

Resource Allocation in Business Processes

Giray Havur

Institute for Data, Process and Knowledge Management
Department of Information Systems and Operations Management

Vienna University of Business and Economics

Supervisors:

Univ.Prof. Dr. Axel Polleres
PD Dr. Cristina Cabanillas Macias

Internal reviewer:

Univ.Prof. Dr. Jan Mendling

External reviewer:

O.Univ.Prof. Dr. Thomas Eiter

This cumulative dissertation is submitted for the degree of
PhD in Economic and Social Sciences

December 2022

Abstract

Work is usually divided into discretized and manageable activities within
businesses. A series of activities of a similar nature forms a business process that
serves an organizational goal, such as producing a good or service. Economic
competition often results in businesses trying to operate at the lowest cost and the
greatest speed. Therefore, efficient and streamlined execution of business processes
by involved resources, such as employees, is important for the overall organization's
success. Resource Allocation in Business Processes (RABP) enables effective
design-time and run-time selection of the right resources for activity executions and
(multi-) objective scheduling of activities, which are vital to improving outcomes
for the service and manufacturing industries. The complexity of RABP arises from
coordinating explicit and implicit dependencies across a broad set of the process-
and resource-related constraints. In this thesis, we: (i) analyze the challenges in
Business Processes Management (BPM) to conceptualize RABP; (ii) develop
RABP methods to support business process executions; (iii) evaluate the KRR
formalisms (i.e., Answer Set Programming and Constraint Programming) with
several criteria, such as human readability and maintainability of the RABP
problem encoding and computational performance of the automated solvers; and
(iv) devise several underpinning methods to improve RAMS (Reliability,
Availability, Maintainability, and Safety) of organizational perspective for
supporting process executions.

Contents

Preface 9

Automated Resource Allocation in Business Processes with ASP 33
Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres
Published in the Proceedings of the 13th Int. Conference on Business
Process Management Workshops (BPM 2015 International Workshops),
pp. 191-203, Jul 2016, Springer LNBIP vol. 256

Resource Allocation with Dependencies in Business Process Manage-
ment Systems 47

Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres
Published in the Proceedings of the 14th Int. Conference on Business
Process Management: Business Process Management Forum (BPM Fo-
rum 2016), pp. 3-19, Sep 2016, Springer LNBIP vol. 260

Benchmarking Answer Set Programming Systems for Resource Allo-
cation in Business Processes 65

Giray Havur, Cristina Cabanillas, and Axel Polleres
Published in the International Journal on Expert Systems with Applica-
tions (ESWA), Volume 205, Number 117599, May 2022, Elsevier.

A Framework for Safety-critical Process Management in Engineering
Projects 95

Saimir Bala, Cristina Cabanillas, Alois Haselböck, Giray Havur, Jan
Mendling, Axel Polleres, Simon Sperl, and Simon Steyskal
Published in the Proceedings of the 5th International Symposium on
Data-Driven Process Discovery and Analysis (SIMPDA 2015), pp. 1-
27, Jan 2017, Springer LNBIP vol. 244

Resource Utilization Prediction in Decision-Intensive Business Pro-
cesses 123

Simon Sperl, Giray Havur, Simon Steyskal, Cristina Cabanillas, Axel
Polleres, and Alois Haselböck
Published in the Proceedings of the 7th International Symposium on
Data-driven Process Discovery and Analysis (SIMPDA 2017), pp. 128-
141, Dec 2017, CEUR vol. 2016 (urn:nbn:de:0074-2016-7)

History-Aware Dynamic Process Fragmentation for Risk-Aware Re-
source Allocation 139

Giray Havur, and Cristina Cabanillas
Published in the Proceedings of the 27th International Conference on Co-
operative Information Systems (CoopIS 2019), pp. 533-551, Oct 2019,
Springer LNCS vol. 11877

5

Automated Multi-perspective Process Generation in the Manufactur-
ing Domain 157

Giray Havur, Alois Haselböck, and Cristina Cabanillas
Published in the Proceedings of the 17th Int. Conference on Business
Process Management Workshops (BPM 2019 International Workshops),
pp. 81-92, Jan 2020, Springer LNBIP vol. 362

Conclusions and the Way Ahead 171

Appendices

Appendix A: Makespan Optimization Comparison of (gringo+clasp),
(idlv+clasp), (gringo+wasp), and (idlv+wasp) 180

Complementary material to the journal publication Benchmarking An-
swer Set Programming Systems for Resource Allocation in Business Pro-
cesses published in the International Journal on Expert Systems with Ap-
plications(ESWA), Volume 205, Number 117599, May 2022, Elsevier.

Appendix B: RABP with Makespan Optimization is NP-Hard 186
Computational complexity proof of RABP.

Appendix C: A Comparison of ASP and CP Solutions for RABP 192
Technical report.

6

Preface

A growing interest in the corporate ecosystem due to the needs stemming from
globalization, integration, standardization, innovation, agility, and operational ef-
ficiency has boosted the desire to improve Business Processes (BPs) [1]. A BP
consists of a collection of activities in a control flow. When a control flow enables
a particular sequence of activities, they are executed by a resource (or multiple
resources) to produce a service or product of value to the customer [2–4]. Dif-
ferent methodologies from industrial engineering, operations management, quality
management, human capital management, corporate governance, workflow man-
agement, and system engineering have all made significant contributions to ad-
dressing the improvement of BPs. Business Process Management (BPM) has been
initiated to combine and condense these efforts [1]. Typical enhancement targets
include cost, time, and failure reductions, which immediately affect businesses’
perceived attractiveness in provided goods and services.

As an integral part of BPM, Resource Allocation in Business Processes (RABP)
enables effective design-time and run-time selection of the right resources for activ-
ity executions and (multi-)objective (e.g., optimization of the time, cost, and qual-
ity) scheduling of activities. These selections obey temporal and resource-related
constraints, which is vital to improving outcomes for the service and manufacturing
industries [5]. The complexity of RABP arises from coordinating explicit and im-
plicit dependencies across a broad set of process- and resource-related constraints
(i.e., solving potential conflicts on allocating certain resources to activities). Such
inter-dependencies relate to control flow in BPs, organizational models, and dura-
tion assignments of activities in temporal models.

Business Process Models: A clear representation of BPs facilitates pointing out
problems related to order of activities, handled data (as a requirement or side-effect
of activity execution), and any other aspect involved in process execution. There-
fore, it is essential to represent a BP in a format that has the following characteris-
tics [6]:

– Clear and precise semantics: The semantics of the BP language is defined
formally.

– Expressive: The primitives needed to model a BP (e.g., routing constructs,
choices, etc.) are supported.

– Tool-independent: A language that has mappings to/from different business
modeling standards.

– Verifiable: There are tools for formally verifying a BP against undesired
situations such as deadlocks1, livelocks2, improper terminations3, dead ac-

1It is used to describe a process that cannot be completed.
2The same activity or sequence of activities are repeatedly executed with no possibility of further

continuing towards the end event due to, e.g., a faulty decision node connected to a loop.
3The BP execution reaches its end event while there is a live (i.e., still to be executed) activity.

9

d1

d2

a1

a2

a3

Figure 1: Example BPMN model

tivities4, and in the context of RABP, resource starvation5.

Following these characteristics, the Business Process Modeling Notation
(BPMN) [7] is used as the de facto standard for process modeling. It provides
a visual notation that is easy to understand and can be used by both business and
technical users. BPMN is widely used for modeling and executing business pro-
cesses, and is supported by many different tools and platforms. It is also used
within our work for mainly representing BPs along with Petri nets [8, 9], which are
a special form of graphs or finite automata that can be used to represent processes.
BPMN can be mapped to Petri nets [10] (and vice versa), and Petri nets have a for-
mal, mathematical representation with a well-defined syntax and semantics for the
definition, validation, and verification of BPs. There are different types of business
process modeling methods (besides BPMN), such as BPEL, WS-BPEL, EPC UML
Activity diagrams, WF Nets, and YAWL. BPEL [11], or Business Process Execu-
tion Language, is a language for specifying and executing business processes. It is
based on web services standards, and allows processes to be composed of a set of
interconnected web services. BPEL is often used in conjunction with BPMN, with
BPMN diagrams being used to model the process and BPEL being used to execute
it. WS-BPEL [12], or Web Services Business Process Execution Language, is an
extension of BPEL that adds support for more advanced features, such as event han-
dling and compensation. It is widely used for implementing complex, long-running
business processes. EPC [13], or Event-driven Process Chain, is a methodology for
modeling business processes aiming at covering all the requirements of an infor-
mation system, and UML Activity diagrams are a way of representing these pro-
cesses using a standardized graphical notation. WF Nets and YAWL [14] are two
different types of workflow modeling languages. WF Nets [15, 16], or Workflow
Nets, are a subclass of Petri nets that is specifically designed for modeling busi-
ness processes. YAWL, or Yet Another Workflow Language, extends WF Nets for
specifying and executing complex, flexible business processes requiring advanced
synchronization, and cancellation patterns.

4At least one activity in the process can never be executed.
5The process never reaches the end event due to insufficient resources.

10

Figure 1 shows an example BPMN model. In this model, the outgoing se-
quence flows from the parallel gateway (denoted by⋄+) are executed concurrently
and synchronized later at the synchronization node (denoted by ⋄+ with two in-
coming sequence flows). At the decision node (denoted by⋄×) d1, only one of the
outgoing flows is taken, i.e., either a1 or a2 is executed. Similarly, a3 is executed
as many times as necessary (i.e., until the value of the decision variable at d2 is
resolved for the sequence flow towards the synchronization node).

RABP can be performed for the entire process before the process execution
starts (i.e., at design time) or for a fragment of the process during the process
execution continues (i.e., at run time). The process in Figure 1 especially poses
a challenge for design-time RABP: needing to know the activities to consider for
RABP due to the decision nodes. In this case, some assumptions are made upfront
for the decision nodes to derive the input set of activities. However, when these
assumptions do not hold at run time, a resource reallocation becomes necessary to
repair the schedule. Moreover, concurrent activities (e.g., a1 and a3, or a2 and a3)
may require the same resources for their executions, which needs RABP to solve
such conflicts while aiming at an optimal schedule.

Organizational models: Organizational models contain additional information
about available resources within an organization that could contribute to executing
activities. Different organizational structures give rise to different organizational
models [17]. One of the most widely known models for capturing organizational
structures is based on the Role-Based Access Control (RBAC) [18]. An RBAC
model describes resources, roles, and a hierarchy of roles that allows the execution
of activities based on the roles assigned to them. Roles can be used to model differ-
ent job positions and scopes of duty within a particular organization. In most cases,
the employees of the organization (i.e., its human resources) and the infrastructure
available (i.e., rooms, machines, etc.) have one or more organizational roles ac-
cording to their capabilities and characteristics, which allow them to take part in
the execution of certain activities.

The organizational meta-model described in [19] explicitly includes concepts
like positions, organizational units, capabilities. This meta-model was used to de-
sign a language called RAL [20] for defining resource assignment conditions in
process models. As presented in [21], RAL can be integrated in existing process
modeling notations, such as BPMN, thus enriching the process models with ex-
pressive resource assignments that cover various needs described by the creation
patterns of the well-known workflow resource patterns [19]. A graphical notation
was later designed with the same expressive power as RAL to help the modeler
define resource assignments in process models [22].

Moreover, Semantic Web technologies, particularly ontologies, provide appro-
priate means for representing organizational knowledge in a consistent and co-
herent format. The Engineering Domain Ontology described in [23] integrates
three domains of interest relevant for RABP: BPs, organizational models, and the
resource-related constraints arising from regulations and policies [24].

11

Constraints related to the type of resources to be allocated to process activities
add further complexity in RABP: Renewable resources [25] (i.e., resources that
are available when not occupied by an activity execution; e.g., employees), non-
renewable resources [25] (i.e., resources that have a limited amount of availability
from the beginning until the end of a BP execution and that are gradually con-
sumed by the activities competing for these resources; e.g., budget), and partially-
renewable resources [25] (i.e., resources whose availability/quantity is renewed at
specific periods; e.g., hours per week availability of an employee) require different
type of variables to be maintained in a RABP problem encoding.

Temporal models: Temporal models comprise the constraints related to the ex-
pected duration of the activities, and the tentative deadline for the completion of
BP instances. In a typical real-world BPM scenario, activity duration values are
estimated by process managers while designing the processes and can be included
in the executable BP model as a property of an activity (e.g., with BPMN [7]).
On the other hand, temporal constraints can also be estimated by mining event
logs [26–30] that store evidence of the execution of process instances.

The duration of the activities may be static, resource-dependent, or an aggre-
gate value of the resource-dependent durations when multiple resources are in-
volved in the execution (i.e., collaborative activities in which several employees
work together). Furthermore, these values could be defined at design-time or can
be estimated dynamically at run-time for the implemented RABP method.

Optimization in RABP: Most practical RABP cases require the total length of
the schedule called makespan to be minimized [31, 32]. Other optimization cri-
teria could also be considered, such as, minimizing the number of late activities
and the total delay (i.e., tardiness) of activities [33, 34], balancing the workload of
resources [35, 36], and minimizing the overall resource consumption [37, 38]. In-
cluding such objectives in RABP methods enables effective resource selection and
helps businesses achieve their goals in a shorter time with lower costs and better
outcomes.

Business process management systems: The BPM lifecycle involves six
phases: process identification, discovery, analysis, design, implementation, and
monitoring and control [39]. Some of these phases are supported by software sys-
tems known as Business Process Management Systems [1] (BPMS). BPMSs aim
at providing an integrated set of tools to model, simulate, deploy, enact, monitor,
evaluate and continuously optimize BPs. They not only coordinate activities and
synchronize data across existing systems but also help streamline activities, trig-
gers, and timelines in a BP.

There are several BPMSs in the market: some are open-source, e.g., Camunda6,
jBPM7, and Activiti8. Others, such as Architecture of Integrated Information Sys-

6https://camunda.com/
7http://www.jboss.org/jbpm/
8http://www.activiti.org

12

https://camunda.com/
http://www.jboss.org/jbpm/
http://www.activiti.org

tems (ARIS)9, Intalio|BPMS10, and AuraQuantic11 are commercial. [40, 41] pro-
vide insights into strengths and weaknesses of the aforementioned BPMS.

When BPs are run within a BPMS, process execution data (i.e., event logs) is
stored. This data contains a series of events for previously run BPs reflecting the
start and completion times of activities with the resources involved in their execu-
tion. By applying process mining techniques [42–45] on event logs, the extraction
of organizational models can be achieved.

Related literature on RABP: Resource management in the process- and
resource-oriented systems is broken down into three distinct categories in [46]:
resource assignment (i.e., defining the resources needed for process activities), re-
source analysis (i.e., evaluating process execution with the focus on resources),
and resource allocation (i.e., assigning concrete resources to a specific task at run
time). Resource allocation has been widely used in various domains for address-
ing everyday problems [47] such as production management [48–58], health care
systems [59–67], project management [68–76], maintenance management [77, 78],
hotel management [79, 80], reviewers assignment [81–83], education systems [84–
87], the military field [88, 89], and sport management [90, 91]. The adoption and
representation of (mainly human) resources in the existing process-aware informa-
tion systems is presented in [92], where the representation of resources and their
utilization by the BPs is described in detail (i.e., resource patterns [93]).

We have identified three systematic literature reviews on resource alloca-
tion [47, 94, 95] that take into account over 250 papers in total. Let us outline
the most remarkable insights and findings of these studies: [94] and [47] show that
82% of the publications deal with only human resources. Even though some of
the concepts and patterns also apply to other resources [93], we believe more ef-
forts are needed to describe and utilize non-human resources in the process- and
resource-aware information systems. [47] also shows that most of the developed
resource allocation methods focus on only 1:1 allocation (i.e., one resource is al-
located to one activity; cf. 1:n, n:1, and n:m allocation [47]), which is a limitation
for real-world RABP applications.

In [47], the solution methods for RABP fall under four categories: exact (19%),
heuristic (32%), metaheuristic (38%), and hybrid (11%) methods, where 71% of
the references consider a single optimization objective, and only %29 of the ref-
erences pursue multi-objective optimization. [95] highlights some of the main
RABP approaches in practical contexts, and analyzes them under the lens of key
modeling and solution techniques. In doing so, this survey not only reports on a
wide plethora of state-of-the-art resource allocation methods but also paves the way
for novel techniques by underlining speed-ups in cross-disciplinary artificial intel-

9http://www.softwareag.com/en_corporate/platform/aris/
business-process-automation.html

10http://www.intalio.com/products/process-management/
11http://www.auraquantic.com/products/features/

business-process-management-bpm/

13

http://www.softwareag.com/en_corporate/platform/aris/business-process-automation.html
http://www.softwareag.com/en_corporate/platform/aris/business-process-automation.html
http://www.intalio.com/products/process-management/
http://www.auraquantic.com/products/features/business-process-management-bpm/
http://www.auraquantic.com/products/features/business-process-management-bpm/

ligence and operations research models. Moreover, RABP is emphasized as a well-
known computationally challenging NP-hard problem, and the reader is reminded
that finding solutions to RABP instances under optimization objectives with about
30 activities is still considered a challenging task [96]. As a consequence, identi-
fying novel solution techniques for RABP, and their benchmarks [97, 98] are given
prominent importance in RABP-related research [95].

Traditional BPMSs work independently of the area of risk management, which
may lead to unfavourable outcomes [99]. BPs should be executed while consider-
ing possible negative events and actively managing those risks as part of the process
execution [100]. When such events occur, methods (i.e., RABP) that increase run-
time resilience against process- and resource-related risks and contingencies for
reliable BP executions become necessary [101].

In summary, the state-of-the-art shows that RABP has its particular challenges
that are yet to be addressed:

Challenge 1: Representing a wide variety of resources in RABP. Resources
in a business organization can take many different forms: capital resources
(e.g., budget), human resources (e.g., employees in a company), and mate-
rial resources (e.g., machines in a warehouse) are planned to be used for the
execution of BPs in distinct ways [102]. Moreover, legal regulations and
compliance rules would affect resource allocation preferences in real-world
applications (e.g., separation of duties12) [103]. RABP methods in BPM
should provide means to incorporate resource characteristics (e.g., roles of
resources), the ways the resource are consumed/renewed by activities (e.g.,
renewable, non-renewable, and partially renewable resources), and resource
related constraints that are necessary to cover the needs of BP executions
(e.g., break calendars13, separation of duties, etc.). Existing resource al-
location literature in BPM is missing an overarching RABP approach that
provides a mechanism to represent a wide variety of resources.

Challenge 2: Selecting suitable KRR formalisms for implementing RABP.
Declarative Knowledge Representation and Reasoning14 (KRR) formalisms
(i.e., representations that allow for describing the problem and constraints
rather than procedures on how to resolve them), as well as respective reason-
ing methods operating on these representations, are applicable for model-
ing the RABP method, and for maintaining constraints of specific RABP
instances [104]. However, each KRR formalism has a different level of
expressiveness and has various execution engines (i.e., solvers, reasoners)

12The concept of having more than one employee (or multiple employees that share the same role)
required to complete a task.

13Break calendar keeps track of the times when renewable resources are unavailable.
14Knowledge representation is a study of the symbolic representation of the beliefs, intentions, and

judgments for capturing intelligent behavior of an agent. Knowledge Representation and Reasoning
(KRR) further focuses on the automated reasoning procedures that can use this knowledge as needed
by dedicated reasoning engines to solve complex tasks.

14

available. RABP implementations in different formalisms need to be com-
pared against each other to find out the most suitable implementation option.

Challenge 3: Devising a realistic benchmark for testing RABP solutions.
Benchmarking is comparing one’s solution for a problem to other solu-
tions via performance metrics. RABP methods are missing a realistic and
standardized benchmark due to the complex nature of problem specifica-
tion that encompasses process-, resource- and time-related requirements in
BPM. Such a benchmark would require an RABP problem instance genera-
tor that parameterizes resource- and time-related requirements and supports
the RABP solutions to run the generated problem instances while logging
the performance metrics.

Challenge 4: Improving reliability of RABP by tackling run-time contingen-
cies. BPs include stochastic aspects like decision nodes that are used for
modeling alternative execution paths. Moreover, the decision nodes may
have outgoing branches towards preceding activities in the control flow (i.e.,
loops). Since the branch-to-be-taken at a decision node depends on the out-
come of a previously executed activity, RABP methods need mechanisms
for improving the feasibility of allocations. On the other hand, when un-
expected execution delays or organizational changes occur at run-time, a
reactive RABP mechanism (i.e., for revising pre-established allocations) be-
comes necessary for reliable executions of BPs.

We formulate the following research questions which we address in this thesis
around these four challenges:

RQ.1. What are the essential requirements for conceptualizing RABP? (from
Challenge 1)

There is no standard description of resource allocation in BPM. Un-
derstanding of the essential ideas behind designing and managing BPs
and organizational models is crucial for designing a resource allocation
method tailored for the needs in BPM [105]. The real-world use cases
from the BPM literature [39, 102, 106] help infer those requirements.

RQ.2. Which are suitable KRR formalisms for implementing RABP? (from Chal-
lenges 2 and 3)

Each formalism (e.g., Answer Set Programming (ASP) [107] and Con-
straint Programming (CP) [108]) comes with a different set of advantages
and disadvantages. The main two criteria are the ease of encoding of the
RABP problem (compactness, readability, modularity, and maintainabil-
ity), and solvers’ performance in problem instances. We hypothesize that
the KRR methods are now scalable enough to work on real-world prob-
lem sizes for RABP.

RQ.3. How can RABP support process executions to improve their robustness?
(from Challenge 4)

15

Figure 2: Design science framework (adapted from [111])

BPMSs facilitate the process executions by coordinating all involved ac-
tivities and resources. Some risks caused by changes in processes, de-
lays in activity executions, and loss of personnel cannot be avoided en-
tirely during process executions [109, 110]. RABP methods should be
supported with countermeasures against such adverse events. Using the
available BP- and resource-related data, new knowledge can be mined
and derived in order to help RABP improve the robustness of process
executions.

Research Method

According to [112] there are two main paradigms that characterize most of the re-
search in information systems: The behavioral science paradigm seeks to develop
and verify theories that explain or predict human or organizational behavior, and
the design science paradigm seeks to extend the boundaries of human and orga-
nizational capabilities by creating new and innovative artifacts. In other words,
behavioral science investigates on developing and justifying theory while design
science explores creating innovations and addresses utility. A compact design sci-
ence framework is shown in Figure 2. For an extended design science research
process, we refer to [113] and references therein for details.

As our research is artifact-oriented, it fits into the design science paradigm: (i)
we justify the relevance of our research by defining the gap in the RABP-related
literature and devise a body of knowledge on RABP from the practices in BPM,
(ii) we build RABP models, methods and supporting tools, (iii) we assess these
artifacts (e.g., via performance evaluations) and if applicable, test them in real-
world scenarios, (iv) we refine and further develop the artifacts with respect to the
evaluation results, and (v) we communicate our research in suitable venues and
contribute to the body of knowledge in RABP.

Selected Papers

This cumulative thesis comprises a collection of publications reflecting the au-
thor’s contribution to the above-mentioned research questions. Figure 3 presents

16

Figure 3: Publications overview

an outline where the venues and the years of the publications are presented. The
relevance to the research questions (1-3) is represented by the background color:
green for the RQ.1, blue for the RQ.2, and orange for the RQ.3. The type of a
publication is symbolized via the geometry and the outline of the shape, which is
presented in the legend: a square represents a journal article; a circle with a solid
outline, a conference paper; a circle with a densely dashed outline, a workshop
paper; circle with a loosely dashed outline, a tool demo; and a circle with a double
outline, a technical report.

BPI15 [114]: Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres.
Automated resource allocation in business processes with answer set pro-
gramming. In Business Process Management Workshops: (BPI 2015), Re-
vised Papers, pages 191–203, 2016. This paper details an example scenario
that motivates the RABP approach supporting (i) multiple BP instances at
once and (ii) BPs that have choice nodes (i.e., when a BP splits into several
paths and only one of the paths can be executed) and cycles (i.e., when a
previously executed activity in a BP can be returned to during execution).
The problem is encoded in incremental ASP for finding a feasible resource
allocation with a minimum completion time of all BP instances represented
as timed Petri nets.

BPMForum16 [115] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel
Polleres. Resource allocation with dependencies in business process man-
agement systems. In Business Process Management Forum, pages 3–19,
2016. This paper describes the conceptualization of RABP under realistic
dependencies that affect the outcome of RABP. The high-level concepts such
as resource and temporal requirements of an activity, a complex temporal
model (e.g., specificity levels of activity durations and calendar availabil-

17

ity), and a standardized representation of resource descriptions via the RDF
Schema [116] are introduced.

ESWA22 [117] Giray Havur, Cristina Cabanillas, and Axel Polleres. Benchmark-
ing answer set programming systems for resource allocation in business pro-
cesses. Expert Systems with Applications, 205:117599, 2022. This article
is an extended version of [118]: we formalize the RABP problem, provide
technical details about the ASP systems benchmark for RABP, and include
the benchmark results and their interpretation for one benchmark instance of
four state-of-the-art ASP systems in solving RABP.

ePubWU22 [119] Giray Havur. A comparison of ASP and CP solutions of resource
allocation in business processes. Technical report. In Working papers, ePub
WU, 2022. This technical report includes ASP and Constraint Programming
(CP) implementations of RABP. It compares the implementations from two
main perspectives: ease of encoding the problem and problem instance solv-
ing performance of various solvers of each formalism.

SIMPDA15 [120] Saimir Bala, Cristina Cabanillas, Alois Haselbock, Giray Havur,
Jan Mendling, Axel Polleres, Simon Sperl, and Simon Steyskal. A frame-
work for safety-critical process management in engineering projects. In
SIMPDA 2015, Revised Selected Papers, volume 244 of LNBIP, pages
1–27, Springer, 2015. This paper delineates the challenges of safety-critical
human- and data-centric process management in engineering projects by
detailing the components of a framework that allows formalizing human-
centric process models, integrating heterogeneous data sources, automating
resource allocation, enforcing rules, checking execution of a process against
compliance constraints, and adapting process execution when delays occur.

SIMPDA17 [121] Simon Sperl, Giray Havur, Simon Steyskal, Cristina Cabanil-
las, Axel Polleres, and Alois Haselbock. Resource utilization prediction in
decision-intensive business processes. In SIMPDA 2017, volume 2016 of
CEUR Workshop Proceedings, pages 128–141, 2017. In this paper, we ad-
dress the problem of poor utilization of human resources in process execu-
tions by describing a mathematical method for quantifying resource utiliza-
tion with respect to the structural properties of non-deterministic (i.e., deci-
sion intensive) processes and the historical executions of these processes.

CoopIS19 [122] Giray Havur and Cristina Cabanillas. History-aware dynamic pro-
cess fragmentation for risk-aware resource allocation. In OTM 2019 Confer-
ences - CoopIS, volume 11877 of LNCS, pages 533–551, Springer, 2019.
In this paper, we introduce a risk-aware process fragmentation method that
enhances the feasibility of the resource allocations by dynamically selecting
the process fragments (i.e., execution horizons) in run-time concerning the
historical process execution data of the process.

18

AI4BPM19 [123] Giray Havur, Alois Haselbock, and Cristina Cabanillas. Auto-
mated multi-perspective process generation in the manufacturing domain.
In BPM Workshops 2019, Revised Selected Papers, volume 362 of LNBIP,
pages 81–92, Springer, 2019. In this workshop paper, we devise a statisti-
cal model from the existing production processes to generate new produc-
tion processes and resource assignments for new products. This method is
validated in an industrial gas turbine production setting and has proven to
facilitate the process design efforts for new gas turbines.

Related papers

BPMDemo15 and BPMDemo21 in Figure 3 are not included in this cumulative the-
sis. BPMDemo15 is an integration demo of the RABP implementation described in
BPI15 into a BPMS engine, and BPMDemo21 is the initial demo paper that paves
the way for the journal paper ESWA22.

BPMDemo15 [124] Saimir Bala, Giray Havur, Simon Sperl, Simon Steyskal,
Alois Haselbock, Jan Mendling, and Axel Polleres. Shapeworks: A BPMS
extension for complex process management. In the BPM Demo Track 2016
co-located with BPM 2016, volume 1789 of CEUR Workshop Proceedings,
pages 50–55, 2016. This demo shows a process management framework
in complex engineering projects where a BPMS engine (Camunda15) is in-
tegrated with the RABP implementation in ASP, a semantic model that de-
scribes organizational (i.e., resource-related) and safety-critical compliance
models, and process mining methods.

BPMDemo21 [118] Giray Havur, Cristina Cabanillas, and Axel Polleres.
BRANCH: An ASP systems benchmark for resource allocation in business
processes. In Proceedings of the Best Dissertation Award, Doctoral Consor-
tium, and Demonstration & Resources Track at BPM 2021, volume 2973 of
CEUR Workshop Proceedings, pages 176–180, 2021. This demo presents
the use of the ASP systems benchmark for RABP and its significance to
BPM.

Contribution to research question 1: Analysis and conceptualization

Analysis, conceptualization, and initial implementations of RABP have been pre-
sented in BPI15 and BPMForum16. From the BP perspective, BPI15 captures the
RABP requirements such as BP execution semantics that allow dealing with cyclic
processes. A 1:1 allocation mode (i.e., one resource is allocated to one activity at
a time) is implemented using incremental ASP [107, 125]. The devised temporal
model not only allows to represent default activity durations but also resource- and
role-specific activity durations. A complete formalization of this problem, and its

15https://camunda.org

19

https://camunda.org

a solver-independent ASP encoding in the ASP-Core-2 [126] standard is provided
in ESWA22.

In BPMForum16, the representation of resources in BPI15 is extended towards
non-renewable and partially-renewable resources with dynamic attributes (i.e., cu-
mulative resources). This extension allowed us to encode new allocation modes
(besides the 1:1 allocation mode presented in BPI15):

• n:1 allocation mode: Multiple resources can be allocated to one activity at a
time (e.g., multiple researchers and some research hardware are allocated to
one research-related activity).

• 1:n allocation mode: One resource can be allocated to multiple activities at
a time (e.g., a laboratory with limited space is allocated to multiple research-
related activities).

• n:m allocation mode: Multiple resources can be allocated to multiple activi-
ties at a time (e.g., a lab technician and some research hardware is allocated
to multiple research-related activities).

Furthermore, the concept of aggregate durations (e.g., minimum, maximum, or
average of resource-specific activity durations) is implemented to make better du-
ration estimations for n:1 allocations. An aggregate activity duration is computed
from many resource- and role-activity durations in the temporal model when an ac-
tivity is planned to be executed by multiple resources. Finally, an RDFS ontology
is formulated for resource descriptions.

Contribution to research question 2: Suitable formalisms for RABP

RABP is encoded in the Answer Set Programming (ASP) [127] and Constraint
Programming (CP) [128] formalisms: RABP as an incremental answer-set pro-
gram [107, 125] in BPI15 and BPMForum16, as an ASP-Core-2 [126] compliant
answer-set program in ESWA22, and as a constrained optimization problem in the
high-level constraint modeling language MiniZinc [129] in ePubWU22.

A configurable ASP systems benchmark for RABP (called BRANCH) is de-
vised and implemented in ESWA22. BRANCH addresses the lack of datasets for
benchmarking RABP by providing an RABP problem instance generator. Its easy-
to-use interface allows access to the following functionalities: the problem (multi-
)instance generator, the ASP system component configurator, the benchmark con-
figurator, the benchmark executor, and the results viewer. An evaluation of four
state-of-the-art ASP systems is run using BRANCH, and the detailed performance
results (execution time and memory usage) are documented.

A comparison of ASP and CP solutions for RABP is presented in ePubWU22.
This technical report summarizes the implementation and performance differences
that arise from the formalisms and their corresponding solvers. Our evaluation es-
tablishes that ASP provides a compact, easy-to-read, and easy-to-modify problem
encoding, whereas CP solvers perform better in solving RABP instances.

20

Contribution to research question 3: RABP support in practice

Several aspects regarding RABP support in practice are studied in SIMPDA15,
SIMPDA17, CoopIS19 and AI4BPM19. An RABP module is developed for an au-
tomated BPMS solution to address the resource allocation needs of safety-critical
engineering projects, such as the deployment of a railway infrastructure, and this
module is integrated into the Camunda BPMS in SIMPDA15. The main challenge
of RABP in safety-critical domains is the reallocation of resources due to process
adaptation needs each time the process monitor observes a discrepancy between
the schedule and the BP execution. This problem is solved by first computing the
affected activities in the schedule, then applying RABP only on those activities,
and finally shifting the starting times of succeeding activities only when necessary.
Therefore, the changes made in the schedule become minimal. Furthermore, there
are specialized access-control constraints and compliance objectives that are af-
fecting resources. For example, compliance rules such as separation of duties and
binding of duties further restrict the workload of human resources and are defined
as resource constraints for RABP.

In SIMPDA17, we examine the connection between the control flow of a
decision-intensive BP16 and the anticipated utilization of resources to forecast re-
source workloads. Our probabilistic forecasting method measures a quantifiable
under- and over-utilization risk of resources at a time horizon. This method is
tested against a real engineering process, and provides useful insights on identi-
fying the resources expected to be under- and over-utilized, which are difficult to
point out before the deployment of the BP.

When dealing with a decision-intensive BP, assumptions on the selection of the
branches at the decision nodes are needed to be made in advance to derive a con-
tingent process execution horizon (i.e., the set of activities) for which RABP is per-
formed. Unfortunately, these assumptions may not hold at process run-time, and
the discrepancy between the schedule and the execution leads to non-anticipated
delays or deadlocks. One way to address this issue is by performing reallocations
each time an assumption is overridden. However, if the assumptions are largely
inaccurate, this could lead to a sub-optimal use of resources. We introduce in
CoopIS19 a novel run-time RABP approach that decides a BP execution horizon
at every decision node given a fragmentation threshold. The lower the threshold
is, the longer the process fragment becomes, and the risk of facing an unsatisfied
assumption in run-time becomes higher. The advantage of this low-threshold/high-
risk fragmentation is that the RABP result returns a better resource allocation result
as it optimizes the use of resources for a longer execution horizon. A run-time sim-
ulation of 40 decision-intensive BPs demonstrates our method’s advantages in pro-
viding a layer of control on the feasibility of RABP results for decision-intensive
processes.

Lastly, in AI4BPM19 we present a multi-perspective (i.e., process and resource-

16Decision-intensive BP is densely populated by decision nodes.

21

related) manufacturing process generation method to support the manual design
of manufacturing processes for new products. A statistical model is devised to
learn functional, behavioral, and organizational information from the processes for
producing products labeled with their features. Afterwards, a production process
is generated using this model for a new and labeled product. In the gas turbine
manufacturing domain, our method resulted in a significant decrease in time and
effort and increased quality in the final process design.

Acknowledgements

While only my name appears on the cover of this dissertation, this work owes its
existence to the time, talents and counsel of a number of people to whom I am
indebted.

I owe my deepest gratitude to my supervisor Prof. Dr. Axel Polleres, Head
of the Institute for Data, Process and Knowledge Management, whose continu-
ous guidance and support of my academic and career goals have in equal measure
pushed and inspired me. His positive criticism and encouragement across these
many years of discovery kept me engaged with my research, and his personal gen-
erosity helped make this experience deeply meaningful.

I would also like to extend my gratitude to my close collaborator Dr. Cristina
Cabanillas, University of Seville, whose enduring commitment to this research
(across geographies and institutions) and to offering me thoughtful professional
and personal advice sustained and nourished me. I am similarly grateful for the ef-
forts of Prof. Dr. Jan Mendling, Einstein-Professor of Process Science at Humbolt-
Universität zu Berlin, whose early engagement with the ideas contained in this
work launched this dissertation, and whose mentoring has gone on to enrich my
academic horizons. Additionally, I would like to acknowledge the gracious efforts
of my committee member, Prof. Dr. Thomas Eiter, TU Wien. Thank you.

My research also benefitted enormously from the insights and good humour
of many colleagues who have passed through the corridors of WU and along the
several iterations of what was once called the Institute for Information Business –
now known as the Institute for Data, Process and Knowledge Management.

This work has also generated a network of colleagues and collaborators whose
support, insights and connections have borne many fruits. I will take this opportu-
nity to thank Herwig Schreiner (Siemens AG Österreich), FH-Prof. Mag. Tassilo
Pellegrini (Institute for Innovation Systems, FH St. Pölten), and Prof. Dr. Sabrina
Kirrane (Institute for Information Systems & New Media, Vienna University of
Economics and Business).

Finally, a special thanks to: Prof. Dr. Wil van der Aalst • Prof. Dr.
Sinan Açıkgöz • Odai Al Hashmi • Anne-Kathrin Ameling • Ayşe Kıvrak Aykal
• Baran Aytaç • Dr. Saimir Bala • Martin Beno • Prof. Dr. Nick Berente
• Dr. Stefan Bischof • Dr. Alessio Cecconi • Patrick Comoy • Dr. Richard
Comploi-Taupe • Prof. Dr. Ahmet Coşar • Dr. Andreas Falkner • Dr. Marie-France
Courriol • Aliz Csapo • Prof. Dr. Claudio Di Ciccio • César Diogo • Katharina

22

Disselbacher-Kollmann • Djordje Djurica • Saniye Dönmez • Hatice Dönüş •
Stefanie Errath • Can Ertaş • Dr. Elif Eryılmaz • Dr. Erwin Filtz • Reinhard Fischer
• Roman Franz • Dr. Estefanía García • Dr. Javier David Fernández García •
Prof. Dr. Jonas Bulegon Gassen • Prof. Dr. Martin Gebser • Deniz Genç • Dr.
Leo Gottlob • Prof. Dr. Thomas Grisold • Dr. Steven Groß • Alexandra Hager
• Dr. Alois Haselböck • Mihrican Havur • Magi Hochwarter • Dr. Ayhan İrem
• Sami Işıksal • Daniel Janisch • Prabh Jit • Lütfü Kalçık • Candan and Ergun
Kancaal • Barışcan Kayıkçı • Jaxson Khan • Dr. Elmar Kiesling • Prof. Dr. Ali
Koşar • Can Kurucu • Olivia Labonté • Max Lackner • Mariam Loana Lerch •
Ceren Mağden • Dr. Monika Malinova Mandelburger • Paulette and Yüksel Nader
• Markus Nagelholz • Dr. Sebastian Neumaier • Christoph Noller • Doğa Okay
• Hazal Paftalı • Dr. Josiane Xavier Parreira • Daniela Pico • Hannah Platt • Dr.
Sergiu Tcaci Popescu • Jonas Pettersson • Johannes Prescher • Sophie Rogenhofer •
Dr. Kate Revoredo • Rebecca Runge • Dr. Miel Vander Sande • Dr. Zeynep Gözen
Sarıbatur • Dr. Vadim Savenkov • Prof. Dr. Yücel Saygın • Patrik Schneider •
Dr. Ezgi Karakaş Schüller • Dr. Peter Schüller • Maximillian Seunik • Sara Si
Ahmed • Gottfried Schenner • Michael Sikic • Dr. Andreas Solti • Simon Sperl •
Simon Steyskal • Dr. Elena Theakos • Ioannis Theakos • Liliana Todorovic • Dr.
Jürgen Umbrich • Dr. Danilo Valerio • Dr. Svitlana Vakulenko • Julian Vierlinger
• Prof. Dr. Ingo Weber • Dr. Alexander Wurl • Doris Wyk • Erdem Yaman •
Anton Yeshchenko • Ümit Yiğit • Ayşegül Yüceil • the Families Açıkgöz, Akverdi,
Başıbek, Dokuzoğlu, Gökmen, Havur, Kansav, Lackner, Lerch, Platt, and Seunik.

References
[1] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamentals of

Business Process Management, Second Edition. Springer, 2018.

[2] M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer
Verlag, 2012.

[3] Michael Hammer and James Champy. Reengineering the corporation: a manifesto for busi-
ness revolution. HarperBusiness, New York, 1st ed. edition, 1993.

[4] Thomas H. Davenport. Process innovation: reengineering work through information technol-
ogy. Harvard Business School Press, Boston, MA, USA, 1993.

[5] Christoph Schwindt. Resource allocation in project management. Springer Science & Busi-
ness Media, 2006.

[6] Wil MP Van der Aalst. The application of petri nets to workflow management. Journal of
circuits, systems, and computers, 8(01):21–66, 1998.

[7] OMG. BPMN 2.0. Recommendation, OMG, 2011.

[8] Wil M. P. van der Aalst. The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers, 8(1):21–66, 1998.

[9] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541 –580, apr 1989.

[10] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Transformations for Business

23

Processes - A Survey. Transactions on Petri Nets and Other Models of Concurrency II, 2:46–
63, 2009.

[11] OASIS. BPEL 2.0. Recommendation, OASIS, 2007.

[12] Web Services Business Process Execution Language v2.0. Technical report, OASIS, 2007.

[13] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process Modeling using Event-
Driven Process Chains, pages 119–145. John Wiley and Sons, Inc., 2005.

[14] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Inf. Syst., 30(4):245–275, 2005.

[15] Wil M. P. van der Aalst. Verification of workflow nets. In Application and Theory of Petri Nets
1997, volume 1248 of Lecture Notes in Computer Science, pages 407–426. Springer Berlin /
Heidelberg, 1997.

[16] Katalina Grigorova. Process modelling using Petri nets. In Proceedings of the 4th interna-
tional conference conference on Computer systems and technologies: e-Learning, CompSys-
Tech ’03, pages 95–100, 2003.

[17] Bryan Horling and Victor Lesser. A Survey of Multi-agent Organizational Paradigms. Knowl-
edge Engineering Review, 19(4):281–316, 2004.

[18] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and Nino Vincenzo Verde. A
formal framework to elicit roles with business meaning in RBAC systems. In ACM symposium
on Access control models and technologies (SACMAT), pages 85–94. ACM, 2009.

[19] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and David Edmond. Work-
flow Resource Patterns: Identification, Representation and Tool Support. In CAiSE, pages
216–232, 2005.

[20] Cristina Cabanillas, Manuel Resinas, Adela del Río-Ortega, and Antonio Ruiz-Cortés. Spec-
ification and Automated Design-Time Analysis of the Business Process Human Resource
Perspective. Inf. Syst., 52:55–82, 2015.

[21] Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés. RAL: A High-Level User-
Oriented Resource Assignment Language for Business Processes. In Business Process Man-
agement Workshops (BPD’11), pages 50–61, 2011.

[22] Cristina Cabanillas, David Knuplesch, Manuel Resinas, Manfred Reichert, Jan Mendling, and
Antonio Ruiz-Cortés. RALph: A Graphical Notation for Resource Assignments in Business
Processes. In CAiSE, volume 9097, pages 53–68. Springer, 2015.

[23] Simon Steyskal, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Engineering Domain
Ontology. Project deliverable (d4.1-d4.4), Siemens, 2016.

[24] Simon Steyskal and Axel Polleres. Defining expressive access policies for linked data using
the ODRL ontology 2.0. In SEMANTICS 2014, pages 20–23, 2014.

[25] Peter Brucker and Sigrid Knust. Complex scheduling, second edition. 01 2012.

[26] Wil M. P. van der Aalst. Process Mining - Data Science in Action, Second Edition. Springer,
2016.

[27] Eric Rojas, Andres Cifuentes, Andrea Burattin, Jorge Munoz-Gama, Marcos Sepúlveda, and
Daniel Capurro. Analysis of emergency room episodes duration through process mining. In
Business Process Management Workshops, pages 251–263, Cham, 2019. Springer Interna-
tional Publishing.

24

[28] Edson Ruschel, Eduardo Alves Portela Santos, and Eduardo De Freitas Rocha Loures. Estab-
lishment of maintenance inspection intervals: an application of process mining techniques in
manufacturing. J. Intell. Manuf., 31(1):53–72, 2020.

[29] Fabrizio M. Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der Aalst. Efficient
discovery of understandable declarative process models from event logs. In Advanced In-
formation Systems Engineering, pages 270–285, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[30] Joyce Nakatumba-Nabende and Wil Aalst. Analyzing resource behavior using process min-
ing. volume 43, pages 69–80, 09 2009.

[31] Weidong Zhao, Qingfeng Zeng, Guangjian Zheng, and Liu Yang. The resource allocation
model for multi-process instances based on particle swarm optimization. Inf. Syst. Frontiers,
19(5):1057–1066, 2017.

[32] Jiajie Xu, Chengfei Liu, Xiaohui Zhao, and Zhiming Ding. Incorporating structural improve-
ment into resource allocation for business process execution planning. Concurr. Comput.
Pract. Exp., 25(3):427–442, 2013.

[33] Malgorzata Sterna. A survey of scheduling problems with late work criteria. Omega,
39(2):120–129, 2011.

[34] J. N. Hooker. Planning and scheduling to minimize tardiness. In Peter van Beek, editor,
Principles and Practice of Constraint Programming - CP 2005, pages 314–327, Berlin, Hei-
delberg, 2005. Springer Berlin Heidelberg.

[35] Sunita Singhal and Jemin Patel. Load balancing scheduling algorithm for concurrent work-
flow. Comput. Informatics, 37(2):311–326, 2018.

[36] Jeremy Decerle, Olivier Grunder, Amir Hajjam El Hassani, and Oussama Barakat. Impact
analysis of workload balancing on the home health care routing and scheduling problem.
In 2017 4th International Conference on Control, Decision and Information Technologies
(CoDIT), pages 0096–0101, 2017.

[37] Yain-Whar Si, Veng-Ian Chan, Marlon Dumas, and Defu Zhang. A petri nets based generic
genetic algorithm framework for resource optimization in business processes. Simul. Model.
Pract. Theory, 86:72–101, 2018.

[38] Farah Bellaaj, Mohamed Sellami, Sami Bhiri, and Zakaria Maamar. Obstacle-aware resource
allocation in business processes. In Business Information Systems - 20th International Con-
ference, BIS 2017, Poznan, Poland, June 28-30, 2017, Proceedings, volume 288 of Lecture
Notes in Business Information Processing, pages 207–219. Springer, 2017.

[39] Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A Reijers, et al. Fundamentals of
Business Process Management, volume 1. Springer, 2013.

[40] Fraunhofer IESE. Studie - BPM SUITES 2013. http://www.iese.fraunhofer.de/,
2013.

[41] Giray Havur, Simon Steyskal, Alex Wurl, Cristina Cabanillas, Jan Mendling, and Polleres
Axel. State-of-the-art report on existing models for processes, resources, constraints and se-
curity and their underlying formalisms. SHAPE project deliverable (D2.1), Vienna University
of Economics and Business, 2015.

[42] Maria Leitner, Anne Baumgrass, Sigrid Schefer-Wenzl, Stefanie Rinderle-Ma, and Mark
Strembeck. A case study on the suitability of process mining to produce current-state RBAC
models. In Business Process Management Workshops - BPM 2012 International Workshops,
Tallinn, Estonia, September 3, 2012. Revised Papers, volume 132 of Lecture Notes in Business

25

http://www.iese.fraunhofer.de/

Information Processing, pages 719–724. Springer, 2012.

[43] Anne Baumgrass and Mark Strembeck. Bridging the gap between role mining and role engi-
neering via migration guides. Inf. Secur. Tech. Rep., 17(4):148–172, 2013.

[44] Weidong Zhao and Xudong Zhao. Process mining from the organizational perspective. In
Foundations of intelligent systems, pages 701–708. Springer, 2014.

[45] Stefan Schönig, Cristina Cabanillas, Stefan Jablonski, and Jan Mendling. Mining the Organi-
sational Perspective in Agile Business Processes. In BPMDS, pages 37–52, 2015.

[46] Cristina Cabanillas. Process- and resource-aware information systems. EMISA Forum,
37(1):40–41, 2017.

[47] Sana Bouajaja and Najoua Dridi. A survey on human resource allocation problem and its
applications. Oper. Res., 17(2):339–369, 2017.

[48] Xavier Boucher, Eric Bonjour, and Bernard Grabot. Formalisation and use of competencies
for industrial performance optimisation: A survey. Computers in industry, 58(2):98–117,
2007.

[49] Leonardo Borba and Marcus Ritt. A heuristic and a branch-and-bound algorithm for the
assembly line worker assignment and balancing problem. Comput. Oper. Res., 45:87–96,
2014.

[50] Robert L. Burdett and Erhan Kozan. The assignment of individual renewable resources in
scheduling. Asia Pac. J. Oper. Res., 21(3):355–378, 2004.

[51] Albert Corominas, Rafael Pastor, and Ericka Rodríguez. Rotational allocation of tasks to
multifunctional workers in a service industry. International Journal of Production Economics,
103(1):3–9, 2006.

[52] A Costa, FA Cappadonna, and S Fichera. A hybrid genetic algorithm for job sequencing and
worker allocation in parallel unrelated machines with sequence-dependent setup times. The
International Journal of Advanced Manufacturing Technology, 69(9):2799–2817, 2013.

[53] Horst A Eiselt and Vladimir Marianov. Employee positioning and workload allocation. Com-
puters & operations research, 35(2):513–524, 2008.

[54] Cristóbal Miralles, José P García-Sabater, Carlos Andrés, and Manuel Cardós. Branch and
bound procedures for solving the assembly line worker assignment and balancing prob-
lem: Application to sheltered work centres for disabled. Discrete Applied Mathematics,
156(3):352–367, 2008.

[55] Özcan Mutlu, Olcay Polat, and Aliye Ayca Supciller. An iterative genetic algorithm for the
assembly line worker assignment and balancing problem of type-ii. Computers & Operations
Research, 40(1):418–426, 2013.

[56] Syed Mithun Ali. U-shaped assembly line balancing with temporary workers. International
Journal of Industrial Engineering, 21(6):134–146, 2015.

[57] Sicong Tan, Wei Weng, and Shigeru Fujimura. Scheduling of worker allocation in the manual
labor environment with genetic algorithm. In Proceedings of the international multiconfer-
ence of engineers and computer scientists, volume 1, 2009.

[58] Mariona Vila and Jordi Pereira. A branch-and-bound algorithm for assembly line worker
assignment and balancing problems. Computers & Operations Research, 44:105–114, 2014.

[59] Huabo Zhu, Jiafu Tang, and Jun Gong. Nurses staffing and allocation in multi-stage queueing
network with i2 patients’ routing for outpatient department. Journal of Applied Sciences,

26

13(15):2884–2890, 2013.

[60] Giuliana Carello and Ettore Lanzarone. A cardinality-constrained robust model for the assign-
ment problem in home care services. European Journal of Operational Research, 236(2):748–
762, 2014.

[61] Cicero Ferreira Fernandes Costa Filho, Dayse Aparecida Rivera Rocha, Marly Guimarães Fer-
nandes Costa, and Wagner Coelho de Albuquerque Pereira. Using constraint satisfaction
problem approach to solve human resource allocation problems in cooperative health services.
Expert Systems with Applications, 39(1):385–394, 2012.

[62] Ettore Lanzarone and Andrea Matta. Robust nurse-to-patient assignment in home care ser-
vices to minimize overtimes under continuity of care. Operations Research for Health Care,
3(2):48–58, 2014.

[63] Heshani C Rathnayake and Shalinda Adikari. Swarm intelligence for resource allocation of
emergency situations in hospitals. In 2013 8th International Conference on Computer Science
& Education, pages 446–451. IEEE, 2013.

[64] Qian Zheng, Jie Shen, Ze-qing Liu, Kai Fang, and Wei Xiang. Resource allocation simulation
on operating rooms of hospital. In 2011 IEEE 18th International Conference on Industrial
Engineering and Engineering Management, pages 1744–1748. IEEE, 2011.

[65] Pedro M Castro and Inês Marques. Operating room scheduling with generalized disjunctive
programming. Computers & Operations Research, 64:262–273, 2015.

[66] Thiago AO Silva, Mauricio C de Souza, Rodney R Saldanha, and Edmund K Burke. Surgical
scheduling with simultaneous employment of specialised human resources. European Journal
of Operational Research, 245(3):719–730, 2015.

[67] Atle Riise, Carlo Mannino, and Edmund K Burke. Modelling and solving generalised opera-
tional surgery scheduling problems. Computers & Operations Research, 66:1–11, 2016.

[68] V Shahhosseini and MH Sebt. Competency-based selection and assignment of human re-
sources to construction projects. Scientia Iranica, 18(2):163–180, 2011.

[69] Christos Kyriklidis, Vassilios Vassiliadis, Konstantinos Kirytopoulos, and Georgios Dounias.
Hybrid nature-inspired intelligence for the resource leveling problem. Operational Research,
14(3):387–407, 2014.

[70] Dongwon Kang, Jinhwan Jung, and Doo-Hwan Bae. Constraint-based human resource allo-
cation in software projects. Software: Practice and Experience, 41(5):551–577, 2011.

[71] Martina Huemann, Anne Keegan, and J Rodney Turner. Human resource management
in the project-oriented company: A review. International journal of project management,
25(3):315–323, 2007.

[72] MHA Hendriks, B Voeten, and L Kroep. Human resource allocation in a multi-project r&d
environment: resource capacity allocation and project portfolio planning in practice. Interna-
tional journal of project management, 17(3):181–188, 1999.

[73] Antonella Certa, Mario Enea, Giacomo Galante, and Concetta Manuela La Fata. Multi-
objective human resources allocation in r&d projects planning. International Journal of Pro-
duction Research, 47(13):3503–3523, 2009.

[74] Ming-Fung Francis Siu, Ming Lu, and Simaan AbouRizk. Methodology for crew-job alloca-
tion optimization in project and workface scheduling. In ASCE, pages 652–659, 2015.

[75] Wail Menesi, Mohamed Abdel-Monem, Tarek Hegazy, and Zinab Abuwarda. Multi-objective

27

schedule optimization using constraint programming. In ICSC15, 2015.

[76] Arno Sprecher and Andreas Drexl. Multi-mode resource-constrained project scheduling by
a simple, general and powerful sequencing algorithm. European Journal of Operational Re-
search, 107(2):431 – 450, 1998.

[77] Bertrand Estellon, Frédéric Gardi, and Karim Nouioua. High-performance local search for
task scheduling with human resource allocation. In International Workshop on Engineering
Stochastic Local Search Algorithms, pages 1–15. Springer, 2009.

[78] MEZIANE Bennour, S Addouche, and ABDERRAHMAN El Mhamedi. Rcpsp sous con-
traintes de compétences dans un service de maintenance. European Journal of Information
Systems, 46(8):877–907, 2012.

[79] Kayoko Murakami, Mitsuo Gen, Seren Ozmehmet Tasan, and Takashi Oyabu. A solution of
human resource allocation problem in a case of hotel management. In The 40th International
Conference on Computers & Indutrial Engineering, pages 1–6. IEEE, 2010.

[80] Kayoko Murakami, Seren Ozmehmet Tasan, Mitsuo Gen, and Takashi Oyabu. A case study
of human resource allocation for effective hotel management. Industrial Engineering and
Management Systems, 10(1):54–64, 2011.

[81] G Sena Daş and Tolunay Göçken. A fuzzy approach for the reviewer assignment problem.
Computers & industrial engineering, 72:50–57, 2014.

[82] Naveen Garg, Telikepalli Kavitha, Amit Kumar, Kurt Mehlhorn, and Julián Mestre. Assigning
papers to referees. Algorithmica, 58(1):119–136, 2010.

[83] Fan Wang, Ning Shi, and Ben Chen. A comprehensive survey of the reviewer assignment
problem. International Journal of Information Technology & Decision Making, 9(04):645–
668, 2010.

[84] Samuel Lukas, Arnold Aribowo, and Milyandreana Muchri. Solving timetable problem by
genetic algorithm and heuristic search case study: universitas pelita harapan timetable. Real-
World Applications of Genetic Algorithms, 378:303–316, 2012.

[85] Thatchai Thepphakorn, Pupong Pongcharoen, and Chris Hicks. An ant colony based
timetabling tool. International Journal of Production Economics, 149:131–144, 2014.

[86] OA Odeniyi, EO Omidiora, SO Olabiyisi, and JO Aluko. Development of a modified simu-
lated annealing to school timetabling problem. International Journal of Applied Information
Systems, 8(2):16–24, 2015.

[87] M Güray Güler, M Emre Keskin, Alper Döyen, and Hasan Akyer. On teaching assistant-task
assignment problem: A case study. Computers & Industrial Engineering, 79:18–26, 2015.

[88] Leh. Luoh and Ruey-Shyang Chang. Solving military’s resource allocation problem by fuzzy
approach. In 2008 IEEE International Conference on Systems, Man and Cybernetics, pages
1765–1769, 2008.

[89] Junayed Pasha, Zeinab Elmi, Sumit Purkayastha, Amir M Fathollahi-Fard, Ying-En Ge, Yui-
Yip Lau, and Maxim A Dulebenets. The drone scheduling problem: A systematic state-of-
the-art review. IEEE Transactions on Intelligent Transportation Systems, 2022.

[90] Ma Xian-Ying. Application of assignment model in pe human resources allocation. Energy
Procedia, 16:1720–1723, 2012.

[91] Antonino Scarelli and Subhash C Narula. A multicriteria assignment problem. Journal of
Multi-Criteria Decision Analysis, 11(2):65–74, 2002.

28

[92] Nick Russell, Wil MP van der Aalst, Arthur HM Ter Hofstede, and David Edmond. Workflow
resource patterns: Identification, representation and tool support. In Advanced Information
Systems Engineering, pages 216–232. Springer, 2005.

[93] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Resource
Patterns. Technical report, BETA Working Paper Series, WP 127, Eindhoven University of
Technology, Eindhoven, 2004.

[94] Luise Pufahl, Sven Ihde, Fabian Stiehle, Mathias Weske, and Ingo Weber. Automatic resource
allocation in business processes: A systematic literature survey. CoRR, abs/2107.07264, 2021.

[95] Michele Lombardi and Michela Milano. Optimal methods for resource allocation and schedul-
ing: a cross-disciplinary survey. Constraints, 17:51–85, 2012.

[96] Guidong Zhu, Jonathan F Bard, and Gang Yu. A branch-and-cut procedure for the multi-
mode resource-constrained project-scheduling problem. INFORMS Journal on Computing,
18(3):377–390, 2006.

[97] Andreas Drexl, Ruediger Nissen, James H Patterson, and Frank Salewski. Progen/πx–an
instance generator for resource-constrained project scheduling problems with partially renew-
able resources and further extensions. European Journal of Operational Research, 125(1):59–
72, 2000.

[98] Rainer Kolisch and Arno Sprecher. Psplib-a project scheduling problem library: Or software-
orsep operations research software exchange program. European journal of operational re-
search, 96(1):205–216, 1997.

[99] Raffaele Conforti, Giancarlo Fortino, Marcello La Rosa, and Arthur HM Ter Hofstede.
History-aware, real-time risk detection in business processes. In OTM Confederated Interna-
tional Conferences" On the Move to Meaningful Internet Systems", pages 100–118. Springer,
2011.

[100] Suriadi Suriadi, Burkhard Weiß, Axel Winkelmann, Arthur HM ter Hofstede, Michael Adams,
Raffaele Conforti, Colin Fidge, Marcello La Rosa, Chun Ouyang, Anastasiia Pika, et al. Cur-
rent research in risk-aware business process management—overview, comparison, and gap
analysis. Communications of the Association for Information Systems, 34(1):52, 2014.

[101] Richard M Zahoransky, Christian Brenig, and Thomas Koslowski. Towards a process-
centered resilience framework. In 2015 10th International Conference on Availability, Re-
liability and Security, pages 266–273. IEEE, 2015.

[102] Jan vom Brocke and Michael Rosemann. Handbook on Business Process Management 1:
Introduction, Methods, and Information Systems. Springer, 2015.

[103] Linh Thao Ly, Fabrizio Maria Maggi, Marco Montali, Stefanie Rinderle-Ma, and Wil M.P.
van der Aalst. Compliance monitoring in business processes: Functionalities, application,
and tool-support. Information Systems, 54:209–234, 2015.

[104] Michele Lombardi and Michela Milano. Optimal methods for resource allocation and schedul-
ing: a cross-disciplinary survey. Constraints, 17:51–85, 2012.

[105] Michael Rosemann and Jan vom Brocke. The six core elements of business process manage-
ment. In Handbook on Business Process Management 1, pages 105–122. Springer, 2015.

[106] Jan vom Brocke and Michael Rosemann. Handbook on Business Process Management 2:
Strategic Alignment, Governance, People and Culture. Springer Publishing Company, Incor-
porated, 2015.

[107] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set

29

Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2012.

[108] Roman Barták. Rina dechter , constraint processing, morgan kaufmann publisher (2003)
ISBN 1-55860-890-7, francesca rossi, peter van beek and toby walsh, editors, handbook
of constraint programming, elsevier (2006) ISBN 978-0-444-52726-4. Comput. Sci. Rev.,
2(2):123–130, 2008.

[109] Simon Tjoa, Stefan Jakoubi, Sigrun Goluch, and Gerhard Kitzler. Planning dynamic ac-
tivity and resource allocations using a risk-aware business process management approach.
In 2010 International Conference on Availability, Reliability and Security, pages 268–274.
IEEE, 2010.

[110] Stefan Jakoubi, Thomas Neubauer, and Simon Tjoa. A roadmap to risk-aware business pro-
cess management. In Services Computing Conference, 2009. APSCC 2009. IEEE Asia-Pacific,
pages 23–27. IEEE, 2009.

[111] Alan Hevner and Samir Chatterjee. Design science research in information systems. Springer,
2010.

[112] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in infor-
mation systems research. MIS Q., 28(1):75–105, March 2004.

[113] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A design sci-
ence research methodology for information systems research. Journal of management infor-
mation systems, 24(3):45–77, 2007.

[114] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Automated resource
allocation in business processes with answer set programming. In Business Process Manage-
ment Workshops: BPM 2015, 13th International Workshops, Innsbruck, Austria, August 31
– September 3, 2015, Revised Papers, pages 191–203, Cham, 2016. Springer International
Publishing.

[115] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Resource allocation with
dependencies in business process management systems. In Marcello La Rosa, Peter Loos,
and Oscar Pastor, editors, Business Process Management Forum, pages 3–19, Cham, 2016.
Springer International Publishing.

[116] Dan Brickley and R.V. Guha. RDF Schema 1.1. W3C Recommendation, February 2014.
http://www.w3.org/TR/rdf-schema/.

[117] Giray Havur, Cristina Cabanillas, and Axel Polleres. Benchmarking answer set program-
ming systems for resource allocation in business processes. Expert Systems with Applications,
205:117599, 2022.

[118] Giray Havur, Cristina Cabanillas, and Axel Polleres. BRANCH: An ASP systems benchmark
for resource allocation in business processes. In Proceedings of the Best Dissertation Award,
Doctoral Consortium, and Demonstration & Resources Track at BPM 2021, volume 2973 of
CEUR Workshop Proceedings, pages 176–180. CEUR-WS.org, 2021.

[119] Giray Havur. A comparison of ASP and CP solutions for resource allocation in business
processes. Technical report, Working Papers on Information Systems, 2022.

[120] Saimir Bala, Cristina Cabanillas, Alois Haselböck, Giray Havur, Jan Mendling, Axel Polleres,
Simon Sperl, and Simon Steyskal. A framework for safety-critical process management in
engineering projects. In Data-Driven Process Discovery and Analysis - 5th IFIP WG 2.6
International Symposium, SIMPDA 2015, Vienna, Austria, December 9-11, 2015, Revised
Selected Papers, volume 244 of Lecture Notes in Business Information Processing, pages

30

http://www.w3.org/TR/rdf-schema/

1–27. Springer, 2015.

[121] Simon Sperl, Giray Havur, Simon Steyskal, Cristina Cabanillas, Axel Polleres, and Alois
Haselböck. Resource utilization prediction in decision-intensive business processes. In Pro-
ceedings of the 7th International Symposium on Data-driven Process Discovery and Analysis
(SIMPDA 2017), Neuchâtel, Switzerland, December 6-8, 2017, volume 2016 of CEUR Work-
shop Proceedings, pages 128–141. CEUR-WS.org, 2017.

[122] Giray Havur and Cristina Cabanillas. History-aware dynamic process fragmentation for risk-
aware resource allocation. In On the Move to Meaningful Internet Systems: OTM 2019 Con-
ferences - Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes,
Greece, October 21-25, 2019, Proceedings, volume 11877 of Lecture Notes in Computer Sci-
ence, pages 533–551. Springer, 2019.

[123] Giray Havur, Alois Haselböck, and Cristina Cabanillas. Automated multi-perspective pro-
cess generation in the manufacturing domain. In Business Process Management Workshops
- BPM 2019 International Workshops, Vienna, Austria, September 1-6, 2019, Revised Se-
lected Papers, volume 362 of Lecture Notes in Business Information Processing, pages 81–92.
Springer, 2019.

[124] Saimir Bala, Giray Havur, Simon Sperl, Simon Steyskal, Alois Haselböck, Jan Mendling,
and Axel Polleres. SHAPEworks: A BPMS extension for complex process management. In
Proceedings of the BPM Demo Track 2016 Co-located with the 14th International Conference
on Business Process Management (BPM 2016), Rio de Janeiro, Brazil, September 21, 2016,
volume 1789 of CEUR Workshop Proceedings, pages 50–55. CEUR-WS.org, 2016.

[125] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Sven Thiele. Engineering an incremental ASP solver. In Maria Garcia de la Banda
and Enrico Pontelli, editors, Logic Programming, 24th International Conference, ICLP 2008,
Udine, Italy, December 9-13 2008, Proceedings, volume 5366 of Lecture Notes in Computer
Science, pages 190–205. Springer, 2008.

[126] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski,
Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten Schaub. ASP-Core-2:
Input language format. Technical report, ASP Standardization Working Group, 2013.

[127] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set
Solving in Practice. Morgan & Claypool Publishers, 2012.

[128] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.
Elsevier, 2006.

[129] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J Duck, and
Guido Tack. Minizinc: Towards a standard cp modelling language. In International Confer-
ence on Principles and Practice of Constraint Programming, pages 529–543. Springer, 2007.

31

Published in the Proceedings of the 13th Int. Conference on Business Process
Management Workshops (BPM 2015 International Workshops), pp. 191-203, Jul

2016, Springer LNBIP vol. 256

Automated Resource Allocation in Business Processes
with Answer Set Programming?

Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres

Vienna University of Economics and Business, Austria
{firstname.lastname}@wu.ac.at

Abstract. Human resources are of central importance for executing and super-
vising business processes. An optimal resource allocation can dramatically im-
prove undesirable consequences of resource shortages. However, existing ap-
proaches for resource allocation have some limitations, e.g., they do not consider
concurrent process instances or loops in business processes, which may greatly
alter resource requirements. This paper introduces a novel approach for automat-
ically allocating resources to process activities in a time optimal way that is de-
signed to tackle the aforementioned shortcomings. We achieve this by represent-
ing the resource allocation problem in Answer Set Programming (ASP), which
allows us to model the problem in an extensible, modular, and thus maintainable
way, and which is supported by various efficient solvers.

Keywords: Answer Set Programming, business process management, resource
allocation, timed Petri net, work scheduling

1 Introduction

Human resources1 are crucial in business process management (BPM) as they are re-
sponsible for process execution or supervision. A lack of resources or a suboptimal
work schedule may produce delayed work, potentially leading to a reduced quality and
higher costs.

In this paper, we address the problem of allocating the resources available in a com-
pany to the activities in the running process instances in a time optimal way, i.e., such
that process instances are completed in the minimum amount of time. Our approach
lifts limitations of prior research pursuing similar goals, which assumes simplified
non-cyclic processes and does not necessarily search for an optimal resource alloca-
tion [16, 14]. To this end, we rely on Answer Set Programming (ASP) [6], a declarative
knowledge representation and reasoning formalism that is supported by a wide range of
efficient solvers. ASP has been successfully used to address planning and configuration
problems in other domains [5].

Our solution is divided into three layers: The core layer represents process models
in ASP. The second layer adds all the information related to time, such as the estimated
activity durations. Finally, resource-related information including, among others, the

? Funded by the Austrian Research Promotion Agency (FFG), grant 845638 (SHAPE).
1 From now on resources for the sake of brevity.

33

(a) Process to publish a book (b) Organisational model

Fig. 1: Running example

characteristics of the resources available according to an organisational model as well
as the conditions that must be fulfilled to assign resources to activities (e.g., to have
a specific organisational role), is encoded on top of these two layers. An ASP solver
can use all this data to compute possible optimal solutions for the resource allocation
problem. We have evaluated our approach with a proof-of-concept implementation and
we have measured its performance with non-trivial scenarios that contain loops and
concurrent process instances.2

Our modular encodings in ASP provide flexibility and extensibility so that, e.g.,
additional instances of pre-defined processes can be added. In addition, the declara-
tive nature of the encodings of constraints enables an executable specification of the
problem.

The paper is structured as follows: Section 2 presents a scenario that motivates this
work as well as related work. Section 3 defines technical background required to under-
stand our approach. Section 4 describes our modular approach for resource allocation
in business processes with ASP. Section 5 presents the evaluations performed and Sec-
tion 6 concludes and outlines future work.

2 Background

In the following, we describe an example scenario that motivates this work and shows
the problems to be addressed, and then we outline related work.

2.1 Running Example

In this paper we rely on (timed) Petri nets [12] for business process modelling, com-
monly used for this purpose due to their well defined semantics and their analysis capa-
bilities. Nonetheless, any process modelling notation can be used with our approach as
long as it can be mapped to Petri nets, for which several transformations have already

2 Our encoding and the problem instances are provided at http://goo.gl/lzf1St

34

been defined [11]. Fig. 1a depicts a model representing the process of publishing a book
from the point of view of a publishing entity. In particular, when the publishing entity
receives a new textbook manuscript from an author, it must be proofread. If changes are
required, the modifications suggested must be applied on text and figures, which can
be done in parallel. This review-and-improvement procedure is repeated until there are
no more changes to apply, and the improved manuscript is then sent back to the author
for double-checking. In Fig. 1a, the numbers above the activities indicate their (default
maximum) duration in generic time units (TU)3.

The organisational model depicted in Fig. 1b shows the hierarchy of roles of a pub-
lishing entity. Specifically, it has four roles and five resources assigned to them. The
following relation specifies how long it takes to each role and resource to complete the
process activities: (Role ∪ Resource) × Activity × TU ⊃{(Copy Editor, Proofread,
2), (Glen, Proofread, 5), (Drew, Proofread, 2), (Drew, Revise Text, 2)}. For resource al-
location purposes, the duration associated with a specific resource is used in first place
followed by the duration associated with roles and finally, the duration of activities (cf.
Fig. 1a). Resources are assigned to activities according to their roles. In particular, the
relation activity-role in this case is as follows: Role×Activity ⊃{(Publisher, Receive
Manuscript), (Copy Editor, Proofread), (Copy Editor, Revise Text), (Graphic Artist, Re-
vise Visual), (Admin. Asst., Send Press Release)}.

For the purpose of planning the allocation of resources to process activities in an
optimal way, the following aspects must be taken into consideration: (i) several process
instances can be running at the same time; (ii) the review-and-improvement procedure
is a loop and hence, it may be repeated several times in a single process instance. Since
one cannot know beforehand the number of repetitions that will be required for each
process instance, assumptions must be made about it. Optimality is reached when the
activities in all instances of a business process are assigned resources so that the overall
execution of all instances takes as little time as possible.

2.2 Related Work

The existing work on resource allocation in business processes has mostly relied on
Petri nets. In fact, the goal we pursue is doable at the Petri net level with some short-
comings and limitations. Van der Aalst [16] introduced a Petri net based scheduling
approach to show that the Petri net formalism can be used to model activities, resources
and temporal constraints with non-cyclic processes. However, modelling this informa-
tion for multiple process instances leads to very large Petri nets. Moreover, other algo-
rithms for resource allocation proved to perform better than that approach [3]. Rozinat
et al. [14] used Coloured Petri nets (CPNs) to overcome the problems encountered in
traditional Petri nets. In CPNs, classes and guards can be specified to define any kind of
constraints. However, the approach proposed is greedy such that resources are allocated
to activities as soon as they are available, overlooking the goal of finding an optimal
solution. This may make the allocation problem unsatisfiable.

Several attempts have also been done to implement the problem as a constraint
satisfaction problem. For instance, Senkul and Toroslu [15] developed an architecture

3 Please, note that events are instantaneous, and hence, they take zero time units.

35

to specify resource allocation constraints and a Constraint Programming (CP) approach
to schedule a workflow according to the constraints defined for the tasks. However,
they aimed at obtaining a feasible rather than an optimal solution and the approach
does not support the schedule of concurrent workflows. Besides, Heinz and Beck [7]
demonstrated that models such as Constraint Integer Programming (CIP) outperform
the standard CP formulations. In addition, loops are disregarded in these approaches.

Resource allocation in projects has been widely investigated [17, 8]. However,
projects differ from business processes in that they are typically defined to be exe-
cuted only once and decision points are missing. Therefore, the problem is approached
in a different way. The agent community has also studied how to distribute a number of
resources among multiple agents [4, 19]. Further research in necessary to adapt those
results to resource allocation in business processes [18].

3 Preliminaries

Timed Petri Nets [13] associate durations with transitions: a timed Petri net is a 5-
tuple NT = 〈P, T, F, c,M0〉 such that P is a finite set of places, T is a finite set of
transitions, with P ∩ T = ∅, F ⊂ (P × T) ∪ (T × P) describes a bipartite graph, M0

is the initial marking. and c : T → N is a function that assigns firing delays to every
transition t ∈ T . Here, a marking(state) M : P → Z+ assigns to each place a non-
negative integer, denoting number of tokens in places. For each t ∈ T the input place
set •t = {p ∈ P | (p, t) ∈ F}. The output place set t•, and analogously input •p (and
output p•,resp.) transition sets of a place p ∈ P can be defined analogously. A transition
may fire, written t−→, when all p ∈ •t have tokens: all tokens in •t are consumed and
tokens produced in each p ∈ t•.

A Fig. 1a shows an example of a timed Petri net: circles represent places, squares
represent transitions, and numbers in brackets on transitions denote firing delays. Filled
squares denote “silent” transitions that have no firing delays, i.e., c(t) = 0. However,
note that also normal transitions that correspond to activities can have no delay, e.g., tm
in Fig. 1a.

A marking Mk is reachable from Mk−1 in one step if Mk−1
tk−1−−−→ Mk. A firing

sequence of transitions −→σ = 〈t1t2...tn〉 changes the state of the Petri net at each firing:
M0

t1−→ M1
t2−→ M2

...−→ Mn. In this paper we use 1-safe Petri nets, i.e., each place
contains at most one token in any state. NT is called sound if from every reachable
state, a proper final state can be reached in N . NT is called free-choice if every for
transitions t1 and t2, •t1 ∩ •t2 6= ∅ implies •t1 = •t2.

Answer Set Programming (ASP) [1, 6] is a declarative (logic-programming-style)
paradigm for solving combinatorial search problems

An ASP program Π is a finite set of rules of the form

A0:-A1, . . . , Am, not Am+1, . . . , not An. (1)

where n≥m≥ 0 and each Ai ∈σ are (function-free first-order) atoms; if A0 is empty
in a rule r, we call r a constraint, and if n = m = 0 we call r a fact. Whenever Ai is a

36

first-order predicate with variables within a rule of the form (1), this rule is considered
as a shortcut for its “grounding” ground(r), i.e., the set of its ground instantiations
obtained by replacing the variables with all possible constants occurring inΠ . Likewise,
we denote by ground(Π) the set of rules obtained from grounding all rules in Π .

Sets of rules are evaluated in ASP under the so-called stable-model semantics,
which allows several models (so called “answer sets”), that is subset-minimal Herbrand
models, we again refer to [1] and references therein for details.

ASP Solvers typically first compute (a subset of ground(Π), and then use a DPLL-
like branch and bound algorithm is used to find answer sets for this ground program.
There are various solvers [2, 9] for ASP problem specifications, we use clasp [6] for
our experiments herein (cf. Section 5), as one of the most efficient implementations
available.

As syntactic extension, in place of atoms, clasp allows set-like
choice expressions of the form E = {A1, . . . , Ak} which are true for any
subset of E; that is, when used in heads of rules, E generates many an-
swer sets, and such rules are often referred to as choice rules. For instance,
Π4 = {lights on.{shop open, door locked}:-lights on.} has both answer
sets of Π3 plus the answer set {lights on}. Note that in the presence of choice rules,
answer sets are not necessarily subset-minimal, we refer to [6] for details.

Another extension supported in clasp are optimisation statements [6] to indicate
preferences between possible answer sets:

#minimize {A1 : Body1 = w1, . . . , Am : Bodym = wm}

associates integer weights (defaulting to 1) with atoms Ai (conditional to Bodyi being
true), where such a statement expresses that we want to find only answer sets with the
smallest aggregated weight sum; again, variables in Ai : Bodyi = wi are replaced at
grounding w.r.t. all possible instantiations.

Finally, many problems conventiently modelled in ASP require a boundary param-
eter k that reflects the size of the solution. However, often in problems like planning or
model checking this boundary (e.g., the plan length) is not known upfront, and there-
fore such problems are addressed by considering one problem instance after another
while gradually increasing this parameter k. However, re-processing repeatedly the en-
tire problem is a redundant approach, which is why incremental ASP (iASP) [6] natively
supports incremental computation of answer sets; the intuition is rooted in treating pro-
grams in program slices (extensions). In each incremental step, a successive extension
of the program is considered where previous computations are re-used as far as possible.

An iASP program is a triple (B,A[k], Q[k]), where B describes static knowledge,
and A[k] and Q[k] are ASP programs parameterized by the incremental parameter k ∈
N+. In the iterative answer set computation of iASP, while the knowledge derived from
the rules in A[k] accumulates as k increases, the knowledge obtained from Q[k] is only
considered for the latest value of k.A[k] andQ[k] are called cumulative knowledge and
volatile knowledge, resp. More formally, an iASP solver computes in each iteration i

Π[i] = B ∪⋃
1≤j≤iA[k/j] ∪Q[k/i]

37

until an answer set for some (minimum) integer i ≥ 1 is found. We will demonstrate
next, how iASP can be successfully used to model and solve various variants of resource
allocation problems in business process management.

4 Resource Allocation with iASP

For tackling the problem of resource allocation in business processes, we have devel-
oped a modular iASP program consisting of three layers. The bottom layer is the generic
iASP encoding ΠN for finding a firing sequence between initial and goal markings of
a 1-safe Petri net N . This provides a marking of N at each value of parameter k. On
a second layer we extend ΠN towards ΠT to encode timed Petri Nets, i.e., we support
business processes encoded as timed Petri nets whose activities can have a duration.
Consequently, this encoding cannot only compute possible markings, but also the over-
all duration for a firing sequence. In other words, now we also know about the value of
the overall time spent time at a firing sequence of length k. In the upper layer ΠR, we
include rules and constraints about resources in order to encode an iASP program that
allocates activities to available resources for a certain period of time.

Please, note some general assumptions that we make about the structure of a re-
source allocation problem: (i) no resource may process more than one activity at a
time; (ii) each resource is continuously available for processing; (iii) no pre-emption,
i.e., each activity, once started, must be completed without interruptions; and (iv) the
processing times are independent of the schedule, and they are known in advance. These
assumptions are common in related approaches [16].

4.1 ΠN : A Generic Formulation of 1-safe Petri Nets

Based on the notions introduced in Section 3, we formalise the firing dynamics of 1-safe
Petri net N = 〈P, T, F,M0〉 in an iASP program (BN , AN [k], QN [k]). Given a goal
state Mk, which for the sake of simplicity we assume to be defined in terms of a single
goal place pg , the aim is to find a shortest possible firing sequence −→σ = 〈t1t2...tk〉 that
does not violate the constraints, from M0 to Mk.

BN : N = 〈P, T, F,M0〉 is represented using predicates inPlaceN (p, t) and
outPlaceN (p, t) that encode F . We encode different instances i of N by the pred-
icate instanceN , which allows us to run the allocation problem against different in-
stances of the same process; initial markings of instance M0i are defined via predicate
tokenAtN (P0, k0, i) where for each p ∈ P0, M0(p) = 1.4

AN [k]: is shown in Fig. 2. Rule (2) guesses all subsets of possible firing actions
for each instance of N . Constraint (3) ensures that any transition t ∈ T is fired only
if all input places in •t have tokens. Rule (4) models the effect of the action fire
on output places by assigning a token to each output place in the step following the
firing. Constraint (5) prohibits concurrent firings of transitions t ∈ p•. Rules (6) and (7)
preserve tokens at place p in successive steps if none of the transitions t ∈ p• fires.

4 Since in the following we only consider instances of the same Petri Net, we will drop the
subscript N in the predicates.

38

AN [k] :

{fire(T, k, I) : inPlace(P, T), instance(I)}. (2)
:-fire(T, k, I), instance(I), inPlace(P, T), not tokenAt(P, k, I). (3)
tokenAt(P, k, I):-fire(T, k− 1, I), outPlace(P, T), instance(I). (4)
:-inPlace(P, T1), inPlace(P, T2), T1! = T2, fire(T1, k, I), fire(T2, k, I), (5)

instance(I).

consumeToken(P, k, I):-inPlace(P, T), fire(T, k, I), instance(I). (6)
tokenAt(P, k, I):-tokenAt(P, k− 1, I), not consumeToken(P, k− 1, I). (7)
QN [k] :

:-not tokenAt(pg, k, I), instance(I). (8)

Fig. 2: 1-safe Petri net formulation in iASP

QN [k]: Finally, constraint (8) in Fig. 2 enforces a token to reach the goal place pg (for
all instances i ∈ I). The computation ends as soon as this constraint is not violated in
an iteration of the iASP program, i.e., it computes the minimally necessary number of
iterations k to reach the goal state.

4.2 ΠT : Activity Scheduling using Timed Petri Net

In order to model activity durations, we extend the above iASP encoding towards Timed
Petri nets: that is,ΠN is enhanced with the notion of time inΠT . By doing so,ΠN∪ΠT

becomes capable of scheduling activities in instances of a timed Petri net NT .

BT : We expand the input of ΠN with facts related to time and with the rules that
are independent from the parameter k. For each fact tokenAt(p0, k0, i) previously
defined we add in BT a fact timeAt(p0, c0, k0, i) where c0 is the initial time at p0. In
order to distinguish activity transitions and (“silent”) non-activity transitions5, we add
facts activity(t) for all activities. Durations of activities are specified with facts
timeActivity(t,c) where t is an activity and c ∈ Z+. The remainder of BT is
given by rules (9,10) in Fig. 3: rule (9) defines firing delays of each transition in N and
rule (10) assigns duration zero to activity transitions per default, where the delay is not
otherwise specified.

AT [k]: Rule (13) defines the effect of action fire on timeAt for all output places
t• where t is a non-activity transition. In this case, the maximum time among the input
places, which is computed by rules (11,12), is propagated over all output places. As
opposed to (13), rule (14) defines the effect of action fire on timeAt for activity
transitions. Time value derived in rule (14) for the next step is the sum of the maximum
time value at the input places and the value of the activity duration. Rule (15) conserves
the time value of a place in the succeeding step k in case the transition does not fire at
step k − 1.

5 Recall: in Petri nets representing business processes, activity transitions are empty squares
while silent transitions are represented in filled squares (cf. Fig. 1a).

39

BT :

firingDelay(T, C):-timeActivity(T, C). (9)
firingDelay(T, 0):-not timeActivity(T,), activity(T). (10)
AT [k] :

greTimeInPlace(P1, T, k, I):-inPlace(P1, T), inPlace(P2, T), fire(T, k, I), (11)
timeAt(P1, C1, k, I), timeAt(P2, C2, k, I), P1! = P2,

C1 < C2, instance(I).

maxTimeInPlace(P, T, k, I):-inPlace(P, T), not greTimePlace(P, T, k, I), (12)
fire(T, k, I), instance(I).

timeAt(P2, C, k, I):-not activity(T), fire(T, k− 1, I), outPlace(P2, T), (13)
maxTimeInPlace(P, T, k− 1, I), timeAt(P, C, k− 1, I),

instance(I).

timeAt(P2, C1, k, I):-activity(T), fire(T, k− 1, I), outPlace(P2, T), (14)
maxTimeInPlace(P, T, k− 1, I), timeAt(P, C, k− 1, I),

firingDelay(T, D), C1 = C+ D, instance(I).

timeAt(P, C, k, I) :-not consumeToken(P, k− 1, I), inPlace(P, T), (15)
timeAt(P, C, k− 1, I), instance(I).

QT [k]
′ :

#minimize{timeAt(pg, C, k, I) : instance(I) = C} (16)

Fig. 3: Scheduling extension

QT [k]: On top of QN [k], an optimization statement (16) is added for computing an-
swer sets with the minimum time cost.

4.3 ΠR : Resource Allocation

In the last layer of our iASP program, ΠR, we additionally formalise resources and
related concepts. ΠN ∪ ΠT ∪ ΠR allow allocating resources to activities for a time
optimal execution of all defined instances of NT .

BR: The facts related to resources and organisational models are defined in
the input of ΠT . An example organisational model is shown in Fig. 1b. Facts
hasRole(r,l) relates a resource r to a role l. Activities are related to a role
via facts of the form canExecute(l,t), which means that a role l is al-
lowed to performing an activity t. An optional estimated duration for a resource
to execute an activity can be defined by timeActivityResource(t,r,c).
Similarly an optional estimated duration for a role per activity can be
defined by timeActivityRole(t,l,c). Both can override the default
timeActivity(t,c). In particular, the order (>) preferred in resource-time allo-
cation is timeActivityResource > timeActivityRole > timeActivity. This is
especially useful when a resource or a role is known to execute a particular activity in a
particular amount of time, which can be different from the default duration of the activ-
ity. In our program (cf. Fig. 4) this preference computation is encoded in rules (17-21).

40

BR :

existsTimeActivityResource(T, R):-timeActivityResource(T, R, C). (17)
existsTimeActivityRole(T, L):-timeActivityRole(T, L, C), hasRole(R, L). (18)
takesTime(T, R, C):-timeActivityResource(T, R, C). (19)
takesTime(T, R, C):-timeActivityRole(T, L, C), hasRole(R, L), canExecute(L, T), (20)

not existsTimeResource(T, R).

takesTime(T, R, C):-firingDelay(T, C), hasRole(R, L), canExecute(L, T), (21)
not existsTimeActivityResource(T, R),

not existsTimeActivityRole(T, L).

AR[k] :

{assign(R, T, C, C2, k, I) : takesTime(T, R, C), C2 = C+ D}:-inPlace(P1, T), (22)
timeAt(P1, C, k, I), activity(T), instance(I).

timeAt(P2, C2, k, I):-activity(T), assign(R, T, C1, C2, k− 1, I), (14)*
fire(T, k− 1, I), outPlace(P2, T), instance(I).

assigned(T, k, I):-assign(R, T, C1, C2, k, I). (23)
:-not assigned(T, k, I), fire(T, k, I), activity(T), instance(I). (24)
:-assign(R, T, C1, C2, K, I), assign(R1, T, C3, C4, K, I), R! = R1. (25)
:-assign(R, T1, C1, C2, K1, I1), assign(R, T2, C1, C2, K2, I2), C1! = C2, T1! = T2. (26)
:-assign(R, T, C1, C2, K1, I1), assign(R, T, C1, C2, K2, I2), C1! = C2, I1! = I2. (27)
:-assign(R, T1, C1, C2, K1, I1), assign(R, T2, C1, C2, K2, I2), (28)

C1! = C2, I1! = I2, T1! = T2.

:-assign(R, T, B1, B2, K1, I), assign(R, T2, A1, A2, K2, I2), A1 > B1, A1 < B2. (29)
:-assign(R, T, B1, B2, K1, I), assign(R, T2, A1, A2, K2, I2), A2 < B2, A2 > B1. (30)

Fig. 4: Allocation extension

Rules (17,18) are projections of optionally defined activity execution durations. Rules
(19-21) derive correct execution duration for resource-activity pairs considering both
mandatory and optional durations.

AR[k]: In the iterative part, rule (22) allocates a resource r to an activity t from time
c to time c2. Note that, for handling optional execution durations, rule (14) from Fig. 3
is replaced by rule (14)*. Rule (23) along with constraint (24) prohibits any firing of
an activity transition that is not allocated to a resource. Constraint (25) ensures that an
activity cannot be assigned to more than one resource. Constraints (26-28) guarantee
that only one resource is assigned to one activity at a time. Constraints (29,30) prevents
a busy resource to be re-assigned.

Time Relaxation In case a resource is busy at the time when s/he is required for
another activity, our program would be unsatisfiable as it is. We add rules (31) and (32)
(cf. Fig. 5) into AT [k] for allowing the demanding activity to wait until the required
resource is available again.

41

AT [k]
′ :

relaxationAt(P, C+ 1, k, I):-timeAt(P, C, k− 1, I), inPlace(P, T), activity(T), (31)
not consumeToken(P, k− 1, I), instance(I).

timeAt(P, C, k, I):-relaxationAt(P, C, k, I). (32)

Fig. 5: Time relaxation for optimality

5 Evaluation

We demonstrate the applicability and effectiveness of the proposed computational
method for resource allocation in business processes by using it with a specific pro-
cess. In order to measure performance and scalability, we conduct a batch experiment
using generated examples of timed Petri nets of different sizes.

5.1 Example Scenario

We apply our method to a business process model that specifies the process of pub-
lishing a book as described in Section 2.1. The input of the program encoded in ASP
following the explanations in Section 4 is: (i) three different instances i1, i2, i3 of the
timed Petri net depicted in Fig. 1a, whose starting times are defined as t0i1 = 0, t0i2 = 6
and t0i3 = 11, respectively; (ii) the organisational model and optional activity times for
resources and roles as shown in Fig. 1b, (iii) role-activity relation defined in Section 2.
We also add additional constraints for enforcing the firing sequence to go through the
loop present in the process two, three and one times for i1, i2 and i3, respectively.

The computed optimal resource allocation is visualised in Fig. 6. The allocation
periods are depicted as coloured rectangles with a tag on it. Each tag has three parts:
an initial with the initials of a resource, a short version of the allocated activity name
and a subscript representing the instance ID. For example, D : PR1 means that Drew
is allocated to activity Proofreading. The colours of these rectangles correspond to the
colours used for the roles depicted in Fig. 1b. Note that Amy has more than one roles in
the organisation.

The longest process instance i2 finishes in 36 time units. Several solutions were
found for that global minimum time. In Fig. 6, instances 1 and 2 finish without inter-
ruptions. However, instance 3 waits 7 time units for the availability of Glen to start
performing activity Proofread, since he is busy performing that activity for process in-
stance 2 until time unit 23. All-in-all, this computation optimises the use of resource
Oliver, who is the only Graphic Artist and is required in all the process instances.
Please, note that, e.g., in instance 2 Drew is selected to perform activity Proofread
because it takes him only 2 time units (cf. Fig. 1b), half of the default duration associ-
ated with the activity (cf. Fig. 1a). This responds to the preference order described in
Section 4.3.

5.2 Performance

For our experimental evaluation, we generated a set of sound choice-free timed Petri
nets (cf. Section 3). We varied the number of existing loops in these Petri nets and the

42

Fig. 6: Instance I - 2 loop repetitions / instance II - 3 loop repetitions / instance III - 1
loop repetition

number of parallel process instances. We use the same organisational model for all of
the generated Petri nets, specifically the one depicted in Fig. 1b. We performed these
experiments on a Linux server (4 CPU cores/2.4GHz/32GB RAM). clasp was used as
ASP solver with the multi-threading mode enabled.

The results are shown in Table 1 in two parts. In the programs on the left hand side
(1-9), no transitions in the loops are enforced to be fired. In the programs on the right
hand side (10-18), each loop in the Petri net is constrained to be followed at least one
time. The columns of the table are as follows: id is the identifier of a generated program,
|I| is the number of parallel instances, |L| is the number of loops, |f(T)| is the number
of fired transitions from initial to goal state, k is the final value of that parameter, s is the
time in seconds to find the answer set of the program, and m is the maximum memory
usage in megabytes.

For instance, it takes the solver 1.13 seconds to find an answer set for a Petri net
with one loop that is not enforced at run time, and 15.02 seconds for a similar Petri
net in which the loop is executed. This is satisfactory for many planning scenarios with
large processes, as they can be scheduled in a few seconds/minutes and executed for a
long period of time.

6 Conclusions and Future Work

We have introduced an approach for automated resource allocation in business pro-
cesses that relies on ASP to find an optimal solution. The result is a work distribution
(i.e., an activity allocation) that ensures that all the process activities can finish in the
minimum amount of time given a set of resources. Unlike similar approaches, it is ca-
pable of dealing with cyclic processes and concurrent process instances as our encoding

43

id |I| |L| |f(T)| k s m

1 1 1 10 8 1.13 10.2
2 2 1 20 21 7.38 72.2
3 3 1 38 9 176.45 432.1

4 1 2 10 3 0.57 0
5 2 2 20 21 83.03 459.4
6 3 2 42 31 199.46 756.8

7 1 3 10 11 1.27 17.9
8 2 3 20 16 28.57 229
9 3 3 38 21 85.73 475.1

id |I| |L| |f(T)| k s m

10 1 1 24 4 15.02 101.6
11 2 1 48 25 90.87 419
12 3 1 72 33 193.72 372.9

13 1 2 28 29 33.96 186.2
14 2 2 60 7 1314.73 2877.2
15 3 2 n/a n/a 10800 5744.1

16 1 3 24 25 17.5 83.9
17 2 3 48 28 161.15 496.5
18 3 3 96 4 2366.24 4473.9

Table 1: Experiments: (1-9) Loops not enforced, (10-18) Loops enforced

in ASP is flexible and extensible. Note that extensions like constraints enforcing separa-
tion and binding of duties [10] can be easily added in our formalism, which we omitted
due to space restrictions.

We plan to conduct further performance measurements and compare them to other
formalisms, e.g., constraint solvers. We are confident that there is room for optimisa-
tions (e.g., symmetry breaking [5] or similar techniques) that have been successfully
applied in ASP.

References
[1] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set pro-

gramming at a glance. Communications of the ACM, 54(12):92–103, 2011.

[2] Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco Ricca. The
Design of the Fifth Answer Set Programming Competition. CoRR, 2014.

[3] J. Carlier and E. Pinson. An Algorithm for Solving the Job-shop Problem. Man-
age. Sci., 35(2):164–176, February 1989.

[4] Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, Jrme Lang, Michel Lematre, Nico-
las Maudet, Julian Padget, Steve Phelps, Juan A. Rodrguez-aguilar, and Paulo
Sousa. Issues in multiagent resource allocation. Informatica, 30:2006, 2006.

[5] Andreas A. Falkner, Gottfried Schenner, Gerhard Friedrich, and Anna Ryabokon.
Testing object-oriented configurators with ASP. In Workshop on Configuration at
ECAI 2012, pages 21–26, 2012.

[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2012.

[7] Stefan Heinz and Christopher Beck. Solving Resource Allocation/Scheduling
Problems with Constraint Integer Programming. In COPLAS 2011, pages 23–30,
2011.

44

[8] M.H.A. Hendriks, B. Voeten, and L. Kroep. Human resource allocation in a
multi-project R&D environment: Resource capacity allocation and project port-
folio planning in practice. Int. J. of Project Management, 17(3):181–188, 1999.

[9] Marijn JH Heule and Torsten Schaub. What’s Hot in the SAT and ASP Competi-
tions. In AAAI, 2015.

[10] Maria Leitner and Stefanie Rinderle-Ma. A systematic review on security in
Process-Aware Information Systems Constitution, challenges, and future direc-
tions. Information and Software Technology, 56(3):273 – 293, 2014.

[11] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Transformations
for Business Processes - A Survey. Transactions on Petri Nets and Other Models
of Concurrency II, 2:46–63, 2009.

[12] Tadao Murata. Petri nets: Properties, analysis and applications. IEEE, 77(4):541–
580, 1989.

[13] Louchka Popova-Zeugmann. Time Petri Nets. In Time and Petri Nets, pages
139–140. Springer Berlin Heidelberg, 2013.

[14] A. Rozinat and R. S. Mans. Mining CPN Models: Discovering Process Mod-
els with Data from Event Logs. In Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN, pages 57–76, 2006.

[15] Pinar Senkul and Ismail H. Toroslu. An Architecture for Workflow Scheduling
Under Resource Allocation Constraints. Inf. Syst., 30(5):399–422, July 2005.

[16] W.M.P. van der Aalst. Petri net based scheduling. Operations-Research-Spektrum,
18(4):219–229, 1996.

[17] Jan Weglarz. Project Scheduling with Continuously-Divisible, Doubly Con-
strained Resources. Management Science, 27(9):1040–1053, 1981.

[18] Yuhong Yan, Z. Maamar, and Weiming Shen. Integration of workflow and agent
technology for business process management. In Computer Supported Coopera-
tive Work in Design, pages 420–426, 2001.

[19] Chongjie Zhang, Victor Lesser, and Prashant Shenoy. A Multi-Agent Learning
Approach to Online Distributed Resource Allocation. In International Joint Con-
ference on Artificial Intelligence (IJCAI’09), volume 1, pages 361–366, 2009.

45

Published in the Proceedings of the 14th Int. Conference on Business Process
Management: Business Process Management Forum (BPM Forum 2016), pp. 3-19,

Sep 2016, Springer LNBIP vol. 260

Resource Allocation with Dependencies
in Business Process Management Systems?

Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres

Vienna University of Economics and Business, Austria
{firstname.lastname}@wu.ac.at

Abstract. Business Process Management Systems (BPMS) facilitate the exe-
cution of business processes by coordinating all involved resources. Traditional
BPMS assume that these resources are independent from one another, which jus-
tifies a greedy allocation strategy of offering each work item as soon as it becomes
available. In this paper, we develop a formal technique to derive an optimal sched-
ule for work items that have dependencies and resource conflicts. We build our
work on Answer Set Programming (ASP), which is supported by a wide range of
efficient solvers. We apply our technique in an industry scenario and evaluate its
effectiveness. In this way, we contribute an explicit notion of resource dependen-
cies within BPMS research and a technique to derive optimal schedules.

Keywords: Answer Set Programming, optimality, resource allocation, resource
requirements, work scheduling

1 Introduction

Business Process Management Systems (BPMS) have been designed as an integral part
of the business process management (BPM) lifecycle by coordinating all resources in-
volved in a process including people, machines and systems [26]. At design time, BPMS
take as input a business process model enriched with technical details such as role as-
signments, data processing and system interfaces as a specification for the execution of
various process instances. In this way, they support the efficient and effective execution
of business processes [21].

It is an implicit assumption of BPMS that work items are independent from one
another. If this assumption holds, it is fine to put work items in a queue and offer them
to available resources right away. This approach of resource allocation, can be summa-
rized as a greedy strategy. However, if there are dependencies between work items, this
strategy can easily become suboptimal. Some domains like engineering or healthcare
have a rich set of activities for which various resources, human and non-human, are re-
quired at the same time. Resource conflicts have often the consequence that working on
one work item blocks resources such that other work items cannot be worked on. This
observation emphasizes the need for techniques to make better use of existing resources
in business processes [25].

? Funded by the Austrian Research Promotion Agency (FFG) grant 845638 (SHAPE).

47

In this paper, we address current limitations of BPMS with respect to taking such
resource constraints into account. We extend prior research on the integration of BPMS
with calendars [16] to take dependencies and resource conflicts between work items
into account. We develop a technique for specifying these dependencies in a formal way
in order to derive a globally optimal schedule for all resources together. We define our
technique using Answer Set Programming (ASP), a formalism from logic programming
that has been found to scale well for solving problems as the one we tackle [13]. We
evaluate our technique using an industry scenario from the railway engineering domain.
Our contribution to research on BPMS is an explicit notion of dependence along with a
technique to achieve an optimal schedule.

The paper is structured as follows. Section 2 presents and analyzes an industry sce-
nario. Section 3 conceptually describes the resource allocation problem. Section 4 ex-
plains our ASP-based solution and how it can be applied to the industry scenario. Sec-
tion 5 evaluates the solution. Section 6 discusses related work. Section 7 summarizes
the conclusions of the work and the future steps.

2 Motivation

In the following, we describe an industry scenario that leads us to a more detailed
definition of the resource allocation problem and its complexity.

2.1 Industry Scenario

A company that provides large-scale technical infrastructure for railway automation re-
quires rigorous testing for the systems deployed. Each system consists of different types
and number of hardware that are first set up in a laboratory. This setup is executed by
some employees specialized in different types of hardware. Afterwards, the simulation
is run under supervision.

Figure 1 depicts two process models representing the setup and run phases of two
tests. We use (timed) Petri nets [20] for representing the processes. The process activ-
ities are represented by transitions (ai). The number within square brackets next to the
activities indicates their (default maximum) duration in generic time units (TU). The
numbers under process names indicate the starting times of the process executions: 8
TU for Test-1 and 12 TU for Test-2. The processes are similar for all the testing projects
but differ in the activities required for setting up the hardware as well as in the resource
requirements associated with them. Certain resources can only be allocated to activi-
ties during working periods, i.e., we want to enforce time intervals (so called breaks)
where some resources are not available. In our scenario, no resource is available in the
intervals [0, 8),[19, 32),[43, 56), and [67, 80).

For completing tests, the available non-human resources in the organization include
13 units of space distributed into 2 laboratories (Table 1) and several units of 3 types of
hardware (Table 2). The human resources of the company are specialized in the execu-
tion of specific phases of the two testing projects, whose activities are able to complete
in a specific time. Table 3 shows available resources in different process phases and

48

t2start

t1end

TEST-1 TEST-2

S
E
T
U
P

R
U
N

[2] [2] [2] [5] [5] [5] [5] [6] [6] [6]

[10] [15]
4 2t2end

t1start

a12a5

a1 a2 a3 a4 a6 a7 a8 a9 a10 a11

Fig. 1: Workflow for two projects

therefore, their ability to conduct certain activities along with their years of experience
in the company in square brackets.

The requirements on the use of such resources in the process activities are shown
in Table 4. Each process activity requires a specific set of resources for its completion.
For instance, three of the activities involved in the setup of Test-1 require 1 employee
working on 1 unit of the hardware HW-1 in a laboratory; 1 setup activity requires 1
employee working on 1 unit of the hardware HW-2 in a laboratory; and the run activity
requires 4 employees. Besides, a test can only be executed if the whole setup takes place
in the same laboratory.

The aim in this scenario is to optimize the overall execution time of simultaneous
tests and consequently, the space usage in the laboratories.

LAB − 1 LAB − 2

Space 4 9

Table 1: Available space in labs

Type Units

HW1 hw1a, hw1b, hw1c
HW2 hw2a, hw2b, hw2c, hw2d
HW3 hw3a, hw3b, hw3c

Table 2: Available hardware (HW)

Test− 1 Test− 2

Setup Run Setup Run

Glen[7] X X
Drew[7] X
Evan[3] X
Mary[5] X X
Kate[6] X X
Amy[8] X X X

Table 3: Specialization of employees

49

2.2 Insights

The resource allocation problem1 deals with the assignment of resources and time inter-
vals to the execution of activities. The complexity of resource allocation in BPM arises
from coordinating the explicit and implicit dependencies across a broad set of resources
and activities of processes as well as from solving potential conflicts on the use of
certain resources. As we observe in our industry scenario, such dependencies include,
among others: (i) resource requirements, i.e., the characteristics of the resources that
are involved in an activity (e.g., roles or skills) (cf. Table 3); (ii) temporal requirements.
For instance, the duration of the activities may be static or may depend on the charac-
teristics of the set of resources involved in it, especially for collaborative activities in
which several employees work together (such as for the activities of the run phase of
a testing process). Furthermore, resource availability may not be unlimited (e.g., break
calendars). In addition, resource conflicts may emerge from interdependencies between
requirements, e.g., activities might need to be executed within a specific setting which
may be associated with (or share resources with) the setting of other activities (e.g., all
the setup activities of a testing process must be performed in the same laboratory).

A resource allocation is feasible if (1) activities are scheduled with respect to time
constraints derived from activity durations and control flow of the process model, and
(2) resources are allocated to scheduled activities in accordance with resource avail-
ability and resource requirements of activities. This combinatorial problem for finding
a feasible resource allocation under constraints is an NP-Complete problem [27]. How-
ever, organizations generally pursue an optimal allocation of resources to process ac-
tivities aiming at minimizing overall execution times or costs, or maximizing the usage
of the resources available. In presence of objective functions the resource allocation
problem becomes ∆P

2 [5].

3 Conceptualization of the Resource Allocation Problem

Fig. 2 illustrates our conceptualization of the resource allocation problem. We divide it
into three complexity layers related to the aforementioned dependencies and resource

1 Commonly referred as scheduling.

Activities Requirements

Te
st

-1

a1 − a3 1 Employee:Setup-1, 1 Hardware:HW-1, 1 Lab:a1-a4 same lab
a4 1 Employee:Setup-1, 1 Hardware:HW-2, 1 Lab:a1-a4 same lab
a5 4 Employee:Run-1, after execution(a.e.) release the lab for a1-a4

Te
st

-2

a6 − a8 1 Employee:Setup-2, 1 Hardware:HW-2, 1 Lab:a6-a11 same lab
a9 − a11 1 Employee:Setup-2, 1 Hardware:HW-3, 1 Lab:a6-a11 same lab
a12 2 Employee:Run-2 (hasExp>5), a.e. release the lab for a6-a11

Table 4: Activity requirements

50

Resource
Ontology

Activity
Duration

Resource
Allocation

Basic resource allocation

Advanced time management

Advanced resource management

Resource Set

Resource

Aggr.

Optimization
function

time

oc
cu

pa
nc

y
of

 ro
om

 1

co
m

pl
ex

ity

Fig. 2: Resource allocation in business processes

conflicts. Optimization functions can be applied to all types of allocation problems.
This model has been defined from the characteristics identified in our industry scenario
as well as in related literature [19].

3.1 Basic Resource Allocation

Three elements are involved in a basic resource allocation, namely: a model that stores
all the information required about the resources available, information about the ex-
pected duration of the process activities, and a language for defining the restrictions
that characterize the allocation.

Resource Ontology As a uniform and standardized representation language, we sug-
gest the use of RDF Schema (RDFS) [4] to model organizational information and re-
sources. Fig. 3 illustrates a sample RDFS ontology, in which a resource is characterized
by a type and can have one or more attributes. In particular, any resource type (e.g.
Employee) is a subclass of rdfs:Resource. The attributes are all of type rdf:Property;
domain (rdfs:domain) and range of attributes are indicated with straight arrows labeled
with the attribute name, whereas dashed arrows indicate an rdfs:subclassOf. There are
three different types of resources: Employee, Hardware and Lab, where Hardware has
three resource subtypes. Employees have attributes for their name (hasName), role(s)
(hasRole) and experience level (hasExp) in the organization (number of years). Labs
provide a certain amount of space for experiments (hasSpace). An instantiation of the
ontology is described at the bottom of the figure using the RDF Turtle syntax [2]. This
instantiation represents Tables 1-3 of the industry scenario.

51

res:Employee res:Hardware res:Lab

xsd:string

res:hasName res:hasSpace

xsd:integer

res:hasExpres:hasRole

xsd:integerres:HW1 res:HW2 res:HW3

: g l e n a r e s : Employee ; r e s : name ” Glen ” ; r e s : hasExp 7 ;
r e s : hasRo le ” S e t u p T e s t 1 ” , ” Run Tes t1 ” .

: drew a r e s : Employee ; r e s : name ”Drew ” ;
r e s : hasExp 7 ; r e s : hasRo le ” Run Tes t1 ” .

. . .
: l a b 1 a r e s : Lab , r e s : hasSpace 4 .
: l a b 2 a r e s : Lab , r e s : hasSpace 9 .
: hw1a a r e s :HW1. : hw1b a r e s :HW1. : hw1c a r e s :HW1.
: hw2a a r e s :HW1. : hw2b a r e s :HW2. : hw2c a r e s :HW2. : hw2d a r e s :HW2.
: hw3a a r e s :HW3. : hw3b a r e s :HW3. : hw3c a r e s :HW3.

Fig. 3: Resource ontology and example instantiation

Activity Duration Resource allocation aims at properly distributing available re-
sources among running and coming work items. The main temporal aspect is deter-
mined by the expected duration of the activities. The duration can be predefined ac-
cording to the type of activity or calculated from previous executions, usually taking
the average duration as reference. This information can be included in the executable
process model as a property of an activity (e.g. with BPMN [18]) or can be modelled
externally. In either case, it has to be accessible by the allocation algorithm.

Resource Allocation Resource allocation can be seen as a two-step definition of re-
strictions. First, the so-called resource assignments must be defined, i.e., the restrictions
that determine which resources can be involved in the activities [6] according to their
properties. The outcome of resource assignment is one or more2 resource sets with the
set of resources that can be potentially allocated to an activity at run time. The second
step assigns cardinality to the resource sets such that different settings can be described,
e.g. for the execution of activity a1, 1 employee with role setup-1, 1 hardware of type
HW2, and 1 unit space of a laboratory are required.

There exist languages for assigning resource sets to process activities [6, 33, 32, 7].
However, cardinality is generally disregarded under the assumption that only one re-
source will be allocated to each process activity. This is a limitation of current BPMS
that prevents the implementation of industry scenarios like the one described in Sec-
tion 2.1.

3.2 Advanced Time Management

This layer extends the temporal aspect of resource allocation by taking into account
that: (i) resource availability affects allocation, and that (ii) the resource sets allocated
to an activity may affect its duration. Regarding resource availability, calendars are

2 Since several sets of restrictions can be provided, e.g. for activity a1 resources with either role
r1 or skill s1 are required.

52

an effective way of specifying different resource availability status, such as available,
unavailable, occupied/busy or blocked [19]. Such information must be accessible by
the resource allocation module. As for the variable activity durations depending of the
resource allocation, three specificity levels can be distinguished:

– Resource-set-based duration, i.e., a triple (activity, resourceSet, duration) stat-
ing the (minimum/average) amount of time that it takes to the resources within a
specific resource set (i.e., cardinality is disregarded) to execute instances of a cer-
tain activity. For instance, (a1, technician, 6) specifies that people with the role
technician need (at least/on average) 6 TU to complete activity a1, assuming that
technician is an organisational role.

– Resource-based duration, i.e., a triple (activity, resource, duration) stating the
(minimum/average) amount of time that it takes to a concrete resource to execute
instances of a certain activity. For instance, (a1, John, 8) specifies that John needs
(at least/on average) 8 TU to complete activity a1.

– Aggregation-based duration, i.e., a triple (activity, group, duration) stating the
(minimum/average) amount of time that it takes to a specific group to execute in-
stances of a certain activity. In this paper, we use group to refer to a set of human
resources that work together in the completion of a work item, i.e., cardinality is
considered. Therefore, a group might be composed of resources from different re-
source sets which may not necessarily share a specific resource-set-based duration.
An aggregation function must be implemented in order to derive the most appro-
priate duration for an activity when a group is allocated to it. The definition of
that function is up to the organization. For instance, a group might be composed
of (John,Claire), where John has an associated duration of 8 TU for activity a1
and Claire does not have a specific duration but she has role technician, with an
associated duration of 6 TU for activity a1. Strategies for allocating the group to the
activity could be to consider the maximum time needed for the resources involved
(i.e., 8 TU), or to consider the mean of all the durations (i.e., 7 TU) assuming that
the joint work of two people will be faster than one single resource completing all
the work.

3.3 Advanced Resource Management

The basic resource allocation layer considers resources to be discrete, i.e. they are ei-
ther fully available or fully busy/occupied. This applies to many types of resources,
e.g. people, software or hardware. However, for certain types of non-human resources,
availability can be partial at a specific point in time. Moreover, they may have other
fluent attributes. For instance, cumulative resources are hence characterized by their dy-
namic attributes and they can be allocated to more than one activity at a time, e.g. in
Fig. 2 there is a resource room 1 whose occupancy changes over time.

We use the ASP solver clasp [12] due to its efficiency for our experiments. This
allows us to use integer variables as attributes. There are also other extensions of ASP
such as FASP [35] that adds the power to model continuous variables.

53

3.4 Optimization Function

Searching for (the existence of) a feasible resource allocation ensures that all the work
items can eventually be completed with the available resources. However, typically
schedules should also fulfill some kind of optimality criterion, most commonly comple-
tion of the schedule in the shortest possible overall time. Other optimization criteria may
involve for instance costs of the allocation of certain resources to particular activities,
etc.

Given such an optimization criterion, there are greedy approaches [34] providing
a substantial improvements over choosing any feasible schedule, although such tech-
niques depend on heuristics and may not find a globally optimal solution for complex
allocation problems.

We refer to [24] for further information on various optimization functions, but em-
phasize that our approach will in principle allow arbitrary optimization functions and
finds optimal solutions – similar in spirit to encodings of cost optimal planning using
ASP [10].

4 Implementation with ASP

Answer Set Programming (ASP) [12] is a declarative (logic-programming-style)
paradigm. Its expressive representation language, ease of use, and computational effec-
tiveness facilitate the implementation of combinatorial search and optimization prob-
lems (primarily NP-hard). Modifying, refining, and extending an ASP program is un-
complicated due to its strong declarative aspect.

An ASP program Π is a finite set of rules of the form:

A0 ← A1, . . . , Am, not Am+1, . . . , not An. (1)

where n≥m≥ 0 and each Ai ∈σ are (function-free first-order) atoms; if A0 is empty
in a rule r, we call r a constraint, and if n = m = 0 we call r a fact.

Whenever Ai is a first-order predicate with variables within a rule of the form (1),
this rule is considered as a shortcut for its grounding ground(r), i.e., the set of its
ground instantiations obtained by replacing the variables with all possible constants
occurring in Π . Likewise, we denote by ground(Π) the set of rules obtained from
grounding all rules in Π . Sets of rules are evaluated in ASP under the so-called stable-
model semantics, which allows several models, so called answer sets (cf. [3] for details).

ASP Solvers typically first compute a subset of ground(Π) and then use a DPLL-
like branch and bound algorithm to find answer sets for this ground program. We use
the ASP solver clasp [12] for our experiments as it has proved to be one of the most
efficient implementations available [8].

As syntactic extension, in place of atoms, clasp allows set-like choice expressions
of the form E = {A1, . . . , Ak} which are true for any subset of E; that is, when used
in heads of rules, E generates many answer sets, and such rules are often referred to as
choice rules. Another extension supported in clasp are optimization statements [12] to
indicate preferences between possible answer sets:

#minimize {A1 : Body1 = w1, . . . , Am : Bodym = wm@p}

54

associates integer weights (defaulting to 1) with atoms Ai (conditional to Bodyi being
true), where such a statement expresses that we want to find only answer sets with the
smallest aggregated weight sum; again, variables in Ai : Bodyi = wi are replaced
at grounding w.r.t. all possible instantiations. Several optimization statements can be
introduced by assigning the statement a priority level p. Reasoning problems including
such weak constraints are ∆P

2 -complete.
Finally, many problems conventiently modelled in ASP require a boundary param-

eter k that reflects the size of the solution. However, often in problems like planning or
model checking this boundary (e.g. the plan length) is not known upfront, and therefore
such problems are addressed by considering one problem instance after another while
gradually increasing this parameter k. Re-processing repeatedly the entire problem is
a redundant approach, which is why incremental ASP (iASP) [12] natively supports
incremental computation of answer sets; the intuition is rooted in treating programs
in program slices (extensions). In each incremental step, a successive extension of the
program is considered where previous computations are re-used as far as possible.

A former version of our technique is detailed in [13]. We enhance our encoding in
three folds: (1) basic resource allocation supporting multiple business processes with
multiple running instances, (2) definition of advanced resource management concepts,
and (3) definition of advanced time management concepts. The entire ASP encoding
can be found at http://goo.gl/Q7B2t4.

4.1 Basic Resource Allocation

This program schedules the activities in business processes described as timed Petri
nets (cf. the generic formulation of 1-safe Petri Nets [13, Section 4]) and allocates re-
sources to activities with respect to activity-resource requirements. To achieve this, the
program finds a firing sequence between initial and goal places of given processes,
schedules the activities in between, and allocates resources by complying with re-
source requirements. In our program, a firing sequence is represented as predicates
fire(a,b,i,k), which means that an activity a of a business process b in instance
i is fired at step k. Starting time of each activity in the firing sequence is derived from
the time value accumulated at the activity’s input place p. A time value at a place p is
represented by the predicate timeAt(p,c,b,i,k), where c is the time value.

A resource set is defined as a rule that derives the members of the set that satisfy a
number of properties. These properties can be class memberships or resource attributes
defined in resource ontology(cf. Section 3.1). Note that, any resource ontology
described in RDF(S) can be easily incorporated/translated into ASP [11]. A resource
set is represented with the predicate resourceSet(R,id), where R is a set of
discrete resources and id is the identifier of the set. We explain the following resource
sets following our industry scenario:
All employees that can take part in the setup phase of Test-1:
resourceSet(R,rs set1):-employee(R), hasRole(R,setup1).

All employees that can take part in the run phase of Test-2 and have a working
experience greater than 5 years:
resourceSet(R,rs ex2):-employee(R), hasRole(R,run2), hasExp(E),

E>5.

55

All hardware resources of type HW2:
resourceSet(R,rs h2):-hardware2(R).

After defining resource sets, we define resource requirements of an activity a
with the predicate requirement(a,id,n) where id refers to a specific re-
source set and n is the number of resources that activity a requires from this set.
For instance, requirement(a12,rs ex2,2) means that activity a12 requires 2
resources from the resource set rs ex2. The resource requirements that we sup-
port include typical access-control constraints [6]. In particular, Separation of du-
ties (SoD) and binding of duties(BoD) are implemented in our program by using the
predicate separateDuties(a1,b1,a2,b2), which separates the resources allo-
cated to the activity a1 of process b1 from the resources allocated to a2 of b2; and
bindDuties(a1,b1,a2,b2), which binds the resources allocated to the activity a1
of process b1 with the resources allocated to a2 of b2.

4.2 Advanced Time Management

Default durations of activities are defined in the timed Petri nets and represented as
activityDuration(T,D) in our program. This default duration can be overwrit-
ten by d when any resource r that belongs to a resource set rs is assigned to a certain
activity a of the process b by using the predicate rSetActDuration(rs,a,b,d).
In a similar fashion, the default duration can be overwritten by a new value d when a
certain resource r is assigned to a certain activity a of the process b by using the
predicate resActDuration(r,a,b,d). The order (>) preferred in activity time
is resActDuration>rSetActDuration>activityDuration. This is es-
pecially useful when a resource or a resource set is known to execute a particular activity
in a particular amount of time, which can be different from the default duration of the
activity.

As one activity can be allocated to a group of resources (cf. Section 3.2), an aggrega-
tion method might be needed. Our default aggregation method identifies the maximum
duration within the group and uses it for allocation. This method can be modified with
different aggregation options that fit in the purpose of allocation scenario.

In many real-life projects, certain resources are only available during the working
periods (a.k.a. break calendars). We model this by break(rs, c1,c2) that forbids
allocation of resources in the resource set rs between time c1 and c2, where c1 < c2.

For business process instances and their activities, (optionally, max. or min.) starting
or ending times can be defined using the following predicates:
actStarts(o,a,b,i,c), i.e. activity a in business process b of instance i, starts
<o> at c; actEnds(o,a,b,i,c), i.e. activity a in business process b of instance
i, ends <o> at c; bpiStarts(o,b,i,c), i.e. business process b of instance i,
starts <o> at c; bpiEnds(o,b,i,c), i.e. business process b of instance i, ends
<o> at c; where o∈ {strictly,earliest,latest}.

4.3 Advanced Resource Management

A cumulative resource has an integer value attribute describing the state of the resource.
This value can increase or decrease when the resource is consumed or generated by an

56

te
st

-1
te

st
-2

8 66
a1 a2 a3a4

a5

a9a10a11

a6a8
a7 a12

.................................

lab
-1

lab
-2

18 32 42 56

Fig. 4: Optimal resource allocation for our industry scenario

activity requiring it. Definition of cumulative resource sets have one extra term for this
reason: resourceSet(R,V,id), where R is the set of cumulative resources, V is
the set of their initial value and id is the identifier of the resource set. For example:
Lab space set:
resourceSet(R,V,lab space):-lab(R),hasSpace(R,V).

Resource requirements are defined like for discrete resources, where
n is the amount of resource consumed or generated. For instance,
requirement(a1,lab space,1) consumes 1 unit of lab space when a1 is
allocated, whereas requirement(a12,lab space,-6) releases 6 units of space
by the time a12 is completed.

Resource blocking functionality allows us to block some resources between the ex-
ecution of two activities in a process. A blocked resource is not allowed to be allocated
by an activity in this period. block(a1,a2,id,n) blocks n amount of resources in
the resource set id from the beginning of a1 to beginning of a2.

4.4 Optimization Function

As aforementioned, the ASP solver clasp allows defining objectives as cost functions
that are expressed through a sequence of #minimize statements. In our encoding, we
ensure time optimality of our solutions using a minimization statement. The incremental
solver finds an upper-bound time value cupper at step k. A time optimal solution is
guaranteed at step k’ where k’= cupper/min(D), D is the set of activity durations. In
a similar way, any objective that is quantified with an integer value (e.g. cost objectives,
resource leveling, etc.) could be introduced. When there is more than one objective,
they should be prioritized.

Taking into account all the aforementioned functionality, using the encoding sum-
marized above and detailed in http://goo.gl/Q7B2t4, a time optimal solution
for our industry scenario is depicted in Fig. 4. The final allocation of resources to each
activity ai is as follows:

57

te
st

-1

8
a1 a2 a3

a4

a10

a9
a11

a6 a8
a7

a5

a12

.......................................
lab

-1
lab

-2
te

st
-2

18 32 42 56 66 80 85

Fig. 5: A greedy (suboptimal) resource allocation for our industry scenario

a1 {Amy,hw1a,lab-1(1)} a7 {Mary,hw2a,lab-2(1)}
a2 {Amy,hw1b,lab-1(1)} a8 {Amy,hw2d,lab-2(1)}
a3 {Glen,hw1c,lab-1(1)} a9 {Amy,hw3c,lab-2(1)}
a4 {Glen,hw2b,lab-1(1)} a10 {Mary,hw3b,lab-2(1)}
a5 {Glen,Drew,Ewan,Mary,lab-1(-4)} a11 {Kate,hw3a,lab-2(1)}
a6 {Kate,hw2c,lab-2(1)} a12 {Kate,Amy,lab-2(-6)}

5 Evaluation

Our resource allocation technique not only finds an optimal schedule for activities in
our industry scenario but also consequently optimizes the resource utilization. We show
the improvement in result quality by comparing an optimal allocation of the scenario
(cf. Fig 4) against a greedy allocation, depicted in Fig. 5. We use the following two
criteria for this comparison:
1. Total execution time (TET) corresponds to the end time of the last activity for each
process (e.g. a5 for process Test-1).
2. Average employee utilization (AEU): For any time unit c ∈ C, cstart is the start time,
cend is the end time of process execution, cstart≤c≤cend, a function s : c→ Rb returns
an ordered set of billable employees Rb respecting Table 3. For each element s ∈ Rb a
function wc : r → {0, 1} returns whether the employee r is working at time c. In other
words, we first sum the ratio between the number of employees allocated and the total
number of employees that potentially can take part at each time unit, and normalize this
sum using the overall execution time. AEU is calculated as described by (2).

AEU =

∑cend

i=cstart

∑
r∈s(i) wc(r)

|s(i)|
cend − cstart

(2)

For instance, in Fig. 5, s(8) = {Glen,Drew,Evan,Mary,Amy}. Note that
Kate is not in the set since she only takes part in Test-2 and Test-2 instances have
not started due to the deadline constraint bpStarts(earliest,test-2,12). At
time 8, only wc(Amy) and wc(Glen) have value of 1.

Table 5 summarizes the results obtained using the two aforementioned criteria for
the two allocation strategies. The execution of our industry scenario finishes 5 TU be-
fore under optimal allocation, which corresponds to 14% of time usage improvement

58

Optimal(Fig. 4) Greedy (Fig. 5)

TET 30 35

AEU 0.61 0.54

Table 5: Result quality comparison

Basic Resource Advanced Time Advanced
Allocation Management Res. Mgmt.

Approach Res. Type A. Level Calendar Aggreg. Dynamism Objective Formalism

[9] Both Low X - - Usage MIP
[29] Both Medium X - - Usage IP
[23] Both High X - - Any Ad-hoc

[30] Both Medium - X - Time&usage LIP
[17] Both Medium - X - Time&usage CP
[31] Both Medium - X - Makespan Ad-hoc

[28] Both Medium - X - - CP
[34] Both Medium - X - Makespan Petri N.
[13] Human Medium - X - Time ASP

Table 6: Representative approaches related to resource allocation

while AEU improves 7%. We refer the reader to [13] for scalability of our technique,
where we demonstrated that ASP performs well for resource allocation in the BPM
domain.

6 Related Work

Resource allocation has been extensively explored in various domains for address-
ing everyday problems, such as room, surgery or patient scheduling in hospitals,
crew-job allocation or resource leveling in organizations. Table 6 collects a set of
recent, representative approaches of three related domains: operating room schedul-
ing [9, 29, 23], project scheduling [30, 17, 31] and resource allocation in business pro-
cesses [34, 28, 13]. The features described in Section 3 are used for comparing them3.
Specifically, column Res. Type specifies the type(s) of resource(s) considered for alloca-
tion (human, non-human or both); column A. Level indicates the expressiveness of the
restrictions that can be defined for the allocation, among: (i) low, when a small range
of resource assignment requirements are considered and only one individual of each
resource type (e.g., one person and one room) is allocated to an activity, i.e., cardinality
is disregarded; (ii) medium, when a small range of resource assignment requirements
are considered or cardinality is disregarded; and (iii) high, when flexible resource as-
signment and cardinality are supported; column Calendar refers to whether information
about resource availability is taken into account (a blank means it is not); column Ag-
greg. indicates whether the execution time of an activity is determined by the resources
involved in it; column Advanced Res. Mgmt. shows the support for cumulative resources

3 We have adopted the vocabulary used in BPM for resource allocation [34, 28].

59

that can be shared among several activities at the same time; column Objective defines
the variable to be optimized; and column Formalism specifies the method used for re-
solving the problem.

The concept of process is not explicitly mentioned in the operating room scheduling
problem. Traditional approaches in this field tended to adopt a two-step approach which,
despite reducing the problem complexity, failed to ensure optimal or even feasible solu-
tions [23]. It is a property of the surgery scheduling problem that some resources, such
as the operating rooms, can only be used in one project at a time [23], so cardinality
is disregarded [9, 29]. However, it is important to take into account resource availabil-
ity. The most expressive approach in this domain [23] is an ad-hoc algorithm, whereas
integer programming (IP) stands out as a formalism to efficiently address this problem.

Project scheduling consists of assigning resources to a set of activities that compose
a project, so the concept of workflow is implicit. The approaches in this domain support
cardinality for resource allocation but they rely on only the resource type for creating
the resource sets assigned to an activity. These approaches implement the so-called
resource-time tradeoff, which assumes that activity completion is faster if two resources
of the same type work together in its execution [30, 17] (cf. Section 3.2). However,
they assume a constant per-period availability of the resources [31], hence calendars
are overlooked. The project scheduling problem has been repeatedly addressed with
formalisms like linear integer programming (LIP) [30] and constraint programming
(CP) [17], yet ad-hoc solutions also exist [31].

Finally, in the domain of BPM, the state of the art in resource allocation does not
reach the maturity level of the other domains despite the acknowledged importance of
the problem [1] and the actual needs (cf. Section 2.1). Similar to project scheduling,
a constant availability of resources is typically assumed. In addition, due to the com-
putational cost associated to joint resource assignment and scheduling problems [15],
the existing techniques tend to search either for a feasible solution without applying
any optimizations [28]; or for a local optimal at each process step using a greedy ap-
proach that might find a feasible but not necessarily a globally optimal solution [34].
Nonetheless, recently it was shown that global optimization is possible at a reasonable
computational cost [13]. Moreover, driven by the limitations of current BPMS, which
tend to disregard collaborative work for task completion, cardinality has been uncon-
sidered for allocation, giving rise to less realistic solutions.

In general, the optimization function depends on the problem and the objective of
the approach but it is generally based on minimizing time, makespan or cost, or making
an optimal use of the resources (a.k.a. resource leveling [22]).

7 Conclusions and Future Work
In this paper we have conceptualized the complex problem of resource allocation under
realistic dependencies that affect resources and activities as well as potential conflicts
that may arise due to simultaneous requirement of resources. Our implementation based
on ASP and its evaluation show that optimal solutions for this problem are possible,
which extends the state of the art in BPM research and could contribute to extend the
support in existing BPMS. ASP has proved to scale well [8] and can be easily integrated
with RDF ontologies [11].

60

It is not the aim of this work to provide an end-user-oriented but an effective solu-
tion. In order to reasonably use our ASP implementation with a BPMS, it is required: (i)
to map the notation used for process modeling along with the durations associated with
the activities to (timed) Petri nets, for which several techniques have been designed [14];
and (ii) the integration of languages for defining all the requirements which could be
used by non-technical users in the system as well as their mapping to ASP. However,
to the best of our knowledge, there is not yet such an expressive end-user-oriented lan-
guage but languages that allow a partial definition of the requirements [7, 33].

As future work we plan to compare our technique with existing approaches on other
optimal resource allocation techniques, explore the preemptive resource allocation as
well as to apply our technique in other domains.

References

[1] Michael Arias, Eric Rojas, Jorge Munoz-Gama, and Marcos Sepúlveda. A Frame-
work for Recommending Resource Allocation based on Process Mining. In BPM
2015 Workshops (DeMiMoP), page In press, 2015.

[2] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers.
Turtle – Terse RDF Triple Language. W3C Candidate Recommendation, February
2014. https://www.w3.org/TR/turtle/.

[3] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set pro-
gramming at a glance. Communications of the ACM, 54(12):92–103, 2011.

[4] Dan Brickley and R.V. Guha. RDF Schema 1.1. W3C Recommendation, February
2014. http://www.w3.org/TR/rdf-schema/.

[5] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Enhancing disjunc-
tive datalog by constraints. IEEE Trans. on Knowledge and Data Engineering,
12(5):845–860, 2000.

[6] Cristina Cabanillas, Manuel Resinas, Adela del Rı́o-Ortega, and Antonio Ruiz-
Cortés. Specification and Automated Design-Time Analysis of the Business Pro-
cess Human Resource Perspective. Inf. Syst., 52:55–82, 2015.

[7] Cristina Cabanillas, Manuel Resinas, Jan Mendling, and Antonio Ruiz Cortés.
Automated team selection and compliance checking in business processes. In
ICSSP, pages 42–51, 2015.

[8] Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco Ricca. De-
sign and results of the fifth answer set programming competition. Artificial Intel-
ligence, 231, 2016.

[9] Pedro M Castro and Inês Marques. Operating room scheduling with generalized
disjunctive programming. Computers & Operations Research, 64:262–273, 2015.

[10] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres.
Answer set planning under action costs. J. Artif. Intell. Res. (JAIR), 19:25–71,
2003.

61

[11] Thomas Eiter, Giovambattista Ianni, Thomas Krennwallner, and Axel Polleres.
Rules and Ontologies for the Semantic Web. In Reasoning Web 2008, volume
5224, pages 1–53. San Servolo Island, Venice, Italy, 2008.

[12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Morgan & Claypool Publishers, 2012.

[13] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Automated
Resource Allocation in Business Processes with Answer Set Programming. In
BPM Workshops (BPI), page In press, 2015.

[14] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Transformations
for Business Processes - A Survey. Transactions on Petri Nets and Other Models
of Concurrency II, 2:46–63, 2009.

[15] Michele Lombardi and Michela Milano. Optimal methods for resource allocation
and scheduling: a cross-disciplinary survey. Constraints, 17:51–85, 2012.

[16] Ronny Mans, Nick C. Russell, Wil M. P. van der Aalst, Arnold J. Moleman, and
Piet J. M. Bakker. Schedule-aware workflow management systems. Trans. Petri
Nets and Other Models of Concurrency, 4:121–143, 2010.

[17] Wail Menesi, Mohamed Abdel-Monem, Tarek Hegazy, and Zinab Abuwarda.
Multi-objective schedule optimization using constraint programming. In ICSC15,
2015.

[18] OMG. BPMN 2.0. Recommendation, OMG, 2011.

[19] Chun Ouyang, Moe Thandar Wynn, Colin Fidge, Arthur H.M. ter Hofstede, and
Jan-Christian Kuhr. Modelling complex resource requirements in Business Pro-
cess Management Systems. In ACIS 2010, 2010.

[20] Louchka Popova-Zeugmann. Time Petri Nets. In Time and Petri Nets, pages
139–140. Springer Berlin Heidelberg, 2013.

[21] Hajo A. Reijers, Irene T. P. Vanderfeesten, and Wil M. P. van der Aalst. The
effectiveness of workflow management systems: A longitudinal study. Int J. In-
formation Management, 36(1):126–141, 2016.

[22] Julia Rieck and Jürgen Zimmermann. Exact methods for resource leveling prob-
lems. In Handbook on Project Management and Scheduling Vol. 1. Springer, 2015.

[23] Atle Riise, Carlo Mannino, and Edmund K Burke. Modelling and solving gen-
eralised operational surgery scheduling problems. Computers & Operations Re-
search, 66:1–11, 2016.

[24] Riivo Roose. Automated Resource Optimization in Business Processes. MSc.
Thesis.

[25] Michael Rosemann and Jan vom Brocke. The six core elements of business pro-
cess management. In Handbook on Business Process Management 1, pages 105–

62

122. Springer, 2015.

[26] Geary A Rummler and Alan J Ramias. A framework for defining and designing
the structure of work. In Handbook on Business Process Management 1, pages
81–104. Springer, 2015.

[27] David S. Johnson and Michael R. Garey. Computers and Intractability: A Guide
to the Theory of NP-Completeness. WH Free. Co., San Fr, 1979.

[28] Pinar Senkul and Ismail H. Toroslu. An Architecture for Workflow Scheduling
Under Resource Allocation Constraints. Inf. Syst., 30(5):399–422, July 2005.

[29] Thiago AO Silva, Mauricio C de Souza, Rodney R Saldanha, and Edmund K
Burke. Surgical scheduling with simultaneous employment of specialised human
resources. European Journal of Operational Research, 245(3):719–730, 2015.

[30] Ming-Fung Francis Siu, Ming Lu, and Simaan AbouRizk. Methodology for crew-
job allocation optimization in project and workface scheduling. In ASCE, pages
652–659, 2015.

[31] Arno Sprecher and Andreas Drexl. Multi-mode resource-constrained project
scheduling by a simple, general and powerful sequencing algorithm1. European
Journal of Operational Research, 107(2):431 – 450, 1998.

[32] L. J. R. Stroppi, O. Chiotti, and P. D. Villarreal. A BPMN 2.0 Extension to Define
the Resource Perspective of Business Process Models. In CIbS’11, 2011.

[33] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Inf. Syst., 30(4):245–275, 2005.

[34] W.M.P. van der Aalst. Petri net based scheduling. Operations-Research-Spektrum,
18(4):219–229, 1996.

[35] Davy Van Nieuwenborgh, Martine De Cock, and Dirk Vermeir. Fuzzy answer set
programming. In Logics in Artificial Intelligence, pages 359–372. Springer, 2006.

63

Published in the International Journal on Expert Systems with Applications (ESWA),
Volume 205, Number 117599, May 2022, Elsevier.

Benchmarking Answer Set Programming Systems for
Resource Allocation in Business Processes

Giray Havur1,2, Cristina Cabanillas3, and Axel Polleres1,4

1Vienna University of Economics and Business, Austria
{name.surname}@wu.ac.at

2Siemens AG Österreich, Technology, Vienna, Austria
{name.surname}@siemens.com

3SCORE Lab & I3US Institute, Universidad de Sevilla, Seville, Spain
{namesurname}@us.es

4Complexity Science Hub, Vienna, Austria

Abstract. Declarative logic programming formalisms are well-suited to model
various optimization and configuration problems. In particular, Answer Set Pro-
gramming (ASP) systems have gained popularity, for example, to deal with
scheduling problems present in several domains. The main goal of this paper
is to devise a benchmark for ASP systems to assess their performance when deal-
ing with complex and realistic resource allocation with objective optimization. To
this end, we provide (i) a declarative and compact encoding of the resource allo-
cation problem in ASP (compliant with the ASP Core-2 standard), (ii) a config-
urable ASP systems benchmark named BRANCH that is equipped with resource
allocation instance generators that produce problem instances of different sizes
with adjustable parameters (e.g., in terms of process complexity, organizational
and temporal constraints), and (iii) an evaluation of four state-of-the-art ASP sys-
tems using BRANCH. This solid application-oriented benchmark serves the ASP
community with a tool that leads to potential optimizations and improvements in
encodings and further drives the development of ASP solvers. On the other hand,
resource allocation is an important problem that still lacks adequate automated
tool support in the context of Business Process Management (BPM). The ASP
problem encoding, ready-to-use ASP systems and problem instance generators
benefit the BPM community to tackle the problem at scale and mitigate the lack
of openly available problem instance data.

Keywords: Resource allocation, business process management, answer set pro-
gramming, benchmark

1 Introduction

Business Process Management (BPM) is a discipline in operations management that
aims at improving corporate performance by properly managing and optimizing a com-
pany’s business processes. A business process is a collection of related events, activities
and decisions that involve a number of human and non-human resources and that col-
lectively lead to an outcome that is of value to an organization or its customers [1].
As an integral part of business processes, resources have to be considered throughout
all the stages of the BPM life cycle, which iterates from process discovery and mod-
eling to process execution and monitoring, targeting continuous process improvement.

65

At run time, a process execution engine creates business process instances and allo-
cates specific resources to the tasks to be completed according to predefined criteria.
Such criteria include, for example, constraints that comprise the characteristics of re-
sources needed for each process task. Regarding human resources, these characteristics
are usually reflected in organizational models that contain all the relevant data about the
resources, such as their roles, skills and any other valuable information. For instance,
Role-Based Access Control (RBAC) [2] is very often used for assigning resources to
process tasks based on the organizational roles they are associated with. As a result,
during process execution, at the due time for each activity only the required resource
will be picked up from the set of candidates (i.e., among suitable resources according
to the resource assignment constraints) and allocated to the task. Such a selection and
scheduling of resource assignments is addressed in Resource Allocation in Business
Processes (RABP).

An RABP problem comprises several components: a process model that describes
the control flow of activities (e.g., precedence and concurrency relations), an organi-
zational model that characterizes resources and their roles to enable activity execu-
tions [3], and a temporal model that designates activity duration estimations. Moreover,
process-oriented organizations are also concerned with carrying out RABP under opti-
mization objectives so that one or many process performance measures (e.g., execution
time and cost) are optimized [1], which adds to the complexity of RABP. One way of
approaching this problem is by encoding it using a declarative programming formal-
ism. Answer Set Programming (ASP), a declarative logic programming dialect partic-
ularly suitable to model combinatorial search problems, appears to be a good candi-
date for this purpose as it has been used to solve various hard computational problems
and proved to maintain a balance between expressiveness, ease of use and computa-
tional effectiveness [4]. ASP programs consist of clauses that look similar to Prolog
rules [5] but the underlying computational mechanisms, which are based on the sta-
ble model semantics [6], are different [7]: rather than via resolution-based proofs, an
ASP program is first grounded to a finite set of clauses where each rule with variables
is instantiated as equivalent propositional rules without variables. Afterward, a solver
searches for answer sets (i.e., solutions) of the ground program. This is typically done
by relying on advanced conflict-driven, heuristic search procedures developed in the
area of propositional satisfiability checking (SAT) [8]. Moreover, apart from rules and
hard constraints, in the absence of complete information, default behaviors related to
an allocated resource (e.g., assumed/default duration of a generic activity, potentially
overridden by a known different duration for a specific resource/role) can be elegantly
represented in ASP by so-called negation-as-failure [6, 7]. Due to its flexible modeling
constructs, in prior research efforts [9, 10] we could demonstrate the suitability of ASP
as a flexible tool to encode RABP with makespan1 minimization, including relatively
complex constraints. This allowed us to identify the RABP problem as a challenging
task for state-of-the-art ASP systems (i.e., combinations of an ASP grounder and an
ASP solver); however, so far, a comprehensive set of realistic benchmark instances is
missing to stress-test the performance of ASP systems in practice on RABP.

1 The makespan is the distance in time that elapses from the start to the end of a process execu-
tion.

66

The ASP community has collected benchmarks to test ASP systems by organiz-
ing regular competitions. These competitions have both been successful in driving re-
search on more efficient grounders and solvers and optimizing and comparing problem
encodings to evaluate the different performance of otherwise equivalent encodings in
different ASP systems. Most closely related to our problem, earlier such ASP competi-
tions [11, 12] have led to the development of two scheduling-related benchmark entries
called disjunctive scheduling [12] and incremental scheduling [11]. Unlike these two
problems that were addressed in two earlier ASP competitions, the RABP problem
has a makespan optimization criteria and a more elaborate and expressive input/output
setting that is tailored for real-world applicability, for which a benchmark to compare
the performance of existing ASP solvers and grounders is still missing. In the case of
RABP, this is also due to the lack of openly available real-world data describing var-
ious scenarios in which resource allocation is required (i.e., the lack of ready-to-use
datasets), as companies typically consider information about their resources or business
processes sensitive.

In this paper, we aim at narrowing this gap by extending former contributions on
ASP-based RABP towards a common challenge benchmark for ASP solvers, driven by
and parameterizable to mimic realistic scenarios from BPM. In particular, our contribu-
tion is three-fold:

– We define a formalization of the RABP problem and provide a baseline problem
encoding in ASP.

– We develop a ready-to-use, configurable benchmark named BRANCH that generates
RABP instances with respect to given parameters to adapt the instance sizes, solves
the generated RABP instances using the configured ASP systems by the users, and
reports on the performance of the ASP systems.
We develop a ready-to-use, configurable benchmark named BRANCH that generates
RABP instances with respect to given parameters to adapt the instance sizes, solves
the generated RABP instances using the configured ASP systems by the users, and
reports on the performance of the ASP systems.

– Lastly, by using BRANCH, we present a detailed evaluation that compares four ASP
systems comprising combinations of state-of-the-art ASP grounders GRINGO [13]
and I-DLV [14], and solvers CLASP [15] and WASP [16].

Interestingly, the results of our evaluation demonstrate that real-world instance sizes
pose a considerable challenge on state-of-the-art ASP systems, which opens further
opportunities for specific performance improvements in these systems. While this might
be a valuable insight for the ASP research community, the BPM community will also
benefit from a new, declarative encoding of the RABP problem, available systems to
solve it, and a generator to produce instance datasets for testing purposes.

The remainder of this paper is structured as follows. Section 2 formally defines the
RABP problem, providing the necessary background. Based on that, Section 3 presents
our baseline problem encoding, preceded by a detailed background on ASP. Section 4
describes the functionalities of BRANCH. Section 5 evaluates the performance of differ-
ent ASP systems using our baseline ASP encoding with BRANCH. Section 6 highlights
the limitations of BRANCH. Finally, Section 7 concludes the paper, summarizing in-
sights and giving pointers for future work.

67

Receive
Manuscript
 (RM)

Proofread
Manuscript
 (PM)

Revise Text
 (RT)

Revise Visual
 (RV)

Send Press
Release
 (SPR) Manuscript revised

Fig. 1: BPMN model of the book publishing process.

RMtstartp

RTt
(Revise text)

RVt

endpSPRt
(Receive

manuscript)

PMt
(Proofread
manuscript)

(Revise visual)

(Send press
release)

Fig. 2: Petri net model of the book publishing process.

2 Formalization of the Problem

In this section, we first describe the elements involved in RABP, such as business pro-
cess models, organizational models, and the modeling of temporal aspects. Afterward,
we formalize the RABP problem.

2.1 Business Process Models

A business process is a finite set of structured activities where a specific sequence of
activities serves a particular business goal. The execution of each activity in the process
generally requires one human resource and produces an output that is of benefit for a
customer, such as a service or a product [17]. Process models are defined to represent
the different aspects of a business process, especially the functional (process activi-
ties) and the behavioral (control flow or execution order) perspectives. As for formal
descriptions of business processes, in practice, Business Process Model and Notation
(BPMN) [18] diagrams are widely used to describe business processes due to their vi-
sual understandability.

Book Publishing (BPub) Example 1. Figure Figure 1 depicts the model of a process
for publishing a book from the point of view of a publishing house, represented as a
BPMN diagram. In this process, when the publishing entity receives a new textbook
manuscript from an author, it must be proofread and revised. The improved manuscript
is then sent back to the author (press release) for double-checking.

High-level, visual process modeling notations like BPMN can be automatically
mapped to Petri nets [19, 20], which have the advantage of an exact mathematical defi-
nition of their execution semantics and their well-developed theory for process analysis.

Definition 1 (Petri Net) A Petri net is a 3-tuple PN = (P, T, F) where:
– P = {p1, p2, . . . , pn} is a set of places, represented graphically as circles;

68

RM PM RT RV SPR

RM ≻,→ ≻,→ ≻,→ ≻,→
PM ≻,→ ≻,→ ≻,→
RT ≻, || ≻,→
RV ≻, || ≻,→
SPR

Table 1: Behavioral relation matrix of the activities Figure 1.

– T = {t1, t2, . . . , tn} is a set of transitions, represented graphically as rectangles;
and

– F ⊆ (P × T)⋃(T × P) is a set of arcs (flow relations), represented as arrows and
describing a bipartite graph.

The input places and the output places of each transition t ∈ T are defined as
•t = {p ∈ P | (p, t) ∈ F} and t• = {p ∈ P | (t, p) ∈ F}, respectively. Similarly,
the input transitions and the output transitions of each place p ∈ P are defined as
•p = {t ∈ T | (t, p) ∈ F} and p• = {t ∈ T | (p, t) ∈ F}, respectively. µ : P → N0 is
a marking of PN representing the initial distribution of tokens and µ(p) maps a place
p to its number of tokens. Pictorially, tokens are represented as black dots in places
(e.g., µ(pstart) = 1 in Figure 2). A transition t is enabled in µ, denoted by (PN, µ)[t⟩,
when there is at least one token in each input place of t where p ∈ •t. An enabled
transition can therefore fire. The firing of a transition t changes the current marking µ
to µ′ by removing one token from each p ∈ •t and adding one token to each p ∈ t•,
denoted by (PN, µ)[t⟩(PN, µ′). A firing sequence of transitions σ = t1, t2, . . . , tn
changes the initial marking of the Petri net µ0 at each firing. If there exists a firing
sequence σ leading to µ′, then µ′ is reachable from µ0, denoted by µ′ ∈ [PN, µ0⟩. A
Petri net system is a pair (PN, µ0).

BPub Example 2. Figure 2 illustrates the Petri net representation of the book publishing
process described above, corresponding to the BPMN diagram in Figure 1. Activities
A ⊆ T are transitions that are graphically represented by empty squares.

Among the behavioral relations that are described in [21], between two different
transitions tx and ty of a Petri net system (PN, µ0):

– tx ≻ ty reads as tx is in the weak order relation with ty if there exists a firing
sequence σ = t1, t2, . . . , tn such that (PN, µ0)[σ⟩, x ∈ {1, . . . , n−1} and x < y ≤
n;

– tx → ty reads as tx is in the precedence relation with (i.e., precedes) ty
– tx ∥ ty reads as tx is in the concurrency relation with ty if there is a reachable marking
µ′ ∈ [PN, µ0⟩ that enables both transitions concurrently.

BPub Example 3. The behavioral relations between the activities in Figure 1 are de-
rived from the equivalent Petri net in Figure 2. These relations are summarized in Ta-
ble 1. For example, PM ≻ RT , PM → RT , and RT ∥ RV .

69

2.2 Organizational Model

Different types of organizational structures give rise to different organizational mod-
els [22]. In most cases, the employees of the organization (i.e., its human resources)
have one or more organizational roles according to their skills and characteristics, which
allow them to perform certain tasks and activities. One of the most widely known mod-
els for capturing such organizational structures based on roles is the Role-Based Access
Control (RBAC) model [2]. It describes resources, roles, and who can execute which ac-
tivity based on the roles.

Definition 2 (RBAC Model) An RBAC Model is a 6-tuple O =
(A,R,L, SAL, SRL, SLL), where:
– A is a set of activities,
– R is a set of resources,
– L is a set of roles,
– SAL ⊆ 2(A×L) is a set of activity-to-role assignments specifying which activity can

be executed by which role(s) (i.e., the resources associated with these roles), com-
monly known as resource assignment in BPM [23],

– SRL ⊆ 2(R×L) is the corresponding set of resource-to-role assignment tuples iden-
tifying the roles per resource,

– SLL ⊆ 2(L×L) is a set of role-to-role assignments that form a hierarchical (sub-role)
structure. The symbol≥ indicates the ordering operator. If l1 ≥ l2, then l1 is referred
to as the senior of l2. Conversely, l2 is the junior of l1 with the intuitive meaning that
each senior role may also execute all activities that the junior role is allowed to
execute.

BPub Example 4. Let us assume that the book publishing process (cf. Fig-
ures 1 and 2) is executed within an organization composed of six resources R =
{Amy, Glen, Drew, Emily, Oliver, Evan} that are assigned to four distinct roles
L = {Publisher, Copy Editor, Graphic Artist, Administrative Assistant}. Ta-
ble 2 shows a possible RBAC model of such a publishing entity. For instance, within
the activity-to-role relation, the first entry means that the activity Receive Manuscript
can be executed by the members of the role Publisher; within the resource-to-role rela-
tion, the first entry means that the resource Amy has the role Publisher; and within the
role-to-role relation, the first entry means that the resources with the role Publisher can
execute all the activities of the resources with the role Copy Editor but not the other
way around (specifically, Publisher ≥ Copy Editor).

2.3 Temporal Model

In a typical real-world BPM scenario, temporal constraints like durations of activities
and the tentative deadline for the completion of process instances (i.e., makespan upper
bound) are estimated by process managers.

Definition 3 (Default Duration Function) The default duration function ∆ : A→ N0

defines the activity duration in a use-case specific time unit (TU) (e.g., in minutes, hours
or days) for each activity a ∈ A.

70

activity-to-role assignments
Receive Manuscript Publisher
Proofread Manuscript Copy Editor
Revise Text Copy Editor
Revise Visual Graphic Artist
Send Press Release Administrative Assistant

resource-to-role assignments
Amy Publisher
Glen Copy Editor
Drew Copy Editor
Emily Copy Editor
Oliver Graphic Artist
Evan Administrative Assistant

role-to-role assignments
Publisher Copy Editor

Table 2: RBAC model of the publishing entity.

We may assume the temporal model is typically created by process managers.2

However, to increase the robustness of resource allocation, resource-activity, and role-
activity specific durations can be estimated from an event log using process mining
techniques [24]. Process execution data from past process instances is typically stored
in event logs or audit trails by BPM Systems (BPMS) and other information systems
used in the organization [25]. An event log usually stores for each event related to an
activity the type of event (e.g., start or end of an activity execution), resource-related
properties (at least who executed an activity3), and temporal information (when the
event took place). All the events related to a process instance constitute a trace. Each
event and each trace in an event log are typically identified by a unique event id and
trace id, respectively.

Definition 4 (Resource-Activity Duration Partial Function) The resource-activity
duration partial function δr : (L × R × A) ↛ N0 estimates the mean duration for
executing an activity a by a resource r from an event log L.

Definition 5 (Role-Activity Duration Partial Function) The role-activity duration
partial function δl : (L× L× A) ↛ N0 estimates the mean duration for executing an
activity a by a role l from an event log L where (r, l) ∈ SRL and (a, l) ∈ SAL.

BPub Example 5. Table 3 shows an excerpt L′
BPub of the event log LBPub from the

execution of the book publishing process depicted in Figure 2. For example, the sec-
ond row (with the event id e57) is logged at the start of the execution of the activity
Proofread Manuscript by Glen on 2021-10-15 at 09:16. An example of role-activity
duration estimation from an event log is as follows: given the partial event log L′

BPub in
Table 3, π(L′

BPub, Copy Editor, Proofread Manuscript) is estimated by calculating

2 Process managers design processes and implement improvements in them as needed.
3 Within an organizational context, the resources that appear in the log are among those available

according to the organizational model of the functional unit (e.g., an RBAC model).

71

event id trace id event type activity resource time stamp

...
e56 7 start Receive Manuscript(RM) Amy 2021-10-15T08:2508:25
e57 6 start Proofread Manuscript(PM) Glen 2021-10-15T09:1609:16
e58 7 end Receive Manuscript(RM) Amy 2021-10-15T09:2109:21
e59 7 start Proofread Manuscript(PM) Drew 2021-10-15T09:3509:35
e60 7 end Proofread Manuscript(PM) Drew 2021-10-15T12:4512:45
e61 7 start Revise Visual(RV) Oliver 2021-10-15T12:5512:55
e62 7 start Revise Text(RT) Drew 2021-10-15T13:0713:07
e63 8 start Receive Manuscript(RM) Amy 2021-10-15T13:1513:15
e64 6 end Proofread Manuscript(PM) Glen 2021-10-15T13:2613:26
e65 6 start Revise Text(RT) Glen 2021-10-15T14:4714:47

...

Table 3: The excerpt L′
BPub of the event log LBPub from the execution of the book pub-

lishing process in Figure 2 executed by resources defined in the RBAC model in Table 2.

default activity durations
Receive Manuscript 20
Proofread Manuscript 180
Revise Text 240
Revise Visual 240
Send Press Release 30

resource-activity durations
(Amy, Receive Manuscript) 40
(Drew, Proofread Manuscript) 247
(Glen, Proofread Manuscript) 182

(Drew, Revise Text) 186
(Glen, Revise Text) 150
(Oliver, Revise Visual) 221
(Evan, Send Press Release) 55

role-activity durations
(Publisher, Receive Manuscript) 45
(Copy Editor, Proofread Manuscript) 208
(Copy Editor, Revise Text) 171
(Graphic Artist, Revise Visual) 221
(Administrative Asst., Send Press Release) 55

Table 4: Default activity durations, resource-activity durations derived from the event
log LBPub and role-activity durations derived from the event log LBPub.

the mean of the two time intervals e57 to e64 and e59 to e60 (i.e., the copy editors
Glen and Drew’s execution intervals of Proofread Manuscript). The first time interval
is from 09:16 to 13:26 (250 min), and the second one is from 09:35 to 12:45 (190 min).
Therefore, the mean of the two durations is estimated to be 220 min. Resource-activity
duration estimations are calculated in a similar fashion. Associated with our running
example, Table 4 shows the temporal model including the resource-activity and role-
activity durations that are assumed to be extracted from the complete event log LBPub,
and the default activity durations that are assumed to be estimated by the process man-
ager while designing the process.

The selection of the duration to be considered in the allocation for a resource r’s ex-
ecution of an activity a is defined by the resource-activity duration preference function.

Definition 6 (Resource-Activity Duration Preference Function) The resource-
activity duration preference function π : (L × R × A) → N0 handles the preference
among the resource-activity duration δr(L, r, a), role-activity duration δl(L, l, a), and
default duration of an activity ∆(a).

72

π(L, r, a) =





δr(L, r, a) if δr(L, r, a) is defined,
δl(L, l, a) if δr(L, r, a) is not defined and

(r, l) ∈ SRL,

∆(a) otherwise.

π(L, r, a) returns the resource-activity duration if δr(L, r, a) has a value for the
given parameters L, r, and a. Otherwise, it returns the role-activity duration provided
that δl(L, l, a) has a value for the given parameters L, l, and awhere there is an activity-
to-role assignment (r, l) in the RBAC model. When neither of the functions can be re-
solved, π(L, r, a) returns the default activity duration ∆(a), i.e., the estimated duration
by the process manager while designing the process.

BPub Example 6. π(LBPub, Emily, PM) returns 208 time units since Emily has never
executed Proofread Manuscript herself in the past (i.e., there is no resource-activity du-
ration for (Emily, Proofread Manuscript) in Table 4), but there is a role-activity duration
for (Copy Editor, Proofread Manuscript) where (Emily, Copy Editor) ∈ SRL.

2.4 Resource Allocation in Business Processes (RABP)

RABP aims at finding a feasible allocation consisting of a set of quadruples I ⊆
2(R×A×U×U) such that (ri, ai, si, ci) ∈ I where each activity ai ∈ A is assigned a
resource ri ∈ R, a start time si ∈ U and a completion time ci = si+π(L, r, a). It is as-
sumed that each activity, once started, is planned to be completed without interruptions
in the schedule (i.e. activities are non-preemptive). The following constraints (c.1-c.4)
hold for RABP:

(c.1) Only one resource is allocated to each activity.
∀ai ∈ A : |{(ri, ai, si, ci) ∈ I}| = 1

(c.2) Each activity has only one start time.
∀i1, i2 ∈ I : ai1 = ai2 ⇒ si1 = si2

(c.3) The start time of any activity is greater than or equal to the completion time of its
preceding activities.
∀i1, i2 ∈ I : ai1 → ai2 ⇒ si2 ≥ ci1

(c.4) Same resource must not be allocated to any concurrent pair of activities that have
overlapping execution periods.
∀i1, i2 ∈ I : (ai1 ||ai2 ∧ si2 ≤ si1 < ci2)⇒ ri1 ̸= ri2
∀i1, i2 ∈ I : (ai1 ||ai2 ∧ si2 < ci1 ≤ ci2)⇒ ri1 ̸= ri2
∀i1, i2 ∈ I : (ai1 ||ai2 ∧ si2 > si1 ∧ ci2 < ci1)⇒ ri1 ̸= ri2

3 Baseline ASP Encoding of the Problem

Before we delve into the details of the encoding of RABP in ASP (Section 3.3), let us
introduce fundamentals of ASP (Section 3.1) and some theoretical motivation of why
RBAP is particularly suitable to be encoded and solved with ASP (Section 3.2).

73

3.1 Fundamentals of ASP

ASP [26] is a declarative (logic-programming-style) formalism for solving combinato-
rial search problems. An ASP program Π is a finite set of logic programming rules of
the form

a0 : − a1, . . . , am, not am+1, . . . , not an. (1)

where n≥m≥ 0 and each ai is a function-free first-order atom. The symbol “:-” is read
as if : The left-hand side (e.g., a0) is called the head of the rule and the right-hand side
(e.g., a1, . . . , am, not am+1, . . . , not an) is called the body of the rule. Semantically,
if the body holds then the head is derived. When the body is empty, the symbol “:-”
is dropped and the rule is called a fact (e.g., a0.). “not” is called negation as failure:
not ai is derived from failure to derive ai. In rule (1), if a1, . . . , am are true and none
of not am+1, . . . , not an can be proven to be true then a0 must be true. When the head
is empty in a rule, we call it a constraint. Constraints rule out models satisfying their
body atoms, which eliminates unwanted solution candidates.

Whenever ai is a first-order predicate with variables within a rule r of the form (1),
this rule is considered a shortcut for its “grounding” g(r) (i.e., the set of its instantia-
tions obtained by replacing the variables with all possible constants occurring in Π).
Likewise, we denote by g(Π) the set of rules obtained from grounding all rules in Π .

As a syntactic extension, the ASP Core-2 standard [27] allows set-like choice ex-
pressions of the form

x ≤ {a1, . . . , am} ≤ y : − an, . . . , ak, not ak+1, . . . , not al.

that is, if the body holds then an arbitrary subset of {a1, . . . , am} of minimum size of x
and maximum size of y is derived.

Example 3.1. The following ASP program describes a simplified resource allocation
setting for exemplifying the concepts in ASP. In this resource allocation setting, the
activities have no behavioral relation (i.e., precedence and concurrency relations) in
contrast to RABP.

1resource(r1). resource(r2). resource(r3).
2activity(a1;a2).

31<={allocation(R,A) : resource(R)}<=1
4:- activity(A).

5:- allocation(R,A1), allocation(R,A2), A1!=A2.

6:- allocation(r1,a2).
7:- allocation(r2,a1).

Lines (1,2) are facts stating that r1, r2 and r3 are resources; and a1 and a2

are activities – “activity(a1;a2).” is a syntactic shortcut for “activity(a1).
activity(a2).”. Line (3) is a choice expression that generates the allocation

predicates. This line can be read as follows: for each activity a ∈ {a1,a2}, derive min-
imum 1 and maximum 1 (i.e., only one) allocation(r’,a’) where a’ is equal to a

74

and R is selected from the domain of the predicate resource (i.e., r’∈ {r1,r2,r3}).
Lines (4–6) are constraints. Line (4) omits the answers in which a resource is allocated
to more than one activity. Line (5) prohibits the resource r1 to be allocated to the ac-
tivity a2, and line (6) prohibits the resource r2 to be allocated to the activity a1. The
three different answers (i.e., solutions) of this program are as follows:
A 1: allocation(r1,a1) allocation(r2,a2)
A 2: allocation(r3,a1) allocation(r2,a2)
A 3: allocation(r1,a1) allocation(r3,a2)

Aggregates [28] are arithmetic operations over a set of elements and they occur in
aggregate atoms in rule bodies that have the form #aggr{w1 : a1, . . . , wn : an} ⊕ v,
where wi is the weight assigned to ai; the operation aggr ∈{“count” ,“sum”,“min”,
“max”}; the comparison operator ⊕ ∈{“<”,“≤”,“=”,“̸=”, “>”,“≥”}; and v is a bound
value. For instance, the aggregate #sum{w1 : a1, . . . , wn : an} ⊕ v is interpreted
as true if

∑n
i=1 wi ⊕ v holds, and false otherwise. In addition, an aggregate on the

right-hand side of the assignment operator “=” may also be used for assigning the result
obtained from the aggregate’s evaluated value to a variable.

Example 3.2. Following the Example 3.1, we add the following lines in our program
for taking into account the execution times required for each resource to execute an
activity.

7execTime(r1,a1,10). execTime(r1,a2,10).
8execTime(r2,a1,20). execTime(r2,a2,20).
9execTime(r3,a1,30). execTime(r3,a2,30).

totalTime(T) :-
10T=#sum{E, A : allocation(R,A), execTime(R,A,E)}.

Lines (7–9) represent the execution times of activities by specific resources. For ex-
ample, execTime(r1,a1,10) means that the resource r1 executes the activity a1 in
10 min. Line (10) sums the total execution time of all activities with respect to the al-
located resources. The program described in lines (1–10) returns the following three
answers:
A 1: allocation(r1,a1) allocation(r2,a2) totalTime(30)
A 2: allocation(r1,a1) allocation(r3,a2) totalTime(40)
A 3: allocation(r3,a1) allocation(r2,a2) totalTime(50)

Weak constraints [29] allow us to formalize optimization problems in an easy and
natural way. In such problems we use weak constraints to indicate preferences between
possible answer sets:

:∼ a1, . . . , am. [w, t1, . . . , tn]

where t1, . . . , tn are terms (e.g., atoms), and w is a weight. The sum of weights w over
all occurrences of weighted atoms that are satisfied by a stable model are therefore
minimized.

Example 3.3. We add a weak constraint to our example as follows:
11:˜ totalTime(T). [T, T]

75

Line (11) asks the solver to minimize the variable T of totalTime in the answer.
The program described in lines (1–11) returns the following optimum answer:
OPT: allocation(r1,a1) allocation(r2,a2) totalTime(30)

Therefore, the optimum answer with the minimum value of the totalTime variable
T is returned as an answer (cf. Example 3.2).

Sets of rules are evaluated in ASP under the stable-model semantics [6], which al-
lows several models (so-called answer sets) . The ASP systems typically first compute a
g(Π) via a grounder, and then use a Davis–Putnam–Logemann–Loveland- (DPLL)-like
branch-and-bound algorithm to find answer sets for this ground program via a solver.
There are various grounders and solvers for solving problems encoded in ASP [30].
They vary in terms of the meta-heuristics and extensions incorporated in their imple-
mentations. We refer to [26] and references therein for details.

3.2 Theoretical motivation: Why to solve RABP with ASP?

In order to motivate why the RABP problem as introduced in this paper is amenable
to be solved with ASP, let us argue by comparing RABP to related problems from the
literature.

A couple of scheduling-related benchmarks have been presented and executed in the
earlier ASP competitions [11, 12]. The first entry is called disjunctive scheduling [12]
and assumes generalized activity precedence relations (i.e., any activity can be preceded
by any other activities without further limitations, such as those imposed in RABP due
to the need of having well-formed business process structures), uniform activity dura-
tions (i.e., all activities have the same execution time), and an overall deadline to be
met without additional resource-related constraints. The other related entry is called in-
cremental scheduling [11] and addresses a problem with one renewable resource4 set,
fixed activity durations (i.e., each activity has only one possible execution time) and
deadlines imposed on activities. Unlike the problems involved in these two ASP com-
petition entries, the RABP problem has different numbers of resource sets (i.e., roles),
resource- and resource-set-specific time requirements and – as the overall optimization
criterion – minimization of the total makespan.

Allocation of resources with starting times to the activities (i.e., RABP) is a far-
from-trivial task with strong implications on the quality of the final allocation, and
it is incredibly challenging from a computational perspective [31]. As for complex-
ity, RABP with makespan optimization is NP-Hard: the Job Shop Scheduling Problem
(JSSP), known to be NP-Complete for its variants with two or more machines [32], is
polynomial-time reducible to a RABP problem. A JSSP instance can simply be trans-
lated into a RABP problem instance where (i) the tasks of different jobs that require the
same machine would be represented as activities in concurrency relation, (ii) the order
of tasks in jobs maps to precedence relations of activities, (iii) machines map to roles
with only one resource, and (iv) task durations for specific machines are represented as
default activity durations. Since we provide an encoding of RABP in ASP with weak

4 Renewable resources are available with a constant amount in each time period, e.g., human
resources.

76

% selection of a makespan value
12makespanDomain(U) :- upperBound(U).
13makespanDomain(M1) :- makespanDomain(M), M1=M-1, M1>=0.
141<={makespan(M) : makespanDomain(M)}<=1.

% time domain generation from the makespan
15time(0).
16time(T1) :- time(T), T1=T+1, T1<=U, makespan(U).

% senior roles can execute activities of junior roles
17alAC(A,L1) :- llAC(L1,L2), alAC(A,L2).

% resource-activity duration interval preference
18defRAD(R,A,D) :- raDuration(R,A,D), rlAC(R,L), alAC(A,L).
19defRAD(R,A,D) :- not raDuration(R,A,_), laDuration(L,A,D), rlAC(R,L),

alAC(A,L).
20defRAD(R,A,D) :- not raDuration(R,A,_), not laDuration(L,A,_),

defActDuration(A,D), rlAC(R,L), alAC(A,L).

% (c.1)
211<={allocation(R,A,S,C): time(S), time(C), defRAD(R,A,D), C=S+D}<=1 :-

activity(A).

% (c.2)
22:- allocation(_,A,S1,_), allocation(_,A,S2,_), S1<S2.

% (c.3)
23:- prec(A1,A2), allocation(_,A1,_,C1), allocation(_,A2,S2,_), C1>S2.

% (c.4)
24:- conc(A1,A2), allocation(R,A1,S1,_), allocation(R,A2,S2,C2), S2<=S1,

C2>S1, A1<A2.
25:- conc(A1,A2), allocation(R,A1,_,C1), allocation(R,A2,S2,C2), S2<C1,

C2>=C1, A1<A2.
26:- conc(A1,A2), allocation(R,A1,S1,C1), allocation(R,A2,S2,C2), S2>S1,

C2<C1, A1<A2.

% minimization of the makespan
27:˜ makespan(M). [M,M]

Fig. 3: ASP encoding for the RABP problem.

constraints, which captures the class of ∆P
2 that is typically used for computing op-

timal solutions among such NP-complete problems with a given upper bound u to be
minimized [33], we also show that RABP is in ∆P

2 .
Moreover, ASP provides a simple and elegant representation to define and handle

the preferences/priorities of resource-bound activity durations and also default activity
durations in absence of complete information. For these reasons, therefore, the RABP
problem seems to be an ideal candidate for benchmarking ASP systems supporting
weak constraints.

3.3 ASP Encoding of RABP

Our encoding is shown in Figure 3. It encapsulates the formalization in Section 2.4
in a straightforward, declarative manner (i.e., no encoding “tricks” that optimize for a
specific ASP grounder or solver have been applied).

Input Format. The input is divided into three groups of predicates as follows.

77

Process Model
activity (rm; pm; rt; rv; spr)
prec (rm,pm; rm,rt; rm,rv; rm,spr; pm,rt; pm,rv;

pm,spr; rt,spr; rv,spr)
conc (rt,rv; rv,rt)

Organizational Model
alAC (rm,publ; pm,copyEd; rt,copyEd;

rv,graphAr; spr,adAsst)
rlAC (amy,publ; glen,copyEd; drew,copyEd;

emily,copyEd; oliver,graphAr; evan,adAsst)
llAC (publ,copyEd)

Temporal Model
defActDuration (rm,20; pm,180; rt,240; rv,240; spr,30)
raDuration (amy,rm,40; drew,pm,247;

glen,pm,182; drew,rt,186;
glen,rt,150; oliver,rv,221;
evan,spr,55)

laDuration (publ,rm,45; copyEd,pm,208;
copyEd,rt,171; graphAr,rv,221;
adAsst,spr,55)

upperBound (350)

Table 5: ASP encoding of the book publishing example described in Section 2.

Behavioral relations of activities in a business process P as described in Section 2.1:

– activity(a): a is an activity in P;
– prec(a1, a2): the activity a1 precedes the activity a2;
– conc(a1, a2): the activity a1 is concurrency with the activity a2.

An RBAC organizational model O = (A,R,L, SAL, SRL, SLL) as described in
Section 2.2:

– alAC(a, l): the resources with role l can execute activity a (i.e., (a, l) ∈ SAL);
– rlAC(r, l): resource r has role l (i.e., (r, l) ∈ SRL);
– llAC(l1, l2): the resources with role l1 can execute the same activities as the re-

sources with role l2 (i.e., (l1, l2) ∈ SLL).

A temporal model as described in Section 2.3:

– defActDuration(a, d): the default duration of activity a is estimated as d
(i.e., ∆(a) = d);

78

(oliver,rv,220,441)

(glen,rt,282,432)
(amy,pm,40,220)

0 40 220 282 432 441 496

(amy,rm,0,40) (evan,spr,441,496)

OPT: allocation(amy,rm,0,40; amy,pm,40,220; glen,rt,282,432; oliver,rv,220,441;
evan,spr,441,496)

Fig. 4: Optimal solution of the book publishing example in Section 2.

– raDuration(r, a, d): the duration of activity a is estimated as dwhen it is executed
by resource r from LP (i.e., δr(LP , r, a) = d);

– laDuration(l, a, d): the duration of activity a is estimated as dwhen it is executed
by a resource that has role l from LP (i.e., δl(LP , l, a) = d);

– upperBound(u): makespan is bounded at u time units.

The code reads as follows. Rules (12–14) select a makespan for the allocation. Rules
(15, 16) generate the time domain from the selected makespan. Rule (17) propagates
the permissions of activity executions of a junior role to a senior role (i.e., role-to-role
RBAC relations). Rules (18–20) implement the resource-activity duration preference
handling mechanism described in Definition 6. Rules (21), (22), (23), and (24–26) cor-
respond to the constraints (c.1), (c.2), (c.3), and (c.4) described in Section 2.4, respec-
tively. Finally, Rule (27) minimizes the makespan.

Output Format. For the allocation output we use the following predicate as described
in Section 2.4:

– allocation(r, a, s, c): a resource r is allocated to activity a at the start time s
until the completion time c (i.e., (r, a, s, c) ∈ I).

BPub Example 7. The book publishing example described in Section 2 (the process
model from Figure 1 and Table 1, the organizational model from Table 2, and the tem-
poral model from Table 4) is encoded in ASP as depicted in Table 5. Its optimal solution
computed by an ASP system using the RABP encoding in Figure 3 is shown in Figure 4.
The solution can be read as the following: Amy is allocated to Receive Manuscript at
time 0 and it is planned in the resultant allocation that Amy takes 40 min to execute this
activity. Then, Amy is allocated to Proofread Manuscript with a starting time of 40 min,
and she takes 180 min to execute the activity, and so on. .

4 Implementation of the ASP Systems Benchmark for RABP

The lack of datasets for benchmarking ASP systems for RABP, unlike other related
scheduling domains [34, 35, 36], led us to design and implement a ready-to-use bench-
mark BRANCH that generates RABP problem instances and solves them via user-
configured ASP Systems [37]. BRANCH is implemented in a user-friendly fashion with

79

Petri net generator RBAC generator Temporal knowledge generator
Num. of activities nA Num. of resources nR Upper bound u
Degree of concurrency ψconc Num. of roles nL Num. of resource-activity durations ndRA

Num. of role-activity durations ndLA

Table 6: Parameters for generating one RABP problem instance.

(a)

(b) (c)

Fig. 5: Screenshots of the benchmark.

a simple User Interface (UI)5. Figure 5(a) shows the main menu of BRANCH. The func-
tionalities provided within BRANCH are further described below.

Problem (Multi-)Instance Generator: This component involves a process model, an
organizational model and a temporal knowledge generator, as depicted in Figure 5(c).
An overview of required parameters for generating one RABP problem instance is sum-
marized in Table 6. The inputs of the process model generator are the number of ac-
tivities and the degree of concurrency of the generated process model. BRANCH uses
the stochastic Petri net plug-in of the process mining tool ProM [38] for generating
Petri nets. This plug-in performs a series of random structured insertions of control-
flow constructs resulting in a random Petri net that is sound, free-choice and block-
structured [39]. For example, Figure 6 shows three generated Petri nets with different
degree of concurrency. After a Petri net is generated, the behavioral relations of its activ-
ities are derived for RABP. An organizational model is then generated using the RBAC
model [2] by entering a number of resources and a number of roles that are necessary to
create the model. The RBAC model consists of a resource set, a role set, activity-to-role

5 The UI is implemented via the Python appJar module.

80

tA tBtCtD tE tF

(a) ψconc = 0

tB

tC

t0_split
t1_join

tD
t2_split

t3_jointE

tF

t4_split t5_join

tA

(b) ψconc = 50

tA

tB

t0_split

t1_join

tC
t2_split

t3_join

tD
t4_split

t5_join

tE

t6_split

t7_join

tF

t8_split

t9_join

(c) ψconc = 100

Fig. 6: Three generated Petri nets with 6 activities.

assignment tuples specifying which activity can be executed by the resources associated
with which role(s), and tuples of resource-to-role assignments identifying the roles of
a resource. Finally, the temporal knowledge is generated given an upper bound for the
execution of the process, resource-activity specific durations, and role-activity specific
durations (apart from default activity durations). Users can generate multiple problem
instances at once via the multi-instance generator. Each of the previously described
numeric inputs are parameterized by three values (lower limit, mode, and upper limit).
Therefore, their respective triangular random variables are sampled to generate multiple
RABP instances.

Problem Instance (resp. Benchmark) Viewer: Generated problem instances (resp.
benchmarks) are listed in a table including the parameters used for their generation.
The user can also remove the instances.

ASP System Component Configurator: The components of the ASP systems are
added by naming the component, its type and the executable path. We include the state-
of-the-art ASP grounders GRINGO [13] and I-DLV [14]; and ASP solvers CLASP [15]

81

and WASP [16] in BRANCH for the sake of convenience of the benchmark user. These
grounders and solvers are selected mainly due to being among the top-performing tools
in the latest ASP Competitions [11, 30].
Benchmark Configurator: To set up a new benchmark instance the user can select
problem instances to include as well as add new ASP systems to be used by selecting
and customizing (e.g., adding command line options) grounder+solver configurations
with the UI shown in Figure 5(b). A custom problem encoding for RABP can also be
selected if desired and the execution details of the benchmark (e.g., time and memory
limitations) can be further constrained.
Benchmark Executor: The user can select one benchmark instance to execute. The
grounding and solving instances are dynamically listed in the monitored interface.
Result Viewer: The time and memory usage statistics of ASP grounders and solvers
can be exported in csv format. We also implemented box plots and cactus plots for an
easier interpretation of the benchmark results.

BRANCH follows the applicable basic principles of experimental design by pro-
viding (i) randomization via the multi-instance generator, and (ii) replication via the
benchmark configurator and benchmark executor.

The benchmark software, a video that screencasts the tool usage and a separate
tutorial document are available at https://urban.ai.wu.ac.at/˜havur/
eswa2022/.

5 BRANCH in Use

As aforementioned, BRANCH is configurable in the sense that any ASP grounder
and ASP solver can be added and their optional parameters are textually given
for purposes like activating their meta-heuristics and ensuring the compatibility be-
tween grounders and solvers, when possible. We demonstrate the functionalities of
BRANCH via configuring four different ASP systems using out-of-the-box grounders
and solvers: GRINGO+CLASP (i.e., CLINGO [40]), GRINGO+WASP, I-DLV+CLASP,
and I-DLV+WASP (i.e., DLV 2.0 [41]). We use the most up-to-date versions of these
grounders and solvers: GRINGO 5.5.0, I-DLV 1.1.6, CLASP 3.3.6, WASP 2.0. These tools
are executed on their default meta-heuristic options (i.e., no extra parameter is given)
in this benchmark except for the combination of the grounder GRINGO and the solver
WASP. While configuring the ASP system GRINGO+WASP, we set the output format
of GRINGO to smodels [42] by simply adding “-o smodels” parameter for GRINGO
using the +Option button in Figure 5(b) because GRINGO’s default output format
aspif [43] is not compatible with WASP.
Platform: The benchmark has been run on an Ubuntu Linux server (64 bit), equipped
with a 16 Core 2.40 GHz Intel Xeon Processor and 128 GB RAM. Time and memory
for each run were limited to 2 h CPU clock time and 20 GB, respectively.
Problem Instances: We generated 70 problem instances using BRANCH’s instance
generator. The details of these instances are provided in Table 7. In the table, id is the
unique identifier of each instance, nA is the number of activities to which resources are
going to be allocated, ψconc is the degree of concurrency of the generated Petri net, nR

82

Table 7: Properties of problem instances.

id nA δconc nR nL SAT u id nA δconc nR nL SAT u id nA δconc nR nL SAT u

1 8 50 2 1 Y es 90 24 16 30 16 4 Y es 90 47 32 90 16 8 Y es 330
2 8 75 4 1 Y es 70 25 16 30 16 4 Y es 85 48 32 80 16 8 Y es 260
3 8 100 4 1 Y es 105 26 16 90 16 4 Y es 140 49 32 90 16 8 Y es 310
4 8 100 8 2 Y es 70 27 16 30 37 8 Y es 65 50 32 90 16 8 Y es 360
5 16 90 2 1 Y es 200 28 16 50 35 8 Y es 75 51 32 50 17 4 Y es 145
6 16 50 4 1 Y es 75 29 16 75 35 8 Y es 130 52 32 50 17 4 Y es 145
7 16 90 8 4 Y es 175 30 16 90 34 8 Y es 190 53 32 50 32 16 Y es 160
8 16 50 4 1 Y es 120 31 32 90 2 1 Y es 330 54 32 80 16 4 Y es 330
9 16 90 4 1 Y es 185 32 32 95 2 1 Y es 360 55 32 50 33 8 Y es 380
10 16 75 4 1 Y es 145 33 32 30 4 1 Y es 100 56 32 90 32 16 Y es 345
11 16 90 4 1 Y es 210 34 32 60 4 1 Y es 210 57 32 90 17 4 Y es 350
12 16 90 9 2 Y es 205 35 32 75 8 4 No 210 58 32 50 32 16 Y es 235
13 16 50 8 2 Y es 130 36 32 60 4 1 Y es 275 59 32 50 16 4 Y es 360
14 16 75 8 2 Y es 75 37 32 30 4 1 Y es 270 60 32 80 32 16 Y es 290
15 16 40 16 8 Y es 85 38 32 85 4 1 Y es 270 61 32 60 32 16 Y es 520
16 16 40 8 2 Y es 75 39 32 85 4 1 Y es 300 62 32 50 33 8 Y es 150
17 16 90 16 8 Y es 190 40 32 90 4 1 Y es 145 63 32 80 34 8 Y es 317
18 16 90 8 2 Y es 210 41 32 90 8 4 Y es 355 64 32 90 33 8 Y es 340
19 16 75 8 2 Y es 115 42 32 90 8 4 Y es 360 65 64 90 8 4 No 305
20 16 75 16 8 Y es 120 43 32 30 8 2 Y es 200 66 64 90 8 4 No 310
21 16 90 16 8 Y es 165 44 32 75 16 8 Y es 280 67 64 60 16 8 Y es 295
22 16 90 9 2 Y es 200 45 32 90 8 2 Y es 315 68 64 90 16 8 Y es 710
23 16 30 17 4 Y es 75 46 32 50 16 8 Y es 170 69 64 60 64 32 Y es 320

70 64 90 64 32 Y es 620

Table 8: Grounder statistics.

GRINGO I-DLV GRINGO I-DLV

id tim
e

m
em |g
(Π

)|

tim
e

m
em |g
(Π

)|

id tim
e

m
em |g
(Π

)|

tim
e

m
em |g
(Π

)|

1 3 7 29 3 74 20 36 1689 22 16323 960 4403 4526
2 7 8 74 4 86 25 37 1572 23 15544 1049 4272 4347
3 19 8 163 11 174 56 38 1459 18 15766 855 4284 4363
4 7 7 85 3 129 28 39 1860 20 19515 1107 5158 5422
5 68 9 527 76 598 330 40 460 15 4465 265 1300 1218
6 30 9 316 15 193 91 41 672 15 6743 1176 8736 3818
7 30 9 287 52 737 188 42 445 15 6939 925 8969 3927
8 77 9 752 46 439 239 43 513 18 8369 491 3552 2376
9 192 10 1858 116 1024 570 44 233 16 4192 26 150 292

10 112 10 1129 66 643 350 45 1245 24 21315 1307 8285 6056
11 222 11 2301 137 1226 700 46 94 11 1519 10 92 115
12 291 13 2977 252 2003 809 47 356 15 5810 37 174 394
13 95 11 972 87 821 311 48 205 15 3593 23 142 252
14 29 9 297 5 179 46 49 291 14 5129 31 164 350
15 8 8 97 1 30 14 50 463 18 6912 44 187 465
16 27 9 307 5 180 46 51 290 13 5130 20 96 182
17 43 10 456 6 54 67 52 309 16 5530 21 97 191
18 259 11 2449 227 1870 751 53 78 11 1334 8 141 111
19 75 9 684 65 595 222 54 1283 25 23428 2266 14761 6651
20 21 8 184 3 39 27 55 2011 28 32896 120 373 1073
21 31 9 344 4 49 49 56 374 17 6341 35 293 447
22 242 11 2817 151 1869 735 57 1724 21 29670 1508 18263 8335
23 37 8 345 3 32 25 58 154 12 2900 16 207 217
24 45 9 438 3 34 32 59 1643 27 27747 1431 18011 8234
25 40 8 398 3 33 29 60 253 16 4495 25 251 325
26 87 10 1025 17 567 157 61 807 19 14386 83 456 993
27 29 9 308 2 42 26 62 282 13 5158 20 154 201
28 32 9 351 3 45 30 63 1461 26 24932 85 325 800
29 109 10 1161 8 74 84 64 1624 26 26446 102 335 871
30 244 11 2214 17 96 148 65 1120 26 19233 93 198 726
31 591 14 6122 489 3151 3320 66 1268 59 20685 114 204 768
32 814 15 6860 776 3688 3744 67 1094 26 18091 86 308 678
33 246 12 2278 159 717 638 68 – 37 93938 512 737 3847
34 1092 15 9483 669 2598 2582 69 1242 22 21228 78 981 925
35 232 12 2199 21 72 161 70 5118 45 80788 279 1907 3130

83

Table 9: Solver statistics.

CLASP(GRINGO) WASP(GRINGO) CLASP(I-DLV) WASP(I-DLV)

id u time mem cmax time mem cmax time mem cmax time mem cmax

1 90 315 279 69 533 680 69 345 169 69 465 415 69
2 70 73 581 54 107 1487 54 12 200 54 37 485 54
3 105 720 1426 79 1535 3588 79 498 439 79 415 855 79
4 70 97 733 55 371 1875 55 21 257 55 50 702 55
5 200 – 5964 200 – 14000 192 3923 1865 149 – 3639 179
6 75 – 2947 68 – 7220 68 – 543 68 3037 1109 68
7 175 2305 3360 133 4788 7821 133 1217 1449 133 2971 3459 133
8 120 – 7912 98 – 18600 101 – 1302 92 – 2650 92
9 185 5302 – 192 19007 – 3196 – 6245 176

10 145 7146 12026 106 – 5279 1941 108 5014 3908 108
11 210 6646 – 207 – – 3876 – 7567
12 205 – 11788 315 – – 5156 192 – 10920
13 130 – 10487 134 96 – 2025 2042 104 2084 4368 104
14 75 1785 3190 59 2278 7411 59 84 467 59 133 983 59
15 85 115 951 64 148 2317 64 3 116 64 17 234 64
16 75 935 2985 56 432 6962 56 34 456 56 56 1003 56
17 190 5134 5547 144 7157 12500 160 68 432 144 279 418 144
18 210 – 10295 267 – – 4825 206 – 10081
19 115 – 8690 109 – 18098 100 377 1482 86 929 3162 86
20 120 479 2067 92 889 4860 92 13 205 92 33 279 92
21 165 1739 4026 124 4562 9450 124 37 344 124 111 373 124
22 200 – 11283 253 – – 4753 160 – 9817 195
23 75 1766 3395 64 1730 8062 64 10 202 64 25 283 64
24 90 4032 4319 64 2545 10498 64 25 234 64 57 299 64
25 85 1785 3793 67 2171 9018 67 14 217 67 30 289 67
26 140 – 11780 83 – 599 1571 106 1609 2888 106
27 65 1060 2995 48 388 7016 48 9 242 48 16 433 48
28 75 1433 3664 56 1013 8255 56 17 260 56 83 449 56
29 130 – 12586 122 101 – 91 609 99 183 803 99
30 190 – 9359 260 – 650 1026 143 933 1082 143
31 330 621 – 1010 – – 11872 284 –
32 360 670 – 1168 – – 13344 297 –
33 100 – 10537 258 – – 2467 – 5751
34 210 635 – 1006 – – 9483 287 –
35 210 5856 – 234 – 271 919 411 553
36 275 605 – 928 – – 16237 312 –
37 270 553 – 938 – – 15679 145 272 –
38 270 582 – 869 – – 15746 243 –
39 300 635 – 1070 – 997 – 221 –
40 145 618 – 555 – – 4612 – 10675
41 355 634 – 1017 – 796 – 161 –
42 360 406 – 795 – 565 – 145 –
43 200 366 – 628 – – 10440 76 170 –
44 280 – 17891 396 – 545 1770 210 1119 1258 210
45 315 366 – 660 – 803 – 124 –
46 170 – 17411 87 – 57 769 125 170 701 125
47 330 414 – 793 – 2194 2289 250 3650 2063 250
48 260 – 14796 307 – 499 1559 197 1034 1079 197
49 310 386 – 573 – 1241 2069 233 2896 1824 233
50 360 391 – 786 – 1998 2818 271 4946 2654 271
51 145 356 – 450 – 197 1142 110 288 954 110
52 145 347 – 506 – 469 1194 118 666 1017 118
53 160 – 15506 150 94 – 58 846 122 204 1076 122
54 330 414 – 757 – 790 – 132 –
55 380 397 – 755 – 2286 6601 163 2644 4370 163
56 345 415 – 723 – 1975 2953 258 4291 2695 258
57 350 369 – 672 – 456 – 47 –
58 235 6300 – 183 – 102 1522 132 553 1580 132
59 360 384 – 770 – 465 – 48 –
60 290 352 – 448 – 655 2120 215 1622 1962 215
61 520 399 – 812 – 677 5929 123 2685 3665 123
62 150 357 – 479 – 266 1437 126 366 1631 126
63 317 394 – 769 – 5339 4903 238 5881 4326 238
64 340 412 – 769 – – 5619 313 – 4394 274
65 305 414 – 783 – 1640 3865 2002 1933
66 310 396 – 713 – 2072 4057 2397 2091
67 295 416 – 769 – 2424 3908 221 3945 2545 221
68 710 481 – – 7885
69 320 395 – 760 – 5794 6307 238 – 7863 313
70 620 378 – 838 – 7152 – – 16188

84

gringo idlv
100

101

102

103
E
x
e
cu

ti
o
n
 t

im
e
 (

s)

clasp
(gringo)

wasp
(gringo)

clasp
(idlv)

wasp
(idlv)

101

102

103

gringo idlv

101

102

103

104

M
e
m

o
ry

 (
M

B
)

clasp
(gringo)

wasp
(gringo)

clasp
(idlv)

wasp
(idlv)

102

103

104

gringo idlv
101

102

103

104

105

G
ro

u
n
d
 p

ro
g
ra

m
 s

iz
e
 (

M
B

)

(a) (b) (c) (d) (e)

Fig. 7: Box plots regarding the performance statistics of grounders and solvers.

0 20 40 60
Number of grounded instances

0

10000

20000

30000

40000

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

gringo

idlv

0 10 20 30 40
Number of solved instances

0

10000

20000

30000

40000

50000

60000

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

clasp(gringo)

wasp(gringo)

clasp(idlv)

wasp(idlv)

(a) Grounding times (b) Solving times

Fig. 8: Sorted cactus plots.

is the number of resources, and nL is the number of roles. The SAT column indicates
if there exists a feasible solution for the problem instance in the given upper bound u.

We ran the benchmark and summarized the results in Tables 8 and 9. Table 8 shows
the performance statistics of two grounders while grounding the problem instances. In
the table, time is the CPU time in seconds, mem is the memory used in MB, and g(Π)
is the size of the ground program in MB. Table 9 presents the performance statistics of
only the ASP solvers. CLASP(GRINGO) indicates the performance of the solver CLASP
using the ground program from the grounder GRINGO. cmax is the makespan (i.e., max-
imum of the activity completion times) computed by the system, which is minimized
by the weak constraint. Within this column, bold and italic numbers are the confirmed
optima cases; and other values are the instances for which a solution is found but the
solution is not proven to be the optimal one (e.g., when the time or the memory limit
is reached). For both tables “–” within the time column means “out-of-time” and “–”
within the mem column means “out-of-memory”.

The box plots in Figure 7 visually summarize Tables 8 and 9. We logarithmically
scaled the y-axis of the plots for the sake of readability. 90% of the samples are in be-
tween the upper and lower whiskers. The solid green line represents the median, and
the dashed green line represents the mean of the sample. Figure 7(a) and Figure 7(b)

85

compare the CPU execution times of grounders and solvers. Figure 7(c) and Figure 7(d)
compare the memory usage of grounders and solvers. Figure 7(e) reports on the ground
program sizes of the instances. By looking at Figure 7(a) and Figure 7(c), we find out
that I-DLV grounds the problem instances much faster than GRINGO, although it has
a larger memory footprint. The program rewriting (i.e., intelligent projections) feature
of I-DLV is a vital optimization for this problem as the ground programs that are gen-
erated by I-DLV are much smaller than those generated by GRINGO (cf. Table 8 and
Figure 7(e)).

The cactus plots in Figure 8 separately compare the grounder and solver per-
formances. Less steep curves (cf. Figure 8(b)) and smaller memory footprint (cf.
Figure 7(d)) of CLASP(GRINGO) and CLASP(I-DLV) – in comparison to those of
WASP(GRINGO) and WASP(I-DLV) – illustrate that the ASP solver CLASP performs
better than WASP. To address the makespan minimization, both solvers contain sev-
eral solving methods: model-guided methods aim to produce models with descending
costs, and core-guided methods identify and relax unsatisfiable cores until a model is
found [15, 16]. In the default setting, CLASP uses its branch-and-bound algorithm [44],
while WASP utilizes a core-guided algorithm [45]. Results suggest that both solvers be-
have non-optimally, mainly because the given ASP encoding for the RABP problem is
rather tailored towards a declarative and readable set of rules than for a performance
gain of particular underlying solver techniques. Therefore, we see room for improve-
ment not only in solver techniques but also in bespoke problem encoding optimiza-
tions, as they have been successfully applied to other ASP benchmark problems in the
past [11].

Overall, I-DLV+CLASP completes 41 instances within the given time and memory
constraints whereas I-DLV+WASP, GRINGO+CLASP, and GRINGO+WASP complete 40,
16, and 15 instances, respectively. This result shows that I-DLV+CLASP is the most
performant ASP system of our baseline benchmark for RABP.

6 Limitations

The RABP problem is characterized by the essential ideas behind designing and manag-
ing business processes and organizational models [46, 47, 1]. Problems similar to RABP
have been widely acknowledged in research areas other than Logic Programming (LP),
such as Constraint Programming (CP), Machine Learning (ML) and Operations Re-
search (OR) [48, 31]. The survey conducted in [49] presents that automatic resource
allocation in business processes has a wide variety of implementations encompassing a
subset of capabilities for:

– allocation mode (one resource to one activity, one resource to many activities,
many resources to one activity, and many resources to many activities),

– optimization goal (finding best-fitting resource, makespan minimization, cost min-
imization, balancing workload among the resources, etc.),

– resource taxonomies and attributes (previous performance, workload, role, ex-
pertise, etc.), and

– type of evaluation (simulation experiments, experiments with real-world data, case
study, etc.).

86

Book publishing process

Proofread
manuscript

Changes
required?

Revise text

Revise visual

Send press
release

Manuscript
revised

More changes
required?

Receive
manuscript

N
o

No

Ye
s

Ye
s

Fig. 9: BPMN model of the book publishing process with decision nodes.

This survey also shows the statistics of the studies that focus on these capabilities.
To find the right balance in the complexity of the problem definition and to keep the fo-
cus on the ASP system benchmark BRANCH, we implemented the most studied capabil-
ities: allocation of one resource to one activity, finding best-fitting resource, makespan
minimization, role-based resource taxonomy (i.e., RBAC model), and performance-
based resource attributes (resource- and role-based resource-activity durations) as de-
scribed in Section 2. In our previous work, we also addressed resource allocation with
extended capabilities, namely, a Petri net firing semantics-based resource allocation [9]
that simulates the behavior of the Petri net, and an extended encoding that includes
further requirements [10], such as allocation of many resources to one activity, alloca-
tion of non-human resources, expertise levels of resources, and cost minimization. Such
capabilities could also be included in BRANCH with a reasonable degree of effort,
provided that ASP encodings are already available.

Figure 9 depicts the BPMN model of the book publishing process including decision
points. The main difference between the running example model in Figure 1 and this
model is that, in this process model, after proofreading the manuscript, if changes are
required the modifications suggested must be applied on text and figures. This review-
and-improvement loop is repeated until there are no more changes to apply. In real-
world scenarios, such decision points are crucial for describing the processes. However,
this kind of uncertainty in the execution time of processes causally divides the search
space for RABP (i.e., the complete set of activities to execute RABP cannot be known
before execution). To address this issue, first, a decision-node-free process fragment
(i.e., partial-run) needs to be generated under a number of assumptions on these deci-
sion nodes. For example, given the book publishing process including the two decision
points in Figure 9, when it is assumed that changes required at the first decision node
(the branch labeled with yes) is taken, and no more changes are required at the sec-
ond decision node (the branch labeled with no) is taken, the decision-node-free process
fragment in Figure 1 is generated. In case an assumption does not hold at run time, a
new decision-node-free process fragment (only from the decision point onward) is gen-
erated, and a new RABP instance is triggered (i.e., resource reallocation). Our previous
work investigated the most effective and robust way of generating decision-node-free
process fragments from process models with decision nodes for RABP [50]. As RABP
cannot be performed when there is a decision node in the process, we omit the deci-
sion nodes in the formalization of RABP in Section 2, and also in the problem instance
generator in Section 4.

87

7 Conclusions

We have formalized the RABP problem and provided a new benchmark for ASP sys-
tems. The results of the illustrative benchmark run show that RABP is a challenging
problem for the ASP systems that are among the most performant in the previous ASP
Competitions [11, 30]. This application-oriented benchmark would be beneficial to the
ASP community by helping assess advances in the formalism (e.g., the ease of encod-
ing – i.e., the compactness, readability, modularity and maintainability of the problem
encoding) and the computational performance of the solvers; and further, encourage the
BPM community to integrate and test RABP in the process execution environments.

Future work will involve optimizing the ASP encoding of RABP to improve its
computational efficiency to operate in large-scale real-world scenarios. It is also on our
agenda to extend BRANCH towards more flexible grounding and solving paradigms
such as multi-shot ASP solving [51] (e.g., to support the use of an incremental encoding
of RABP) and formalisms other than ASP. Moreover, devising an interface to existing
BPMSs from BRANCH might prove useful in building and deploying tailored solutions
for resource allocation needs in BPM.

Acknowledgements

This work has been partially supported by: (i) European Regional Development Fund
(ERDF)-A way of making Europe, (ii) CONFLEX project (grant number RTI2018-
100763-J-I00) funded by Ministerio de Ciencia e Innovación – Agencia Estatal de In-
vestigación (MCIN/AEI/10.13039/501100011033), and (iii) MEMENTO project (grant
number US-1381595) funded by Programa Operativo FEDER 2014-2020 and Junta de
Andalucı́a (Consejerı́a de Economı́a, Conocimiento, Empresas y Universidad). Axel
Polleres’ work is supported by TEAMING.AI project (grant number 957402) funded
by the European Union’s Horizon 2020 research and innovation program.

References
[1] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Funda-

mentals of Business Process Management. Springer, 2 edition, 2018.

[2] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and Nino Vincenzo
Verde. A formal framework to elicit roles with business meaning in RBAC sys-
tems. In Barbara Carminati and James Joshi, editors, Proceedings of the 14th
ACM Symposium on Access Control Models and Technologies, SACMAT 2009,
pages 85–94. ACM, 2009.

[3] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and David Ed-
mond. Workflow resource patterns: Identification, representation and tool support.
In Oscar Pastor and João Falcão e Cunha, editors, Proceedings of the 17th Inter-
national Conference on Advanced Information Systems Engineering, CAiSE 2005,
volume 3520 of Lecture Notes in Computer Science, pages 216–232. Springer,
2005.

88

[4] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2012.

[5] Alain Colmerauer and Philippe Roussel. The birth of Prolog. In John A. N. Lee
and Jean E. Sammet, editors, Preprints of the 2nd ACM SIGPLAN Conference on
History of Programming Languages Conference (HOPL-II), pages 37–52. ACM,
1993.

[6] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Proceed-
ings of the 5th International Conference and Symposium on Logic Programming,
pages 1070–1080. MIT Press, 1988.

[7] Vladimir Lifschitz. What is answer set programming? In Dieter Fox and Carla P.
Gomes, editors, Proceedings of the 23rd AAAI Conference on Artificial Intelli-
gence, AAAI 2008, pages 1594–1597. AAAI Press, 2008.

[8] Christian Drescher, Martin Gebser, Benjamin Kaufmann, and Torsten Schaub.
Heuristics in conflict resolution. The Computing Research Repository (CoRR),
arXiv.

[9] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Automated re-
source allocation in business processes with answer set programming. In Manfred
Reichert and Hajo A. Reijers, editors, Revised Papers of the 13th International
Business Process Management Workshops, BPM 2015.

[10] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Resource
allocation with dependencies in business process management systems. In Mar-
cello La Rosa, Peter Loos, and Oscar Pastor, editors, Proceedings of the Business
Process Management Forum, BPM Forum 2016, volume 260 of Lecture Notes in
Business Information Processing, pages 3–19. Springer, 2016.

[11] Martin Gebser, Marco Maratea, and Francesco Ricca. The seventh answer set
programming competition: Design and results. Theory and Practice of Logic Pro-
gramming, 20(2):176–204, 2020.

[12] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw
Truszczynski. The second answer set programming competition. In Esra Erdem,
Fangzhen Lin, and Torsten Schaub, editors, Proceedings of the 10th International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2009.

[13] Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub. Advances in
gringo series 3. In James P. Delgrande and Wolfgang Faber, editors, Proceedings
of the 11th International Conference on Logic Programming and Nonmonotonic
Reasoning LPNMR 2011, volume 6645 of Lecture Notes in Computer Science,
pages 345–351. Springer, 2011.

[14] Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari. I-DLV: the
new intelligent grounder of DLV. Intelligenza Artificiale, 11(1):5–20, 2017.

89

[15] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and
Torsten Schaub. Progress in clasp series 3. In Francesco Calimeri, Giovambattista
Ianni, and Miroslaw Truszczynski, editors, Proceedings of the 13th International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2015,
volume 9345 of Lecture Notes in Computer Science, pages 368–383. Springer,
2015.

[16] Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances
in WASP. In Francesco Calimeri, Giovambattista Ianni, and Miroslaw Truszczyn-
ski, editors, Proceedings of the 13th International Conference on Logic Program-
ming and Nonmonotonic Reasoning, LPNMR 2015, volume 9345 of Lecture Notes
in Computer Science, pages 40–54. Springer, 2015.

[17] Andrea Burattin. Introduction to Business Processes, BPM, and BPM Systems,
pages 11–21. Springer International Publishing, Cham, 2015.

[18] OMG. Business Process Model and Notation (BPMN), 2014. Specification.

[19] James Lyle Peterson. Petri net theory and the modeling of systems. Englewood
Cliffs, N.J., Prentice-hall, 1981.

[20] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis
of business process models in BPMN. Information and Software Technology,
50(12):1281–1294, 2008.

[21] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient consistency mea-
surement based on behavioral profiles of process models. IEEE Transactions on
Software Engineering, 37(3):410–429, 2011.

[22] Bryan Horling and Victor R. Lesser. A survey of multi-agent organizational
paradigms. Knowledge Engineering Review, 19(4):281–316, 2004.

[23] Cristina Cabanillas, Manuel Resinas, Adela del-Rı́o-Ortega, and Antonio Ruiz
Cortés. Specification and automated design-time analysis of the business process
human resource perspective. Information Systems, 52:55–82, 2015.

[24] Wil M. P. van der Aalst. Process Mining - Data Science in Action. Springer, 2
edition, 2016.

[25] Wil M. P. van der Aalst and Boudewijn F. van Dongen. Discovering petri nets
from event logs. Transactions on Petri Nets and Other Models of Concurrency,
7:372–422, 2013.

[26] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set pro-
gramming at a glance. Communications of the ACM, 54(12):92–103, 2011.

[27] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni,
Roland Kaminski, Thomas Krennwallner, Nicola Leone, Marco Maratea,
Francesco Ricca, and Torsten Schaub. ASP-Core-2 input language format. Theory
and Practice of Logic Programming, 20(2):294–309, 2020.

90

[28] Martin Gebser, Roland Kaminski, Max Ostrowski, Torsten Schaub, and Sven
Thiele. On the input language of ASP grounder gringo. In Esra Erdem, Fangzhen
Lin, and Torsten Schaub, editors, Proceedings of the 10th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning, LPNMR 2009.

[29] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The DLV system for knowledge represen-
tation and reasoning. ACM Transactions on Computational Logic, 7(3):499–562,
2006.

[30] Martin Gebser, Marco Maratea, and Francesco Ricca. The sixth answer set pro-
gramming competition. Journal of Artificial Intelligence Research, 60:41–95,
2017.

[31] Michele Lombardi and Michela Milano. Optimal methods for resource allocation
and scheduling: a cross-disciplinary survey. Constraints, 17(1):51–85, 2012.

[32] Michael R. Garey, David S. Johnson, and Ravi Sethi. The complexity of flow-
shop and jobshop scheduling. Mathematics of Operations Research, 1(2):117–
129, 1976.

[33] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Adding weak con-
straints to disjunctive datalog. In Moreno Falaschi, Marisa Navarro, and Alberto
Policriti, editors, Proceedings of the Joint Conference on Declarative Program-
ming, APPIA-GULP-PRODE’97, pages 557–568, 1997.

[34] Sonda Elloumi, Taı̈cir Loukil, and Philippe Fortemps. Reactive heuristics for dis-
rupted multi-mode resource-constrained project scheduling problem. Expert Sys-
tems with Applications, 167:114132, 2021.

[35] Hongbo Li and Xuebing Dong. Multi-mode resource leveling in projects with
mode-dependent generalized precedence relations. Expert Systems with Applica-
tions, 97:193–204, 2018.

[36] Dimitris C. Paraskevopoulos, Christos D. Tarantilis, and George Ioannou. Solving
project scheduling problems with resource constraints via an event list-based evo-
lutionary algorithm. Expert Systems with Applications, 39(4):3983–3994, 2012.

[37] Giray Havur, Cristina Cabanillas, and Axel Polleres. BRANCH: An ASP systems
benchmark for resource allocation in business processes. In Wil M. P. van der
Aalst, Remco M. Dijkman, Akhil Kumar, Francesco Leotta, Fabrizio Maria
Maggi, Jan Mendling, Brian T. Pentland, Arik Senderovich, Marcos Sepúlveda,
Estefanı́a Serral Asensio, and Mathias Weske, editors, Proceedings of the Best
Dissertation Award, Doctoral Consortium, and Demonstration & Resources Track
at BPM 2021, volume 2973 of CEUR Workshop Proceedings, pages 176–180.
CEUR-WS.org, 2021.

[38] Andreas Rogge-Solti. Stochastic Petri net plug-in of the process mining frame-
work ProM.

91

[39] W. M. P. van der Aalst. Structural characterizations of sound workflow nets, vol-
ume 9623.

[40] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.

[41] Mario Alviano, Francesco Calimeri, Carmine Dodaro, Davide Fuscà, Nicola
Leone, Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari.
The ASP system DLV2. In Marcello Balduccini and Tomi Janhunen, editors, Pro-
ceedings of the 14th International Conference on Logic Programming and Non-
monotonic Reasoning, LPNMR 2017, volume 10377 of Lecture Notes in Computer
Science, pages 215–221. Springer, 2017.

[42] Tommi Syrjänen. Lparse 1.0 user’s manual. 2000.

[43] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Philipp Wanko. Theory solving made easy with clingo 5. In Manuel
Carro, Andy King, Neda Saeedloei, and Marina De Vos, editors, Technical Com-
munications of the 32nd International Conference on Logic Programming, ICLP
2016, volume 52 of OASIcs, pages 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[44] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven answer
set solving: From theory to practice. Artificial Intelligence, 187:52–89, 2012.

[45] Paul Saikko, Carmine Dodaro, Mario Alviano, and Matti Järvisalo. A hybrid
approach to optimization in answer set programming. In Michael Thielscher,
Francesca Toni, and Frank Wolter, editors, Proceedings of the 16th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2018,
pages 32–41. AAAI Press, 2018.

[46] Michael Rosemann and Jan vom Brocke. The six core elements of business pro-
cess management. In Jan vom Brocke and Michael Rosemann, editors, Handbook
on Business Process Management 1: Introduction, Methods, and Information Sys-
tems, International Handbooks on Information Systems, pages 105–122. Springer,
2 edition, 2015.

[47] Geary A. Rummler and Alan J. Ramias. A framework for defining and design-
ing the structure of work. In Jan vom Brocke and Michael Rosemann, editors,
Handbook on Business Process Management 1: Introduction, Methods, and Infor-
mation Systems, International Handbooks on Information Systems, pages 81–104.
Springer, 2 edition, 2015.

[48] Sana Bouajaja and Najoua Dridi. A survey on human resource allocation problem
and its applications. Operational Research, 17(2):339–369, 2017.

[49] Luise Pufahl, Sven Ihde, Fabian Stiehle, Mathias Weske, and Ingo Weber. Au-
tomatic resource allocation in business processes: A systematic literature survey.
The Computing Research Repository (CoRR), arXiv.

[50] Giray Havur and Cristina Cabanillas. History-aware dynamic process fragmenta-
tion for risk-aware resource allocation. In Hervé Panetto, Christophe Debruyne,

92

Martin Hepp, Dave Lewis, Claudio Agostino Ardagna, and Robert Meersman, ed-
itors, Proceedings of OTM 2019 Conferences - Confederated International Con-
ferences: CoopIS, ODBASE, C&TC 2019.

[51] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Multi-shot ASP solving with clingo. Theory Practice of Logic Programming,
19(1):27–82, 2019.

93

Published in the Proceedings of the 5th International Symposium on Data-Driven
Process Discovery and Analysis (SIMPDA 2015), pp. 1-27, Jan 2017, Springer LNBIP

vol. 244

A Framework for Safety-critical Process Management in
Engineering Projects?

Saimir Bala1, Cristina Cabanillas1, Alois Haselböck2, Giray Havur1

Jan Mendling1, Axel Polleres1, Simon Sperl2, and Simon Steyskal1,2

1Vienna University of Economics and Business, Austria
{name.surname}@wu.ac.at

2Siemens AG Österreich, Corporate Technology, Vienna, Austria
{name.surname}@siemens.com

Abstract. Complex technical systems, industrial systems or infrastructure sys-
tems are rich of customizable features and raise high demands on quality and
safety-critical aspects. To create complete, valid and reliable planning and cus-
tomization process data for a product deployment, an overarching engineering
process is crucial for the successful completion of a project. In this paper, we
introduce a framework for process management in complex engineering projects
which are subject to a large amount of constraints and make use of heterogeneous
data sources. In addition, we propose solutions for the framework components and
describe a proof-of-concept implementation of the framework as an extension of a
well-known BPMS.

Keywords: Adaptation, compliance, engineering, process management, resource
management, unstructured data

1 Introduction

Deployments of technical infrastructure products are a crucial part in the value-creation
chain of production systems for large-scale infrastructure providers. Examples of a large-
scale, complex engineering process in a distributed and heterogeneous environment
are the construction of a railway system comprising electronic interlocking systems,
European train control systems, operator terminals, railroad crossing systems, etc.; all of
the systems are available in different versions using a variety of technologies. It is often
necessary to offer, customize, integrate, and deliver a subset of these components for a
particular customer project, e.g. the equipment of several train stations with an electronic
switching unit in combination with a train control system based on radio communication
for a local railway company. Configurators are engineering tools for planning and
customizing a product. Each subsystem comes with its own, specialized engineering
and verification tools. Therefore, configuring and combining these subsystem data to a
coherent and consistent system has to follow a complex, collaborative process.

A challenge is the management and monitoring of such complex, yet mostly in-
formally described, engineering processes that involve loosely integrated components,
? This work is funded by the Austrian Research Promotion Agency (FFG) under grant 845638

(SHAPE): http://ai.wu.ac.at/shape-project/

95

configurators and software systems [23]. Nowadays, many of the steps required (e.g.
resource scheduling, document generation, compliance checking) tend to be done manu-
ally, which is error-prone and leads to high process execution times, hence potentially
affecting costs in a negative way.

In this paper, we explore this domain and present a framework for process manage-
ment in complex engineering processes that includes the formalization of human-centric
process models, the integration of heterogeneous data sources, rule enforcement and
compliance checking automation, and adaptability, among others. The framework has
been defined from an industry scenario from the railway automation domain. Further-
more, we describe solutions to support the functionalities required by every framework
component as well as a proof-of-concept implementation of the framework that can be
integrated with an existing Business Process Management System (BPMS). The goal is
to help to develop ICT support for more rigorous and verifiable process management.

The rest of the paper is organized as follows. Section 2 delves into the problem and
derives system requirements. Section 3 presents the framework and solutions for its com-
ponents. Section 4 describes a proof-of-concept implementation. Section 5 summarizes
related work. Finally, Section 6 draws conclusions from this work and outlines ideas for
future extensions.

2 Motivation

In the following, we describe an industry scenario that exemplifies the characteristics of
complex engineering processes and define a set of system requirements for the challenges
identified in it.

2.1 Industry Scenario

Activities to create complete, valid and reliable planning, and customization process data
for a product deployment are part of an overarching engineering process that is of crucial
importance for the success of a project in a distributed, heterogeneous environment.
Fig. 1 depicts a generic engineering process for building a new infrastructure system
in the railway automation domain modeled with Business Process Model and Notation
(BPMN) [34].

The engineering process itself is represented in the pool Railway automation unit
and comprises the building and testing of the system. The pool Resource planning unit
as well as the activities depicted in gray represent a meta-process comprising scheduling
activities that are performed in the background in order to enable the completion of
the engineering process in compliance with a set of restrictions (temporal and logistics,
among others) while making an appropriate use of the resources available. Resource
allocation is of great importance to large-scale engineering processes in which a large
variety of different resources, ranging from laboratories and specific hardware to engi-
neers responsible for the correct execution of the process, are involved and unexpected
situations may have critical consequences (e.g., delays resulting in unplanned higher
costs).

96

Generic engineering process

Ra
ilw

ay
 a

ut
om

at
io

n
un

it

La
b

m
an

ag
em

en
t

Lab management

Request lab
scheduling

Setup lab for
test Run test Report test

results

Delay alert

Reports

Pr
oj

ec
t m

an
ag

em
en

t

Project management

Engineering
system

requested

Request
preliminary
scheduling

Engineer system Create release
for integration

Engineering
system

released

Documentation

Reports

Re
so

ur
ce

 p
la

nn
in

g
un

it

New schedule
requested

(Re)schedule

Schedule stored

Reschedule
requested

Schedules

Request reschedule

Fig. 1: Generic engineering process in the railway automation domain

Hence, the first step consists of scheduling the building of the system. Building
the system is, in turn, a process composed of several activities (potentially operating
on different levels of abstraction) each involving a large variety of different resources,
data sources, and data formats used. Specifically, the customer provides input data in
form of, e.g., XML documents representing railway topology plans, signal and route
tables, etc., which are used by the engineers to configure the product. Typically, several
configuration tools are involved in that process too, complemented by version control
and documentation activities. The result is a set of data of various kinds and formats
(i.e., XML, JSON, and alike) such as bill of material (BOM), assembly plans, software
configuration parameters, and all other documents and information required for the
testing, integration, and installation of the system. Additionally, we map all gathered data
to a common extendable RDF model in order to make use of standard data integration and
processing strategies from the Semantic Web (e.g., OWL, SPARQL, SHACL, etc.). The
engineering project manager orchestrates and monitors these engineering tasks. Besides,
further data is generated during the execution of the subprocess Engineer system in the
form of, e.g., emails exchanged between the process participants.

Once the system is built, it must be tested before it is released for its use. That
procedure takes place in laboratories and comprises two phases: the test setup and run
phases. Like before, it is necessary to schedule these activities taking into consideration
the setting and all the restrictions for the execution of the activities. The setting is the
following: there are several space units distributed into two laboratories and several
units of different types of hardware for conducting the testing. The employees of the
organization involved in these activities are specialized in the execution of specific testing

97

phases for specific types of systems, i.e. there may be an engineer who can perform
the setup for a system S1 and the test execution for a system S2, another engineer who
cannot be involved in the testing of system S1 but can perform the two activities for the
system S2, and so on. As for the restrictions, they are as follows: each task involved
in these two phases requires a specific set of resources for its completion. In particular,
the setup tasks usually require one employee working on one unit of a specific type of
hardware in a laboratory, and the run activity usually requires several employees for its
execution. Besides, a test can only be executed if the whole setup takes place in the same
laboratory. In addition, for the scheduling it is necessary to take into account that other
instances of the same or different processes might be under execution at the same time
and they might share resources.

The setup and the run test activities will then be executed according to the plan.
Similar to the engineering step, data comprising the results of the tests, emails, Version
Control System (VCS) file updates and the like, is generated during the testing steps.
Railway projects also generate other types of data which play a role in the running
system, e.g., cut plans, signals form the tracks, actual user data of the system, etc. The
latter can be useful when it comes to monitoring safety-critical processes during their
execution. Given the great number of software tools involved in the process, our scenario
focuses more on the software engineering aspect of the railway domain. Hence, we use
VCS logs to track the evolution of the artifacts that are produced during such software
engineering process. Nevertheless, it can be extended towards all kinds of artifacts that
are stored in VCSs, such as the different versions of outputs from engineering tools.

When the testing of the system is finished, a final report is written and archived
with the information generated containing the description of the test cases, test data, test
results, and the outline of the findings. Responsible for the final version of this report is
the testing project manager. Finally, the engineering project manager deploys a complete
and tested version of the engineering system and the integration team takes over the
installation of the product.

Note that unexpected situations may cause delays in the completion of any of the
activities involved in the engineering process. It is important to detect such delays as
soon as possible in order to properly schedule the use of resources and figure out when
the process can be finished under the new circumstances. Therefore, rescheduling may
be required at any point, involving all the aforementioned restrictions and possibly new
ones.

2.2 Challenges and Technical Requirements

A number of issues are involved in the industry scenario previously described when it
comes to automating its execution. From the analysis of the process description, the
following challenges have been identified:

Challenge 1: Integrated description of processes, constraints, resources and data.
Operating with processes like the one described before implies taking not only the order
of execution of the process activities and behavioural constraints typically enforced
in the process model into consideration, but also information related to other business
processes perspectives, such as resources and data requirements, as well as regulations
affecting, e.g., the use of these. Several formal languages are at hand for describing

98

processes [34], constraints [27], resources [11] and data (e.g. XML) separately. However,
a challenge is to define all them in an integrated manner with a model that provides rich
querying capabilities to support analysis automation, status monitoring or respectively,
the verification of constraints and consistency.

Therefore, a system for automating processes like the engineering process would
require an integrated semantic model to describe and monitor processes, resources,
constraints and data (RQ1).

Challenge 2: Integration and monitoring of structured and unstructured data. To
a high degree, engineering steps are the input for state changes of the process, often
only visible as manipulation of data. Hence, a engineering process must also incorporate
these data smoothly for monitoring control flow, version updates, data storage, and email
notification. To this end, various types of systems have to be integrated including their
structured (e.g., logs from tools, or databases) and unstructured data (e.g., by mail traffic,
or ticketing systems). Up until now, these data are hardly integrated and are monitored
mostly manually.

Therefore, techniques to gather relevant information from unstructured or semi-
structured data sources, such as emails, VCS repositories and data from tools, and
transform them into understandable data structures must be put in place, i.e. a system for
automating processes like the engineering process would require mechanisms to detect
and extract structured from unstructured process data (RQ2).

Challenge 3: Documentation of safety-critical, human and data aspects and compli-
ance checking. Engineering projects have time-critical phases typically prone to sloppy
documentation and reduced quality of results. Many of the process steps are required to
be documented in prescribed ways by standards and regulations (e.g. SIL [6]). Consider-
able amount of time is spent in the manual documentation of process steps as well as
in the integration of the documentation of separate modules for generating final reports.
Furthermore, in such safety-critical environments the use of resources must be optimized
and rules must be enforced and their fulfillment ensured. For instance, in our industry
scenario we can observe a typical series of data management steps, including: check in a
new version of a data file, inform the subsequent data engineer, confirm and document
this step in the process engine, etc. The latter two steps could be done automatically
once the process engine has detected the check-in into the VCS. This automation would
also lead to a significant decrease of the overall execution time as well as a potential
reduction in the number errors typically caused by human mistakes.

Therefore, a system for automating processes like the engineering process would
require a method for flexible document generation (RQ3) as well as reasoning mecha-
nisms (RQ4) and monitoring capabilities (RQ5) for automating resource allocation and
compliance checking.

Challenge 4: Be ready for changes. Despite engineering process definitions are
quite stable and might remain unchanged for a long time, an automatic monitoring and
a thorough analysis of process models and executions may lead to the discovery of
potential improvement points to make processes simpler and less error-prone. Similarly,
changes in the schedule of activities and resources can be necessary at any time due to a
number of reasons including delays or unexpected unavailability of resources, among
others. Currently, all these adaptations require manual work and are prone to errors.

99

Consequently, methods to detect and deal with changes must be put in place. This
might include the monitoring of process executions and the analysis of the generated
execution data (e.g. with process mining techniques) to anticipate delays as well as the
need of having available mechanisms capable of reallocating the resources according to
changeable requirements and circumstances. Therefore, besides requirements RQ4 and
RQ5, a system for automating processes like the engineering process would also require
adaptation procedures to react to changing conditions (RQ6).

Challenge 5: Acceptance and human factors. The overall process management needs
to be set up in a non-obtrusive way, such that engineers executing the processes find it
useful and easy to use. This is a specific challenge in safety-critical systems, which are
developed with a tight timeline. It calls for a design that integrates existing tools and
working styles instead of introducing new systems.

Therefore, the automation of processes like the engineering process would require
an integrated system (RQ7) that provides all the functionality, which involves general
features of a BPMS (e.g. process modeling and execution) extended to support the
demands of safety-critical, human- and data-centric processes as described in our industry
scenario.

3 Framework

We have designed a framework that provides the support required to address the chal-
lenges identified in complex engineering processes. It consists of a data model and
five functional modules that interact with a BPMS, as depicted in Fig. 2 using the
Fundamental Modeling Concepts (FMC) notation1.

In order to support RQ1, a semantic model encompassing the various types of domain
data that must be represented and manipulated must be defined. Hence, this model stores
all static and dynamic data used by the BPMS and by the functional components.
Specifically, these data include: process models and their instances, organizational data
related to human resources, infrastructure data related to non-human resources, and
constraints derived from regulations and norms (e.g. SIL) as well as further requirements
related to the utilization of resources. The semantic model implicitly operates as a
communication channel between the BPMS and all the functional modules and hence,
all of them must have read&write access to the model.

Typical functionality of a BPMS include modeling and executing processes. Informa-
tion about process instances is usually stored in event logs generally including, among
others, temporal and resource information related to the execution of the process activi-
ties [45]. In addition to that structured information, as described in Section 2.1, several
kinds of unstructured and semistructured data are generated during the execution of
complex engineering processes, e.g. emails, VCS files and reports. All the data produced
during process execution must be analyzed in order to detect anomalies (e.g., deviations
from the expected behavior).

The Process Miner component of our framework tries to discover as much data
relevant to the current state of a process execution as possible, performs the transforma-
tions required as specified by RQ2, and communicates the information extracted to the

1 http://www.fmc-modeling.org/

100

Process
Model &
Instance

Data

Organizational
Data

Infrastructure
Data

Regulations &
Resource

Constraints

Semantic Model

Process
Miner

E-Mails VCS
Process

Documents

User(s)

 R
Process
Monitor

Event
Logs

Document
Generator

Process
Adapter

 R
 R

 R

Reasoner

B
P
M
S

 R

Fig. 2: Proposed framework for process management in complex engineering projects

Process Monitor (RQ5) periodically under request. In case the Process Monitor reveals
a discrepancy between process instance data and the data discovered by the process
miner (e.g., a delay), it informs the Process Adapter about the discrepancy. The Process
Adapter analyzes the deviation and responds by proposing an adaptation solution to the
BPMS in order to put the process back into a coherent and consistent state, as specified
in RQ6. The adaptation may consist of small changes that can be performed directly
on the BPMS side or, on the contrary, of complex recovery actions that may require
reasoning functionalities. In the latter case, the Reasoner comes into play by, e.g., doing
a new activity or resource scheduling according to the new domain conditions. Therefore,
the Reasoner can be seen as a supportive component that helps the BPMS with typical
activities, such as the scheduling of process activities, and the allocation of resources to
those activities in accordance with resource constraints and regulations defined in the
semantic model. This covers RQ4.

Finally, the Document Generator of the framework provides support for RQ3 by
helping to fill out the documents that must be generated as output of process activities.
As mentioned before, this automation is expected to decrease reporting errors, especially
in documents related to auditing.

The design of the framework as an extension of the functionality present in existing
BPMSs attends to RQ7 and hence, it intends to increase the acceptance by users familiar
with Business Process Management (BPM).

In the following, we describe our solution for the implementation of the functionality
provided by the most domain specific components of the framework.

101

3.1 Semantic Model

Aiming at automation, we believe that Semantic Web technologies provide the most
appropriate means for (i) integrating and representing domain-specific (heterogeneous)
knowledge in a consistent and coherent format, and (ii) querying and processing inte-
grated knowledge.

Therefore, following the METHONTOLOGY approach [32], we have developed
an engineering domain ontology [9] that integrated three different domains of inter-
est relevant for our approach, namely: (i) engineering domain and organizational (i.e.
resource-related) knowledge; (ii) business processes; and (iii) regulations and poli-
cies [41].

Representing Infrastructural & Organizational Knowledge One of the first steps
for developing an ontology according to the METHONTOLOGY approach involves the
definition of an Ontology Requirements Specification Document [43]. In order to address
the requirements gathered throughout that process we decided to adopt parts of the
organizational meta model described in [37] and enriched it with concepts for modeling
teams [12] (cf. Fig. 3) for representing infrastructural & organizational knowledge. Using
these two meta models presents an advantage. Specifically, the organizational meta model
described in [37] has been used to design a language for defining resource assignment
conditions in process models called Resource Assignment Language (RAL) [11]. As was
shown in [14], that language can be seamlessly integrated in existing process modeling
notations, such as BPMN, thus enriching the process models with expressive resource
assignments that cover a variety of needs described by the creation patterns of the well-
known workflow resource patterns [37]. Furthermore, a graphical notation was later
designed with the same expressive power as RAL in order to help the modeler to define
resource assignments in process models [10]. The meta model for teamwork assignment
was also considered to develop an extension of RAL called RALTeam [12], which,
however, lacks a graphical notation so far. Therefore, if support for these expressive
notations were introduced in the BPMS, the ontology would support them at the same
time as it supports less expressive means of assigning resources to process activities (e.g.
based on organizational positions).

Representing Business Processes Driven by the requirements of our resource alloca-
tion approach (cf. Section 3.2), we decided to transform BPMN models into timed Petri
nets [55] as an intermediary format for reasoning tasks (e.g., scheduling [28]) by using
the transformation proposed in [20, 19], and store these Petri nets in our ontology. Note
that the user only interacts with the BPMN model while using the system as we use the
timed Petri net representation internally. There are several reasons for using Petri nets
for process modeling [47], namely:

– Clear and precise definition: Semantics of the classical Petri net is defined formally.
– Expressiveness: The primitives needed to model a business process (e.g. routing

constructs, choices, etc.) are supported.
– Tool-independent: Petri nets have mappings to/from different business modelling

standards [31]. Moreover, this immunizes our ontology from changes in business
modeling standards.

102

org:Person

xsd:string

org:Capability

org:Experience org:Degree org:Skill

xsd:double

org:Position

org:Role

org:OrgUnit

org:UnitType

org:TeamMember

org:Team

org:TeamRole
org:TeamType

org:TeamRoleType

org:TempTeam org:PermTeamorg:Scope

org:Agentorg:Room

org:Machine

org:Tool pn:Transition org:canExecute

org:isPartOfTeamType

org:hasRole

rdfs:subClassOf

org:plays

org:assignedTo

org:hasCapability

foaf:name foaf:name

foaf:name

rdfs:subClassOf

org:scoreorg:scoreorg:score

org:occupies org:isMemberOf

org:hasRoleType

org:canDelegateWorkTo
org:reportsTo

org:canDelegateWorkTo
org:reportsTo

org:participatesIn

org:playedIn

org:belongsTo

org:hasTeamType

org:hasMember

org:within

org:isPerson

org:ofTeam

org:formedWithin

rdfs:subClassOf

Fig. 3: Ontology for infrastructural & organizational knowledge.

For modeling Petri nets themselves we adopted selected concepts of the Petri Net
Markup Language (PNML) [52] and represented them in terms of an RDFS ontology
(cf. Fig. 4).

Extracting and Specifying Compliance Rules One of the most important aspects of
dealing with safety-critical human- and data-centric processes is providing means for
proving that business processes comply with relevant guidelines such as domain-specific
norms and regulations, or workflow patterns. As illustrated in Fig. 5 and described in [33],
establishing proper compliance checking functionalities typically requires to extract and
interpret a set of Compliance Objectives from respective Compliance Requirements first,
before those objectives are specified in terms of Compliance Rules/Constraints using an
appropriate specification language (i.e. a language capable of representing all types of
compliance rules/constraints relevant for the respective domain of interest). Specified
compliance rules and constraints are then subsequently used by a monitoring/compliance
checking engine for verifying correct and valid execution of business processes w.r.t.
previously defined rules.

1. Identifying Compliance Objectives: Organizations have to deal with an increasing
number of norms and regulations that stem from various compliance sources, such
normative laws and requirements. In the railway domain processes have to be com-
pliant with specific European Norms (i.e. 50126, 50128, and 50129). For example,
EN50126 defines guidelines for managing Reliability, Availability, Maintainability,
and Safety (RAMS) of safety-critical business processes, where we extracted objec-
tives, requirements, deliverables, and validation activities defined in all phases of
the RAMS lifecycle [24, 40].

103

pn:ModelElement xsd:string

pn:Node

pn:Arc

pn:Place pn:Transition

pn:Page pn:Net bp:ProjectPhase

pn:Token

xsd:integer

pn:TimeFunctionDesc

xsd:integer

xsd:double

pn:ArcType

bp:DataObject

org:Agentorg:Role

pn:fromNode
pn:toNode

pn:initialMarking

pn:timeFunctionorg:canExecute

pn:element

org:assignedTo

bp:reads
bp:writes

pn:name

pn:namebp:isPartOf

rdfs:subClassOf

rdfs:subClassOf

pn:priority

pn:firingLevelrdfs:subClassOf

rdfs:subClassOf

pn:marking

pn:atTime

pn:typeArc

pn:possibility, pn:dueTime, pn:avg..

pn:timeTo pn:timeFrom

Fig. 4: Ontology for representing processes and process instances.

Compliance Requirements
(Domain-specific Norms and Regulations)

Compliance Objectives

Compliance Rules/Constraints

Compliance Checker

1. Interpretation

2. Specification

Fig. 5: General approach for business process compliance monitoring [33].

2. Representing Compliance Rules and Constraints: Since all process relevant data are
stored in RDF, we plan to utilize recent advancements in the area of constraint
checking for RDF, i.e. the Shapes Constraint Language (SHACL) [30] for represent-
ing and validating identified compliance objectives. Since constraints expressed in
SHACL are internally mapped to corresponding SPARQL queries, we can further
complement our own compliance constraints with already existing approaches for
compliance checking using SPARQL such as [4]. Compliance constraints expressed
in SHACL are tightly integrated with the underlying ontology and can be validated
during both design time and runtime2.

3.2 Reasoner

The reasoner module supports our framework on top of the engineering domain ontology
in two folds: (i) by performing automated resource allocation described in the declarative

2 For a more detailed introduction on utilizing SHACL for defining custom constraints, we refer
the interested reader to [30].

104

formalism Answer Set Programming (ASP) [25], and (ii) by querying the ontology for
compliance checking. We also looked at other declarative programming paradigms (e.g.,
CLP(FD)), and our initial findings confirm the advantages of using ASP [7, 21]. Some
of these advantages are as follows:

– Compact, declarative and intuitive problem encoding
– Rapid prototyping and easy maintenance (e.g., no need to define heuristics)
– Complex reasoning modes (e.g., weight optimization)
– Ability to model effectively incomplete specifications
– Efficient solvers (e.g., clingo)

In the literature, ASP is preferable when the size of the problem does not explode
the grounding of the program [21, 1]. We show that our resource allocation encoding in
ASP is applicable to the problems of business processes at a real-world scale [28].

Resource Allocation

Resource allocation aims at scheduling activities of a business process and properly
distributing available resources among scheduled activities. We address the problem of
allocating the resources available to the activities in the running process instances in a
time optimal way, i.e. process instances are completed in the minimum amount of time.
Therefore, our resource allocation technique makes business process executions effective
and efficient.

We encode the resource allocation problem in Answer Set Programming (ASP) [25],
a declarative (logic programming style) paradigm. Its expressive representation language,
efficient solvers, and ease of use facilitate implementation of combinatorial search
and optimization problems (primarily NP-hard) such as resource allocation. Therefore,
modifying, refining, and extending our resource allocation encoding is uncomplicated due
to the strong declarative aspect of ASP. We use the ASP solver clasp [25] for our purpose
as it has proved to be one of the most efficient implementations available [15]. Another
complex reasoning extension supported in clasp are weight optimization statements [25]
to indicate preferences between possible answer sets.

Resources are defined in the engineering domain ontology (the organizational data
and the infrastructure data) where they are characterized by a type and can have one or
more attributes. In particular, any resource type (e.g., org:Person in Fig. 3) is a subclass
of org:Agent. The attributes are all of type rdf:Property. The organizational data consists
of human resources, their attributes (e.g. their name, role(s), experience level, etc.)
and current availabilities stored in the ontology. In the same fashion, infrastructure
data represents material resources (i.e. tools, machines, rooms) and their availabilities.
Resource allocation considers resources to be discrete and cumulative. Discrete resources
are either fully available or fully busy/occupied. This applies to many types of resources,
e.g. people, software or hardware. However, for certain types of infrastructure, availability
can be partial at a specific point in time. For instance, a room’s occupancy changes
over time. Such a cumulative resource is hence characterized by its dynamic attribute
(available space in the room) and it can be allocated to more than one activity at a time.
Any statement in our ontology can be easily incorporated as the input of our problem

105

encoding [22]. The following example shows an excerpt of organizational data in the
ontology and its equivalent in ASP.

Organizational data
:glen a org:Person; foaf:name "Glen";

org:occupies testeng.
:testeng a org:Position; foaf:name "Test Engineer";

org:participatesIn labmng.
:labmng a org:Role; foaf:name "Lab Management".

% Equivalent ASP encoding
person(glen). name(glen,"Glen").
occupies(glen,testeng).
position(testeng). name(testeng,"Test Engineer").
participatesIn(testeng,labmng).
role(labmng). name(labmng,"Lab Management").

There are two main operations under resource allocation: Allocation of resources
and re-allocation of resources as adaptation.

Allocation of resources deals with the assignment of resources and time intervals to
the execution of process activities. It can be seen as a two-step definition of restrictions.
First, the so-called resource assignments must be defined, i.e., the restrictions that
determine which resources can be involved in the activities [11] according to their
properties. The outcome of resource assignment is one or more resource sets with the
set of resources that can be potentially allocated to an activity at run time. The second
step assigns cardinality to the resource sets such that different settings can be described.

As mentioned in Section 3.1, there exist languages for assigning resource sets to
process activities [11, 46, 42, 13]. However, cardinality is generally disregarded under
the assumption that only one resource will be allocated to each process activity. This is a
limitation of current BPMS, which we overcome in our proposed framework.

The main temporal aspect is determined by the expected duration of the activities.
The duration can be predefined according to the type of activity or calculated from
previous executions, usually taking the average duration as reference. This information
can be included in the executable process model as a property of an activity (e.g.
with BPMN [34]) or can be modelled externally. As for the variable activity durations
depending of the resource allocation, three specificity levels can be distinguished:

– Role-based duration, i.e., a triple (activity, role, duration) stating the (mini-
mum/average) amount of time that it takes to the resources within a specific resource
set (i.e., cardinality is disregarded) to execute instances of a certain activity.

– Resource-based duration, i.e., a triple (activity, resource, duration) stating the
(minimum/average) amount of time that it takes to a concrete resource to execute
instances of a certain activity.

– Aggregation-based duration, i.e., a triple (activity, group, duration) stating the
(minimum/average) amount of time that it takes to a specific group to execute
instances of a certain activity. In this paper, we use group to refer to a set of human
resources that work together in the completion of a work item, i.e., cardinality is
considered. Therefore, a group might be composed of resources from different roles

106

which may not necessarily share a specific role-based duration. An aggregation
function must be implemented in order to derive the most appropriate duration for
an activity when a group is allocated to it. The definition of that function is up to the
organization.

Given (i) a process model and its instance data; (ii) organizational and infrastructure
data; (iii) resource requirements, i.e. the characteristics of the resources that are involved
in each activity to be allocated (e.g. roles or skills); (iv) temporal requirements; and (v)
regulations such as access-control constraints [11], i.e. separation of duties (SoD) and
binding of duties (BoD), the ASP solver finds an optimal allocation. The aforementioned
functionalities and the entire associated ASP encoding are detailed in [26].

While executing the process instance, changes may be introduced to input used for
allocation. For instance, organizational data may change in case of absence, regulations
may be modified or simply execution of activities may delay. In some cases, such a
change in the ontology directly affects a running process instance, and therefore, the
process monitor informs the process adapter. The process adapter may decide that the
allocation should be performed again. Adaptive re-allocation is a key functionality in
this scenario and it is indispensable for safety-critical, human- and data- centric process
management.

Domain
ontology

Reasoner

BPMS

Input

Allocation

Input

Reasoner

BPMS

Allocation

Input

Reasoner

BPMS

Allocation

t1 t2 t3

Domain
ontology'

Domain
ontology-Domain

ontology'

Fig. 6: Adaptive re-allocation timeline

Fig. 6 shows this scenario in three consecutive time steps: After allocating resources
to a process instance at t1, some changes are introduced at t2 that interfere with the
original allocation, and hence, an adaptive reallocation is performed at t3. The reasoner
computes a delta allocation, i.e. the original allocation is preserved as much as possible.
Therefore, some activities might be rescheduled, and others might be shifted and/or
reallocated to some different resources in a minimal fashion.

Compliance Checking As mentioned previously, we define compliance constraints
over business processes using SHACL. In order to do so, we translate each compliance

107

objective to a corresponding SPARQL query first, before embedding it in a respective
constraint component, which itself can then be integrated into the ontology [40].

3.3 Process Monitor and Process Adapter

Changes and deviations to the processes may occur during execution. For instance,
new rules and regulations may require the process to operate differently. We want our
framework to be able to handle these unexpected events.

The process data and the evidence from the process miner are compared by the
process monitor for detecting deviations. The main idea is that the process adapter is
informed about the deviations, therefore it minimizes the impact of these deviations
in the running process instances by offering a recovery strategy. The process monitor
and process adapter address the requirements RQ5 and RQ6, respectively. The process
monitor is able to run several algorithms for monitoring both the process behaviour
and the process compliance to rules and regulations. This is performed by checking the
current process constraints against the data from our semantic model.

The process adapter is in charge of handling exceptions that arise from the process
monitor. This component acts in two different ways: Either it i) corrects process behaviour
with minimal intervention, or, in case a more complex adaptation is required, ii) it stops
the process and notifies the reasoner for planning an adaptation.

3.4 Process Miner

Traditional process mining algorithms [45, 49] are able to give valuable insights into
the different perspectives of a business process. Process models inferred from log files
can further be analyzed for bottlenecks, performance, deviations from the expected
behaviour, compliance with rules and regulations, etc. Regardless of the perspective
they aim at mining as well as the type of process modeling notation used to represent
the outcome (declarative versus imperative process mining), all these process mining
algorithms require properly structured data. Specifically, they must comply with the
XES [51] meta model. Any of the existing process mining techniques is a candidate
to be used for the implementation of the Process Miner component in regard to the
functionality related to traditional process mining and the decision should be made
according to the specific characteristics desired.

However, the biggest challenge of this component in our framework is to deal with
unstructured and semistructured data generated in the execution of the process activities,
generally in the form of VCS files and emails. Although it is hard to mine process models
out of such unstructured or semistructured data, some approaches can be used to obtain
valuable insights on them. Specifically, [29] allow for transforming semi-structured VCS
logs to process activities which can be mined by classic mining algorithms. Poncin
et al.[36] developed the FRASR framework, which is enables to answers engineering
questions by applying process to software repositories. The challenge here is to identify
the relevant events for the files, from a process mining point of view. Di Ciccio et al. [18]
propose the MAILOFMINE approach to discover artful processes laying underneath
email collections. Bala et al. [2] adopt a visualization approach by mining project Gantt
charts from VCS logs.

108

Alice Bob Claire

development
project manager

testing
project manager

engineering
project manager

Feature
development

Bugfix
Documentation

review
Reporting

VCS
Commit 2
Fix bug

Commit 2
Write section 1

Commit 1
Add module

R
es

o
u

rc
e

R
o

le
Ta

sk
D

at
a

Fig. 7: Software project and resources

Driven by the fact that complex engineering process like the industry scenario
described in Section 2.1 are resource-intensive, we have developed a novel approach
to extract organizational roles from VCS repositories. VCSs have both structured and
unstructured data. On the one hand, they explicitly provide information about the user
who performed changes in some file(s) and the time at which she committed the new
version(s). On the other hand, they have a textual part typically carrying a comment that
explains the changes performed on the file(s). Note that these kind of data are similar
to data from email. In fact, both emails and git comments have in common information
about the user, the timestamp, and a textual description. Moreover, we use an ontology
(cf. Section 3.1) to store mining insights. That is, we allow for the integration of all types
of data that can be represented in RDF, including data coming from engineering tools.
There are indeed tools in SVN [35] or Git [44] that allow for sending user commits as
emails. Therefore, discovering roles out of such data (and especially when the outcome is
combined with the result of mining activities) might help the Process Monitor to identify
potential deviations regarding the resources that have actually performed specific tasks
or manipulated certain information. Hence, it contributes to compliance checking.

Let us see an example of users who use VCS to collaborate on a software development
project. Fig. 7 shows a setting with three users named Alice, Bob and Claire. Alice is a
development project manager. She works with her colleagues Bob and Claire. Alice is
mainly responsible for feature development, but she is also involved in testing project-
management team. Her tasks include the development of new features and fixing of
related bugs. In her first commit she adds a new message where she describes her work.
The message to describe her changes is “added new module to demo”. In the first row
of Table 1, identified by commit id 1, Alice’s change is reported. Bob is part of the
testing project-management team. His task is to ensure that the code submitted by the
development team complies with existing standards and contains no errors. He discovers

109

and fixes some minor bugs in Alice’s code and informs Alice on further work needed
on the analyzed features. Meanwhile, he commits his changes with commit id 2 and
comments “Modified the setup interface”. Consequently, Alice reworks her code and
commits a new version as reported in row 3 of Table 1, commenting her work with
“Update application interface”. As an engineering project manager, Claire takes over and
starts to work on the documentation. She commits part of her work as in row 4. As the
project continues, the work is accordingly stored in the log as shown in the table.

Id User Timestamp Changed Comment

1 Alice 2014-10-12 13:29:09
Demo.java
rule.txt

Added new module to demo and updated rules

2 Bob 2014-11-01 18:16:52 Setup.exe Modified the setup interface
3 Alice 2015-06-14 09:13:14 Demo.java Update the application interface

4 Claire 2015-07-12 15:05:43
graph.svg
todo.doc

Define initial process diagram & listed remaining tasks

.

Table 1: Example of a VCS log

Our approach leverages both on the file types and the comments of the users. We
devise an algorithm that classifies users into a set of roles. For that purpose, we approach
the role discovery problem as a classification problem. We define two methods: one
based on user clustering and one based on commit clustering. A prior step for this is the
feature selection. By looking at the commit data, we identify the following features:

– Total number of commits.
– Timeframe between the first and the last commit of a user (i.e. the time he has been

working on the project).
– Commit frequency: total number of commits divided by the time frame.
– Commit message length: average number words in the commit comment.
– Keyword count: how often determinate words like “test” or “fix” are used
– Number of files changed.
– Affected file types: how often a file with a certain format (e.g., *.java, *.html) are

modified by a user, relative to the total number of modified files

Then, we use the features for two machine learning algorithms. In the first approach
we iterate through the users and cluster them using the k-means algorithm. Consequently
we build classification models using decision trees. We then train three different datasets
individually and cross validate the results. The second approach starts from the commits.
The main idea here is that we do not want to assign users to a specific category. Rather,
we allow for users having multiple roles and classify their contribution in each commit.
We build user profiles that account for fractions of contributions of each user to the
different classes. Classes used in the classification for the example described above
would be: Test, Development, Web, Backend, Maintenance, Refactor, Documentation,
Design, Build, Data, Tool, Addition, Removal, vcsManagement, Automated, Merge.

110

Each commit is classified into one of the classes according to its features. Users who
committed can be then classified by their commits. The classification can be done both
manually and automatically: i) rules can be manually inferred by looking for similarities
between users with the same role; or ii) an automated classification can be performed
by using machine learning algorithms. For example, decision trees can be used for an
automated classification. In this case the commit type percentages are used as features
and the manually assigned roles as classes. As a further step, the resulting decision tree
models from the different datasets can be cross-validated. The complete approach and
its evaluation can be found in [8].

3.5 Document Generator

Safety-critical engineering systems require well-documented process steps. Engineers
are in charge of clearly describing their tasks in such a way that it is possible to audit their
work. These documents are often manually created. This has at least four drawbacks.
First, their creation is laborious. Second, it is error-prone and misaligned in terms of
language. Third, it is described at different levels of granularity. Fourth, it is difficult to
process and audit afterwards.

A simple example is the following. Engineers need to work on a specific task and
use predefined tools. Their tasks and their version tools are specified at the beginning
of the project and must be consistent during the project’s lifetime. Tool versions must
usually be filled in the documentation generated, e.g. in reports. In a big engineering
project, tools can be numerous and their versions are far from being user-friendly. This
makes the risk of human mistakes very likely.

To assist engineering project managers in producing audible documentations, we
have developed a customizable approach for partially automating document generation.
In particular, it is able to fill in trivial information (e.g., tool version, user name, task to
which the user is assigned, etc) into word processor documents. Our document generation
technique is based on templates. These templates consist of evolving documents and
are automatically filled in during the workflow, and therefore enable flexible process
verification. Our approach generates standard documents which are compatible with
predefined word processor programs and can be opened and edited by them.

Document generation comprises four steps, depicted in Figure 8 and explained next.
A mapping function is first defined from a process activity to a document which is
generated as its outcome. Afterwards, an interpreter is defined which is in charge of
filtering the relevant process activities and variables. Process variables are used by the
BPMS during the execution of the process. Examples of process variables can be the
name of the user that is currently assigned to one activity, the name of the running
process instance, and everything that adds data to the executing process in the BPMS.
The interpreter is not strictly bound to a particular process nor to a particular template,
and is defined externally. This supports changes both in the process and in the template.
The writing in the document is triggered by a listener. A listener waits for activity events.
As soon as an activity is submitted, the interpreter and the mapping function work
together to generate (variable key,value) pairs in the document template. This is run
iteratively on the document until all the trivial data is filled in.

111

D3...

...

A1

D1 D2 D3

A2

Activity-2
a2-var1: [<a2-val1>]
a2-var2: [<a2-val2>]

mapping

Document­3

<a1­var1>

<a2­var2>o­id

<a1­var5>level

interpreter

Fig. 8: Implementation showing how form values (process variables) from Camunda
could look like in a generated document

4 Proof-of-concept Implementation

As a proof of concept we have implemented the main components of the framework dis-
cussed in Fig. 2. In this prototype, we aim to bring together functionality from reasoning,
process mining and document generation. Fig. 9 shows the software architecture that
we use. It considers four main components which interoperate during the execution of a
process activity.

Event
Logs

Engineering
Domain

Ontology

Reasoner

Process
Monitor

Process
Miner

Reads/writes
assignments

Camunda
running
process

Logs finished-activity

Emails Parse

Reads
assignment

Requests mining

Writes to ontology

Reads
assignment

Listens to
events

VCS

Parse

Document
generator

Read

Read

Fig. 9: Software architecture of the prototype

Here, we describe the main components of the architecture and their interactions.

112

Camunda running process. We use the Camunda BPM engine as our BPMS. Ca-
munda is an open source platform that allows for defining new components and for
interacting with its APIs in a custom way. All the process instances that run into
Camunda and their data are stored in log files. Camunda uses two main databases
to store its logs: i) a database for processes that are currently executing; and ii) a
database for historical information. These two databases can be queried through
provided Java or REST APIs. Results are returned as either a set of Plain Old Java
Objects (POJOs) or in the JSON format, respectively.
Before an activity starts to run, it first fetches the ontology which contains the set
of assignments from existing resources to activities. Consecutively, a resource is
assigned to the activity and thus can appear on their task list. When the resources
complete their tasks, an event is triggered. This event is listened by the process miner
and the document generator components, who can react accordingly. At the same
time, the event is stored into the Camunda database of the running instances. Both
the running processes database and the history database record similarly-structured
data. Furthermore, they can be accessed using the same technology, i.e. the Camunda
REST APIs. Hence, we abstract both these databases as a single database in Figure 9
and denote it as Event Logs.

Reasoner. The reasoner module is implemented as a Java application connected to the
Camunda process engine as an asynchronous service. We use Sesame, an open source
framework for creating, parsing, storing, inferencing and querying over our ontology
data. With respect to the request, the reasoner either performs resource allocation
(cf. Figure 10) by first translating the RDF data into the ASP language, solving the
problem instance using the ASP solver clasp, and then writing the allocation results
back to the triple store; or it validates all contained SHACL constraints and returns
potential violation result back to the process engine.

Process Monitor. This component is in charge querying the status of the running pro-
cesses in Camunda. In case a deviation occurs, for example, a process instance
cannot be completed within the assigned schedule, the process monitor must sig-
nal out the anomaly. The process adaptation module can use this output to learn
the status of the system and subsequently apply an adaptation. This component is
implemented as a web client that can read execution logs through the Camunda
REST API. Results are returned in the JSON format which are then parsed into
POJOs and can be processed by customized monitoring algorithms. In this case the
communication happens through periodical queries to the database. An alternative
to this is to implement an activity listener that notifies the process monitor whenever
a task is completed.

Miner. The miner is in charge of running a number of mining algorithms on the logs
from Camunda and from VCSs. Emails and commit messages can also be analysed
by using the approaches discussed in [8]. This component is implemented as a web
service, which can be called by the process monitor in order to understand how the
activities being monitored have performed in the past. Mining algorithms can give
new insights into the processes, like for instance actual execution times and several
performance indicators of the process. This can contribute to the domain knowledge.
Thus, they are stored again into the ontology as RDF.

113

Fig. 10: Resource allocation interface

Document generator. The document generator is in charge of listening to activity
submissions and of collecting information from them with the final goal of creating
textual documents. This component uses customizable event handlers to process
changes of process variables and forms compiled by the users. It is implemented in
Java and can be imported as a Java library into several other modules that require
document generation from events.

4.1 Limitations

The architecture is currently under implementation. The components have been only in-
dividually tested. There is the need for a comprehensive software solution that integrates
the single software components into one.

SQL console for querying Camunda logs. We are developing a tool for process mon-
itoring. This tool will allow for SQL-like queries on top of Camunda logs. The
approach involves mapping Camundas database schema to RXES [50]. In addition
to this we are also developing a tool that can map from RXES to XES [51] and we
plan to use this tool with the approach from [38] in order to make it fully compatible
with the RXES standard.

Process adaptation. The process adaptation module that we describe in the frame-
work is yet to be implemented. This module will be developed as an intermediate
component between the process monitor and the Camunda engine. It will act as a
middle layer that is able to correct slight deviations in the running process, without
stopping the workflow. Deviations that are not adjustable may occur. In this case,
this component will communicate the need for a schedule to the reasoner.

114

Connection to ontology. Our ontology is currently under improvement. We are plan-
ning to complete it with all the data from the engineering domain ontology (cf.
Figure 2). Furthermore, its connections to the various components are yet to be
implemented.

User interfaces. We support for mining and monitoring techniques whose results are
models that are generated out of data. User interfaces to visualize these data are
required in order to easy the understanding of the mining results. Analogously, we
plan to provide a fully fledged user interface for the reasoner component.

5 Related Work

The existing work on similar frameworks are from safety management [53, 5, 16], and
decision support domains [54, 17]. To best of our knowledge, there is no framework
addressing all the seven requirements (cf. Section 2) that we identify. Therefore, we
elaborate on the supporting literature.

Bowen and Stavridou [5] detail the standards concerned with the development of
safety-critical systems, and the software in such systems. They identify the challenges of
safety-critical computer systems, define the measures for the correctness of such systems
and its relevance to several industrial application areas of, e.g. formal methods in railway
systems, which is crucial for rigorous and coherent process management.

De Medeiros et al. [17] investigate the core building blocks necessary to enable
semantic process mining techniques/tools. They conclude that semantic process mining
techniques improve the conventional ones by using three elements, i.e., ontologies, model
references from elements in logs/models to concepts in ontologies, and reasoners. Our
framework supports such a high-level semantic analysis through our integrated semantic
model and the reasoner module.

Wilke et al. [53] describe a framework for a holistic risk assessment in airport
operations. They focus on coordination and cooperation of various actors through a
process model derived in BPM, which helps determination of causal factors underlying
operation failures, and detection and evaluation of unexpected changes. The holistic
consideration of operations handling rules and regulations of their particular domain
serves for ensuring compliance. Daramola et al. [16] describe the use of ontologies in
a scenario requiring identification of security threats and recommendation of defence
actions. Their approach not only help the quick discovery of hidden security threats
but also recommend appropriate countermeasures via their semantic framework. By
following this approach, they minimize the human effort and enable the formulation of
requirements in a consistent way. In our framework we similarly monitor our ontology for
compliance checking by querying the ontology via the queries derived from regulations.

Van der Aalst [48] introduced a Petri net based scheduling approach to show that the
Petri net formalism can be used to model activities, resources and temporal constraints
with non-cyclic processes. Several attempts have also been done to implement the
problem as a constraint satisfaction problem. For instance, Senkul and Toroslu [39]
developed an architecture to specify resource allocation constraints and a Constraint
Programming (CP) approach to schedule a workflow according to the constraints defined
for the tasks. Our framework addresses resource allocation via the reasoner module using
ASP.

115

Zahoransky et al. [54] investigate operational resilience of process management.
Their approach is proposed as a complementary approach to risk-aware BPM systems,
which focuses on detecting the resilience properties of processes based on measures by
mining process-logs for decision support to increase process resilience, and therefore
provide flexibility. This approach enables agility in run-time and provides a solid founda-
tion for process execution reliability. We address these aspects in our integrated system
via the process miner and the process adapter.

6 Conclusions and Future Work

In this paper we have explored challenges of safety-critical human- and data- centric
process management in engineering projects which are subject to a large amount of
regulations and restrictions, i.e. temporal, resource-related and logistical restrictions, as
described in the industry scenario. Our proposed framework addresses all the require-
ments derived from those challenges upon the general functionality of a BPMS, e.g.
process adaptation, resource allocation, document generation and compliance checking.

This work is developed in cooperation with SIEMENS Austria who will be the
primary user of the developed system. Our first proof of concept is implemented[3].
Next steps also involve putting in place adaptation mechanisms, implementing and
integrating all the components into Camunda, and conducting a thorough evaluation of
the implemented system w.r.t. real data from the railway domain.

References

[1] Markus Aschinger, Conrad Drescher, Gerhard Friedrich, Georg Gottlob, Peter
Jeavons, Anna Ryabokon, and Evgenij Thorstensen. Optimization methods for
the partner units problem. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pages 4–19. Springer,
2011.

[2] Saimir Bala, Cristina Cabanillas, Jan Mendling, Andreas Rogge-Solti, and Axel
Polleres. Mining Project-Oriented Business Processes. In BPM, pages 425–440,
2015.

[3] Saimir Bala, Giray Havur, Simon Sperl, Simon Steyskal, Alois Haselböck, Jan
Mendling, and Axel Polleres. SHAPEworks: A BPMS Extension for Complex
Process Management. In BPM Demos, To appear, 2016.

[4] Khalil Riad Bouzidi, Catherine Faron-Zucker, Bruno Fies, and Nhan Le Thanh. An
ontological approach for modeling technical standards for compliance checking.
In Web Reasoning and Rule Systems, pages 244–249. Springer, 2011.

[5] Jonathan Bowen and Victoria Stavridou. Safety-critical systems, formal methods
and standards. Software Engineering Journal, 8(4):189–209, 1993.

[6] M. Bozzano and A. Villafiorita. Design and safety assessment of critical systems.
CRC Press Taylor & Francis Group, 2010.

116

[7] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set program-
ming at a glance. Communications of the ACM, 54(12):92–103, 2011.

[8] Cristina Cabanillas, Saimir Bala, Jan Mendling, and Axel Polleres. Combined
method for mining and extracting processes, related events and compliance rules
from unstructured data. Technical report, WU Vienna, 2016.

[9] Cristina Cabanillas, Alois Haselböck, Jan Mendling, Axel Polleres, Simon Sperl,
and Simon Steyskal. Engineering Domain Ontology. SHAPE project deliverable.

[10] Cristina Cabanillas, David Knuplesch, Manuel Resinas, Manfred Reichert, Jan
Mendling, and Antonio Ruiz-Cortés. RALph: A Graphical Notation for Resource
Assignments in Business Processes. In CAiSE, volume 9097, pages 53–68. Springer,
2015.

[11] Cristina Cabanillas, Manuel Resinas, Adela del Rı́o-Ortega, and Antonio Ruiz-
Cortés. Specification and Automated Design-Time Analysis of the Business Process
Human Resource Perspective. Inf. Syst., 52:55–82, 2015.

[12] Cristina Cabanillas, Manuel Resinas, Jan Mendling, and Antonio Ruiz Cortés.
Automated team selection and compliance checking in business processes. In
Proceedings of the 2015 International Conference on Software and System Process,
ICSSP 2015, Tallinn, Estonia, August 24 - 26, 2015, pages 42–51, 2015.

[13] Cristina Cabanillas, Manuel Resinas, Jan Mendling, and Antonio Ruiz Cortés.
Automated team selection and compliance checking in business processes. In
ICSSP, pages 42–51, 2015.

[14] Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés. RAL: A High-
Level User-Oriented Resource Assignment Language for Business Processes. In
Business Process Management Workshops (BPD’11), pages 50–61, 2011.

[15] Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco Ricca. Design
and results of the fifth answer set programming competition. Artificial Intelligence,
231, 2016.

[16] Olawande Daramola, Guttorm Sindre, and Thomas Moser. A tool-based semantic
framework for security requirements specification. J. UCS, 19(13):1940–1962,
2013.

[17] Ana Karla Alves de Medeiros, Wil Van der Aalst, and Carlos Pedrinaci. Semantic
process mining tools: core building blocks. 2008.

[18] Claudio Di Ciccio, Massimo Mecella, Monica Scannapieco, Diego Zardetto, and
Tiziana Catarci. MailOfMine - Analyzing mail messages for mining artful collabo-
rative processes. Lect. Notes Bus. Inf. Process., 116 LNBIP:55–81, 2012.

[19] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Formal semantics and anal-
ysis of BPMN process models using Petri nets. Technical Report 7115, Queensland
University of Technology, 2007.

117

[20] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analy-
sis of business process models in BPMN. Information & Software Technology,
50(12):1281–1294, 2008.

[21] Agostino Dovier, Andrea Formisano, and Enrico Pontelli. A comparison of clp (fd)
and asp solutions to np-complete problems. In Logic Programming, pages 67–82.
Springer, 2005.

[22] Thomas Eiter, Giovambattista Ianni, Thomas Krennwallner, and Axel Polleres.
Rules and Ontologies for the Semantic Web. In Reasoning Web 2008, volume 5224,
pages 1–53. San Servolo Island, Venice, Italy, 2008.

[23] Gerhard Fleischanderl, Gerhard E. Friedrich, Alois Haselböck, Herwig Schreiner,
and Markus Stumptner. Configuring Large Systems Using Generative Constraint
Satisfaction. IEEE Intelligent Systems, 13(4):59–68, 1998.

[24] Julia Fuchsbauer. How to manage Processes according to the European Norm
50126 (EN 50126). Bachelor thesis, 2015.

[25] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Morgan & Claypool Publishers, 2012.

[26] Jan Mendling Axel Polleres Giray Havur, Cristina Cabanillas. Resource and data
management service architecture. SHAPE project deliverable.

[27] Guido Governatori and Shazia Sadiq. The Journey to Business Process Compliance.
In Handbook of Research on BPM, pages 426–454. IGI Global, 2009.

[28] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Automated
Resource Allocation in Business Processes with Answer Set Programming. In
BPM Workshops (BPI), page In press, 2015.

[29] Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer. Activity Mining for Dis-
covering Software Process Models. Softw. Eng., 79:175–180, 2006.

[30] Holger Knublauch and Arthur Ryman. Shapes Constraint Language (SHACL).
Working Draft (work in progress), W3C, 2016. https://www.w3.org/TR/
shacl/.

[31] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Transformations for
Business Processes - A Survey. Transactions on Petri Nets and Other Models of
Concurrency II, 2:46–63, 2009.

[32] Mariano F. Lopez, Asuncion G. Perez, and Natalia Juristo. METHONTOLOGY:
from Ontological Art towards Ontological Engineering. In AAAI97 Symposium,
pages 33–40, 1997.

[33] Linh Thao Ly, Fabrizio M. Maggi, Marco Montali, Stefanie Rinderle-Ma, and
W.M.P. van der Aalst. Compliance monitoring in business processes: Functionali-
ties, application, and tool-support. 54:209–234, March 2015.

[34] OMG. BPMN 2.0. Recommendation, OMG, 2011.

118

[35] C Michael Pilato, Ben Collins-Sussman, and Brian W Fitzpatrick. Version control
with subversion. ” O’Reilly Media, Inc.”, 2008.

[36] Wouter Poncin, Alexander Serebrenik, and Mark Van Den Brand. Process Mining
Software Repositories. 2011 15th Eur. Conf. Softw. Maint. Reengineering, pages
5–14, 2011.

[37] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and David
Edmond. Workflow Resource Patterns: Identification, Representation and Tool
Support. In CAiSE, pages 216–232, 2005.

[38] Stefan Schönig, Cristina Cabanillas, Stefan Jablonski, and Jan Mendling. Mining
the Organisational Perspective in Agile Business Processes. In BPMDS, pages
37–52, 2015.

[39] Pinar Senkul and Ismail H. Toroslu. An Architecture for Workflow Scheduling
Under Resource Allocation Constraints. Inf. Syst., 30(5):399–422, July 2005.

[40] Simon Steyskal. Engineering Domain Ontology. Project deliverable, Siemens,
2016.

[41] Simon Steyskal and Axel Polleres. Defining expressive access policies for linked
data using the ODRL ontology 2.0. In SEMANTICS 2014, pages 20–23, 2014.

[42] L. J. R. Stroppi, O. Chiotti, and P. D. Villarreal. A BPMN 2.0 Extension to Define
the Resource Perspective of Business Process Models. In CIbS’11, 2011.

[43] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Boris Villazón-
Terrazas. How to write and use the Ontology Requirements Specification Docu-
ment. In On the move to meaningful internet systems: OTM 2009, pages 966–982.
Springer, 2009.

[44] Linus Torvalds and Junio Hamano. Git: Fast version control system. URL http//git-
scm. com, 2010.

[45] Wil van der Aalst. Process mining: discovery, conformance and enhancement of
business processes. Springer-Verlag Berlin Heidelberg, 2011.

[46] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Inf. Syst., 30(4):245–275, 2005.

[47] Wil MP Van der Aalst. The application of petri nets to workflow management.
Journal of circuits, systems, and computers, 8(01):21–66, 1998.

[48] W.M.P. van der Aalst. Petri net based scheduling. Operations-Research-Spektrum,
18(4):219–229, 1996.

[49] B. F. Van Dongen, A. K A De Medeiros, H. M W Verbeek, A. J M M Weijters,
and W. M P Van Der Aalst. The ProM framework: A new era in process mining
tool support. In Lect. Notes Comput. Sci., volume 3536, pages 444–454. Springer,
2005.

119

[50] B F van Dongen and Sh Shabani. Relational XES : Data Management for Process
Mining. BPM Cent. Rep. BPM-15-02, 2015.

[51] H. M W Verbeek, Joos C A M Buijs, Boudewijn F. Van Dongen, and Wil M P Van
Der Aalst. XES, XESame, and ProM 6. In Lect. Notes Bus. Inf. Process., volume
72 LNBIP, pages 60–75. Springer, 2011.

[52] Michael Weber and Ekkart Kindler. The petri net markup language. In Hartmut
Ehrig, Wolfgang Reisig, Grzegorz Rozenberg, and Herbert Weber, editors, Petri
Net Technology for Communication-Based Systems, volume 2472 of Lecture Notes
in Computer Science, pages 124–144. Springer, 2003.

[53] Sabine Wilke, Arnab Majumdar, and Washington Y Ochieng. Airport surface
operations: A holistic framework for operations modeling and risk management.
Safety Science, 63:18–33, 2014.

[54] Richard M Zahoransky, Christian Brenig, and Thomas Koslowski. Towards a
process-centered resilience framework. In Availability, Reliability and Security
(ARES), 2015 10th International Conference on, pages 266–273. IEEE, 2015.

[55] WM Zuberek. Timed petri nets definitions, properties, and applications. Micro-
electronics Reliability, 31(4):627–644, 1991.

120

Published in the Proceedings of the 7th International Symposium on Data-driven
Process Discovery and Analysis (SIMPDA 2017), pp. 128-141, Dec 2017, CEUR vol.

2016 (urn:nbn:de:0074-2016-7)

Resource Utilization Prediction in
Decision-Intensive Business Processes?

Simon Sperl1, Giray Havur1,2, Simon Steyskal1,2, Cristina Cabanillas2,
Axel Polleres2, and Alois Haselböck1

1 Siemens AG Österreich, Corporate Technology, Vienna, Austria
{name.surname}@siemens.com

2 Vienna University of Economics and Business, Austria
{name.surname}@wu.ac.at

Abstract. An appropriate resource utilization is crucial for organizations in or-
der to avoid, among other things, unnecessary costs (e.g. when resources are
under-utilized) and too long execution times (e.g. due to excessive workloads, i.e.
resource over-utilization). However, traditional process control and risk measure-
ment approaches do not address resource utilization in processes. We studied an
often-encountered industry case for providing large-scale technical infrastructure
which requires rigorous testing for the systems deployed and identified the need
of projecting resource utilization as a means for measuring the risk of resource
under- and over-utilization. Consequently, this paper presents a novel predictive
model for resource utilization in decision-intensive processes, present in many
domains. In particular, we predict the utilization of resources for a desired pe-
riod of time given a decision-intensive business process that may include nested
loops, and historical data (i.e. order and duration of past activity executions, re-
source profiles and their experience etc.). We have applied our method using a
real business process with multiple instances and presented the outcome.

Keywords: decision-intensive business processes, prediction model, resource
utilization, risk management

1 Introduction

Human resource utilization in an organization can be seen as the proportion of time a
person spends on working on allocated tasks. Poor utilization of human resources3 re-
lates to having resources unnecessarily idle or overloaded. This has a very negative ef-
fect on process performance measures such as process completion time, execution costs,
and quality [1]. Specifically, while under-utilization of resources leads to higher process
execution costs, over-utilization of resources may result in process delays. Therefore,
decision makers (typically process managers) should be informed about the utilization

? This work has been funded by the Austrian Research Promotion Agency (FFG) under the
project grant 845638 (SHAPE) and the Austrian Science Fund (FWF) under the project grant
V 569-N31 (PRAIS).

3 From now on resources for the sake of brevity.

123

of resources in their organizations for enabling appropriate controls that ensure a de-
sired level of resource utilization.

In a scenario where the process model has no decision nodes, given a baseline
schedule and resource allocation [2], deriving the utilization of resources would be
trivial. However, actual processes usually have decision points that split the execu-
tion flow into different paths so that several cases are projected in the same process
model [3]. Decision-intensive processes may contain (nested) loops [4], which actu-
ally makes both scheduling and resource allocation more difficult due to the increasing
uncertainty. Nonetheless, these kind of processes are common in many domains, e.g.
engineering, healthcare, insurance handling, and construction. An inadequate schedul-
ing or allocation of resources may result in a poor resource utilization. While recent
resource allocation approaches have already tried and addressed that kind of processes
[2], to the best of our knowledge there is a lack of support for resource utilization pre-
diction in such complex scenarios, as most of the existing techniques tend to simplify
the application scope [5, 6, 7, 8]. This, in turn, negatively affects risk management
in organizations, since process managers miss input that helps to improve the process
models and hence, the execution performance of the processes.

In this paper we address that problem and describe a mathematical method for quan-
tifying resource utilization with respect to the structural properties of non-deterministic
processes and the historical executions of these proceses. The input values that are used
for our prediction model are intrinsically of a stochastic nature, i.e. in the form of prob-
ability density functions (PDF). They include, among others, the activity duration PDFs
and the resource utilization PDFs. We propagate these input values towards the accu-
mulated utilization function. This function provides a visual overview on the level of
future resource utilizations. Therefore, an upcoming over- or under-utilization of re-
sources can be observed. Moreover, we have defined two metrics which characterizes
resource over-utilization and under-utilization. We have implemented our approach and
demonstrated it with a real process related to large-scale technical infrastructure devel-
opment and deployment.

We believe that our approach enhances the assessment of process behaviour with the
resource perspective. It is especially useful for organizations who need to evaluate the
utilization of resources for which they are accountable. With the help of our approach
they can automatically get an answer to questions such as whether they have enough
resources for the robust execution of their processes, in which periods of time they
should expect a delay in the process execution, and when they can safely grant vacations
to particular resources, among others.

The paper is structured as follows: Section 2 presents a scenario that motivates
this work as well as related work. Section 3 formally defines the input required for
our approach. Section 4 describes our approach for predicting resource utilization in
decision-intensive business processes. Section 5 applies our method to a real process
and presents the outcome, and Section 6 concludes the paper and outlines the future
work.

124

2 Background

In the following, we describe an example scenario that motivates this work and shows
the problems to be addressed, and then we outline related work.

2.1 Running Example
A company that provides large-scale technical infrastructure requires rigorous testing
for the systems deployed. Each system consists of different types and number compo-
nents that are developed and tested in parallel. In order to provide concise and clear
examples while describing our method, we use the simple example process shown in
Fig. 1. In this process, the Develop activity is followed by a Test activity, and this may
repeat if the test fails. There is also the activity Manage which abstracts the potential
contractual work running in parallel. There are two resources, namely Jack and Jill,
who execute this process. A more complex process from a real scenario is used later in
Section 5 for demostrating the applicability of our method.

2.2 Related Work
The approach presented in this paper is mostly related to resource-related risk mon-
itoring and prediction. This risk occurs “due to the high variability that may affect
operational processes in real world scenarios” [9]. The risk of inappropriate resource
utilization has been identified in [10, 11]. Rosemann et. al. [10] provides a risk taxon-
omy from the project management perspective. They identify the organizational risk in
their taxonomy (e.g., when a resource does not possess the required skills to carry out
an activity, or when there is not enough resources to carry out activities on time). Simi-
larly, the process related risk taxonomy of zur Muehlen et. al. [11] contains the resource
perspective catagory about lack of resources and/or their skills for activity executions.

Information systems support processes by recording information about their exe-
cutions in event logs [12]. In order to manage time and resource related risks in an
informed fashion, a variety of event log mining and prediction mechanisms have been
devised: Among others, process duration estimation [13, 14], deadline violation de-
tection [6], resource profiling [7], resource behaviour measurement [5, 15], resource
scheduling [16], resource recommendation [17], work prioritization [18], and process
performance forecasting [19]. There are also several risk monitoring approaches [8?]
combines the scope of several aformentioned mechanisms.

Our method requires extracting durations of activities, and experience of resources
for each activity from the event logs for providing realistic resource utilization pre-
dictions. Durations can be obtained in a similar way to described by van der Aalst et
al. [13] who provide reliable predictions. On the other hand, extraction of resource pro-
files including their experiences are delineated by Pika et. al. [7].

Within the context of quantifying the resource perspective, our method draws par-
allels with [15]. We further elaborate our mathematical model for refining our results
over the structural properties of running processes. Rather than providing an overall
view, Conforti et. al. [8] allow users to take resource-informed decisions at run-time.
Our approach is similar to this work in the sense that it reports on resource utilization
abnormalities thay may become a problem during the executions of processes.

125

Folino et al. [19] introduce a performance model for run-time process executions
with respect to process variants such as workload and seasonality. Our prediction
method can support such models for enriching the context from resource utilization
point-of-view.

3 Input Data

The following input is required for resource utilization prediction in decision-intensive
business processes:

Input 1 (Business Process Model). A business process model P is represented as a
directed, connected graph (N,E) with N = A ∪ G ∪ {nstart, nend} denoting a finite
set of nodes consisting of activities A, gateways G, and two respective start and end
events nstart and nend, and E ⊆ N × N representing a set of edges connecting the
nodes.

We assume that our model consists of activities, XOR-gateways (decision points),
AND-gateways (parallel execution gateways), a start-event, and an end-event. The pro-
cess always terminates (i.e., it contains no livelocks or deadlocks).

In a real life application, an input process can be composed of the processes that
are planned to be executed in the future, and of the unexecuted fragments of the already
executing processes.

Input 2 (Edge Execution Probability). Given a process model
P = (A ∪ G ∪ {nstart, nend}, E), each edge e ∈ E leaving a XOR-gateway
g ∈ GXOR ⊆ G of P is annotated with an edge execution probability pe ∈ [0, 1]. Addi-
tionally edge execution probabilities pe must satisfy

∑
e∈E∩(g×N)

pe = 1, ∀g ∈ GXOR.

The outgoing edges of XOR-gateways are annotated with edge execution probabil-
ities (see Fig. 6).

Input 3 (Activity Duration PDF). For each activity a ∈ A,Da : R≥0 → R≥0 denotes
the PDF representing the duration PDF of activity a.

Example 1. For clarification, we provide the process in Fig. 1. A single loop of two
consequent activities Develop and Test is presented in parallel with the activity Manage.
The duration PDFs for Manage and Develop are normally distributed while Test has a
fixed duration represented as a solid dot (i.e., a time shifted dirac delta function 4). The
duration of Test is deterministically 3 time-units (TU) whereas the duration of Manage
is on average 2 TU.

Input 4 (Resource Utilization PDF). Given a set of activities A of a business process
B and a set of resources R, the resource utilization PDF is Ua,r : R≥0 → R≥0 for
activity a ∈ A and resource r ∈ R. U defines the PDFs of the probable additional
utilization the execution of an activity causes for all resources.

4 The Dirac delta function δ(x) is ∞ at x = 0 otherwise 0 and satisfies
∞∫
−∞

δ(x) dx = 1.

126

Develop
p = 1

Test
p = 0.2

p = 0.8

Manage

t

t t

Fig. 1: The running example process with activity duration PDFs Da

Resources
Jack Jill Description

A
ct

iv
iti

es

Manage
.5 1

o

.5 1

o
The activity Manage utilizes Jack about 30%.

Develop
.5 1

o

.5 1

o
The activity Develop utilizes Jill about 100%,
however there is also less of a chance that the
same activity may utilize her about 50%.

Test
.5 1

o

.5 1

o The activity Test utilizes Jack about 85% and Jill
about 50%.

Fig. 2: Resource Utilization PDFs for the activities in Fig. 1

The resource utilization PDFs describe which resources are utilized to what extent
while executing an activity. Intuitively, one can think of Ua,r(x)dx as being the proba-
bility of r’s utilization falling in the infinitesimal interval [x, x + dx]. We assume that
utilization values are normalized so that Ua,r(0) represents the probability of resource
r being 0% utilized by the activity a. Ua,r(1) specifies the probability of resource r’s
being utilized 100% by the activity a. The notion of utilization can be considered as
“the percentage of the work day spent on a task” in our running example.

Example 2. See Fig. 2 for an example visualizing the definition of resource utilization
PDF. For instance,UDevelop,Jill(0.5) = 0.3 means with 0.3 probability Develop utilizes
Jill 50%, and UDevelop,Jack(0) =∞ means that Jack is never occupied by Develop.

Input 5 (Experience Matrix). Given a set of activities A of a process model, and a
set of resources R, the experience value Xa,r : R>0 where a ∈ A and r ∈ R is a
multiplication factor (a scalar) for activity durations.

The experience of each resource r in every activity a is reflected in this matrix. This
value theoretically has a range between zero to infinity which is extracted from activity
execution durations of resources. Resources that execute activities faster than average
have an experience value greater than 1.0.

127

Input 1 Input 2 Input 3 Input 4 Input 5

Def. 1Def. 2,3,4,5

Def. 6

Output 3

Process Time Resource

In
pu

t
In

te
rm

ed
ia

ry
O

ut
pu

t

Output 2 Output 1

Fig. 3: Input, intermediary functions, and output of our method

We assume that the edge execution probabilities pe, activity duration PDFs Da,
resource utilization PDFs Ua,r, and experience matrixX (Input 2–5) are extracted from
the event logs obtained from the past executions of the process P (Input 1), where the
resources and the durations of the past activity executions are recorded. A solution
to this prediction problem is total utilization PDFs over time for each resource. Each
function provides a utilization prediction for its respective resource.

4 Method

Following the problem definition, we first introduce intermediary functions that would
allow us to compute the ultimate total utilization PDF, and afterwards we introduce
quality metrics that would quantify the risk of abnormal resource utilization that may
occur in the future. Fig. 3 is an overview of “used by” relation between input values and
defined functions of our method (e.g., Input 3 is used by Definition 1). Background col-
ors blue, green and yellow indicates process-related, time-related and resource-related
elements.

Definition 1 (Dependent Activity Duration PDF). Given an independent activity
duration PDF Da, allocation PDF Ua,r, experience values Xa,r for activities a
and resources r, the (utilization-and-experience) dependent activity duration PDF
Ddep

a : R≥0 → R≥0 is defined as follows:

xa =
∑

r∈R
Xa,r

∞∫

0

uUa,r(u)du

Ddep
a (t) =

Da(txa)
∞∫
0

Da(t′xa)dt′

For each activity, an experience value xa is derived from the experiences of all the
resources that are potentially participants in a (i.e., ∃x ∈ R>0 : Ua,r(x) > 0). xa is

128

used as a division factor for Da, therefore the experience values above 1.0 reduce the
width of Da (i.e., they act as speed-up factor for execution times), and the opposite
holds for the values smaller than 1.0.

4.1 Edge Transition Probability Function
In order to compute how often an activity is being executed, we need to extract the
probability values of edge traversals over time. Only activities can create time delays
via their duration PDFs. Edge transitions are always instantaneous.

Definition 2 (Edge transition probability function). fe(t) : R≥0 → R≥0 denotes the
probability that an edge e ∈ E is traversed at time t ∈ R≥0.

P (An edge is traversed between t1 and t2)

= P (Edge is traversed before t2)− P (Edge is traversed before t1)

=

t2∫

0

f(t′) dt′ −
t1∫

0

f(t′) dt′

Note that in general fe is not a PDF. However, if the process contains no XOR-
gateways all fe are PDFs since ∀e ∈ E :

∫
fe(t) dt = 1.

Definition 3 (f for AND-Gateway). Given g ∈ Gand ⊆ G with incoming edges
{in1, . . . , inn} = E ∩ (N × g) and outgoing edges {out1, . . . , outm} = E ∩ (g×N),
the edge transition probability function fe(t) for outgoing edges e is defined as

...
...

f
in

1 (t)

finn
(t)

fout
1
(t)

f
outm (t)

foutj (t) =

(
n∏

i=1

t∫
fini

(t′) dt′
)

d
dt , 1 ≤ j ≤ m

Having a generic analytical result about the edge transition behavior of the process
is difficult unless the input is in form of time-shifted dirac delta functions or PDFs of
an exponential distribution.

Definition 4 (f for XOR-Gateway). Given g ∈ GXOR ⊆ G with incoming edges
{in1, . . . , inn} = E ∩ (N × g), outgoing edges {out1, . . . , outm} = E ∩ (g × N),
and edge execution probabilities {pout1 , . . . , poutm}, the edge transition probability
function fe(t) for outgoing edges e is defined as

...
...

f
in

1 (t)

finn
(t)

fout
1
(t)

f
outm (t)

foutj (t) = poutj
n∑

i=1

fini
(t) , 1 ≤ j ≤ m

129

Develop
p = 1

Test
p = 0.2

p = 0.8

Manage

t

t t

Fig. 4: The running example process with activity execution prob. functions Fa

Definition 5 (f for Activities). Given an activity a ∈ A with one incoming edge ein,
one outgoing edge eout, and activity duration PDFDdep

a , the edge transition probability
function fout(t) is defined as

Ddep
a (t)

fin(t) fout(t) fout(t) = fin(t) ∗Ddep
a (t)

Note that the convolution operator ∗ for two functions f and g is defined as
(f ∗ g)(t) =

∫
f(t′)g(t− t′) dt′.

We compute edge transition probability functions directly on the process. Another
way of doing this is described in [20]. Their method requires decomposition of the
process into process blocks.

4.2 Estimating Total Resource Utilization

In order to be able to define the total resource utilization function, we need to know
the probability density of an activity a being executed at time t. From edge transition
probabilities for the incoming edge of a, the probability density that an activity is exe-
cuted for each point in time is represented by the activity execution probability function
Fa(t).

Definition 6 (Activity execution probability function). The function
Fa(t) : R≥0 → R≥0 denotes the probability density that an activity a ∈ A is
executed at time t ∈ R≥0.

Fa(t) = P (Activity is currently being executed at t)

= P (Activity is entered before t)− P (Activity is left before t)

=

t∫

0

fin(t
′) dt′ −

t∫

0

fin(t
′) ∗Ddep

a (t′) dt′ =

t∫

0

fin(t
′) dt′ −

t∫

0

fout(t
′) dt′

130

Example 3. Our running example with the activity duration PDFs Da in Fig. 1 would
then result into the activity execution probability functions Fa presented in Fig. 4. Man-
age is immediately executed once. As Develop and Test repeat (infinitely) in the loop,
each repetition lowers the execution probability of the next iteration.

Output 1 (Total utilization PDF over time). Or is the utilization PDF of a resource
r ∈ R at time t ∈ R≥0, where A = {a1, . . . , an}. A value Or(t, u) represents the
probability density that r is utilized by an amount of u percent of his/her time (e.g.
u = 1 means full time, u > 1 means over-utilization) at time t. The operator ∗u is the
convolution over the parameter u.

Or : (R≥0 × R≥0)→ R≥0
Or(t, u) = δ(u)

∗u (Ua1,r(u)Fa1(t) + δ(u)(1− Fa1(t)))

. . .

∗u (Uan,r(u)Fan(t) + δ(u)(1− Fan(t)))

For each resource, there is one total utilization PDF over time. In these PDFs, the
activity execution probability functions and resource utilization PDFs of the respective
resources are combined.

Example 4. In Fig. 5, the total utilization PDF over time for Jack OJack is based
on (1) our running example with the activity execution probability functions F
as seen in Fig. 4, and (ii) the resource utilization PDFs U as seen in Fig. 2.
OJack,Test(t, u) = (WJack,Test(u)FTest(t) + δ(u)(1− FTest(t))) is the probable
utilization of Jack by the activity Test shown in top-left corner. In a similar way,
OJack,Manage is on the top-right corner. We do not show OJack,Develop, since it
has no influence on Jack’s total utilization (see Fig. 2). We can clearly observe in
OJack,Manage that the activity Manage is non-repeating. The combined total utiliza-
tion PDF for Jack OJack is shown in bottom of the Figure. It shows how the probable
utilizations of Jack’s activities combine into a period of over-utilization as shown in
the red region. Such region representing over-utilization are of special interest for the
decision makers (e.g., project managers) who are also responsible for time and resource
management.

4.3 Quality Metrics

Based on resource utilization PDFs Or, we can define various metrics for quantifying
abnormal resource utilization. These metrics can be used as optimization criteria for
managing organizations and their schedules.

Output 2 (Resource over-utilization metric). The resource over-utilization metric
m+

r : R≥0 for a resource r ∈ R is the volume of utilization larger than 1.

m+
r =

∞∫

0

∞∫

1

oOr(t, u) du dt

131

over-utilization

no utilization

OJack(t, u)

time
utiliz

ation

pr
ob

ab
ili

ty
F

Test

UJack
,Test

time
utiliz

ation

OJack,T est(t, u)

F
Manage

UJack
,M

anage

time
utiliz

ation

pr
ob

ab
ili

ty

OJack,Manage(t, u)

Fig. 5: Total Utilization PDF over time OJack of our running example and the relevant
pieces it is composed of. Directly above the plots, we provide a more condensed visu-
alization where the x-axis is time, and the y-axis is utilization. The color intensity is
directly proportional with the probability density value. Note that the blue parts are of
infinite slope caused by δ(u).

The total over-utilization m of a process is the sum of over-utilization of all resources:
m+ =

∑
r∈R

m+
r

In other words, m+ is a value characterizing resource over-utilization for a whole
organization (i.e., for all resources and the processes involved).

Output 3 (Resource under-utilization metric). The resource under-utilization metric
m−r for a resource r ∈ R is the accumulated volume under the optimal resource occu-

132

Develop
Component A

Develop
Component B

Develop
Component C

Test
Component A

Test
Component B

Test
Component C

Integrate
Components Test

p A

p B

p C
p *

p end

p

p join-B

p join-C

 join-A

Fig. 6: An often-encountered development process with multiple parallel “Develop and
Test” cycles with a final integration step

pancy threshold on the occupancy axis (cf. 1.0).

FP (t) =

t∫

0

festart
(t′) dt′ −

t∫

0

feend
(t′) dt′

m−r =

∞∫

0

FP (t)

1∫

0

|1− u|Or(t, u) du dt

In other words, m− is a value characterizing resource under-utilization for a whole
organization (i.e., for all resources and the processes involved). FP in the formula above
is similar to Fa in Definition 6 in the sense that FP denotes the probability that a process
P is executed at time t ∈ R≥0.

5 Application to a Real Process

We tested our method in a setting where the utilization of 10 resources is forecasted in
10 process instances of the process shown in Fig. 6. In this realistic process, each system
consists of different types and number of components that are developed and tested in
parallel. All Develop activities must be tested independently, and repeated development
effort is expected. Additionally, a final Integrate and Test phase is mandatory for the
combined system, which may cause additional repetitions of the entire process. It is
expected for resources to work on multiple processes in parallel.

Table 1 describes the properties of 10 process instances with different starting times
and resource utilizations: The process name (id), the starting time (ts), the initial letter
of the resource allocated to a certain activity (r), mean duration of the activity (∂),
repetition probability of the iteration “Develop and Test” for component X (p�X) are
given (cf. p�∗ is the edge execution probability of restarting the process). The different
components of each process have different failure rates and duration distributions.

In order to generate the utilization functions for each resource, we simulate the
process instances with respect to their properties (cf. Table 1) and apply the methods
described previously. Note that we leave out the process execution paths with a proba-
bility lower than 0.1%.

Fig. 7 shows the visualization of the utilization functions for each resource. For
instance, Boris is overoccupied most of the times because he is allocated to 5 Develop,
3 Test, and 4 Integration activities which are overlapping. Grace becomes overoccupied

133

Table 1: Properties of process instances

DevA TestA DevB TestB DevC TestC Int∗ Test∗
id ts r ∂ r ∂ p�A r ∂ r ∂ p�B r ∂ r ∂ p�C r ∂ r ∂ p�∗
1 40 B 50 G 20 0.6 E 12.5 H 5 0.3 I 25 J 10 0.3 J 22.5 C 9 0.1
2 40 H 40 G 16 0.3 I 10 H 4 0.6 E 20 H 8 0.1 F 18 I 7.2 0.15
3 40 F 70 E 28 0.2 C 17.5 J 7 0.6 C 35 F 14 0.2 B 31.5 I 12.6 0.1
4 40 J 60 I 24 0.2 G 15 H 6 0.5 E 30 F 12 0.3 B 27 I 10.8 0.1
5 40 B 40 C 16 0.6 B 10 B 4 0.3 I 20 B 8 0.3 B 18 I 7.2 0.1
6 70 G 20 A 8 0.4 E 5 F 2 0.4 E 10 F 4 0.4 B 9 G 3.6 0.2
7 100 B 80 E 32 0.4 E 20 H 8 0.8 C 40 B 16 0.1 D 36 A 14.4 0.1
8 110 H 40 I 16 0.5 I 10 J 4 0.8 A 20 D 8 0.5 D 18 G 7.2 0.1
9 120 H 60 C 24 0.6 G 15 J 6 0.3 A 30 H 12 0.5 J 27 C 10.8 0.1

10 170 B 30 G 12 0.7 E 7.5 F 3 0.6 E 15 D 6 0.5 D 13.5 E 5.4 0.3

>150%100-150%50-100%0-50%utilization
days

Amy

Boris
Casey

David
Edgar

Florence
Grace
Henry
Ingrid

Jack
40 12070 100 170

Fig. 7: Compact visualization of resource utilization forecast with 10 resources and 10
projects of type Figure 6 over one year

due to the start of project-6 at day 70. Edgar, Florence, and Henry are also expected to be
visibly overoccupied in some periods during the execution of these 10 projects, though
their situations are not as critical as Boris’s, because their activities are not as many
times overlapping as the activities of Boris. David’s utilization looks exceptionally low.
Moreover, by using the quality metrics defined in Section 4.3, we are informed that there
is a 10 times greater risk of resource under-occupancy (m− = 2665.45) than resource
over-occupancy (m+ = 273.44). This can be intuitively confirmed by comparing the
amount of blue and red areas on Fig. 7.

Fig. 7 and the quality metrics suggest that: (i) There are more resources than needed
in this setting, and (ii) demand for resources can still be balanced, especially those of
Boris’s for a more robust execution.

The computational complexity of our method is equivalent to the complexity of
numerical integration which is P-complete [21]. Its implementations perform in quasi-

134

linear time. Therefore, our method responds to the problems with real-world sizes in a
few seconds, and it is suitable for both design-time and run-time prediction tasks.

6 Conclusions and Future Work

In this paper we have introduced a novel method for predicting resource utilization
in decision-intensive business processes. Our approach facilitates to obtain a resource
utilization overview for the whole organization where the processes have a stochastic
nature. As a result, the decision makers are provided with actual insights about their
organizational feasibility. One advantage of our approach is that it can be readily used in
practice, and it can be incorporated in BPM systems as a supplementary risk monitoring
element.

Our future work primarily involves conducting exhaustive evaluations to assess the
applicability of the approach in more real settings and compare the performance results.
We also aim at integrating the approach into a BPM system as well as at adapting the
current design-time method to be used at run time too, i.e. to make it more dynamic
such that the resource utilization predictions are updated during the execution of the
process instances.

References
[1] Michael Rosemann and Jan vom Brocke. The six core elements of business pro-

cess management. In Handbook on business process management 1, pages 105–
122. Springer, 2015.

[2] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Resource
Allocation with Dependencies in Business Process Management Systems. In BPM
(Forum), volume 260, pages 3–19, 2016.

[3] Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A Reijers, et al. Funda-
mentals of Business Process Management, volume 1. Springer, 2013.

[4] Qiang Liu and Jin He. Study of complex loop patterns based on time petri net.
In Computer Supported Cooperative Work in Design, 2007. CSCWD 2007. 11th
International Conference on, pages 801–805. IEEE, 2007.

[5] Zhengxing Huang, Xudong Lu, and Huilong Duan. Resource behavior measure
and application in business process management. Expert Systems with Applica-
tions, 39(7):6458–6468, 2012.

[6] Anastasiia Pika, Wil MP van der Aalst, Colin J Fidge, Arthur HM ter Hofstede,
and Moe T Wynn. Predicting deadline transgressions using event logs. Lecture
Notes in Business Information Processing, 132:211–216, 2012.

[7] Anastasiia Pika, Michael Leyer, Moe T Wynn, Colin J Fidge, Arthur HM Ter Hof-
stede, and Wil MP Van Der Aalst. Mining resource profiles from event logs. ACM
Transactions on Management Information Systems (TMIS), 8(1):1, 2017.

[8] Raffaele Conforti, Massimiliano de Leoni, Marcello La Rosa, Wil MP van der
Aalst, and Arthur HM ter Hofstede. A recommendation system for predicting

135

risks across multiple business process instances. Decision Support Systems, 69:1–
19, 2015.

[9] Paolo Ceravolo, Antonia Azzini, Ernesto Damiani, Mariangela Lazoi, Manuela
Marra, and Angelo Corallo. Translating process mining results into intelligible
business information. In Proceedings of the The 11th International Knowledge
Management in Organizations Conference on The changing face of Knowledge
Management Impacting Society, page 14. ACM, 2016.

[10] Michael Rosemann and Michael Zur Muehlen. Integrating risks in business pro-
cess models. ACIS 2005 Proceedings, page 50, 2005.

[11] Michael Zur Muehlen and Danny Ting-Yi Ho. Risk management in the bpm life-
cycle. In International Conference on Business Process Management, pages 454–
466. Springer, 2005.

[12] Wil MP van der Aalst. Process mining: data science in action. Springer, 2016.

[13] Wil MP Van der Aalst, M Helen Schonenberg, and Minseok Song. Time prediction
based on process mining. Information systems, 36(2):450–475, 2011.

[14] Andreas Rogge-Solti and Mathias Weske. Prediction of business process durations
using non-markovian stochastic petri nets. Information Systems, 54:1–14, 2015.

[15] Marijke Swennen, Niels Martin, Gert Janssenswillen, Mieke J Jans, Benoı̂t De-
paire, An Caris, and Koen Vanhoof. Capturing resource behaviour from event
logs. In SIMPDA, 2016.

[16] Arik Senderovich, Matthias Weidlich, Avigdor Gal, and Avishai Mandelbaum.
Mining resource scheduling protocols. In International Conference on Business
Process Management, pages 200–216. Springer, 2014.

[17] Michael Arias, Eric Rojas, Jorge Munoz-Gama, and Marcos Sepúlveda. A frame-
work for recommending resource allocation based on process mining. In Inter-
national Conference on Business Process Management, pages 458–470. Springer,
2015.

[18] Suriadi Suriadi, Moe T Wynn, Jingxin Xu, Wil MP van der Aalst, and Arthur HM
ter Hofstede. Discovering work prioritisation patterns from event logs. Decision
Support Systems, 2017.

[19] Francesco Folino, Massimo Guarascio, and Luigi Pontieri. Discovering context-
aware models for predicting business process performances. In OTM Confeder-
ated International Conferences” On the Move to Meaningful Internet Systems”,
pages 287–304. Springer, 2012.

[20] Wil MP Van der Aalst, Kees M Van Hee, and Hajo A Reijers. Analysis of discrete-
time stochastic petri nets. Statistica Neerlandica, 54(2):237–255, 2000.

[21] Akitoshi Kawamura. Computational complexity in analysis and geometry. Uni-
versity of Toronto, Toronto, Ont., Canada, 2011.

136

Published in the Proceedings of the 27th International Conference on Cooperative
Information Systems (CoopIS 2019), pp. 533-551, Oct 2019, Springer LNCS vol.

11877

History-Aware Dynamic Process Fragmentation for
Risk-Aware Resource Allocation?

Giray Havur1,2 and Cristina Cabanillas1

1Vienna University of Economics and Business, Austria
{name.surname}@wu.ac.at

2Siemens AG Österreich, Corporate Technology, Vienna, Austria
{name.surname}@siemens.com

Abstract. Most Process-Aware Information Systems (PAIS) and resource allo-
cation approaches do the selection of the resource to be allocated to a certain
process activity at run time, when the activity must be executed. This results
in cumulative (activity per activity) local optimal allocations for which assump-
tions (e.g. on loop repetitions) are not needed beforehand, but which altogether
might incur in an increase of cycle time and/or cost. Global optimal allocation
approaches take all the process-, organization- and time-related constraints into
account at once before process execution, handling better the optimization objec-
tives. However, a number of assumptions must be made upfront on the decisions
made at run time. When an assumption does not hold at run time, a resource
reallocation must be triggered. Aiming at achieving a compromise between the
pros and cons of these two methods, in this paper we introduce a novel approach
that fragments the process dynamically for the purpose of risk-aware resource al-
location. Given historical execution data and a process fragmentation threshold,
our method enhances the feasibility of the resource allocations by dynamically
generating the process fragments (i.e. execution horizons) that satisfy the given
probabilistic threshold. Our evaluation with simulations demonstrates the advan-
tages in terms of reduction in reallocation efforts.

Keywords: Business process management, dynamic process fragmentation,
quasi-online scheduling, resource allocation, process mining

1 Introduction

Resource allocation in business processes selects the resource(s) responsible for a pro-
cess activity at run time among the suitable resources according to predefined assign-
ment criteria (e.g. based on roles or other organizational properties)1. Despite being a
necessary functionality in any Process-Aware Information System (PAIS), current sys-
tems provide limited support for resource allocation. Generally, actual resource alloca-
tion is delegated to people to some extent, in the best case by implementing Push/Pull

? Funded by the Austrian Science Fund (FWF) Elise Richter programme under agreement V
569-N31 (PRAIS).

1 In this work we assume human resources but the concept could be adapted for non-human
resource allocation, too.

139

patterns [17] (e.g. by offering the activity to all the suitable resources and letting them
decide who will become responsible for its execution – distribution by offer). This be-
havior tends to overlook optimization functions regarding performance metrics such as
process cycle time or execution cost. On the other hand, when it is up to the process
manager to decide who to allocate to the next activities, they get no information about
the horizon until which the allocations will hold. When decision points are present in the
process, assumptions on the respective choices must be made beforehand. The bigger
the uncertainty in the process (i.e. the number of decisions), the more critical this issue
becomes. While taking a higher risk (i.e. allocating more activities at once) may be ben-
eficial as for process cycle time or cost, if the assumptions made do not hold at run time
the opposite effects may appear and undesired reallocations may be necessary. On the
contrary, a very conservative (less risky) approach that allocates resources only when
it is required (i.e. before activity execution) avoids speculating about potential future
behaviors of the process but does not assure the most optimal (or even feasible) results
at the process level and can incur in non-anticipated delays or deadlocks. For instance,
if there is a binding of duties between A (executed first) and B, and at the moment of
allocating B the required resource is not available, the process will be delayed.

In order to avoid manual resource allocation, several approaches propose more ad-
vanced and automated techniques [21, 16, 19, 4]. Some find out the most adequate
resource at the moment of executing an activity, hence allocating the process activity
per activity at run time to the “best” resource available [21, 16] (also known as on-
line scheduling [18]). Others aim for a global optimal solution [19, 4] where the entire
process is considered for allocation before it is started (also known as offline schedul-
ing [18]), so the resources for all the activity instances are selected at once on the basis
of the present process-, organization- and time-related constraints. In terms of risk man-
agement, these techniques lie in the two extremes of the spectrum, and to the best of our
knowledge there is not yet an approach handling risk and uncertainty in a more flexible
way in this context.

In this paper we introduce a novel approach to dynamically create and allocate pro-
cess fragments at run time being aware of the risks taken when making resource alloca-
tion decisions. The novelties of the approach include: (i) the use of historical execution
data for making probabilistic decisions ahead of time; and (ii) the dynamic fragmen-
tation of the process based on a fragmentation threshold that provides flexibility in
terms of risk management and helps to prevent potential reallocations. We have imple-
mented the approach using an encoding based on Answer Set Programming (ASP) [3]
that proved to produce good performance results in optimal resource allocation [4].
We have evaluated our fragmentation method with simulations aimed to assess its be-
haviour with respect to reallocation needs. The findings support our hypothesis that the
feasibility of the resource allocations improves when the risk is kept low.

The paper is structured as follows. Section 2 describes an example scenario that
illustrates the research problem. Section 3 defines concepts needed to understand our
approach. Section 4 introduces our new process fragmentation method. Section 5 ex-
plains the implementation of the method and the evaluation performed. Section 6 pro-
vides a more detailed description of the state-of-the-art. Finally, Section 7 outlines the
conclusions drawn from the work along with its limitations and potential future steps.

140

Study
requirements

Specification
received

Brief
milestone

Develop
backend

Verify
backend

Develop
frontend

Verify
frontend

d2: backend change required

d1: backend change
not required

d4: frontend change required

d3: frontend change
not required

d6: yes

Validate
system

Deploy
system

d8: invalid

d7: valid

Check if
more

milestones

Specification
deployed

d5: no

Fig. 1: BPMN model of the software development process

2 Motivating Scenario

A manager of a software development company would like to handle the allocation of
their (human) resources to every new project. They developed and refined a business
process model for the execution of software development projects as illustrated with
Business Process Model and Notation (BPMN) [12] in Fig. 1. After a project specifica-
tion is received, the requirements of the project are studied and a number of milestones
are derived. Every milestone involves two separate development parts (frontend and
backend) that are concurrently undertaken and which, in turn, may require one or more
iterations depending on the respective verification results. Once all the milestones are
fully achieved, the developed software needs to be validated against the requirements
and specifications received at the beginning of the project. If the validation fails, the
study of the requirements must be reinitiated and new milestones are developed.

The manager is aware of the fact that the process has multiple decision points (rep-
resented with XOR split gateways in BPMN) where their forecasting on the allocations
of resources deviated many times in the past. This forces them to reallocate resources
from scratch to the upcoming activities at each deviation. With the support of a PAIS,
they keep track of previous executions of the software development process in event
logs. This helps them to infer the duration of the activities depending on the resources
allocated to them. However, they found the need for an automated mechanism that could
perform their manual allocations in a more flexible and less risky way by leveraging the
process-, organizational- and temporal-related data available, aiming to achieve time-
and cost-effective executions and avoid the reallocations to a bigger extent.

3 Preliminaries

BPMN [12] is the de-facto standard process modeling notation due to its understand-
ability and ease of use. However, because of their well-defined semantics and their
analysis capabilities, in this work we rely on Petri nets [13] satisfying the workflow
properties [22] for process modeling. Nonetheless, note that many process modeling
notations, including BPMN, can be automatically mapped to Petri nets [11].

A Petri net is a bipartite graph composed of places and transitions. The places might
contain tokens, whose distribution might change over time.

Definition 1 (Petri net). A Petri net is a 4-tuple PN = (P, T, F, ν), where:
� P = {p1, p2, ..., pn} is the set of places, represented graphically as circles,

141

� T = {t1, t2, ..., tn} is the set of transitions, represented graphically as rectangles,
� F ⊆ (P × T)

⋃
(T × P) is the set of arcs (flow relations), represented as arrows,

� ν : F → Z+ is the arc weight mapping indicating cardinality constraints on the
movement of tokens throughout the net.

The input places and the output places of each transition t ∈ T are •t = {p ∈
P | (p, t) ∈ F} and t• = {p ∈ P | (t, p) ∈ F}, respectively. Similarly, the in-
put transitions and the output transitions of each place p ∈ P are •p = {t ∈ T |
(t, p) ∈ F} and p• = {t ∈ T | (p, t) ∈ F}, respectively. A marking (or state)
M = {µ(p1), µ(p2), ..., µ(p|P |)}, µ : P → Z≥0 represents the distribution of tokens
over the set of places. When it assigns a non-negative integer k to place p, we say that p
is marked with k tokens. Pictorially, we place k black dots in place p. A Petri net with an
initial marking, which represents the initial distribution of tokens, is a Petri net system.

Definition 2 (Petri net system). A Petri net system is a tuple PNS = (P, T, F, ν,M0),
where (P, T, F, ν) is a Petri net, and M0 is its initial marking.

The initial marking of the Petri net M0 can change into successor markings. These
changes are described as firing rules. Such rules introduce a dynamic aspect to the Petri
net by modifying its state, giving rise to the net behavior. A transition t is enabled
when there are at least as many tokens as ν(p, t) in each input place p ∈ •t. An en-
abled transition can therefore fire. The number of tokens that are added to each output
place after firing of t is defined as ν(t, p). The firing of a transition changes the cur-
rent marking by subtracting ν(t, p) amount of tokens from each input place p ∈ •t and
adding ν(p, t) amount of tokens to each output place p ∈ t•, and hence, it moves the
net from a marking Mk−1 to a new marking Mk denoted as Mk−1

tk−→ Mk. A firing
sequence of transitions σ = t1, t2, ..., tn changes the state of the Petri net at each firing:
M0

t1−→ M1
t2−→ ...

tn−→ Mn. A marking Mk is reachable if there is a sequence σ such
that M0

σ−→Mk (i.e. from the initial marking to Mk).
Petri nets are classified according to several criteria, including cardinality and be-

havioral constraints. The Petri nets that represent the business processes addressed in
this work have the following properties:
� They constitute a so-called workflow net [22], which means that they contain a start-

ing place ps such that •ps = ∅ and an ending place pe such that p•e = ∅; and they
are connected, that is, every node in the Petri net is on the path from ps to pe.

� They are 1-safe, which means that each place contains at most one token at any state
(i.e. for any place p ∈ P , 0 ≤ µ(p) ≤ 1).

� They are free-choice, which implies that the choice between multiple transitions can
never be influenced by the rest of the net (i.e. for any two different places {pi, pj} ⊆
P , (p•i∩p•j) = ∅ or p•i = p•j),
Besides, the transitions of the Petri net represent process activities (tasks) and the

places represent states of the business process. Some especial transitions, called silent
transitions and colored in black, are incorporated for modeling specific process behav-
ior. Therefore, to give more meaningful labels to the nodes of the Petri net, given the
alphabet (set of labels) Σ, the function λ : T → Σ ∪ {ε} assigns to each transition
t ∈ T either a symbol from Σ or the empty string ε (for silent transitions). Fig. 2 de-
picts the Petri net corresponding to the BPMN model in Fig. 1. For the purpose of this

142

p8

p4
tDB tVB

tDF tVF

tDSt0ts tSR tBM tVS

t1

t3

t4

ps

p1 p2 p3

p5 p6 p7

p9 p10 p11

p13 p14

pe

d1

d3

d2

d4

d5

d6

d7

d8
p12

tCMt2

t4
t5 t6

Fig. 2: Petri net model of the software development process

paper, dashed places denote decision points. A place p is a decision point if |p•|> 1. At
run time, a non-deterministic decision is made on the output transitions p• of a decision
point p, and dashed arcs connected to these places denote different arcs that lead to dif-
ferent transitions (i.e. decisions) from which only one is to be fired during the execution
of the system (e.g. decision d1 in Fig. 1 corresponds to the flow arc (p6, t1) in Fig. 2).

Three types of ordering relations can be identified between transitions of a Petri net.
Specifically, given two transitions tx, ty ∈ T of a Petri net, then:
� tx directly precedes ty (tx → ty) if the net contains a path with exactly two arcs

(i.e. (tx, pi) ∪ (pi, ty) ⊆ F) leading from tx to ty (e.g. tDB and tV B in Fig. 2).
This precedence relation is reduced to cover activity transitions in the direct activity
precedence relation (tx

a−→ ty), such that tj → tj+1 → . . .→ tn, where only tj and
tn are activity transitions (e.g. tBM

a−→ tDB and tV B
a−→ tCM in Fig. 2).

� tx is in conflict with ty (tx#ty) when the Petri net contains a place p where
{tx, ty} ⊆ p• (e.g. t1 and t2 in Fig. 2). A conflict-free Petri net system has no
two transitions in conflict relation.

� tx can be executed parallelly with ty (tx||ty) if tx and ty are neither in preceding
nor in excluding relation (e.g. tDB and tDF in Fig. 2).
The selection of the resources that are suitable to execute a process activity is

done by defining assignment constraints based on organizational and process-related
information. Different types of organizational structures lead to different organizational
models [8]. In this work we assume an organizational structure based on roles following
the Role-Based Access Control (RBAC) model [2].

Definition 3 (RBAC Model). An RBAC Model is a 6-tuple O =
(A,R,L, SAL, SRL, SLL), where:
� A is the set of activities that corresponds to the activity transitions in a PNS =

(P, T, F, ν,M0) that represents an executable business process, hence A ⊆ T ,
� R is the set of resources,
� L is the set of roles,
� SAL ⊆ 2(A×L) is the set of activity-to-role assignment tuples specifying which

activity can be executed by the resources associated with which role(s),
� SRL ⊆ 2(R×L) is the set of resource-to-role assignment tuples identifying the roles

of a resource,

143

� SLL ⊆ 2(L×L) is the set of role-to-role assignment tuples that creates a hierarchi-
cal structure. The symbol � indicates the ordering operator. If l1 � l2, then l1 is
referred to as the senior of l2 and therefore, the resources of l1 can also execute
the activities assigned to l2. Conversely, l2 is the junior of l1. Note that for any
li � li+1 � ... � lj , ln ň lm where i ≤ m ≤ n ≤ j.
For example, given the RBAC model in Table 1 for our running example, the activity

Study requirements must be performed by managers and/or coordinators. Therefore,
Amy, Oliver and Emma might be involved in its execution. However, we also need to
know how many resources of each type are required.

Definition 4 (Resource Requirement). A resource requirement q ⊆ 2(L×Z≥0) is a set
of binary relations that represents the number of resources with role l ∈ L required.

(a, l) ∈ SAL (r, l) ∈ SRL

{Study req., Manager} {Amy, Manager}
{Study req., Coordinator} {Oliver, Coordinator}
{Brief mile., Coordinator} {Emma, Coordinator}
{Dev. backend, Coder} {Glen, Software eng.}
{Dev. backend, Software eng.} {Evan, Testing exp.}
{Verify backend, Testing exp.} {Mia, Testing exp.}
{Verify backend, Software eng.} {Drew, UI designer}
{Dev. frontend, UI designer} {Ellen, UI designer}
{Dev. frontend, Coder} {Jessie, Coder}
{Verify frontend, Testing exp.} {Liam, Coder}
{Verify frontend, Software eng.} {Alex, Coder}
{Check mile., Coordinator}
{Validate syst., Manager}
{Validate syst., Software eng.}
{Deploy syst., Manager}

Table 1: RBAC model of the software company

a qa δ(a, qa)

Study req. {(Manager,1)} 20
Study req. {(Manager,1),(Coordinator,1)} 15
Brief mile. {(Coordinator,1)} 1
Dev. backend {(Software eng.,1),(Coder,2)} 10
Verify backend {(Testing exp.,1),(Software eng.,1)} 4
Dev. frontend {(UI designer,1),(Coder,1)} 12
Dev. frontend {(UI designer,1),(Coder,2)} 8
Verify frontend {(Testing exp.,1)} 2
Check mile. {(Coordinator,1)} 1
Validate syst. {(Manager,1),(Software eng.,1)} 18
Deploy syst. {(Manager,1)} 5

Table 2: Activity and temporal requirement sets

144

Definition 5 (Resource Requirement Set of an Activity). A resource requirement set
of an activity a ∈ A is Qa ⊆ 2q . Qa contains all different resource requirement sets
that allow the activity a to be executed.

For instance, given the requirements in Table 2, we now see that Study requirements
can be executed by one manager or by a team of one manager and one coordinator.

On the other hand, data related to the execution of the process (e.g. when and by
whom each activity instance is executed) is usually stored in event logs.

Definition 6 (Event Log). An event log is a 6-tuple L = (E, ε, α, %, τ, T), where:
� E = {e1, e2, ..., en} is the set of events,
� ε : E → {start, complete} assigns the event type to events,
� % : E → R assigns the resources to events,
� α : E → A assigns the activities to events,
� τ : E → Z≥0 assigns a timestamp to events,
� T = {σ1, σ2, ..., σn} is the set of traces (i.e. process instances), where σi ∈ E∗ is a

trace such that time is non-decreasing (i.e. 1 ≤ j < k ≤ |σ|: τ(σ(j)) ≤ τ(σ(k))).

The analysis of the event log can provide valuable information, such as the likeli-
hood of different branches taken at the decision points.

Definition 7 (Temporal Requirement Function). The temporal requirement function
of an activity requirement set δ : (A×Qa)→ Z≥0 returns the duration required for an
activity a ∈ A to be executed with the requirement set qa ∈ Qa.

Table 2 indicates that the duration of Study requirements is 20 time units (TU) in
case it is executed only by one manager, and 15 TU when it is allocated to a team with
one manager and one coordinator. With this input data, resources can be allocated.

Definition 8 (Resource Allocation Problem). Given a conflict-free Petri net system
PNS whose activities are in strict partial order (i.e. the precedence relation between
activities is irreflexive, transitive and asymmetrical), an RBAC model O, an event
log L, one activity requirement set and an upper bound on the process makespan
(or process cycle time) u, the computation of a feasible allocation of resources is
I ⊆ 2(2R×A×U×U), where each activity a ∈ A is assigned to several resources that
comply with the activity’s requirement set {r1, r2, ..., rn} ⊆ 2R, a start time sa ∈ U
and a completion time ca ∈ U .

Only one resource requirement set per activity needs to be satisfied for the execu-
tion of the activity. For the formal representation of the resource allocation problem in
business processes, we define two binary variables oras and oqaa, and a starting time
s ∈ [0, u]:

oqaa =





1, if the resource requirement set qa ∈ Qa is selected for the execution
of the activity a,

0, otherwise.

(1)

145

oras =

{
1, if the resource r is allocated to the activity a and a starts at time s,
0, otherwise.

(2)

Note that if oqaa = 1, the completion of a occurs at time s+ δ(a,qa). The objective
function and the constraints of the model are as follows. For every ri, rj ∈ R; am, an ∈
A; qx ∈ Qam ; qy ∈ Qan ; so, sp ∈ U ; U = {0, 1, ..., u}; u ∈ Z>0 the objective is to

minimize max(
⋃
oqazam

· oriamso · (so + δ(am,qz))) (3)

where

oqxam · oqyam = 0 qx 6= qy (4)

∑
oriamso · oqxam = n · oqxam (am, l) ∈ SAL, (ri, l) ∈ SRL, (l, n) ∈ qx (5)

oriamso·orjamsp = 0 so 6= sp (6)

oriamso·(so + δ(qx,am)) ≤ orjansp ·(sp) am
a−→ an, oqxam = 1 (7)

oriamso·oriansp = 0 am||an, oqxam = 1, oqyan = 1,

[so, so + δ(qx,am)] ∩ [sp, sp + δ(qy,an)] 6= ∅ (8)

As the set of activities that are not followed by another activity are the last activities
to be executed, the objective function (3) minimizes the completion time of the activity
that has the greatest value. Constraint (4) ensures there is only one activity requirement
set selected for each activity. Constraint (5) indicates that an activity must be allocated
as many resources as described in each of its potential activity requirement sets (i.e.
roles of required resources and their cardinalities are satisfied). Constraint (6) restricts
each activity to having only one start time. Constraint (7) secures that no activity is
started until all its predecessors are completed. Constraint (8) enforces that no resource
is allocated to any parallel pair of activities that have overlapping execution periods.

A feasible allocation occurs when I satisfies the constraints (4-8). By taking into
account the minimization objective (3), the time optimal allocation Iopt is achieved.

4 History-aware Dynamic Process Fragmentation

Our approach is based on two steps. First, we compute the probabilities of taking every
single decision involved in the decision points of the process by analyzing previous
executions stored in an event log. To do so, we define a decision probability function.

Definition 9 (Decision Probability Set Function). The decision probability set func-
tion ΨPN,L : (P ×T ×Z>0)→ 2R[0,1] builds the set of probabilities of transition t ∈ T
(i.e. decision) being fired at a place p ∈ P (i.e. decision point) for the nth time for each
trace σ ∈ T in the event log L, where p ∈ P , n ∈ Z>0, P ∈ PNS, T ∈ PNS and

146

T ∈ L. Let ϕ : (T × T × Z≥1) → Z≥0 be the function that returns the number of
occurrences of t ∈ T in σ ∈ T at its first i position, where:

ϕ(σ, t, i) =
∑

j∈{1..|σ|}

{
1 for α(σ(j)) = t, j ≤ i,
0 otherwise.

(9)

then the decision probability set is calculated as follows:

ΨPN,L(p, t, n) =
⋃

σ∈T

∑
i∈{1...|σ|}





1 for α(σ(i)) = t′, t′ ∈ •p,
ϕ(σ, t′, i) = n, α(σ(i+ 1)) = t,

0 otherwise.

∑
i∈{1...|σ|}





1 for α(σ(i)) = t′, t′ ∈ •p,
ϕ(σ, t′, i) = n,

0 otherwise.

(10)

Definition 10 (Decision Probability Function). The decision probability function
ψPN,L : (P × T × Z>0)→ R[0,1] calculates the mean probability of a decision t ∈ T
being made at a decision point p ∈ P for the nth time via returning the mean value of
elements in the set that the function ΨPN,L builds.

ψPN,L(p, t, n) =

∑
x∈ΨPN,L(p,t,n) x

|ΨPN,L(p, t, n)| (11)

For instance, in our running example the option d1: backend change not required
(i.e. (p6, t1)) is selected in 20% of the cases and d2: backend change required (i.e.
(p6, t2)) in 80% of the cases at their first run. Table 3 shows the probabilities computed
from the event log over the Petri net in Fig. 2.

Second and lastly, we select a fragment of the business process for resource allo-
cation. The selection of the fragment depends on a fragmentation threshold and the
computed decision probabilities. The higher the fragmentation threshold, the smaller
the fragment of the process selected for allocation (thus hypothetically the lower the

Decision (p, t) ψPN,L(p, t, 1) ψPN,L(p, t, 2) ψPN,L(p, t, 3)
d1 (p6, t1) 0.20 0.90 0.80
d2 (p6, t2) 0.80 0.10 0.20
d3 (p10, t3) 0.55 0.40 0.70
d4 (p10, t4) 0.45 0.60 0.30
d5 (p13, tV S) 0.80 0.50 0.80
d6 (p13, t5) 0.20 0.50 0.20
d7 (p14, tDS) 0.90 0.55 n/a
d8 (p14, t6) 0.10 0.45 n/a

Table 3: Decision probabilities

147

risk of an unfeasible allocation). A process fragment either starts at the starting place of
the process and ends at a decision point, or starts at a decision point and ends at another
decision point, or starts at a decision point and ends at the end of the process.

Definition 11 (Dynamic Process Fragmentation (DPF)). Given a Petri net system
PNS = (P, T, F, ν,M0) representing a business process, and a fragmentation thresh-
old χ ∈ R[0,1], we generate a process fragment φ = (P ′, T ′, F ′,Σ, λ′). The process
fragmentation function γPN : (M × χ × εf) → 2F

′
generates all the arcs of the pro-

cess fragment φ with the help of the decision probability function ψPN,L and the state
transition function ΩPN . The initial value of the input εf is always 1 because the start-
ing arc must be in φ. γPN copies the outgoing arcs at places where the given marking
indicates a token while checking for the halting condition, which is bound to decision
probability values computed by ψPN,L, arc probability value εf , and the fragmentation
threshold χ. ΩPN copies the outgoing arcs at transitions while updating the marking
M of the Petri net with respect to a given enabled transition t ∈ T and returning the
updated marking back to γPN . The copy function κ : (P ∪ T)→ (P ′ ∪ T ′) copies the
nodes of Petri net. The counting function θ : (T × Σ) → Z≥0 counts the occurrences
of a transition t ∈ T in a firing sequence σ ∈ Σ.

γPN (M,χ, εf) =

⋃





(κ(p), κ(t)) ∪ Ω(t,M, εf) µ(p) = 1, |p•|= 1, t ∈ p•,
(κ(p), κ(t)) ∪ Ω(t,M, εf · ψPN,L(p, t, j)) µ(p) = 1, |p•|> 1, t ∈ p•,

θ(t, σ) = i, j = i+ 1,

εf ·ψPN,L(p, t, j) ≥ χ,
∅ otherwise.

(12)

ΩPN (t,M, εf) =





⋃
p∈t• (κ(t), κ(p)) ∪ γPN (M ′, εf) ∀p′ ∈ •t, µ(p′) = 1,

M
t−→M ′,

∅ otherwise.

(13)

P ′, T ′ and F ′ are defined as follows:
� F ′ ⊆ (P ′ × T ′) ∪ (T ′ × P ′), κ(p) ∈ P ′, κ(t) ∈ T ′,
� P ⊆ P ′ and T ⊆ T ′,
� ∀p′ ∈ P ′, |p′•|= 1 and φ is acyclic.

φ may contain multiple copies of the nodes (places and transitions) in the original
Petri net system PNS when χ has a value closer to the lower limit 0 and the given PNS
contains loops. In such a scenario, the fragmentation may include the same looping
decision multiple times. Fig. 3 shows resource allocations with DPF on the software
development process (cf. Fig. 2) using the resources described in Tables 1 and 2 at run
time with χ = 0.65. After the process fragment φ1 is generated and the resources are
allocated, the process execution starts. In φ1 the looping decision d2 is taken once and
the fragment ends at p7 and p10. This indicates that two informed assumptions are made
at the decision point p6 (i.e. ψPN,L(p6, t2, 1)·ψPN,L(p6, t1, 2) ≥ χ). At the first ending
place p10, neither of the decision probabilities is higher than χ (i.e. ψPN,L(p10, t3, 1) is

148

t3
p10 p11

tDB tVB

tDF tVF

t0ts tSR tBM
t1

ps

p7

p10

tDB2 tVB2

p13
t5

tDB tVB

tDF tVF

t0tBM p7

p10

R={Amy,Emma}
s = 0, c=15

R={Oliver}
s = 15, c=16

R={Glen,Jessie,Liam}
s = 16, c=26 R={Mia,Glen}

s = 26, c=30

R={Glen,Alex,Liam}
s = 30, c=40

R={Mia,Glen}
s = 40, c=44

...

Φ1

Φ4

tVSt4p7

p11

p13 p14
tCM

Time

0

30

44

R={Evan}
s = 28, c=30

R={Drew,Alex}
s = 16, c=28

R={Emma}
s = 44, c=45

R={Amy,Glen}
s = 45, c=63

Φ2

Φ345

...

Fig. 3: Process fragments in run-time with a fragmentation threshold of 0.65

0.55 and ψPN,L(p10, t4, 1) is 0.45), hence this branch ends there. The DPF also ends at
p7 owing to the fact that the execution of the other parallel branch has not finished and
thus t4 cannot be enabled at 30 TU. When Evan finishes executing Verify frontend at
30 TU, the decision d3 is adopted and the DPF generates the second process fragment
φ2. This fragment ends at p11 due to the same reason of p7. At 44 TU, the execution
of both parallel branches is finished and the DPF generates the third process fragment
φ3, which ends at p14. After the activity Check Milestone is executed by Emma, d6 is
adopted at run time instead of the assumed decision d5 during the DPF. This disruption
causes the DPF to generate φ4 starting from the decision point p13 towards the adopted
decision d6. This procedure continues until the process execution ends.

5 Evaluation

To test the effectiveness of our approach, we have developed a proof-of-concept im-
plementation that lies on the system architecture illustrated in Fig. 42. The components
providing input data for our approach are a Data Repository, which contains design-
time process and organizational data; and Event logs, which store traces of past process

2 With the Fundamental Modeling Concepts (FMC) notation (www.fmc-modeling.org/).

149

Process
Model &
Instance

Data

Organizational
Data

PAIS

Process
Fragment
Generator

Resource
Allocator

Decision
Probability

Miner

Event
Logs

Reasoner

User
R

R

R

R

Data Repository

Fig. 4: History-aware Dynamic Process Fragmentation Framework

executions. The other components address the process fragmentation and resource allo-
cation problems and have been implemented as explained next.

Decision Probability Miner. This component takes over the implementation of the deci-
sion probability function ψ (cf. Equation 11 in Definition 10). It receives a request from
the Process Fragment Generator specifying the decision points for which the probabil-
ity values need to be computed. It takes the process model and the event log as input to
derive probability values at these decision points.

Process Fragment Generator. This component is the implementation of the κ, Ω and γ
functions described in Definition 11. It receives from the PAIS a request describing the
current marking of the Petri net system and the fragmentation threshold value χ, selects
an appropriate process fragment φ and sends a request to the Resource Allocator for
performing the allocation of resources on it. Once receiving the response back from the
allocator, it returns the optimal allocation Iopt back to the PAIS.

Resource Allocator. This component performs the resource allocation mechanism as
described in Definition 8. It receives a request from the Process Fragment Generator
with the process fragment to which the resources are to be allocated. All the other
necessary knowledge is retrieved from the Data Repository.

The Resource Allocator and Process Fragment Generator components have been
implemented using ASP [3], a declarative (logic-programming-style) paradigm for
solving combinatorial search problems. We omit details here due to space limitations
but refer to [5] for a brief introduction to ASP and a description of how to encode the
resource allocation problem.

As depicted in Fig. 4, both the data sources and the purpose-specific components of
the framework interact with a PAIS, which is responsible for process enactment. Note
that the framework could be adapted to be used in other environments (e.g. with elastic
processes to be executed in the Cloud where cloud resources need to be allocated).

150

Our method has been evaluated under the hypothesis that the higher the fragmenta-
tion threshold value χ ∈ R[0,1] is, the lesser discrepancy occurs between the allocations
and run time. To test this hypothesis, we first generate Petri nets with decision points
and loops, and label each decision arc (p, t) where |p•|> 1 with random probability val-
ues such that the sum of decision probabilities of every p ∈ •t is 1. Second, we generate
the necessary input data for performing the resource allocation task (i.e. Definitions (1-
6)) for each Petri net system. Afterwards, we simulate the execution of processes under
different fragmentation threshold values and count the number of required reallocations
where a low number of reallocation indicates a more robust execution.

We generate the Petri nets using the Generate block-structured stochastic Petri net
plug-in [15] of the process mining tool ProM [20]. This generator performs a series of
random structured insertion operations of new control-flow constructs resulting in a ran-
dom Petri net given a number of transitions and a degree of parallelism, exclusiveness
and cyclicity between the integer values 0 and 100. For our evaluation, we generated 8
Petri nets with 30 activity transitions using this Petri net generator and the properties
of the problem instances created are summarized in Table 4. In this table, idPN is the
identifier of each different Petri net; degpar, degexc and degcyc are the input parameters
for adjusting the level of parallelism, exclusiveness and cyclicity; and sym is the sym-
bol we use to depict the simulation behavior of Petri nets in Fig. 5. We summarize the
properties of problem instances in Table 3 where idi is the problem instance identifier;
idPN is the identifier of the Petri net used (cf. Table 4); and χ is the fragmentation
threshold value used in the simulation environment while dynamically fragmenting the
nets and performing the allocation of resources.

idPN degpar degexc degcyc sym idPN degpar degexc degcyc sym

1 45 45 45 × 5 75 45 45 �
2 45 75 45 + 6 75 75 45 �
3 45 45 75 • 7 75 45 75 �
4 45 75 75 � 8 75 75 75 ‹

Table 4: Properties of Petri net instances

idi idPN χ idi idPN χ idi idPN χ idi idPN χ

1 1 0.1 11 3 0.1 21 5 0.1 31 7 0.1
2 1 0.25 12 3 0.25 22 5 0.25 32 7 0.25
3 1 0.5 13 3 0.5 23 5 0.5 33 7 0.5
4 1 0.75 14 3 0.75 24 5 0.75 34 7 0.75
5 1 0.9 15 3 0.9 25 5 0.9 35 7 0.9
6 2 0.1 16 4 0.1 26 6 0.1 36 8 0.1
7 2 0.25 17 4 0.25 27 6 0.25 37 8 0.25
8 2 0.5 18 4 0.5 28 6 0.5 38 8 0.5
9 2 0.75 19 4 0.75 29 6 0.75 39 8 0.75

10 2 0.9 20 4 0.9 30 6 0.9 40 8 0.9

Table 5: Properties of problem instances

151

0.00 0.25 0.50 0.75 1.00
Fragmentation threshold

0

2

4

6

8

10

12

#R
ea

llo
ca

tio
ns

0.00 0.25 0.50 0.75 1.00
Fragmentation threshold

0

2

4

6

8

10

12

#R
ea

llo
ca

tio
ns

Fig. 5: The fragmentation threshold χ versus the runtime feasibility of allocations in
two different runs

Fig. 5 illustrates two similar results from different simulation runs. The x axis is the
fragmentation threshold and the y axis is the number of calls for the resource reallo-
cation mechanism during simulation to be able to repair the existing allocations due to
a different decision path is taken at run time than assumed at DPF. The trend lines are
almost parallel and they support our hypothesis.

Our DPF implementation has been run on an Ubuntu Linux server (64bit) with a 16
core 2.40 GHz Intel Xeon Processor and 64 GB of RAM. DPF calls consistently took
less than a minute and consumed less than 1 GB of memory given Petri nets in Table 4.
Our ASP encoding (accompanied with a description) of the Process Fragment Gener-
ator, the simulation environment (with visualizations as in Fig. 5) in Python and the
problem instances are available at https://urban.ai.wu.ac.at/˜havur/dpf/.

6 Related Work

We next summarize the most representative approaches related to resource allocation in
several domains. The evaluation criteria used to compare the approaches include: (i) the
risk taken for resource allocation; (ii) whether historical data from event logs is used
to more accurately deal with uncertainty; and (iii) whether optimization functions for
performance metrics are aimed for or, on the contrary, finding a feasible allocation for
the entire process suffices. The results are collected in Table 6, where N.A. indicates
that the criterion is non-applicable due to the characteristics of the approach.

Approach Risk taken History-aware? Optimal solution?
[14] High N.A. No

[21, 16] Low N.A. Yes
[19, 6] High No No
[4, 5] High No Yes

DPF (our approach) Flexible Yes Yes

Table 6: Characteristics of current resource allocation and scheduling methods

152

Scheduling is concerned with the optimal allocation of scarce resources to tasks
over time [10]. The problem has been addressed in several domains, especially in Op-
erations Research, where tasks are typically referred to as “operations” or “steps of a
job”. In such a domain, surgery scheduling problems, and more specifically the operat-
ing room scheduling problem, have been extensively investigated. The most expressive
approach in this domain was recently developed by Riise et al. [14]. They propose a
model for a “generalised operational surgery scheduling problem” (GOSSP) that can
express a wide range of real world surgery scheduling problems as an extension of the
multi-mode resource-constrained project scheduling problem with generalized prece-
dence relations (MRCPSP-GPR). Similarly to other approaches in that field, resource
allocation is addressed as a two-step problem (assignment and scheduling), and the
objective is to minimize the makespan when scheduling several projects (which can
contain parallelism but no decision points) at the same time. As an outcome, oftentimes
only some projects might be scheduled: those for which all tasks can be allocated.
Consequently, feasibility is actually pursued. Besides the surgery scheduling problems,
project scheduling in general has been widely investigated [23, 7]. However, due to
the inherent differences between projects and business processes (e.g. projects are typi-
cally defined to be executed only once and decision points are missing), the problem is
approached differently.

In the Business Process Management (BPM) domain, the state-of-the-art on re-
source allocation does not reach the maturity level of other domains despite the ac-
knowledged importance of the problem [1]. Due to the computational cost that it en-
tails, the existing techniques tend to search either for a feasible solution without apply-
ing optimizations [19], or for a local optimal using a greedy approach that might find
a feasible but not necessarily a global optimal solution [21]. A framework is proposed
in [9] to specify resource requirements where allocation services are independent of
respective process models. Otherwise, the existing work has mostly relied on Petri nets.
Van der Aalst [21] introduced a timed Petri net based scheduling approach consider-
ing activities, resources and temporal constraints. However, modeling this information
for multiple process instances leads to very large Petri nets. Rozinat et al. [16] used
Coloured Petri nets (CPNs) to overcome the problems encountered in timed Petri nets.
In CPNs, classes and guards can be specified to define any kind of constraint. How-
ever, the approach is greedy such that resources are allocated to activities as soon as
they are available. This may make the allocation problem unsatisfiable or incur in a
longer makespan and cost. Several attempts have also been done to implement the prob-
lem as a constraint satisfaction problem, considering the business process as a whole
for the allocation. For instance, Senkul and Toroslu [19] developed an architecture to
specify resource allocation constraints and a Constraint Programming (CP) approach to
schedule a workflow according to the constraints defined for the tasks. They aimed at
obtaining a feasible rather than an optimal solution, and historical data from previous
executions was disregarded. Later on, Heinz and Beck [6] demonstrated that models
such as Constraint Integer Programming (CIP) outperform the standard CP formula-
tions. Loops were disregarded in all these approaches. Global optimization is possible
at a reasonable computational cost even with complex settings (including loops) using
ASP [4, 5]. However, the approaches developed with this formalism had no far con-

153

sidered historical data in the allocations. The dynamic process fragmentation (DPF)
approach presented in this paper bridges the gap currently existing in the BPM domain
and advances the state-of-the-art towards more realistic resource allocations.

7 Conclusions and Future Work

From this work we conclude that it is possible to allocate resources to process activities
taking into account past execution data and the influence of uncertainty in the degree
of risk taken when making decisions. Our approach for dynamic process fragmentation
allows for a higher flexibility that helps to reduce the reallocation efforts. Furthermore,
note that depending on the characteristics of the business process as well as the specific
historical values available, the approach can behave as an offline, an online or a quasi-
online scheduling approach [18]. Future work involves the implementation and testing
of the approach in a real setting in connection with a PAIS.

References

[1] Michael Arias, Eric Rojas, Jorge Munoz-Gama, and Marcos Sepúlveda. A Frame-
work for Recommending Resource Allocation based on Process Mining. In BPM
2015 Workshops (DeMiMoP), pages 458–470, 2015.

[2] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and Nino Vincenzo
Verde. A formal framework to elicit roles with business meaning in RBAC sys-
tems. In ACM symposium on Access control models and technologies (SACMAT),
pages 85–94. ACM, 2009.

[3] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2012.

[4] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Automated
Resource Allocation in Business Processes with Answer Set Programming. In
BPM Workshops (BPI), volume 256, pages 191–203. Springer, 2015.

[5] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Resource
Allocation with Dependencies in Business Process Management Systems. In Int.
Conf. on Business Process Management (BPM) - Forum, volume 260, pages 3–19.
Springer, 2016.

[6] Stefan Heinz and Christopher Beck. Solving Resource Allocation/Scheduling
Problems with Constraint Integer Programming. In Constraint Satisfaction Tech-
niques for Planning and Scheduling Problems (COPLAS), pages 23–30, 2011.

[7] M.H.A. Hendriks, B. Voeten, and L. Kroep. Human resource allocation in a
multi-project R&D environment: Resource capacity allocation and project port-
folio planning in practice. Int. J. of Project Management, 17(3):181–188, 1999.

[8] Bryan Horling and Victor Lesser. A Survey of Multi-agent Organizational
Paradigms. Knowledge Engineering Review, 19(4):281–316, 2004.

154

[9] Sven Ihde, Luise Pufahl, Min-Bin Lin, Asvin Goel, and Mathias Weske. Opti-
mized resource allocations in business process models. In International Confer-
ence on Business Process Management, pages 55–71. Springer, 2019.

[10] Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and David B.
Shmoys. Sequencing and scheduling: Algorithms and complexity. In Logistics of
Production and Inventory, volume 4 of Handbooks in Operations Research and
Management Science, pages 445 – 522. Elsevier, 1993.

[11] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Transformations
for Business Processes - A Survey. Transactions on Petri Nets and Other Models
of Concurrency II, 2:46–63, 2009.

[12] OMG. BPMN 2.0. Recommendation, OMG, 2011.

[13] Louchka Popova-Zeugmann. Time Petri Nets. In Time and Petri Nets, pages
139–140. Springer Berlin Heidelberg, 2013.

[14] Atle Riise, Carlo Mannino, and Edmund K Burke. Modelling and solving gen-
eralised operational surgery scheduling problems. Computers & Operations Re-
search, 66:1–11, 2016.

[15] Andreas Rogge-Solti. Block-structured stochastic Petri net generator (ProM plug-
in). http://www.promtools.org/, 2014. Accessed: 2019-01-01.

[16] A. Rozinat and R. S. Mans. Mining CPN Models: Discovering Process Mod-
els with Data from Event Logs. In Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN, pages 57–76, 2006.

[17] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and David
Edmond. Workflow Resource Patterns: Identification, Representation and Tool
Support. In Conf. on Advanced Inf. Syst. Engineering (CAiSE), pages 216–232,
2005.

[18] Ihsan Sabuncuoglu and Selcuk Goren. Hedging production schedules against un-
certainty in manufacturing environment with a review of robustness and stability
research. Int. J. of Computer Integrated Manufacturing, 22(2):138–157, 2009.

[19] Pinar Senkul and Ismail H. Toroslu. An Architecture for Workflow Scheduling
Under Resource Allocation Constraints. Inf. Syst., 30(5):399–422, July 2005.

[20] Wil M. P. van der Aalst. Process Mining - Data Science in Action. Springer, 2016.

[21] W.M.P. van der Aalst. Petri net based scheduling. Operations-Research-Spektrum,
18(4):219–229, 1996.

[22] W.M.P. van der Aalst. Structural characterizations of sound workflow nets. Eind-
hoven University of Technology, Department of Mathematics & Computing Sci-
ence, 1996.

[23] Jan Weglarz. Project Scheduling with Continuously-Divisible, Doubly Con-
strained Resources. Management Science, 27(9):1040–1053, 1981.

155

Published in the Proceedings of the 17th Int. Conference on Business Process
Management Workshops (BPM 2019 International Workshops), pp. 81-92, Jan 2020,

Springer LNBIP vol. 362

Automated Multi-perspective Process Generation in the
Manufacturing Domain?

Giray Havur1,2, Alois Haselböck1, and Cristina Cabanillas2

1Siemens AG Österreich, Corporate Technology, Vienna, Austria
{name.surname}@siemens.com

2Vienna University of Economics and Business, Vienna, Austria
{name.surname}@wu.ac.at

Abstract. Rapid advances in manufacturing technologies have spurred a tremen-
dous focus on automation and flexibility in smart manufacturing ecosystems. The
needs of customers require these ecosystems to be capable of handling product
variability in a prompt, reliable and cost-effective way that expose a high degree
of flexibility. A critical bottleneck in addressing product variability in a factory is
the manual design of manufacturing processes for new products that heavily relies
on the domain experts. This is not only a tedious and time-consuming task but also
error-prone. Our method supports the domain experts by generating manufacturing
processes for the new products by learning the manufacturing knowledge from the
existent processes that are designed for similar products to the new products. We
have successfully applied our approach in the gas turbine manufacturing domain,
which resulted in a significant decrease of time and effort and an increase of quality
in the final process design.

Keywords: Automated process generation, graph-based process generation, re-
source assignment, manufacturing process.

1 Introduction

With the surging demand for individualized products, the need for flexible production
facilities and intelligent manufacturing infrastructures is also increasing. The design
of manufacturing processes becomes complex when the products consist of many dif-
ferent parts. The manufacturing industry is still heavily dependent on domain experts
to design processes for assembly and production. The search for a feasible process is
usually conducted manually by these experts starting with solutions based on analytical
calculations and past experiences. The resultant processes are iteratively improved by
making changes in the tasks, control-flow and assigned resources. In such a setting,
process design becomes a tedious task which is prone to human errors and can lead to
sub-optimal processes and a waste of valuable resources. This task also requires a lot
of effort when the manufacturing knowledge must be collected from discussions with
experts from different disciplines.

? Funded by the Austrian Science Fund (FWF) Elise Richter programme under agreement V
569-N31 (PRAIS).

157

Many methods, techniques and tools have been developed to support process genera-
tion and decision making depending on the structure, availability, and values of product
data [1, 2, 3, 4, 5]. However, most of them focus on informational products (where
the emphasis is on the collection, processing and aggregation of information), and the
automated generation of manufacturing processes for new physical products from the
existing processes remains as a challenge.

To assist the domain experts with such a cumbersome task, we have developed
a multi-perspective statistical method for generating manufacturing processes from
the already existing processes for products which share similar features with the new
product. The functional perspective is linked with selecting the relevant tasks to the
new product, the behavioral perspective orders these tasks (i.e. the control flow is
implemented), and the organizational perspective assigns the necessary resources to the
tasks of the generated processes [6]. Therefore, the domain experts are provided with
multi-perspective process alternatives that can be reviewed, validated and deployed. We
have implemented and tested the approach in a real environment from the gas turbine
manufacturing domain. Not only the time and potential cost of the design of the new
manufacturing process were saved but also better quality processes happened to be
designed following this software-aided approach.

The paper is structured as follows. Section 2 defines concepts needed to understand
our approach. Section 3 introduces our process generation method and describes an
example scenario that illustrates the method in action. Section 4 briefly describes how
the approach has been validated. Section 5 provides a description of the state-of-the-art
on related research. Finally, Section 6 outlines the conclusions drawn from the work
along with its limitations and potential future steps.

2 Background

For the sake of understanding, in the following we briefly define the concepts (stemming
from the manufacturing domain) that are involved in our process generation method:

Definition 1 (Product). A product p is a finished good that is manufactured. It consists
of parts (materials) that can be described by features. The product parts are usually
represented as a Bill of Materials (BoM). Such a product could be the result of a manual
product design activity.

Definition 2 (Task). A task t is a discrete step in the manufacturing process of a product
p such as a production operation acting on one or a set of input materials (e.g. drilling a
hole into a workpiece or inserting a module into a slot of a base plate).

Definition 3 (Resource). A resource r is assigned to the task t for enabling its execution.
It can be a production or transportation equipment, like a robot, a computer numerical
control (CNC) machine, a 3D printer, or a conveyor belt. Human workers are modeled
as resources as well.

Definition 4 (Manufacturing Process). A manufacturing process q is a sequence of
tasks for manufacturing a product p. It is a directed path graph1 where the vertices

1 A path graph is a graph in which the nodes can be listed in an order t1, t2, . . . , tn such that the
edges are (ti, ti+1) where i = 1, 2, . . . , n− 1.

158

represent the tasks and the edges represent the control flow for manufacturing a product
starting from raw or input materials. q = (T,E), where t1, t2, ..., tn ∈ T are tasks,
and each edge (ti, tj) ∈ E represents a direct precedence relation between two tasks,
meaning that task tj starts after task ti ends. The function γ : (Q× T)→ 2R maps each
task in a process to a set of possible resources that can execute the task.

Definition 5 (Feature). Each product is described by a set of features. Let F be the set
of features of the already manufactured products. In the descriptions below, we use the
following mappings:

φt : T → 2F maps a task t to the set of features that the task contributes to;
φt(t) ⊆ F .
φq : Q → 2F maps a process q = (T,E) to the set of features that all of its tasks
T = {t1, t2, . . . tn} contribute to; φq(q) =

⋃
i=1..n φt(ti).

A (product) feature is a property of the final product from the customer’s point of
view. For instance, a metal workpiece could be hardened, colored, or perforated. We
assume that the mapping from tasks to features is labelled manually by domain experts
or learned automatically by process mining tools [7] in the manufacturing ecosystem.

The problem space of producing a new product is defined by a set of features, while
the manufacturing process with assigned resources represent the solution space. In
our context, the relationship between features and tasks is especially important: a task
contributes to the realization of one or more features. More than one task are typically
involved in the realization of a feature.

Therefore, given a new product design BoM, a set of features F, a set of tasks T, and a
set of resources R extracted from existing processes, the Process Generation Problem
can be divided into the following sub-problems:

– Task Selection Problem: Find a subset T ′ of the set of tasks T (T ′ ⊆ T) needed for
manufacturing the new product design.

– Process Sequencing Problem: Find a total ordering relation on T ′.
– Resource Assignment Problem: For each task of T ′, find a resource that is able to

perform this task.

A solution to the process generation problem should fulfill several quality criteria.
First of all, a solution must be technically feasible, satisfying technical constraints (e.g.
the transport of materials from one resource to the resource of the subsequent process
must be possible, and a drilling machine for wood can only drill holes into wooden
workpieces, not into metals). Second, a solution must be effective (i.e. all features of the
new product must be covered by the selected tasks). Lastly, a solution must be efficient,
which means that it should contain no- or only a minimum- number of tasks that do not
contribute to the product features. Technical feasibility and effectiveness of generated
processes depend on the quality of existing processes. The length-optimality of generated
processes is imposed in the proposed method with an optimization function.

159

D
ef

. 8

D
ef

. 9

D
ef

. 1
0

D
ef

. 1
1

D
ef

. 1
2

Process
Generator

Q

Fig. 1: Technical Features Diagram.

3 Automated Multi-perspective Process Generation

We start explaining our work with an overview of the technical features. We refer the
reader to Fig. 1 for an overview of input-output relations of the definitions while reading
this section. Our major component, the Process Generator, takes a set of manufacturing
processes Q = {q1, q2, ..., qn} of products already manufactured, a set of (goal) features
FG of a new product p, and a total weighted graph gA which contains the task and weights
learned from the existing processes and features. A solution to a process generation
problem is a set of alternative processes H = {h1, h2, ..., hm}, each of which is a
process candidate for manufacturing the new product p with features FG. On the other
hand, the Resource Assignment component requires Q, H , and a function γ that maps
the tasks in the process set Q to their previously assigned resources. The solution to the
resource assignment problem is a function γH , which learns the preferences of resources
from γ and provides a set of resource-probability pairs for each task in H .

We motivate our approach with an example scenario for metalware production
derived from the requirements from the gas turbine domain shown in Fig. 2. A metalware
factory manufactures three different products: Steel Pot (Fig. 2.a), Gear (Fig. 2.b), and
File Organizer (Fig. 2.c). They would like to automatically find out how to produce a
Drainer (Fig. 2.d) by using the existing manufacturing knowledge. A process details this
knowledge into a manufacturing process for each product (e.g. the process for producing
Steel Pot qsp = (Tsp, Esp)). Note that each task t is remarked by initials of its label
(e.g. tld corresponds to the task Laser Drilling). The task set Tsp consists of the tasks ts,
tpr, tld, tw, and tqc. The edge set Esp consists of the edges (ts, tpr), (tpr, tld), (tld, tw),
and (tw, tqc). The set of resources that can execute each task is shown below the task,
e.g. γ(qsp, ts) = {r1, r2, r4}. We assume that the tasks in the existing processes are

160

r rr r r r r r

r r r r r r r r

r r r r r r r r

Fig. 2: The products being produced in the metal factory with their corresponding
manufacturing processes: (a) Steel Pot with its process qsp, (b) Gear with its process qg ,
(c) File Organizer with its process qfo, and the goal product (d) Drainer.

labelled by the features that they contribute to. These features are listed beneath the
tasks (e.g. φt(tld) = {has handle, perforated}). The feature set of the process qsp
is φq(qsp) = {concave, has handle}. The feature set of the goal product Drainer is
FG = {concave, perforated, colored, has handle}.

Definition 6 (Task Filtering by Features). A function lt : 2T → 2T selects all tasks
of a set of tasks T that contribute to at least one feature of the goal features FG:

lt(T) = {t ∈ T | φt(t) ∩ FG 6= ∅}

161

Fig. 3: Total 1-Weighted Graph.

Definition 7 (Edge Filtering by Features). A function le : 2E → 2E selects all edges
of a process (T,E) whose tasks contribute to at least one feature of the goal features
FG:

le(E) = {e ∈ E | φt(ti) ∪ φt(tj) ∩ FG 6= ∅ where e = (ti, tj)}

Definition 8 (Total 1-Weighted Graph). A total 1-weighted graph gO =
(TO, EO, wO) is derived from a set of processes Q = {q1, q2, ..., qn}, where qi =
(Ti, Ei), in the following way:

TO = T1 ∪ T2 ∪ ... ∪ Tn
EO = E1 ∪ E2 ∪ ... ∪ En

w0 : EO → 1 (all edges have a weight of 1)

Therefore, the total 1-weighted graph is the union of past processes with edge weight
of 1. Fig. 3 shows the total 1-weighted graph which is the union of processes in Fig. 2:
qsp, qg , and qfo.

Definition 9 (Total Feature Weighted Graph). A total feature weighted graph gF =
(TF , EF , wF) is derived from a set of processes Q = {q1, q2, ..., qn}, where qi =
(Ti, Ei), in the following way:

TF = tasks of edges le(E1) ∪ le(E2) ∪ ... ∪ le(En)

EF = le(E1) ∪ le(E2) ∪ ... ∪ le(En) ∪ E+

where E+ =
{
(ti, tj) | ti, tj ∈ lt(TF) ∧ no path2 between ti and tj

}

The weight function wF : E → Z≥0 is defined as

wF (e) =

{
max(1, |(φt(t1) ∪ φt(t2)) ∩ FG|) where e = (t1, t2) if e ∈ E+

|(φt(t1) ∪ φt(t2)) ∩ FG| where e = (t1, t2) otherwise

Following up on our running example, after deriving the total 1-weighted graph
we introduce the total feature weighted graph gF in Fig. 4, which favours the edges
with tasks that have overlapping features with FG. Let us consider the edge (tpr, tld).

2 A path in a graph is a sequence of edges which connect a sequence of vertices that are all
distinct from one another.

162

3 3

Fig. 4: Total Feature Weighted Graph.

4 4

Fig. 5: Total Weighted Graph.

Its weight is wF ((tpr, tld)) = 3, because tpr and tld have 3 features of FG (concave,
perforated, and has handle). Moreover, the tasks that have overlapping features with
FG, but with no existing path in between, are connected bidirectionally. For example,
Welding tw and Painting tpa have features has handle and colored which are in FG,
however they are not connected in gO. Therefore, the edges (tw, tpa) and (tpa, tw) are
introduced in E+.

Definition 10 (Total Weighted Graph). Let gO = (TO, EO, wO) and gF =
(TF , EF , wF) be the total 1-weighted graph and the total feature graph corresponding to
a set Q of existing processes, respectively. The total weighted graph gA = (TA, EA, wA)
is defined as follows:

TA = TO

EA = EO ∪ E+

wA(e) =

{
wO(e) + wF (e) if e ∈ EF

wO(e) if e /∈ EF

The total weighted graph in Fig. 5 is the aggregate graph of gO and gF as described
above. This graph is the input graph for the process generation.

Definition 11 (Process Sequencing Problem).
Let gA = (TA, EA, wA) be the total weighted graph. Let TS ∈ TA be the set of

source tasks, i.e., tasks without incoming edges. Let TK ∈ TA be the set of sink tasks,
i.e., tasks without outgoing edges. The goal of process generator is to compute a set of
process graphsH = {h1, h2, ..., hn} where any h = (T,E) ∈ H , T = {ti, ti+1, ..., tj},
E = {(ti, ti+1), (ti+1, ti+2), ..., (tj−1, tj)} has the following properties:

163

4 4

4 4

4
2.083

2

2.5834

Fig. 6: Generated process alternatives H = {h1, h2, h3} for Drainer.

– h is acyclic,
– h starts from a source task (ti ∈ TS) and ends at a sink task (tj ∈ TK), and
– φq(h) ⊇ FG.

The minimization of an objective function c(E) is desirable for ordering the gener-
ated process graphs:

c(E) =
∑

e∈E

1

wA(e)

Fig. 6 shows three alternative generated processes h1, h2, and h3 for manufacturing
Drainer. The process with the minimum optimization function value h1 is highlighted
in the total weighted graph gA. All the generated processes satisfies the properties in
Def. 11, namely

– h1, h2, and h3 are path graphs,
– ts is a source task, and tqc is a sink task, and
– φq(h1) ⊇ FG, φq(h2) ⊇ FG, and φq(h3) ⊇ FG, i.e. the union set of features of

each generated process is a superset or equal to FG.

The processes are ranked with respect to the value of objective function, i.e. c(E1) <
c(E2) < c(E3).

164

Definition 12 (Resource Assignment Problem). The Resource Assignment Problem
is defined by:

– a set of processes Q = {q1, q2, ..., qn},
– a function γ : (Q× T)→ 2R that maps a task t in a process q to its set of resources
R(q,t),

– a set of generated processes H = {h1, h2, ..., hm}.

A solution to a Resource Assignment Problem (Q, γ,H) consists of a function γH :
T → 2(R×[0..1]) that maps a task t ∈ T to its set of resource-probability pair set
{(ri, p(ri, t)), ..., (rj , p(rj , t))}, e.g. p(ri, t) reflects how likely the resource ri is used
for executing the task t.

In order to obtain γH , we need two auxiliary definitions. First one is the set of all
possible resources that can execute the task t:

R∗t =
⋃

q=(T,E)∈Q

⋃

t∈T
γ(q, t)

Then, we define the function p(r, t) for returning the probability of resource r’s
executing task t:

p(r, t) =

∑
q∈Q

{
1/|γ(q, t)| if q ∈ γ(q, t)
0 otherwise

∑
q∈Q

{
1 if t ∈ T where q = (T,E)

0 otherwise

Finally, γH(t) is defined as:

γH(t) =
⋃

r∈R∗
t

(r, p(r, t))

In our running example, after generating three alternative processes for the goal
product drainer, we need to assign resources to tasks in the candidate processes so
that they can become executable. For this purpose, we use the function γH(t) which
computes the probability of execution for each resource that has already executed the
task t in the past processes. For example, the task ts has been executed by the resources
{r1, r2, r4} in qsp, and by {r2, r3} in qfo. The resources {r1, r2, r3, r4} are therefore
feasible resources for executing ts. However, we also know that r2 has been assigned
for executing ts in both past processes, which should make r2 a better option than
others. We incorporate this knowledge by deriving probabilities from the assignment
frequencies of these resources to tasks. For example, the resource assignment for ts is

165

γH(ts) = {(r1, p(r1, ts)), (r2, p(r2, ts)), (r3, p(r3, ts)), (r4, p(r4, ts))} where

p(r1, ts) =

1

3
+ 0 + 0

1 + 0 + 1
= 0.166 p(r2, ts) =

1

3
+ 0 +

1

2
1 + 0 + 1

= 0.416

p(r3, ts) =
0 + 0 +

1

2
1 + 0 + 1

= 0.25 p(r4, ts) =

1

3
+ 0 + 0

1 + 0 + 1
= 0.166

Hence, γH(ts) = {(r1, 0.166), (r2, 0.416), (r3, 0.25), (r4, 0.166)}. This means r2
is a good candidate for executing ts, which is followed by r3, and by equally r1 and r4.
For assigning resources to the generated processes in Fig. 6, we need to compute γH(ts),
γH(tpr), γH(tld), γH(tw), γH(tpa), γH(tqc), and γH(tb).

4 Validation

We have successfully applied our approach in the turbine manufacturing domain to auto-
matically generate processes for new gas turbine types that have specific modifications
upon the existing gas turbine production processes. These modifications in product spec-
ifications (e.g. blades and vanes of different sizes) require different sequences of tasks
(i.e. assembly and logistics) that are executed by specific resources. In this application,
the process base (i.e. existing set of processes) has 173 existing processes, and a typical
process has more than 30 tasks. We have generated 10 processes for different turbine
configurations which have been reviewed by a domain expert. Afterwards, these gener-
ated processes have been used as input in the manufacturing simulation and validation
tool Tecnomatix3. This simulation tool has also validated the feasibility of the generated
processes from the functional, behavioral and organizational perspectives. The domain
expert has experienced a considerable time saving in by employing our method in final
process design task. Due to company policy, further comments in this section are omitted.
Please contact the authors in case of any requests for instance details of the validation.

5 Related Work

Several methods have been proposed and developed to automatically explore and eval-
uate a range of different product designs, their options and parameters [8, 9]. These
methods ensure feasibility of the resulting products (i.e. their configuration must be
consistent and complete regarding the constraints and requirements imposed in the
product specifications).

Efforts have been made in modeling decision structures and dependencies to steer the
execution of processes [4]. Such efforts are extended towards including product data [3]
and for configuring processes [10] to offer flexibility in run-time process execution.

There are general process generation approaches which are taking into account
data-flow elements of a process and the part-of relationships of products (i.e. BoMs) by

3 https://www.plm.automation.siemens.com/global/de/products/
tecnomatix/logistics-material-flow-simulation.html

166

ensuring an executable ordering of tasks that describe how to produce a goal product [1,
2].

An alternative approach in automated process design stems from the research in Prod-
uct Lifecycle Management (PLM). PLM tools support the modeling and representation of
product portfolios. A product portfolio (or product line) stands for a whole set of product
instances. A product instance (i.e. an individualized product) is usually derived from the
product portfolio by a product configuration step with the help of a configuration tool.
Recent research extends this product configuration by encompassing also the needed
production processes for manufacturing the individualized product [11, 12, 13, 14]. The
main differences to the approach proposed in this work are: (i) Production processes are
created only for instances of the product portfolio but not for completely new product
designs, represented by a new vector of features; and (ii) Production operations for the
different product parts are manually modeled and represented in the PLM tool or an
extra knowledge base is used in the production workflow generation tool, whereas in our
case such knowledge is derived from existing production processes of products.

6 Conclusions

We have introduced a novel method which derives a statistical model from the existing
production processes to generate new processes with resource assignments for new
products. Our method can be employed as a building block in a smart production
ecosystem aiming at flexibility and automation. It has been validated in an industrial gas
turbine production setting and proven to facilitate the process design efforts for new gas
turbines.

As future work we plan to apply our method in other manufacturing settings (e.g.
mobility and medical hardware) and also generalize the method towards the service
operations to explore the capabilities of our method in a new domain.

References
[1] Wil MP van der Aalst. On the automatic generation of workflow processes based

on product structures. Computers in Industry, 39(2):97–111, 1999.

[2] Han van der Aa, Hajo A Reijers, and Irene Vanderfeesten. Composing workflow
activities on the basis of data-flow structures. In Business Process Management,
pages 275–282. Springer, 2013.

[3] Irene Vanderfeesten, Hajo A Reijers, and Wil MP Van der Aalst. Product-based
workflow support. Information Systems, 36(2):517–535, 2011.

[4] Feng Wu, Laura Priscilla, Mingji Gao, Filip Caron, Willem De Roover, and Jan
Vanthienen. Modeling decision structures and dependencies. In OTM Confederated
International Conferences” On the Move to Meaningful Internet Systems”, pages
525–533. Springer, 2012.

[5] Krzysztof Kluza and Grzegorz J Nalepa. Automatic generation of business process
models based on attribute relationship diagrams. In International Conference on
Business Process Management, pages 185–197. Springer, 2013.

167

[6] Cristina Cabanillas. Process- and Resource-Aware Information Systems. In Int.
Conf. on Enterprise Distributed Object Computing (EDOC), pages 1–10, 2016.

[7] Wil Van Der Aalst. Process mining: discovery, conformance and enhancement of
business processes, volume 2. Springer, 2011.

[8] Luisa Paraguai, Heloisa Candello, and Paulo Costa. Collaborative system for
generative design: Manipulating parameters, generating alternatives. In Design,
User Experience, and Usability: Theory, Methodology, and Management - 6th
International Conference, DUXU 2017, Held as Part of HCI International 2017,
Vancouver, BC, Canada, July 9-14, 2017, Proceedings, Part I, pages 727–739,
2017.

[9] Deepak Dhungana, Andreas Falkner, Alois Haselböck, and Richard Taupe. En-
abling integrated product and factory configuration in smart production ecosystems.
In Proceedings of the 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Vienna (Austria), 2017.

[10] Luisa Parody, Marı́a Gómez-López, Angel Varela-Vaca, and Rafael Gasca. Business
process configuration according to data dependency specification. Applied Sciences,
8(10):2008, 2018.

[11] Lavindra de Silva, Paolo Felli, Jack C Chaplin, Brian Logan, David Sanderson, and
Svetan Ratchev. Realisability of production recipes. In European Conference on
Artificial Intelligence, 2016.

[12] Deepak Dhungana, Alois Haselböck, and Richard Taupe. A marketplace for smart
production ecosystems. In Mass Customization & Personalization Conference,
2017.

[13] Deepak Dhungana, Andreas Falkner, Alois Haselböck, and Herwig Schreiner.
Smart factory product lines: a configuration perspective on smart production ecosys-
tems. In Proceedings of the 19th International Conference on Software Product
Line, pages 201–210. ACM, 2015.

[14] Dario Campagna and Andrea Formisano. Product and production process modeling
and configuration. Fundam. Inform., 124(4):403–425, 2013.

168

Conclusion and the Way Ahead

In this cumulative thesis, we presented the following contributions for the research
questions (1-3) which have been published in [1–9]. The first conceptualization and
implementation of RABP was given in [1]. Further extensions to RABP towards
advanced resource and time management was described in [2]. Our evaluations
show that RABP is challenging from a computational perspective, and finding a
feasible solution to RABP with makespan minimization was classified as NP-Hard
(See Appendix B). For encoding RABP and solving instances of real-life sizes,
KRR formalisms and their solvers were tested against each other to provide in-
sights into selecting the most suitable formalism for RABP. ASP and CP solutions
to RABP were compared in [3], and a configurable ASP systems benchmark envi-
ronment that generates RABP instances and tests the performance of ASP systems
was devised and implemented in [4, 10]. Our efforts to encode RABP in different
formalisms proved the ASP encoding to be compact, human-readable, and easy to
extend. In contrast, the CP implementation has better computational performance
(i.e., time and memory usage) in solving RABP instances.

We studied several methods for RABP support in practice. Performing RABP
in engineering domains requires following the norms and criteria to reduce the inci-
dence of failures in both design-time (i.e., planning stage of projects) and run-time
(i.e., execution stage) of BPs. For example, the RAMS (Reliability1, Availability2,
Maintainability3, and Safety4) disciplines [11] ensures that a product, process, or
system will carry out its intended function.

Our first demo addressing RABP for safety-critical engineering projects was
implemented as a Camunda BPMS module [6]. An extended version of this work
further enhanced safety aspects in BP executions (i.e., monitoring of the execu-
tions, adaptation to resource- and process-related changes, and their documenta-
tion) [7]. Moreover, we devised a history-aware process fragmentation method
for increasing the reliability of RABP in [9] and detailed a stochastic prediction
method [8] to forecast the availability of resources from the BP control flows and
the organizational structures. Lastly, we explored the manufacturing domain: a
multi-perspective (functional, behavioral, and organizational) process generation
method [12] was developed to support the production of new products by reducing
the manual work spent on the design of production processes, hence improving the
maintainability of production processes.

Our contributions suggest several research directions that can be investigated
in the future:

1Reliability is the ability to perform a particular function.
2Availability is the ability to keep a functioning state.
3Maintainability is the ability to be timely and easily maintained (including servicing, inspection

and check, repair and/or modification).
4Safety is the ability not to harm people, the environment, or any assets.

171

An RABP description language: A more standardized language for generally
describing RABP could be developed to represent RABP instances (BPs,
organizational models, temporal models, constraints, and objectives). Well-
defined translations would allow RABP problem instances to be seamlessly
solved by multiple formalisms and their solvers. Among the related work,
a road map for semantic BPM was laid in [13]. In this study, the repre-
sentational requirements of BPM are investigated, and a set of ontologies
for representing BPs and organizational models are proposed. A current
key limitation for a generalized RABP language is the lack of alignment in
the developed ontologies/standards: several process-related ontologies (e.g.,
BPMN and Petri nets) were developed to represent activities and control
flows [14–16]; various resource descriptions were developed to cover mainly
human resources [17–21]. In [7], we proposed a resource ontology including
human and non-human resources (e.g. tools and infrastructure), resource-
related compliance constraints, and the underpinning properties that connect
resources with a Petri net ontology as a initial effort for a generalized RABP
description.

Hierarchical RABP: Specific BPM use cases might require further extensions in
the types of constraints, objectives, and execution modes. For example, in
a BPM setting where a multi-level organization is defined as a combination
of hierarchical sub-organizations (e.g., hierarchy models in ISA-95 [22]),
RABP must deal with the multi-level priorities and objectives to find an
optimal schedule with the allocation of resources. The stipulated objec-
tives and constraints propagated from upper hierarchy BPs (e.g., manage-
ment processes) must be mediated through (semi-)automated negotiations
towards lower-level BPs (e.g., logistics processes) [23]. Furthermore, BPs
at different levels may compete or cooperate for resources by imposing their
objectives in such a scenario, where multi-objective optimizations on differ-
ent levels of the process hierarchy would need to be investigated, in order to
align (possibly competing) goals on a strategic level.

RABP for robust BP executions: BP execution failures can occur due to unex-
pected changes in resource availability and on-the-fly modifications in BPs.
Approaches to address robustness can be put under three main categories:
avoiding future failures via prospective methods (e.g., forecasting utilization
of resources [8]), improving resistance to failures via variability/flexibility
by design (e.g., adaptive resource allocation [24] and adaptive business pro-
cesses [25]), and recovering from failures via retrospective methods (e.g., re-
source re-allocation [7]). Futher refining and aligning such RABP methods
that are resilient to unforeseen changes shall enhance the overall robustness
of BP executions.

RABP dashboard for BPMS: Integrating interactive RABP dashboards in
BPMSs would simplify setting up and running RABP instances [20] (e.g.,
listing resource preferences, modifying BP-dependent objectives, and con-

172

figuring automated solvers). Moreover, resource-related data visualizations
could help users monitor the resources (e.g., historical, current, and future
availability of resources, cost/progress trends, and deadline risk estimations)
and take informed action regarding BP executions when necessary. Besides
these functionalities, a dashboard could also facilitate comparing and con-
trasting alternative RABP solutions bound to different objectives (e.g., with
minimum duration vs. minimum cost).

Large-scale RABP solving methods and their analysis: In this thesis, we have
investigated exact RABP methods for computing global-optimal resource al-
locations. Such methods guarantee the best solution; however, as we have
seen, finding the optimal solution to RABP is computationally expensive
and therefore, could be prohibitively time consuming. It is important to
balance the required time to generate a feasible RABP solution with the
resulting quality of the allocation (i.e., closeness to a global-optimal so-
lution). To address large-scale domain-specific resource allocation needs,
approximate RABP implementations can use heuristics (e.g., [26]), meta-
heuristics (e.g., [27]) and/or machine learning methods (e.g., [28]) to de-
liver solutions in less time than exact methods. Continued research on such
(meta-)heuristics and machine learning models appears fully justified due to
the wide range of RABP requirements. Moreover, to our best knowledge,
no publication experimentally measures the applicability and performance
of these methods in a selected subset of BPM use cases.

Bridging the gap between BPM and scheduling: Most research in the schedul-
ing domain has been driven by project management [29] and manufacturing
systems [30]. For half a century, great effort has been devoted to identifying
and studying key problems in scheduling: among others, resource types (e.g.,
renewable resources, non-renewable resources, etc.), running schemes (e.g.,
calling the scheduling method once at the beginning of the operation/project
vs. multiple-times at fixed time intervals vs. event-driven), scheduling envi-
ronments (e.g., fully specified vs. partially specified), processing of the input
data (e.g., offline vs. online), adaptation methods (e.g., repair planning), and
implementation techniques (e.g., rule-based, machine learning, heuristic,
and linear-programming). Moreover, several categorization schemes [31–
33] have been developed to describe a great variety of these problems. The
alignment of concepts and methods between the BPM and scheduling re-
search is invaluable to moving the RABP-related knowledge forward, and
may cross-fertilize both fields, BPM and scheduling alike, where we hope
that the works presented in this thesis have provided some starting points.

This thesis contains three appendices: in Appendix A, we demonstrate refined
experiments where we show the convergence to optimal solutions in five selected
RABP instances from [4]; in Appendix B, we provide the proof of the conjecture on
the computational complexity of RABP (i.e., RABP with makespan optimization

173

is NP-Hard) in [4]; and in Appendix C, we compare two different implementations
of RABP in ASP and CP.

References
[1] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Automated resource al-

location in business processes with answer set programming. In Business Process Manage-
ment Workshops: BPM 2015, 13th International Workshops, Innsbruck, Austria, August 31 –
September 3, 2015, Revised Papers, pages 191–203, Cham, 2016. Springer International Pub-
lishing.

[2] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Resource allocation with
dependencies in business process management systems. In Marcello La Rosa, Peter Loos,
and Oscar Pastor, editors, Business Process Management Forum, pages 3–19, Cham, 2016.
Springer International Publishing.

[3] Giray Havur. A comparison of ASP and CP solutions for resource allocation in business pro-
cesses. Technical report, Working Papers on Information Systems, 2022.

[4] Giray Havur, Cristina Cabanillas, and Axel Polleres. Benchmarking answer set program-
ming systems for resource allocation in business processes. Expert Systems with Applications,
205:117599, 2022.

[5] Saimir Bala, Giray Havur, Simon Sperl, Simon Steyskal, Alois Haselböck, Jan Mendling, and
Axel Polleres. SHAPEworks: A BPMS Extension for Complex Process Management. In BPM
Demos, 2016.

[6] Saimir Bala, Giray Havur, Simon Sperl, Simon Steyskal, Alois Haselböck, Jan Mendling, and
Axel Polleres. SHAPEworks: A BPMS extension for complex process management. In Pro-
ceedings of the BPM Demo Track 2016 Co-located with the 14th International Conference
on Business Process Management (BPM 2016), Rio de Janeiro, Brazil, September 21, 2016,
volume 1789 of CEUR Workshop Proceedings, pages 50–55. CEUR-WS.org, 2016.

[7] Saimir Bala, Cristina Cabanillas, Alois Haselböck, Giray Havur, Jan Mendling, Axel Polleres,
Simon Sperl, and Simon Steyskal. A framework for safety-critical process management in
engineering projects. In Data-Driven Process Discovery and Analysis - 5th IFIP WG 2.6 In-
ternational Symposium, SIMPDA 2015, Vienna, Austria, December 9-11, 2015, Revised Se-
lected Papers, volume 244 of Lecture Notes in Business Information Processing, pages 1–27.
Springer, 2015.

[8] Simon Sperl, Giray Havur, Simon Steyskal, Cristina Cabanillas, Axel Polleres, and Alois
Haselböck. Resource utilization prediction in decision-intensive business processes. In Pro-
ceedings of the 7th International Symposium on Data-driven Process Discovery and Analysis
(SIMPDA 2017), Neuchâtel, Switzerland, December 6-8, 2017, volume 2016 of CEUR Work-
shop Proceedings, pages 128–141. CEUR-WS.org, 2017.

[9] Giray Havur and Cristina Cabanillas. History-aware dynamic process fragmentation for risk-
aware resource allocation. In On the Move to Meaningful Internet Systems: OTM 2019 Con-
ferences - Confederated International Conferences: CoopIS, ODBASE, C&TC 2019, Rhodes,
Greece, October 21-25, 2019, Proceedings, volume 11877 of Lecture Notes in Computer Sci-
ence, pages 533–551. Springer, 2019.

[10] Giray Havur, Cristina Cabanillas, and Axel Polleres. BRANCH: An ASP systems benchmark
for resource allocation in business processes. In Proceedings of the Best Dissertation Award,
Doctoral Consortium, and Demonstration & Resources Track at BPM 2021, volume 2973 of
CEUR Workshop Proceedings, pages 176–180. CEUR-WS.org, 2021.

174

[11] Alain Villemeur. Reliability, Availability, Maintainability and Safety Assessment: Method and
Techniques. John Wiley and Sons, 1991.

[12] Giray Havur, Alois Haselböck, and Cristina Cabanillas. Automated multi-perspective process
generation in the manufacturing domain. In Business Process Management Workshops - BPM
2019 International Workshops, Vienna, Austria, September 1-6, 2019, Revised Selected Papers,
volume 362 of Lecture Notes in Business Information Processing, pages 81–92. Springer, 2019.

[13] Martin Hepp and Dumitru Roman. An ontology framework for semantic business process
management. In eOrganisation: Service-, Prozess-, Market-Engineering: 8. Internationale
Tagung Wirtschaftsinformatik - Band 1, WI 2007, Karlsruhe, Germany, February 28 - March
2, 2007, pages 423–440. Universitaetsverlag Karlsruhe, 2007.

[14] Christine Natschläger. Towards a BPMN 2.0 ontology. In Business Process Model and Notation
- Third International Workshop, BPMN 2011, Lucerne, Switzerland, November 21-22, 2011.
Proceedings, volume 95 of Lecture Notes in Business Information Processing, pages 1–15.
Springer, 2011.

[15] Marco Rospocher, Chiara Ghidini, and Luciano Serafini. An ontology for the business process
modelling notation. In Formal Ontology in Information Systems - Proceedings of the Eighth
International Conference, FOIS 2014, September, 22-25, 2014, Rio de Janeiro, Brazil, volume
267 of Frontiers in Artificial Intelligence and Applications, pages 133–146. IOS Press, 2014.

[16] Juan C Vidal, Manuel Lama, and A Bugarı́n. A high-level petri net ontology compatible with
pnml. Petri Net Newsletter, 71:11–23, 2006.

[17] Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés. RAL: A High-Level User-
Oriented Resource Assignment Language for Business Processes. In Business Process Man-
agement Workshops (BPD’11), pages 50–61, 2011.

[18] Cristina Cabanillas, Manuel Resinas, Jan Mendling, and Antonio Ruiz Cortés. Automated team
selection and compliance checking in business processes. In Proceedings of the 2015 Interna-
tional Conference on Software and System Process, ICSSP 2015, Tallinn, Estonia, August 24 -
26, 2015, pages 42–51, 2015.

[19] Agata Filipowska, Martin Hepp, Monika Kaczmarek, and Ivan Markovic. Organisational ontol-
ogy framework for semantic business process management. In Business Information Systems,
12th International Conference, BIS 2009, Poznan, Poland, April 27-29, 2009. Proceedings,
volume 21 of Lecture Notes in Business Information Processing, pages 1–12. Springer, 2009.

[20] Isabelle Linden. Proposals for the integration of interactive dashboards in business process
monitoring to support resources allocation decisions. J. Decis. Syst., 23(3):318–332, 2014.

[21] Emna Hachicha and Walid Gaaloul. Towards resource-aware business process development in
the cloud. In 29th IEEE International Conference on Advanced Information Networking and
Applications, AINA 2015, Gwangju, South Korea, March 24-27, 2015, pages 761–768. IEEE
Computer Society, 2015.

[22] Charlotta Johnsson. Isa 95-how and where can it be applied. ISA Expo, pages 1–10, 2004.

[23] Karoline Feigl. Propagation and mediation of resource allocation constraints in multi-level
organizations. Department of Information Systems and Operations, Vienna University of Eco-
nomics and Business, 2020. (Bachelor’s Thesis).

[24] Philipp Hoenisch, Stefan Schulte, Schahram Dustdar, and Srikumar Venugopal. Self-adaptive
resource allocation for elastic process execution. In 2013 IEEE Sixth International Conference
on Cloud Computing, Santa Clara, CA, USA, June 28 - July 3, 2013, pages 220–227. IEEE
Computer Society, 2013.

175

[25] Riccardo Cognini, Flavio Corradini, Stefania Gnesi, Andrea Polini, and Barbara Re. Research
challenges in business process adaptability. In Symposium on Applied Computing, SAC 2014,
Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1049–1054. ACM, 2014.

[26] Karl F. Doerner, Walter J. Gutjahr, Gabriele Kotsis, Martin Polaschek, and Christine
Strauss. Enriched workflow modelling and stochastic branch-and-bound. Eur. J. Oper. Res.,
175(3):1798–1817, 2006.

[27] Felicitas Fabricius, Marco De Bortoli, Maximilian Selmair, Michael Reip, Gerald Steinbauer,
and Martin Gebser. Towards asp-based scheduling for industrial transport vehicles. In Joint
Austrian Computer Vision and Robotics Workshop, 2020.

[28] Kamil Zbikowski, Michal Ostapowicz, and Piotr Gawrysiak. Deep reinforcement learning for
resource allocation in business processes. CoRR, abs/2104.00541, 2021.

[29] Christoph Schwindt, Jürgen Zimmermann, et al. Handbook on project management and
scheduling vol. 1. Springer, 2015.

[30] Michael Pinedo. Scheduling. Springer, 2015.

[31] Willy Herroelen, Erik Demeulemeester, and Bert De Reyck. A Classification Scheme for
Project Scheduling, pages 1–26. Springer US, Boston, MA, 1999.

[32] Stijn Van de Vonder, Erik Demeulemeester, and Willy Herroelen. A classification of predictive-
reactive project scheduling procedures. J. Sched., 10(3):195–207, 2007.

[33] Peter Brucker, Andreas Drexl, Rolf H. Möhring, Klaus Neumann, and Erwin Pesch. Resource-
constrained project scheduling: Notation, classification, models, and methods. Eur. J. Oper.
Res., 112(1):3–41, 1999.

176

Appendices

179

Appendix A

180

Makespan Optimization Performance of Five
Challenging RABP Instances Solved by ASP Systems
(GRINGO+CLASP), (IDLV+CLASP), (GRINGO+WASP), and
(IDLV+WASP)

Author: Giray Havur

Supplementary material to the journal publication Benchmarking Answer Set Programming
Systems for Resource Allocation in Business Processes published in the International Journal on
Expert Systems with Applications(ESWA), Volume 205, Number 117599, May 2022, Elsevier.

In [1], we define a formalization of the RABP problem, provide a baseline problem
encoding in ASP, develop a ready-to-use, configurable benchmark named BRANCH, and
present a detailed evaluation that compares four ASP systems comprising combinations
of state-of-the-art ASP grounders GRINGO [2] and I-DLV [3], and solvers CLASP [4]
and WASP [5].

We rerun the RABP instances 16, 46, 55, 59, and 62 in [1, Section 5] without time
and memory limitations per instance. Table 1 presents the time performance statistics of
the ASP systems: GRINGO+CLASP, GRINGO+WASP, I-DLV+CLASP and I-DLV+WASP.
For example, GRINGO+CLASP indicates the performance of the solver CLASP that is
given the ground RABP instance grounded by GRINGO. u is the upper-bound to find a
solution, and cmax is the computed minimum makespan (i.e. maximum of the activity
completion times) by the ASP solver. Figures (1-5) shows the progress of makespan
optimization over time until the solver converges to the optimal solution. These figures
suggest that the default solving methods of the ASP solvers CLASP and WASP converges
at different rates to the optimal solution for the same ground RABP instances.

Table 1: ASP solver time performance of five challenging RABP instances

GRINGO+ GRINGO+ I-DLV+ I-DLV+
CLASP WASP CLASP WASP

id u time cmax time cmax time cmax time cmax

16 75 935 56 432 56 34 56 56 56
46 170 812 125 1186 125 57 125 170 125
55 380 5821 163 4218 163 2286 163 2644 163
59 360 2032 143 1305 143 744 143 913 143
62 150 847 126 1339 126 266 126 366 126

181

Fig. 1. Instance 16

Fig. 2. Instance 46

182

Fig. 3. Instance 55

Fig. 4. Instance 59

183

Fig. 5. Instance 62

References

[1] Giray Havur, Cristina Cabanillas, and Axel Polleres. Benchmarking answer set
programming systems for resource allocation in business processes. Expert Systems
with Applications, 205:117599, 2022.

[2] Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub. Advances in
gringo series 3. In James P. Delgrande and Wolfgang Faber, editors, Proceedings of
the 11th International Conference on Logic Programming and Nonmonotonic Rea-
soning LPNMR 2011, volume 6645 of Lecture Notes in Computer Science, pages
345–351. Springer, 2011.

[3] Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari. I-DLV: the
new intelligent grounder of DLV. Intelligenza Artificiale, 11(1):5–20, 2017.

[4] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and
Torsten Schaub. Progress in clasp series 3. In Francesco Calimeri, Giovambattista
Ianni, and Miroslaw Truszczynski, editors, Proceedings of the 13th International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2015,
volume 9345 of Lecture Notes in Computer Science, pages 368–383. Springer,
2015.

[5] Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in
WASP. In Francesco Calimeri, Giovambattista Ianni, and Miroslaw Truszczynski,
editors, Proceedings of the 13th International Conference on Logic Programming
and Nonmonotonic Reasoning, LPNMR 2015, volume 9345 of Lecture Notes in
Computer Science, pages 40–54. Springer, 2015.

184

Appendix B

186

RABP with Makespan Optimization is NP-Hard

Author: Giray Havur

In this report, we show that the Resource Allocation in Business Processes [1]
(RABP) with makespan minimization is NP-Hard by demonstrating a polynomial re-
duction from the Job Shop Scheduling [2] (JSS) problem (which is known to be NP-
Complete [2, 3]) to RABP problem. We start with defining RABP, and JSS problems.

Resource Allocation in Business Processes Problem [1]: A RABP problem is defined
by

• Behavioral relations of activities [1]: B→ ⊆ 2(A×A) captures the ordered pairs of
activities that are in precedence relation (e.g., ⟨a1, a2⟩ ∈ B→ represents a1 → a2,
which is read as a1 precedes a2), and B|| ⊆ 2(A×A) represents the ordered pairs of
concurrent activities (e.g., ⟨a1, a2⟩ ∈ B|| represents a1|| a2, which is read as a1 is
in concurrency relation with a2);

• An organizational model O = (A,R,L, SAL, SRL, SLL), where A is a set of ac-
tivities, R is a set of resources, L is a set of roles, SAL ⊆ 2(A×L) is a set of
activity-to-role assignments specifying which activity can be executed by which
role(s), SRL ⊆ 2(R×L) is the corresponding set of resource-to-role assignment tu-
ples identifying the roles per resource, and optionally, SLL ⊆ 2(L×L) is a set of
role-to-role assignments that form a hierarchical (sub-role) structure;

• A temporal model that contains an upper-bound u ∈ U on makespan, and resource
specific activity durations1. The latter is represented as a function δ : (R×A)→ N0

that maps a resource-activity pair to a duration value in the scope of this report.

A feasible allocation consists of a set of quadruples I ⊆ 2(R×A×U×U) such that
(ri, ai, si, ci) ∈ I where each activity ai ∈ A is assigned a resource ri ∈ R, a start
time si ∈ U , and a completion time ci ∈ U , ci = si + δ(ri, ai). The following con-
straints hold for I:

1. No activity can be started until the preceding activities in the process model are
completed.
∀i1, i2 ∈ I : ai1 → ai2 ⇒ si2 ≥ ci1

2. An activity requires only one resource (that obeys the constraints defined in the
Role-Based Access Control [4] (RBAC) model) to be executed.
∀ai ∈ A : |{(ri, ai, si, ci) ∈ I}| = 1

∃l ∈ L ∀i1 ∈ I : (ri1 , l) ∈ SRL ∧ (ai1 , l) ∈ SAL

1 This functionality is provided by the resource-activity duration preference function in [1, Sec-
tion 2]

187

3. A resource can only execute one activity at a time.
∀i1, i2 ∈ I : (si2 ≤ si1 < ci2)⇒ ri1 ̸= ri2
∀i1, i2 ∈ I : (si2 < ci1 ≤ ci2)⇒ ri1 ̸= ri2
∀i1, i2 ∈ I : (si2 > si1 ∧ ci2 < ci1)⇒ ri1 ̸= ri2

4. An activity, once started, must run to completion (i.e., activities are non-preemptive).
In other words, no activity can have more than one start time.
∀i1, i2 ∈ I : ai1 = ai2 ⇒ si1 = si2

RABP with makespan optimization aims at finding the feasible allocation(s) with
the minimum makespan2.
Job Shop Scheduling Problem [2]: A JSS problem is defined by

• A set of jobs J = {J1, J2, · · · , Jn}, where each job Ji ∈ J is an ordered set of
tasks, i.e., Jx = ⟨tx,1, tx,2, · · · , tx,y⟩;

• A set of machines M = {m1,m2, · · · ,mn} for processing tasks;
• A function µ : J →M that maps each task to a machine where it is processed;
• A partial function PT : (M × J) ↛ N0 that maps the tasks processed by specific

machines to processing times.
A feasible JSS schedule consists of a set of pairs H ⊆ 2(J×U) such that (tx,y, bx,y) ∈
H where every task tx,y ∈ Jx is assigned to a starting time bx,y ∈ U . The processing
time required by task tx,y ∈ Jx processed by machine mz (i.e., µ(tx,y)) is denoted as
px,y,z . The completion time fx,y ∈ U of a task tx,y is the sum of the starting time bx,y
and the processing time px,y,z . The following constraints hold for H:

1. No task for a job can be started until the previous task for that job is completed.
∀hx,y1 , hx,y2 ∈ H : y1 < y2 ⇒ bx,y2 ≥ bx,y1 + px,y1

2. A task tx,y requires only one machine to be performed, i.e., the function µ(tx,y)
corresponds to the required machine.

3. A machine can only work on one task at a time.
∀hx1,y1

, hx2,y2
∈ H : (sx2,y2

≤ sx1,y1
< fx2,y2

)⇒ µ(tx1,y1
) ̸= µ(tx2,y2

)
∀hx1,y1 , hx2,y2 ∈ H : (sx2,y2 < fx1,y1 ≤ fx2,y2)⇒ µ(tx1,y1) ̸= µ(tx2,y2)
∀hx1,y1

, hx2,y2
∈ H : (sx2,y2

> sx1,y1
∧fx2,y2

< fx1,y1
)⇒ µ(tx1,y1

) ̸= µ(tx2,y2
)

4. A task, once started, must run to completion (i.e., tasks are non-preemptive).
∀hx1,y1

, hx2,y2
∈ H : tx1,y1

= tx2,y2
⇒ bx1,y1

= bx2,y2

The objective of the JSS problem is to minimize the completion time of a task (i.e.,
makespan).

To show a problemΠ1 is NP-Hard, there needs to be a polynomial reduction from a
known NP-complete problemΠ2, denoted asΠ2 ≤P Π1 [5, Chapter 5.1]. We introduce
a polynomial reduction algorithm R in Figure 1 that transforms a JSS problem into a
RABP problem. By applying this transformation, the black-box RABP solver ΠRABP

can solve JSS problems (i.e., JSS≤P RABP).
An overview of the reduction algorithm R is shown in Figure 2. Given

a JSS problem {J ,M, µ, PT}, the algorithm computes a RABP problem
{A,B, R, L, SAL, SRL, δ, u} as described in the following.

2 Makespan is the maximum of completion times (i.e., the completion time of the activity with
the latest finish time).

188

ΠRABPJSS problem RABP problem

ΠJSS

Fig. 1. Reduction of a JSS problem to a RABP problem.

• Set of jobs 𝒥

• Set of machines M

• Task-to-machine

assignment function μ

• Machine specific task

 processing time function PT

• Set of activities A

• Set of precedence relations 𝓑→

• Set of concurrency relations 𝓑||

• Set of resources R
• Set of roles L
• Activity-to-role assignments SAL
• Resource-to-role-assignments SRL
• Resource specific activity

 execution duration function δ

Input: JSS problem Output: RABP problem

• Upper-bound u

Fig. 2. An overview of the polynomial reduction algorithm R.

1. Set of activities A:
A = {tx,y | Jx ∈ J ∧ tx,y ∈ Jx}

2. Set of behavioral relations of activities B→ and B||:
B→ = {(tx,y, tx,y+1) | Jx ∈ J ∧ tx,y ∈ Jx ∧ tx,y+1 ∈ Jx}
B|| = {(tx,1, ty,1) | Jx ∈ J ∧ Jy ∈ J ∧ x ̸= y ∧ tx,1 ∈ Jx ∧ ty,1 ∈ Jy}

3. Set of resources R:
R = {mx |mx ∈M}

4. Set of roles L:
L = {mx |mx ∈M}

5. Resource-to-role assignments SRL:
SRL = {⟨µ(tx,y), µ(tx,y)⟩ | Jx ∈ J ∧ tx,y ∈ Jx}

6. Activity-to-role assignments SAL:
SAL = {⟨tx,y, µ(tx,y)⟩ | Jx ∈ J ∧ tx,y ∈ Jx}

7. Resource specific activity execution duration function δ:
δ(r, a) = PT (r, a)

8. Upper-bound u (the worst-case scenario where there is only one machine):
u =

∑
Jx∈J

∑
tx,y∈Jx

PT (µ(tx,y), tx,y)

(1,2) the order of tasks in jobs maps to precedence relations of activities, and the initial
tasks of different jobs would be represented as activities in concurrency relation, (3-5)

189

machines map to roles with only one resource, (6) activity-to-role assignments are de-
rived via task-to-machine assignment function, (7) task durations for specific machines
are represented as resource-specific activity durations, and (8) an upper-bound value is
given as the sum of all tasks’ processing times. Solving the output of R (e.g. via the
Answer Set Programming [6] (ASP) encoding for RABP in [1]) would then yield to a
solution to any given JSS problem.

References

[1] Giray Havur, Cristina Cabanillas, and Axel Polleres. Benchmarking answer set
programming systems for resource allocation in business processes. Expert Systems
with Applications, 205:117599, 2022.

[2] Teofilo Gonzalez and Sartaj Sahni. Flowshop and jobshop schedules: complexity
and approximation. Operations research, 26(1):36–52, 1978.

[3] Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop
and jobshop scheduling. Mathematics of operations research, 1(2):117–129, 1976.

[4] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and Nino Vincenzo
Verde. A formal framework to elicit roles with business meaning in RBAC sys-
tems. In Barbara Carminati and James Joshi, editors, Proceedings of the 14th ACM
Symposium on Access Control Models and Technologies, SACMAT 2009, pages 85–
94. ACM, 2009.

[5] David S. Johnson and Michael R. Garey. Computers and Intractability: A Guide to
the Theory of NP-Completeness. WH Free. Co., San Fr, 1979.

[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning. Morgan & Claypool Publishers, 2012.

190

Appendix C

192

A Comparison of ASP and CP Solutions for RABP

Author: Giray Havur

Abstract. This technical report presents a comparison between declarative im-
plementations of Resource Allocation in Business Processes (RABP) with An-
swer Set Programming (ASP) and Constraint Programming (CP). We then use
the state-of-the-art solvers of these formalisms to solve RABP problem instances
of different sizes for reporting on the computational performance of these solvers.
The advantages of choosing one formalism over the other are discussed with the
following criteria: size of the problem encoding, human readability of the prob-
lem instances, and computational performance.

1 Introduction

Business process management (BPM) is a field in operations management that focuses
on improving corporate performance by managing and optimizing a company’s busi-
ness processes [1]. A process is typically a collection of activities under a control struc-
ture serving a particular goal for the business. Resource Allocation in Business Pro-
cesses (RABP), as an integral part of BPM, deals with the assignment of resources and
time intervals to the activities. The complexity of RABP arises from coordinating the
dependencies across a broad set of resources and activities of processes as well as from
solving potential conflicts on the use of certain resources.

Allocation of resources with starting times to the activities is a far-from-trivial task
with strong implications on the quality of the final allocation, and it is challenging
from a computational perspective [2]. As for complexity, RABP with makespan opti-
mization is NP-Hard [3](See Appendix B for the proof). One way of addressing this
problem is describing it in a knowledge representation formalism. We select ASP [4]
and CP [5] for this purpose as they are used to solve various hard computational prob-
lems and they maintain a balance between expressivity, ease of use, and computational
effectiveness [6, 7]. These two approaches are compared in this particular problem for
understanding the respective strengths and weaknesses of these formalisms.

The remainder of this technical report is structured as follows. Section 2 provides
the background on the RABP problem, ASP and CP. Based on that, Section 3 presents
a comparison of ASP and CP implementations of RABP. Section 4 evaluates the per-
formance of different ASP systems and CP solvers on RABP instances. Section 5 high-
lights the advantages and limitations different implementations and concludes the paper
by giving pointers for future work.

2 Background

A background on RABP problem, ASP, and CP is provided in this section.

193

2.1 Resource Allocation in Business Processes Problem

A RABP problem is formalized in [3]. A RABP problem instance is defined by:

• Behavioral relations of activities [3]: B→ ⊆ 2(A×A) captures the ordered pairs of
activities that are in precedence relation (e.g., ⟨a1, a2⟩ ∈ B→ represents a1 → a2,
which is read as a1 precedes a2), and B|| ⊆ 2(A×A) represents the ordered pairs of
concurrent activities (e.g., ⟨a1, a2⟩ ∈ B|| represents a1|| a2, which is read as a1 is
in concurrency relation with a2);

• An organizational model O = (A,R,L, SAL, SRL, SLL), where A is a set of ac-
tivities, R is a set of resources, L is a set of roles, SAL ⊆ 2(A×L) is a set of
activity-to-role assignments specifying which activity can be executed by which
role(s), SRL ⊆ 2(R×L) is the corresponding set of resource-to-role assignment tu-
ples identifying the roles per resource, and optionally, SLL ⊆ 2(L×L) is a set of
role-to-role assignments that form a hierarchical (sub-role) structure;

• A temporal model that contains an upper-bound u ∈ U on makespan1, and resource
specific activity durations2. The latter is represented as a function δ : (R×A)→ N0

that maps a resource-activity pair to a duration value in the scope of this report.

A feasible allocation consists of a set of quadruples I ⊆ 2(R×A×U×U) such that
(ri, ai, si, ci) ∈ I where each activity ai ∈ A is assigned a resource ri ∈ R, a start time
si ∈ U and a completion time ci = si + δ(r, a). It is assumed that each activity, once
started, is planned to be completed without interruptions in the schedule (i.e. activities
are non-preemptive). The following constraints (c.1-c.4) hold for RABP:

(c.1) An activity requires only one resource (that obeys the activity-to-role, resource-
to-role, and role-to-role assignments defined in the organizational modelO) to be
executed.
∀ai ∈ A : |{(ri, ai, si, ci) ∈ I}| = 1
∃l ∈ L ∀i1 ∈ I : (ri1 , l) ∈ SRL ∧ (ai1 , l) ∈ SAL

(c.2) Each activity has only one start time.
∀i1, i2 ∈ I : ai1 = ai2 ⇒ si1 = si2

(c.3) The start time of any activity is greater than or equal to the completion time of its
preceding activities.
∀i1, i2 ∈ I : ai1 → ai2 ⇒ si2 ≥ ci1

(c.4) Same resource must not be allocated to any concurrent pair of activities that have
overlapping execution periods.
∀i1, i2 ∈ I : (ai1 ||ai2 ∧ si2 ≤ si1 < ci2)⇒ ri1 ̸= ri2
∀i1, i2 ∈ I : (ai1 ||ai2 ∧ si2 < ci1 ≤ ci2)⇒ ri1 ̸= ri2
∀i1, i2 ∈ I : (ai1 ||ai2 ∧ si2 > si1 ∧ ci2 < ci1)⇒ ri1 ̸= ri2

RABP with makespan optimization aims at finding the feasible allocation(s) with the
minimum makespan u′ where 0 ≤ u′ ≤ u.

1 Makespan is the maximum of completion times (i.e., the completion time of the activity with
the latest finish time).

2 This mapping is further detailed by the resource-activity duration preference function in [3,
Section 2]

194

2.2 Answer Set Programming (ASP)

An ASP program Π is a finite set of rules of the form

A0:-A1, . . . , Am, not Am+1, . . . , not An. (1)

where n≥m≥ 0 and each Ai ∈σ are (function-free first-order) atoms; if A0 is empty
in a rule r, we call r a constraint, and if n = m = 0 we call r a fact.

Whenever Ai is a first-order predicate with variables within a rule of the form (1),
this rule is considered as a shortcut for its “grounding” ground(r), i.e., the set of its
ground instantiations obtained by replacing the variables with all possible constants
occurring in Π . Likewise, we denote by ground(Π) the set of rules obtained from
grounding all rules in Π .

Sets of rules are evaluated in ASP under the so-called stable-model semantics,
which allows several models (so called “answer sets”), that is subset-minimal Herbrand
models, we again refer to [4] and references therein for details. ASP Solvers typically
first compute (a subset of ground(Π), and then use a DPLL-like branch and bound
algorithm is used to find answer sets for this ground program.

In place of atoms, set-like choice expressions of the form E = {A1, . . . , Ak} can
be used. They are true for any subset of E; that is, when used in heads of rules, E
generates many answer sets, and such rules are often referred to as choice rules. An-
other extension supported in ASP Core-2 standard are optimization statements ([8]) to
indicate preferences between possible answer sets:

∼ : A1 : Body1 = w1@p1, . . . , Am : Bodym = wm@pm

associates integer weights (defaulting to 1) with atoms Ai (conditional to Bodyi being
true), where such a statement expresses that we want to find only answer sets with the
smallest aggregated weight sum; again, variables in Ai : Bodyi = wi@p1 are replaced
at grounding w.r.t. all possible instantiations.

2.3 Constraint Programming (CP)

Constraint programming [5, 9] is a programming paradigm wherein relations between
variables are stated in the form of constraints. A Constraint Satisfaction Problem (CSP)
consist of a triple (V,D,C) where V is a set of finite domain variables {v1, ..., vn},
D is variable domains {dom(v1), ..., dom(vn)}, and C is a set of constraints defining
restrictions on the possible combinations of variable values ({c1, ..., cm}). A solution
for a CSP problem is an assignment S = {ins(v1), ..., ins(vn)} where ins(vi) ∈
dom(vi).

In CSP, in order to make problems easier to solve, local consistency conditions [5]
are defined. A local consistency condition is a property of constraint satisfaction prob-
lems related to the consistency of subsets of variables or constraints. Every local consis-
tency condition can be enforced by a transformation that changes the problem without
changing its solutions. Such a transformation is called constraint propagation [5]. Con-
straint propagation works by reducing domains of variables, strengthening constraints,
or creating new ones. This leads to a reduction of the search space, making the prob-
lem easier to solve by some algorithms. While solving a CSP, branching strategies [5]

195

define the way of partitioning the problem P into easier sub-problems P1, P2,. . . , Pn.
To each sub-problem Pn, the solver applies again propagation. New branches can be
pruned because of the new information derived from the branching. A notable expan-
sion of the traditional CSP model is the Constrained-Optimization problem (COP) [5].
A CSP called COP when it has an objective function that has to be optimized (i.e., it
can be used for makespan minimization in RABP).

CP problems do not have a common modeling language. A modeling language is
usually invented for each CP solver. This makes it challenging for modelers to try out
various solvers for problems. A modeling language called MiniZinc [10] is created to
facilitate high level modeling and simple experimentation with various solution tech-
nologies for the same CP problem. Prior to being presented to solver interfaces, MiniZ-
inc input is converted to FlatZinc [10] constraints that can be consumed by CP solvers.
The conversion of MiniZinc to FlatZinc is clearly explained and documented in [10].

3 Comparison of ASP and CP Implementations of RABP

In this section, the ASP and CP implementations of RABP are described and compared
with respect to human readability and compactness of the problem encodings.

3.1 ASP Implementation

The ASP encoding of the RABP problem is provided in Figure 1. Rule (1-3) selects
a makespan for the allocation. Rules (4,5) generate the time domain from the selected
upper bound. Rule (6) propagates the permissions of activity executions of a junior role
to a senior role (i.e. role-to-role RBAC relations). Rules (9-11) implement the resource-
activity duration preference handling mechanism described in [3]. Rules (12), (17),
(18), and (19-21) correspond to the constraints (c.1), (c.2), (c.3), and (c.4) described in
Section 2, respectively. Finally, Rule (22) minimizes the upper bound. Rules (7,8) and
(13-16) are added for improving the performance of the ASP encoding by reducing the
number of terms in the used predicates.
Input Format. The input is divided into three groups of predicates as follows.
Behavioral relations of activities in a business process P:

– activity(a): a is an activity in P;
– prec(a1,a2): the activity a1 precedes the activity a2 (i.e., a1 → a2);
– conc(a1,a2): the activity a1 is concurrency with the activity a2 (i.e., a1||a2).

RBAC organizational model O = (A,R,L, SAL, SRL, SLL):

– rlAC(r,l): resource r has role l (i.e. (r, l) ∈ SRL);
– alAC(a,l): the resources with role l can execute activity a (i.e. (a, l) ∈ SAL);
– llAC(l1,l2): the resources with role l1 can execute the same activities as the re-

sources with role l2 (i.e. (l1, l2) ∈ SLL).

Temporal model:

– defActDuration(a,d): the default duration of activity a is estimated as d;
– rsaDuration(r,a,d): the duration of activity a is estimated as d when it is exe-

cuted by resource r;

196

% generation of makespan domain
1makespanDomain(U) :- upperBound(U).
2makespanDomain(U1) :- makespanDomain(U), U1=U-1, U1>=0.

% selection of a makespan
31<={makespan(SU) : makespanDomain(SU)}<=1.

% time domain generation from the selected makespan
4time(0).
5time(T1) :- time(T), T1=T+1, T1<=U, makespan(U).

% senior roles can execute activities of junior roles
6alAC(A,L1) :- llAC(L1,L2), alAC(A,L2).

% encoding optimization: projection of duration predicates
7prsaDuration(R,A) :- rsaDuration(R,A,X).
8plsaDuration(L,A) :- lsaDuration(L,A,Y).

% resource-activity duration interval preference
9allowedRAD(R,A,D) :- rsaDuration(R,A,D), rlAC(R,L), alAC(A,L).
10allowedRAD(R,A,D) :- not prsaDuration(R,A), lsaDuration(L,A,D), rlAC(R,L),

alAC(A,L).
11allowedRAD(R,A,D) :- not prsaDuration(R,A), not plsaDuration(L,A),

defActDuration(A,D), rlAC(R,L), alAC(A,L).

% (c.1)
121<={allocation(R,A,S,C): time(S), time(C), allowedRAD(R,A,D), C=S+D}<=1 :-

aTransition(A).

% encoding optimization: projection of allocation predicates
13pallocation23(A,S) :- allocation(X,A,S,Y).
14pallocation24(A,C) :- allocation(X,A,Y,C).
15pallocation123(R,A,S) :- allocation(R,A,S,X).
16pallocation124(R,A,C) :- allocation(R,A,X,C).

% (c.2)
17:- pallocation23(A,S1), pallocation23(A,S2), S1<S2.

% (c.3)
18:- prec(A1,A2), pallocation24(A1,C1), pallocation23(A2,S2), C1>S2.

% (c.4)
19:- conc(A1,A2), pallocation123(R,A1,S1), allocation(R,A2,S2,C2), S2<=S1,

C2>S1, A1<A2.
20:- conc(A1,A2), pallocation124(R,A1,C1), allocation(R,A2,S2,C2), S2<C1,

C2>=C1, A1<A2.
21:- conc(A1,A2), allocation(R,A1,S1,C1), allocation(R,A2,S2,C2), S2>S1,

C2<C1, A1<A2.

% minimization of the selected upper bound
22:˜ makespan(U). [U,U]

Fig. 1: ASP encoding for the RABP problem

– lsaDuration(l,a,d): the duration of activity a is estimated as d when it is exe-
cuted by a resource that has role l;

– upperBound(u): makespan is bounded at u time units.

Output Format. For the allocation output the following predicate is defined:

– allocation(r,a,s,c): a resource r is allocated to activity a at the start time s until
the completion time c (i.e. (r, a, s, c) ∈ I).

197

% input variables
23int: nActivities;
24int: nResources;
25int: upperbound;
26int: lastActivity;

27set of int: Activity = 1..nActivities;
28set of int: Time = 0..bound;
29set of int: Resource = 1..nResources;

% input arrays: preceding activities
30array[Activity,Activity] of int: prec;

% concurrent activities
31array[Activity,Activity] of int: conc;

% activity durations
32array[Activity,Resource] of int: allowedRAD;

% output arrays: resource to activity allocations
33array[Activity] of var Resource: resource;

% activity to starting time assignments
34array[Activity] of var Time: start;

% activity to ending time assignments
35array[Activity] of var Time: end;

% (c.1 & c.2)
36constraint forall(a in Activity)

(allowedRAD[a,resource[a]]>=0 /\
aEnd[a]=start[a] + allowedRAD[a,resource[a]]);

% (c.3)
37constraint forall(a1 in Activity,a2 in Activity)(

if (prec[a1,a2]==1)
then (start[a2] >= end[a1])
else true endif);

% (c.4)
38constraint forall(a1 in Activity,a2 in Activity)(

if (conc[a1,a2]==1 /\
card(start[a1]..(end[a1]-1) intersect start[a2]..(end[a2]-1))>0)

then (resource[a1] != resource[a2])
else true endif);

% makespan minimization
39solve minimize (end[lastActivity]);

Fig. 2: MiniZinc encoding for the RABP problem

3.2 MiniZinc Implementation

A possible MiniZinc implementation of RABP is given in Figure 2. Input is de-
fined in Lines (23-32), and output is defined in Lines (33-35). Rules (36), (37), and
(38) corresponds to the constraints (c.1 & c.2), (c.3), and (c.4) described in Section 2,
respectively. Rule (39) minimizes the makespan.

Input Format. The input is divided into three groups of predicates as follows.

Behavioral relations of activities in a business process P:

– nActivities represents the total number of activities in P ,
– lastActivity represents the last activity before the end event in P ,
– prec[a1,a2] and conc[a1,a2] are 2D arrays representing preceding and concur-

rency relations between activities: given two activities a1 and a2, if a1 → a2 then

198

Fig. 3: Example process with four activities represented as a Petri net

Resources R res1, res2

Roles L role1, role2

Activity-to-role assignments SAL (a,role1), (b,role2), (c,role1), (d,role2)

Resource-to-role assignments SRL (res1,role1), (res2,role2)

Role-to-role assignments SLL (role2,role1)

Fig. 4: Example organizational model

prec[a1,a2] equals to 1, otherwise 0. Similarly, if a1||a2 then conc[a1,a2] equals
to 1, otherwise 0.

Organizational model O = (A,R,L, SAL, SRL, SLL), and temporal model:

– nResources represents the number of total resources, i.e., |R|.
– upperbound is the maximum makespan value,
– allowedRAD[a, r] is the 2D array derived from the organizational model O and the

temporal constraints: given O and resource-, role-, and default-activity durations [3],
if a can be executed by r, allowedRAD[a, r]= d where the resource-activity spe-
cific duration d is derived from resource-, role-, and default-activity durations.

Output Format. The allocated resources, starting, and ending times of an activity a are
represented in 1D arrays resource, start, end of length |A|where, e.g., the allocated
resource of an activity ai’s is resource[ai].

Among these two approaches, RABP problem instances that are represented in ASP
are easier to maintain when it becomes necessary to modify the instances due to the
predicate structure. The same knowledge is represented in arrays in the RABP problem
instances encoded in MiniZinc. On the other hand, the problem encodings (cf. Figure 1
and Figure 2) are of comparible sizes.

4 Comparison of A RABP Instance in ASP and CP

In this section, we compare the ASP and CP models of an example RABP instance
described in Figures 3, 4, and 5. The process in Figure 3 has four activities: the activity
a precedes activities b and c, where b and c are concurrent activities. The activities b
and c precede the activity d. This business process is modeled in ASP by using the
predicates activity for defining activities, prec for determining the precedence of
activities, and conc for defining the concurrent activities as follows:

199

Default activity durations (a,3), (b,1), (c,2), (d,4)

Role-specific activity durations (role2,d,2)

Resource-specific activity durations (res1,a,2)

Upper bound 15

Fig. 5: Example temporal model

activity(a). prec(a,b). conc(b,c).
activity(b). prec(a,c). conc(c,b).
activity(c). prec(b,d).
activity(d). prec(c,d).

The same process is represented in CP as follows:
noActivity = 4;
lastActivity = 4;
prec = [|0,1,1,0, conc = [|0,0,0,0,

|0,0,0,1, |0,0,1,0,
|0,0,0,1, |0,1,0,0,
|0,0,0,0|]; |0,0,0,0|];

In the CP process representation, the variable noActivity is used to describe the num-
ber of activities, the variable lastActivity to describe the very last activity in the
process which does not precede any other activity, the arrays prec and conc to de-
scribe the precedence and concurrency relations between the activities where rows and
columns correspond to activities. For example, in the array prec, the value of 1 at the
first row (i.e., activity a) second column (i.e., activity b) means that activity a precedes
activity b.

The organizational model in Figure 4, and the temporal model in Figure 5 are rep-
resented in ASP as follows:
resource(res1). rlAC(res1,role1). alAC(a,role1).
resource(res2). rlAC(res2,role2). alAC(b,role2).
role(role1). alAC(c,role1).
role(role2). llAC(role2,role1). alAC(d,role2).

defaultDuration(a,3). rsaDuration(res1,a,2).
defaultDuration(b,1). lsaDuration(role2,d,2).
defaultDuration(c,2).
defaultDuration(d,4). upperBound(15).

By contrast, the CP representation combines the organizational and temporal mod-
els in one array named allowedRAD where activities index the rows and resources
index the columns.
noResources = 2;

allowedRAD = [| 2,3,
|-1,1,
| 2,2,
|-1,1|];

upperBound = 15;

For example, in the array allowedRAD, the value of 2 at the first row (i.e., activity a)
first column (i.e., resource res1) means that res1 can be allocated to the activity a. If
so, execution of activity a by the resource res1 takes 2 unit times in the schedule. Any

200

RABP ASP
encoding

RABP MiniZinc
encoding

RABP ASP
problem
instance

RABP MiniZinc
problem
instance

MiniZinc
flattener

ASP grounder Ground
program

CP solver

ASP solver

FlatZinc model

INPUT PROCESSING INTERMEDIARY

MODEL
 SOLVING
 OUTPUT

 Result

 Result

Performance
evaluation

Fig. 6: Overview of ASP and CP solving

negative value in this array means that the corresponding resource cannot be allocated
to the corresponding activity.

When ASP and CP RABP instances are compared, ASP language is more suitable
for encoding RABP instances from the readability and maintainability perspectives.

5 Performance Evaluation

In order to conduct our experiments, we selected four ASP systems and four CP solvers.
The ASP systems consist of the combinations of the state-of-the-art ASP grounders
GRINGO [11] and I-DLV [12], and the ASP solvers CLASP [13] and WASP [14].
These grounders and solvers are selected for the performance evaluation due to their
top performance rankings in the latest ASP Competition [15]. The CP solvers are
GECODE [16], CHUFFED [17], HaifaCSP [18], and OR-TOOLS [19] . GECODE and
CHUFFED are the out-of-the-box solvers in the MiniZinc environment, and HaifaCSP
and OR-TOOLS perform well in the annual MiniZinc challenge3 [20]. Note that CP
solvers take a flattened input: the MiniZinc input is transformed into a low-level FlatZ-
inc representation by MiniZinc-to-FlatZinc converter [10]. Figure 7 summarizes how
ASP and MiniZinc inputs (i.e., RABP problem encoding and a problem instance) are
transformed into a grounded/flattened (i.e., intermediary) models before being con-
sumed by corresponding solvers.

All the timing results, expressed in seconds, have been obtained by measuring the
time needed for computing the optimal RABP solution. Reported use of time and mem-
ory includes processing and solving steps (cf. Figure 7). All problem instances have

3 https://www.minizinc.org/challenge.html

201

id nA δconc nR nL u

1 16 10 2 1 32
2 16 50 2 1 32
3 16 90 2 1 32
4 24 10 3 1 48
5 24 50 3 1 48
6 24 90 3 1 48
7 32 10 4 2 64
8 32 50 4 2 64
9 32 90 4 2 64

10 48 10 6 3 96
11 48 50 6 3 96
12 48 90 6 3 96
13 64 10 8 4 128
14 64 50 8 4 128
15 64 90 8 4 128
16 96 10 12 6 192
17 96 50 12 6 192
18 96 90 12 6 192
19 128 10 16 8 256
20 128 50 16 8 256
21 128 90 16 8 256

id nA δconc nR nL u

22 (2.1) 16 50 2 1 48
23 (2.2) 16 50 2 1 64
24 (5.1) 24 50 3 1 72
25 (5.2) 24 50 3 1 96
26 (8.1) 32 50 4 2 96
27 (8.2) 32 50 4 2 128

28 (11.1) 48 50 6 3 144
29 (11.2) 48 50 6 3 192
30 (14.1) 64 50 8 4 192
31 (14.2) 64 50 8 4 256
32 (17.1) 96 50 12 6 288
33 (17.2) 96 50 12 6 384
34 (20.1) 128 50 16 8 384
35 (20.2) 128 50 16 8 512

Table 1: Properties of problem instances

been solved on a PC (Intel Xeon processor 2.8 GHz) running a Linux kernel. Time
and memory for each run were limited to 1 h CPU clock time and 16 GB of memory
usage, respectively. The RABP encodings, and the problem instances are accessible at
http://urban.ai.wu.ac.at/˜havur/RABPASPCPComparison.
RABP Instances. We use BRANCH [3, 21] for generating 35 RABP problem in-
stances. The details of these instances are provided in Table 1. In the table, id column is
the unique identifier of each instance, nA is the number of activities to which resources
are going to be allocated, δconc is the degree of concurrency of the generated Petri net,
nR is the number of resources, nL is the number of roles, and u is the upper bound for
makespan. Problem instances (1-21) have gradually increasing number of activities and
resources, and problem instances (22-35) are repeated instances of (2,5,8,11,14,17,20)
where the upper bound values are doubled and tripled. With the latter, we test the solvers
for makespan optimization (i.e., with higher initial upper bounds).
Results. The experiment results are shown in Table 2. It is clear that the memory usage
of the CP solvers are consistently lower than the ASP solvers. These results are visu-
alized in Figure 7 as a scatter plot where the x-axis represents the time and the y-axis
represents the memory usage of the problem instances solved by the respective systems
that are indicated by different markers.

The sorted cactus plots in Figure 8 visualizes the total number of successfully-
solved problem instances with respect to required time to solve these instances. These
two figures suggest that both ASP systems and CP solvers are competitive in solving
RABP instances, while the CP solver HaifaCSP outperforms the others.

202

A
SP

C
P

gr
in

go
+c

la
sp

gr
in

go
+w

as
p

id
lv

+c
la

sp
id

lv
+w

as
p

ge
co

de
ch

uf
fe

d
hc

sp
or

-t
oo

ls
id

tim
e

m
em

tim
e

m
em

tim
e

m
em

tim
e

m
em

tim
e

m
em

tim
e

m
em

tim
e

m
em

tim
e

m
em

1
0.

79
13

.3
0.

93
16

0.
79

12
.5

0.
98

16
.8

0.
22

26
.1

0.
47

35
.8

0.
59

45
0.

58
39

.2
2

9.
13

14
.5

34
.7

7
13

6.
8

27
.5

8
15

.8
20

.4
2

99
.5

46
9.

68
27

.8
9.

67
77

.1
1.

06
58

.6
71

7.
9

55
.6

3
O

oT
51

.2
O

oT
10

52
.7

O
oT

43
O

oT
10

18
.6

O
oT

27
.9

28
72

.3
3

65
3.

2
1.

28
62

.3
O

oT
57

.5
4

2.
84

24
.1

3.
24

41
.6

2.
73

22
.6

10
.3

39
.2

0.
22

22
.2

0.
83

59
.7

1.
47

76
.3

1.
26

67
.1

5
4.

29
29

.8
5.

04
53

.1
3.

5
24

.3
11

.6
7

50
.4

4.
57

33
.9

1.
91

10
5.

1
3.

48
13

5.
1

O
oT

10
2.

8
6

O
oT

12
1.

3
O

oT
20

10
.5

O
oT

11
2.

5
O

oT
14

03
.3

O
oT

37
.4

O
oT

76
2.

7
4.

38
15

4.
8

O
oT

11
5.

9
7

6.
85

39
.3

8.
32

79
.5

5.
97

38
43

.9
5

79
.3

0.
34

37
.2

1.
72

10
2.

4
2.

84
13

2.
6

2.
19

10
0.

9
8

10
.9

7
70

15
.4

7
14

1.
7

9.
73

48
.2

75
.5

7
11

1.
8

53
.8

3
44

.1
4.

9
21

1.
8

10
.2

8
27

9.
7

O
oT

19
2.

4
9

O
oT

15
4.

1
O

oT
47

18
.1

O
oT

15
0.

2
O

oT
27

12
.3

O
oT

47
.7

O
oT

91
1.

5
13

.3
9

33
6.

8
O

oT
22

3.
8

10
45

.2
5

13
2.

3
39

.3
9

23
1.

5
45

.6
5

11
3.

6
10

23
.7

8
29

3.
6

0.
57

54
.1

5.
08

23
3.

9
10

.8
8

31
0

8.
24

21
5.

3
11

56
.6

9
27

1
53

.5
1

23
3.

8
81

.9
9

14
9.

3
10

4.
79

31
8.

9
28

4.
51

73
.3

23
.5

2
64

0.
2

57
.0

3
86

9.
8

O
oT

55
4.

4
12

O
oT

29
0.

2
O

oT
87

71
O

oT
23

1.
2

O
oT

56
10

.8
O

oT
85

.8
O

oT
13

61
.3

77
.9

7
10

62
.9

O
oT

67
9.

2
13

46
4.

52
36

3
81

2.
21

15
27

.1
28

9.
59

28
9.

8
72

6.
64

14
15

.3
0.

99
76

.8
10

.8
9

41
6.

9
22

.7
2

55
9.

2
22

.5
37

3.
9

14
20

9.
68

75
6.

7
22

1.
86

41
7.

9
57

0.
92

37
3.

5
64

7.
89

79
6.

5
O

oT
11

3
72

.2
3

14
32

.6
20

8.
73

19
54

.9
O

oT
12

24
.5

15
O

oT
96

4.
7

O
oT

10
03

8.
5

O
oT

41
5.

2
O

oT
11

82
7.

8
O

oT
13

9.
4

O
oT

23
14

.1
32

0.
6

24
72

.7
O

oT
15

30
.8

16
O

oT
13

21
.9

O
oT

55
80

.8
O

oT
10

47
.8

O
oT

60
50

.2
2.

23
14

5.
5

42
.4

4
11

66
.9

12
1.

56
15

92
.1

16
1.

7
10

11
.5

17
14

89
.6

6
36

20
.8

13
34

.9
13

40
.8

28
57

.3
14

59
.2

29
74

.8
5

31
07

.9
O

oT
22

9.
1

46
2.

88
48

06
.9

13
95

.1
5

64
22

.7
25

04
.3

3
39

79
.6

18
O

oT
42

94
.3

O
oT

15
41

5
O

oT
25

7.
3

O
oT

15
78

O
oT

25
3.

5
O

oT
65

12
.9

20
99

.1
5

84
00

.8
O

oT
51

98
.2

19
O

oT
33

34
.5

O
oT

77
47

O
oT

61
2.

9
O

oT
37

23
.2

4.
24

25
4.

7
75

.3
9

23
86

34
9.

2
32

04
.6

50
8.

23
20

36
20

O
oT

10
42

0.
1

O
oT

63
98

.1
O

oT
16

9
O

oT
16

8.
9

O
oT

40
5.

6
16

13
.3

7
11

02
4.

1
O

oT
14

70
0.

9
O

oT
90

63
.2

21
O

oT
13

27
1.

9
O

oT
48

31
.9

O
oT

17
0.

7
O

oT
17

0.
8

O
oT

46
7.

9
O

oT
14

82
5.

8
33

8.
29

O
oM

O
oT

11
94

0
22

11
.6

9
18

.9
29

.0
3

14
4.

4
14

.9
6

16
.7

32
.8

8
13

9
43

0.
19

29
.3

7.
11

81
.1

1.
29

74
.5

15
04

.5
9

65
.4

23
13

.0
6

23
.5

70
.7

4
28

9.
3

25
.1

3
21

.6
67

.1
7

25
0

43
1.

93
30

.6
9.

8
99

.1
2.

17
89

.8
O

oT
75

.5
24

6.
4

44
.9

9.
1

82
.7

6.
29

37
.8

44
.3

6
80

.8
2.

4
37

.9
3.

32
14

1.
9

6.
06

18
7.

3
O

oT
13

3.
4

25
10

.7
3

66
.8

13
.8

4
11

8.
2

9.
41

53
.6

13
0.

93
11

5.
8

3.
09

41
.1

5.
58

18
2.

7
8.

17
23

9.
9

O
oT

16
8.

5
26

21
.4

2
12

3.
3

28
.1

2
22

3.
2

21
.0

1
80

.1
36

5.
73

18
5

70
.3

3
51

.5
10

.3
6

30
4.

2
18

.8
7

40
8.

8
O

oT
27

1.
2

27
33

.4
4

17
6

32
.3

8
19

1.
5

40
.4

3
11

5.
6

12
02

.1
7

27
3.

5
58

.2
6

58
15

.8
39

7.
2

24
.9

52
7.

8
O

oT
34

6.
6

28
10

1.
12

46
0.

8
11

4.
47

29
3.

4
24

8.
52

25
3.

3
26

5.
02

46
3.

2
30

4.
19

90
49

.4
7

92
9.

6
10

5.
35

12
66

.1
O

oT
79

4.
3

29
18

6.
69

65
0.

9
18

2.
1

40
2

41
2.

67
41

1
44

3.
47

63
9.

7
31

0.
28

10
3.

7
10

7.
67

12
46

.5
16

0.
08

16
87

.7
O

oT
10

56
.3

30
39

6.
94

12
67

.3
38

3.
27

64
2.

2
13

45
.1

6
66

9.
9

14
40

.3
7

11
88

.2
O

oT
14

4.
1

19
3.

9
21

63
.7

40
9.

06
29

12
.6

O
oT

18
26

.2
31

58
8.

57
18

97
64

6.
59

81
9.

2
23

10
.9

1
10

17
.7

23
91

.4
3

15
50

.3
O

oT
16

6.
5

24
8.

49
29

18
.7

59
5.

93
38

22
.2

O
oT

23
83

.8
32

29
75

.2
7

56
33

.7
25

80
.0

4
20

60
.3

O
oT

10
5.

2
O

oT
10

5.
1

O
oT

29
8.

4
84

7.
71

70
87

.6
27

23
.1

8
95

25
.1

31
92

.2
6

58
32

.6
33

O
oT

82
98

.5
33

74
.4

96
31

33
.4

O
oT

14
2.

3
O

oT
14

2.
3

O
oT

35
8.

4
18

66
.9

5
98

70
.6

O
oT

12
63

1.
3

O
oT

77
32

.9
34

O
oT

33
6.

3
O

oT
32

6.
3

12
66

.3
O

oM
40

5.
6

O
oM

O
oT

52
3

33
4.

58
O

oM
34

7.
63

O
oM

O
oT

13
35

7.
1

35
O

oT
20

2.
2

O
oT

20
2.

3
O

oT
32

7.
8

O
oT

32
7.

8
O

oT
63

3.
4

34
9.

1
O

oM
42

3.
59

O
oM

46
7.

3
O

oM

Ta
bl

e
2:

E
va

lu
at

io
n

re
su

lts

203

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0

MEMORY USAGE

TI
M

E

gr
in

go
+c

la
sp

gr
in

go
+w

as
p

id
lv

+c
la

sp
id

lv
+w

as
p

ge
co

d
e

ch
u

ff
e

d
h

cs
p

o
r-

to
o

ls

Fi
g.

7:
Sc

at
te

rp
lo

to
fa

ll
in

st
an

ce
s

204

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

0
10

20
30

Time

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

gr
in

go
+c

la
sp

0
10

20
30

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

id
lv
+c

la
sp

0
10

20
30

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

id
lv
+w

as
p

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

0
10

20
30

Time

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

ge
co

de

0
10

20
30

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

ch
uf

fe
d

0
10

20
30

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

hc
sp

0
10

20
30

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

or
-t
oo

ls

0
10

20
30

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

gr
in

go
+w

as
p

Fi
g.

8:
So

rt
ed

ca
ct

us
pl

ot
s

205

Overall, the ASP systems GRINGO+CLASP, GRINGO+WASP, IDLV+CLASP, and
IDLV+WASP solve 22, 35, 23, and 21 problem instances; whereas the CP solvers
GECODE, CHUFFED, HCSP, and OR-TOOLS solve 19, 27, 30, and 11 problem instances
among the given 35 instances whose properties are detailed in Table 1.

References

[1] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Funda-
mentals of Business Process Management. Springer, 2 edition, 2018.

[2] Michele Lombardi and Michela Milano. Optimal methods for resource allocation
and scheduling: a cross-disciplinary survey. Constraints, 17(1):51–85, 2012.

[3] Giray Havur, Cristina Cabanillas, and Axel Polleres. Benchmarking answer set
programming systems for resource allocation in business processes. Expert Sys-
tems with Applications, 205:117599, 2022.

[4] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set pro-
gramming at a glance. Communications of the ACM, 54(12):92–103, 2011.

[5] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-
gramming. Elsevier, 2006.

[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. An-
swer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2012.

[7] Antoni Niederliński. A Quick and Gentle Guide to Constraint Logic Programming
Via ECLiPSe. Jacek Skalmierski Computer Studio, 2012.

[8] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni,
Roland Kaminski, Thomas Krennwallner, Nicola Leone, Marco Maratea,
Francesco Ricca, and Torsten Schaub. ASP-Core-2 input language format. Theory
and Practice of Logic Programming, 20(2):294–309, 2020.

[9] Kim Marriott and Peter J Stuckey. Programming with constraints: an introduction.
MIT press, 1998.

[10] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. Minizinc: Towards a standard CP modelling language. In
International Conference on Principles and Practice of Constraint Programming,
pages 529–543. Springer, 2007.

[11] Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub. Advances in
gringo series 3. In James P. Delgrande and Wolfgang Faber, editors, Proceedings
of the 11th International Conference on Logic Programming and Nonmonotonic
Reasoning LPNMR 2011, volume 6645 of Lecture Notes in Computer Science,
pages 345–351. Springer, 2011.

[12] Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari. I-DLV: the
new intelligent grounder of DLV. Intelligenza Artificiale, 11(1):5–20, 2017.

[13] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and
Torsten Schaub. Progress in clasp series 3. In Francesco Calimeri, Giovambattista
Ianni, and Miroslaw Truszczynski, editors, Proceedings of the 13th International
Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2015,
volume 9345 of Lecture Notes in Computer Science, pages 368–383. Springer,
2015.

206

[14] Mario Alviano, Francesco Calimeri, Carmine Dodaro, Davide Fuscà, Nicola
Leone, Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari.
The ASP system DLV2. In Marcello Balduccini and Tomi Janhunen, editors, Pro-
ceedings of the 14th International Conference on Logic Programming and Non-
monotonic Reasoning, LPNMR 2017, volume 10377 of Lecture Notes in Computer
Science, pages 215–221. Springer, 2017.

[15] Martin Gebser, Marco Maratea, and Francesco Ricca. The seventh answer set
programming competition: Design and results. Theory and Practice of Logic Pro-
gramming, 20(2):176–204, 2020.

[16] Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode. Software down-
load and online material at the website: http://www. gecode. org, pages 11–13,
2006.

[17] Geoffrey Chu, Peter J Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange,
and Kathryn Francis. Chuffed: A lazy clause solver, 2010.

[18] Michael Veksler and Ofer Strichman. A proof-producing csp solver. In Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010.

[19] Google. Google Optimization Tools. W3C Recommendation, March 2017.
https://developers.google.com/optimization/.

[20] Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer.
The minizinc challenge 2008–2013. AI Magazine, 35(2):55–60, 2014.

[21] Giray Havur, Cristina Cabanillas Macı́as, and Axel Polleres. Branch: an asp sys-
tems benchmark for resource allocation in business processes. In BPM 2021: Best
Dissertation Award, Doctoral Consortium, and Demonstration & Resources Track
co-located with the 19th International Conference on Business Process Manage-
ment (2021), pp. 176-180. CEUR Workshop Proceedings (CEUR-WS. org), 2021.

207

	Preface
	Research Method
	Selected Papers
	Related papers
	Acknowledgements

	Appendices
	
	
	

