graph component given and once as a
variable).

Furthermore, especially when looking at the results for warm systems,
one can see an even stronger zigzag pattern for HDT-AG then for the LDBC
dataset, which means that the performance of the system is hugely dependent
on the presence/absence of the graph component in the search pattern.

As there are again only a few distinct predicates in the dataset (23), the
pattern P77 cannot be split into two groups. Therefore, for this dataset,
diagrams showing two P77 groups are again omitted.
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7.7 Scalability test with increasing number of graphs

The performance of the different systems where tested for the LUBM500
dataset with 1, 10, 100, 1000 and 9998 graphs (for better readability, in this
section the 9998 graphs are referred to as 10,000 graphs). Compared to the
previous analyses, the analysis for LUBMb500 will therefore look different.
Instead of looking at one particular RDF graph, the performance of the
different systems for the same pattern for datasets with a varying number
of graphs will be looked at. As the number of graphs is the only difference
between the different LUBM500 datasets, the datasets fit perfectly for this
purpose.

To make the results for a different number of graphs even more compara-
ble, the generated queries for all patterns that have the graph component as
a variable were reused for all LUBMb500 datasets. For those patterns where
the graph component is given, new queries were generated for each of the
datasets.

Figure 36 shows the performance of all systems for all patterns when
testing the systems cold. Each sub figure shows one pattern. As HDT-AG
did not finish within a reasonable timeframe (it was still searching after 10
hours) for 7P?? and 777? for the dataset with the highest number of graphs
(10,000), the respective values in the diagrams are omitted.

Looking at the results for those patterns that have the subject component
given (i.e. those where HDTQ makes use of the subject index), one can see
that the performance of HDT-AG and HDT-AT is mostly unaffected by the
number of graphs. The performance of HDT-AG only becomes slightly worse
for 10,000 graphs for S707 (as for previous datasets, this is likely attributable
to the additional sequential iterator needed in HDT, see Section 4.3). The
performance of HDT-AT becomes a bit worse for 10 graphs for S?777, but
becomes better again for 100 and more graphs.

The performance of Jena is only constant for S7OG. For SPO? the per-
formance degenerates with 1,000 graphs and becomes even worse for 10,000
graphs. For the other patterns that have the subject given, the performance
begins to decrease noticeable with 10,000 graphs.

Virtuoso and Virtuoso+ resolve patterns that have the subject given with
varying speed, depending on the number of graphs. While the performance
of both systems is rather constant for S?70?, it goes up and down for SPO?,
SP?G, SP??, S??G and S??7. For the latter, only Virtuoso+ varies, Virtu-
oso has a stable performance. For SPOG the performance of Virtuoso even
becomes slowly better with an increasing number of graphs, for Virtuoso+
the opposite is the case. For S7OG both systems become much slower with
1,000 graphs and again a bit slower with 10,000 graphs.

76



—e— HDT-AG
—=— HDT-AT

—
o
S

Jena

—+— Virtuoso

Runtime in ps
N =~ OY 00
T 1 1
| 1|
Runtime in ps
N
1
[

—+— Virtuoso
10° 102 104 10° 102 10
Number of graphs Number of graphs
(a) SPOG (b) SPO?
2 -10* Z -10% 2 -10°
s 3 | £ [ ] = 37 ‘
2 2 : 2 : ]
E — g ] S .
é L . s—.. Q::; 0 * . s é 0 L 2 *
10° 102 10* 10° 102 10* 10° 102 10
Number of graphs Number of graphs Number of graphs
(c) SP?G (d) SP?? (e) S?0G
z2 -10* z -10% 2 -10*
5 3 ———— T = 4[] ] E ]
A S 1S R ]
45 oLe . _4; E oL . | E ol a
[a et
10 102 10 10 10* 10 10 102 10*
Number of graphs Number of graphs Number of graphs
(f) S707 (g) S77G (h) S777
2] 105 0 107 @® 108
T 8F 10 T R g B 10 T 7 A | 10 a
E g - _ . — 1 2 2r // 1 E )
E 0 y J i E 0 = L. 4 E =
10° 102 104 10° 102 104 10° 102 10
Number of graphs Number of graphs Number of graphs
(i) ?POG (j) 7PO? (k) 7P?G
e -108 g2, 10° 2 -10*
Z T T - T T z
= 0 1 2T 1 s[> ——]
: : 1) 1z 2f |
2 1 - g 0‘8 - | 1 s |
=] hd hd A =}  — T T =] 0 L '
a1 [ ~
10° 102 104 10° 102 104 10° 102 104
Number of graphs Number of graphs Number of graphs
(1) 7P?? (m) 770G (n) 7207
£ -108 2 -10°
g Of ] g 40 ‘ ]
4 -
£ ol . Eo2p / B
E 0 L : # g 0 == : —
o~ ~
10° 102 104 10° 102 104
Number of graphs Number of graphs
(0) 777G (p) 7777

Figure 36: LUBMS500 quad pattern resolution speed cold. A k number above the x-axis means that HDT-
AG/HDT-AT is k times faster than the compared system. A k number below shows that the system is k
times faster than HDT-AG/HDT-AT.
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For the last pattern that is resolved with the subject index by HDT, 7777,
all systems, except HDT-AG show a constant query time. HDT-AG starts to
perform bad for 1,000 graphs and does not finish in a reasonable timeframe
for 10,000 graphs.

Overall, for the patterns that have the subject given, HDT-AG and HDT-
AT perform very well for the LUBM500 datasets. Both are faster than Vir-
tuoso and Virtuoso+ in all cases and, except for a few cases for SPOG and
S?77 also faster than Jena.

Looking at the results for the patterns for which HDTQ uses the predicate
index (i.e. ?P?? and 7P?G), one can see that for 7P?? HDT-AT, Jena,
Virtuoso and Virtuoso+ are unaffected by the number of graphs. HDT-AG,
however, performs basically equally for 1, 10 and 100 graphs, but for 1,000
graphs the performance vastly deteriorates. For 10,000 graphs the system
did not even find the result in reasonable time.

For the second pattern the results are also interesting. With an increasing
number of graphs all systems become faster. This is most likely the result
of the decreasing number of results for the queries. The number of results
decreases because the number of quads stays the same, but the number of
graphs increases, which means that the quads are distributed over a greater
number of graphs. As in the 7P?G pattern the graph component is given,
with a greater number of graphs in the dataset, the number of results for a
given query shrinks.

Overall HDT-AT performs good compared to the other systems for 7P?7?,
but not so well for 7P?G, HDT-AG’s performance for 7P?? is very bad and
for 7P?G it is better than the one of HDT-AT but still does not reach the
speed of the other compared systems.

The remaining patterns are those for which HDTQ uses its object index
(?POG, 7PO?, 770G and 7707). For 7POG a similar trend can be seen as
for 7P7?G. Systems become faster with a higher number of graphs, however
HDT-AG and HDT-AT become slower again, starting with 1,000 graphs. For
?PO? HDT-AG’s performance is stable in the beginning, but starting with
1,000 graphs the performance gets worse and finally becomes very poor for
10,000 graphs. The other systems have a constant speed for an increasing
number of graphs.

For 770G HDT-AG, HDT-AT and Jena have a constant performance.
Virtuoso and Virtuoso+ become significantly slower for 10,000 graphs. For
7707 Jena and HDT-AT have a constant execution time (even though HDT-
AT has a little outlier for 10 graphs). HDT-AG starts off very good, but
for 10,000 graphs the performance starts to become worse. Virtuoso and
Virtuoso+ show a varying speed for different numbers of graphs.

Overall HDT-AT performs very well for this last group of patterns. Only
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for 7POG the other systems perform better. HDT-AG is also quite good
most of the time, but its performance for 7PO? is pretty poor. Jena shows
satisfactory results and Virtuoso and Virtuoso+ perform good for 7POG and
?PO?, but not so good for the other two patterns.

To see how the systems perform with a varying number of graphs in a
warm state, Figure 37 shows the warm results. If the subject is not given,
but the predicate is given and if searching for all quads (with or without
bounded graph), no difference to the cold tests can be observed. Moreover,
the systems are for SPOG and SPO? as well as SP?G and S?7?7G similar stable
to the cold state, but about a factor of 100 faster. What is more, if the graph
is not given, but the subject is, or the subject and the predicate are, or the
subject and the object are, or only the object is given, HDT-AG starts to
perform poor with 10,000 graphs in a warm state. Another effect for these
patterns is that the systems resolve them significantly faster than in a cold
state. For STOG and 770G the systems become more stable and significantly
faster.

7.8 Discussion

The tests described in this section have shown that HDTQ is extremely
powerful for compressing RDF data with a low number of triples and graphs,
such as in a versioning scenario. Also, with its very fast querying speed
HDTQ outperforms its competitors by far for such RDF data.

However, the current implementation shows weaknesses when it comes to
processing of very large RDF data with a high number of graphs and triples.
While the querying speed of HDT-AT is still competitive, HDT-AG becomes
unusable with about 400,000 graphs and 2 million triples. Yet, the most
severe issue is that both approaches show a very poor compression ratio for
such RDF graphs.

One way to address this problem is to use compressed bitmaps instead of
plain ones. Especially if a lot of consecutive symbols (0s or 1s) appear in the

Size (GB) gzip HDT-AG  HDT-AT Jena Virtuoso Virtuoso+ HDT-AG (C) HDT-AT (C)

A 396.85 5.82% | 2.33% 2.75% 96.84%  NA NA NA NA
BEAR | B day 0.64 4.83% | 0.65% 0.71% 97.73%  13.69%  33.75% 0.67% 0.76%

B hour 9.66 4.83% | 0.33% 0.25% 96.39%  4.35% 25.62% 0.31% 0.14%

500 (1 graph) 11.42 3.04% | 6.71% 11% 118.76% 17.23%  21% 6.64% 16.98%
LUBM 500 (9998 graphs) 11.61 3.02% 675:58% 345.92%  120.1%  17.46% 27.51% 6.57% 16.74%

1000 (1 graph) 22.84 3.04% | 6.9% 11.18% 118.67% 16.23% 19.98% 6.83% 17.16%

1000 (7000 graphs) | 23.21 3.02% | 474.85% 236.44%  119.47% 16.38%  22.65% 6.75% 16.91%
LDBC 0.92 9.7% 12111.47% 6081.25% 126.28% 71.2% 80.77% 15.91% 25.06%
Liddi 0.67 3.74% | 13254.03% 6637.71% 78.06%  49.88% 53.36% 11.79% 15.56%

Table 9: Space requirements of different systems including HDTQ using com-
pressed bitmaps.
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Figure 38: Liddi quad pattern resolution speed for HDT(Q using compressed
bitmaps. A k number above the x-axis means that HDT-AG (C) / HDT-AT
(C) is k times faster than the compared system. A k number below shows
that the system is &k times faster than HDT-AG (C) / HDT-AT (C).

graph information matrix, this can reduce the required space significantly.
A brief performance test (results are depicted in Table 9) shows that using
compressed bitmaps [95] reduces the required space tremendously (in the
table, the versions using compressed bitmaps are marked with (C)). Using
compressed bitmaps, HDTQ outperforms Jena, Virtuoso and Virtuoso+ for
all datasets under review (no statement can be made for BEAR-A as the
dataset could not be imported into neither HDTQ (C) within 24 hours). For
the Liddi dataset HDT-AG using plain bitmaps showed the worst results
(about 13,000% of the original size), for the same dataset, HDT-AG using
compressed bitmaps reduces the required space to only about 12%.

To see whether this significant improvement comes with major losses re-
garding the query resolution times, Figure 38 compares the performance of
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both HDT(Q approaches using plain bitmaps against both approaches using
compressed bitmaps for the Liddi dataset. As can be seen, no query is more
than 2.3 times slower using compressed bitmaps. Some of the queries (mostly
for HDT-AT) are even resolved faster using the compressed bitmaps. The
patterns which could not be resolved by HDT-AG in a reasonable time frame
using plain bitmaps, could neither be resolved by HDT-AG using compressed
bitmaps and are therefore not included in the figure. As HDT-AT using plain
bitmaps significantly outperformed the other systems for the Liddi dataset
(especially cold, but for most cases also warm), it is an acceptable trade off to
reduce the required space by 99.91% in exchange for a reduction of querying
speed of at most factor 2.

8 Conclusion

This section summarizes the main findings of this work and gives an outlook
for future research.

8.1 Summary

The research question of this work deals with the matter of how compressed
RDF formats like HDT can be extended to handle quad information while
keeping its compact and queryable features. Based on the idea of the times-
tamp based RDF versioning approach, two different approaches have been
developed. These two approaches are Annotated Triples (AT) and Annotated
Graphs (AG). Using the AT approach, for each triple a bitmap is stored that
indicates in which graphs the triple is present, while using the AG approach,
for each graph a bitmap is stored that indicates which triples belong to the
graph.

HDT was extended by an additional graph information matrix containing
graph information. Together with an extension of HDT’s dictionary, HDTQ
was formed. Efficient algorithms for the resolution of the 16 patterns con-
sisting of subject, predicate, object and graph, have been introduced.

Of the two approaches, HDT-AT is better suited for queries in which the
graph component is not provided, as only a single bitmap has to be queried
for each found triple. By contrast, HDT-AG is better suited for queries
in which the graph component is bound, as only one bitmap needs to be
searched for the next result.

The Java implementation of HDT was extended with the features of
HDTQ. This implementation was tested in a server environment on several
datasets, differing in their size as well as in the number of graphs. In addi-
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tion to the HDTQ implementation, Apache Jena and Virtuoso (and Virtuoso
with an additional index) were tested and the performance was compared to
HDTQ.

Regarding the space requirements, results revealed that HDTQ is a sound
alternative to Jena and Virtuoso, especially for datasets containing only a low
number (hundreds) of graphs, which is a candidate for most RDF versioning
scenarios. When increasing the graph size to a few hundred, HDTQ looses
its advantage against Virtuoso. For a few thousand graphs, HDTQ becomes
less efficient than Jena. The degradation for large numbers of graphs is
owing to the used bitmap implementation. An implementation with a higher
compression could contribute to better results and is devoted to future work.

The results of the analysis of the creation times draw a similar picture.
HDTQ is a good alternative for datasets with a small number of graphs. With
an increasing number of graphs, HDTQ’s performance decreases compared
to the competing systems. Virtuoso is very fast while Jena’s speed is similar
to HDTQ.

We used the BEAR benchmark, a corpus of versioned datasets from the
Linked Data Observatory and DBpedia dynamic pages, to test the perfor-
mance of HDTQ with a reasonable number of graphs (89 to 1,299) and triples
(82,000 to 167,000). Results show that HDTQ excels for this particular case.
In a cold state HDTQ outperforms its competitors by far. While there are
performance losses in a warm state, HDTQ is still superior. Also, there is
no notable difference in the performance of HDT-AT and HDT-AG for the
BEAR datasets.

Furthermore, we generated the LDBC dataset with the generator offered
by the Linked Data Benchmark Council (LDBC) with 190,000 graphs and
5,000,000 triples. For this dataset, the performance of HDTQ is still accept-
able but already damaged because of the high number of triples and graphs.

HDTQ shows a stable performance with an increasing number of graphs
on the LUBM (Lehigh University Benchmark for OWL) dataset and even
outperforms Jena and Virtuoso for most quad patterns. For datasets with a
number of graphs exceeding 1,000, the execution time of HDT-AG surges for
3 of the search patterns (bounded predicate, bounded predicate and object
and retrieving all quads).

In order to test the functionality range of HDTQ, we evaluated the sys-
tem in the worst case scenario of having about 400,000 graphs and 2,000,000
triples. Results show that HDT-AT performs very well in a cold state and
also shows a solid performance in a warm state. However, HDT-AG is effec-
tively unusable for a dataset like this because of extraordinarily high RAM
consumption.

All things considered, HDT(Q has shown to be a sound alternative to its
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competing systems. Particularly for the initial (cold) execution of queries,
HDTQ performs especially well. Considering another implementation for
the bitmaps could enable to match or even outperform other systems also for
datasets with a high number of graphs.

8.2 Limitations and Future Research

As can be seen in Section 7 the Java implementation of HDTQ has been
proven to be a competitive system for RDF graphs that have a relatively
low number of graphs. However, starting with 1,000 to 10,000 graphs, the
needed space for the graph information matrix becomes an issue.

To be specific, it is not only the number of graphs that contributes to this
phenomenon, but the combination of a high number of graphs and a decent
number of triples. In HDT(Q the graph information matrix holds 1 bit for
each triple - graph pair (also if the triple does not appear in that very graph).
Thus, the total size in bits is the number of graphs multiplied by the number
of triples, which quickly becomes a tremendously large number.

However, as it is very unlikely that triples appear in all graphs (or even
close to all graphs), the information matrix is full of repetitive bits (in that
case 0s). If, on the other hand, a graph contains a huge share of all triples,
there also are a lot of repetitive bits (in that case 1s). Such repetitive patterns
can, of course, be compressed well, reducing the needed space significantly.

The chosen bitmap implementation, nevertheless, does not compress the
bitmaps well, leading to a large space requirement when storing the HDT(Q
files on disk, but also leading to a high RAM consumption. In a future work,
one could choose a bitmap implementation that compresses the bitmaps more
and thus making HDTQ even with a high number of graphs more competitive.
After replacing the bitmaps with a more compressed version, the algorithms
to resolve the quad patterns described in Section 5.2 can still be applied. As
briefly outlined in Section 7.8 this already shows promising results.

Besides improving the bitmap implementation, one could also test the
performance of HDTQ with even larger datasets. The BEAR-A dataset with
more than 2 billion triples was compressed perfectly with HDTQ. However,
unfortunately it is not possible to import the dataset into the Virtuoso system
used. It would be interesting to see whether the query resolution speed of
HDTQ is still competitive for datasets of that scale.

One limitation of HDTQ is that only simple quad pattern queries can
be resolved. Thus, another challenge is to make HDTQ queryable using
SPARQL queries. For classic HDT this is already done in the form of a Jena
graph implementation that allows accessing HDT files as Jena models. These
models can then be used with Jena ARQ to evaluate SPARQL queries.
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