
Master Thesis

Is GPT fit for KGQA?
Gerhard Georg Klager
Date of Birth: 21.10.1996
Student ID: 11801896

Subject Area: Information Business

Program Code: 066/960

Supervisor: Univ.-Prof. Dr. Axel Polleres

Date of Submission: March 12, 2024

Department of Information Systems & Operations Management, Vienna Uni-
versity of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Aus-
tria

Contents
1 Introduction 9

1.1 Research Question . 10
1.2 Research Method . 10
1.3 Preliminary Results . 10

2 Preliminaries 11

2.1 Semantic Web . 11
2.2 Knowledge Graphs . 11

2.2.1 Wikidata . 11
2.2.2 DBpedia . 13

2.3 Knowledge Graph Question Answering 15
2.3.1 Wikidata . 15
2.3.2 DBpedia . 15

2.4 Artificial Intelligence . 16
2.4.1 Symbolic vs. Sub-Symbolic AI 16
2.4.2 Neural Networks . 16
2.4.3 Transformer Models 17

2.5 Large Language Models . 17
2.5.1 GPT-3 . 17
2.5.2 GPT-3.5 . 18
2.5.3 GPT-4 . 18

3 Related Work 18

3.1 KGQA-Systems . 19
3.1.1 Components of KGQA-Systems 19
3.1.2 Established Systems and Methods 20
3.1.3 Additional Research 24

3.2 Benchmarking . 24
3.2.1 QALD . 25
3.2.2 SimpleQuestions . 25
3.2.3 LC-QuAD 2.0 . 26
3.2.4 WDAquaCore0Questions 27
3.2.5 StudentQuestions . 27
3.2.6 WebQuestions . 27
3.2.7 Additional Research 28

4 Methodology 29

4.1 Sample Benchmarks . 29
4.1.1 Sample Questions . 29

3

4.1.2 Benchmark Analysis 37
4.2 Implementation of the Experiment 40
4.3 GPT-Based Components of KGQA 43

4.3.1 Question Analysis . 43
4.3.2 Phrase Mapping . 51
4.3.3 Disambiguation . 54
4.3.4 Query Construction . 55
4.3.5 Querying Distributed Knowledge 58

5 Results 58

5.1 Question Analysis . 58
5.1.1 Phrase Variation . 59
5.1.2 Question Variation . 60
5.1.3 Question Pseudonymization 62
5.1.4 Type Detection . 63
5.1.5 POS Tagging . 65
5.1.6 Named Entity Recognition 67
5.1.7 Entity and Relationship Detection 69
5.1.8 Semantic Parsing . 70

5.2 Phrase Mapping . 72
5.2.1 Direct Phrase Mapping 72
5.2.2 Global Phrase Mapping 74

5.3 Query Construction . 78
5.3.1 Direct Construction . 78
5.3.2 URI-Fed Construction 79
5.3.3 Template-Based Construction 81
5.3.4 URI-Fed Template-Based Construction 82

5.4 Technical Performance . 83

6 Limitations 85

7 Conclusion and Further Research 86

A Is GPT fit for KGQA? â€“ Preliminary Results 95

4

List of Figures
1 Example of the Wikidata data model for “United States of

America”. 12
2 Example of the DBpedia data model for “President of the

United States”. 14

5

List of Tables
1 Sample questions of the StudentQuestions benchmark. 30
2 Sample questions of the QALD-9 benchmark. 31
3 Sample questions of the SimpleQuestions benchmark. 31
4 Sample questions of the LC-QuAD 2.0 benchmark. 32
5 Sample questions of the WDAquaCore0Questions benchmark. 33
6 Average TTR for each benchmark sample dataset using GPT-

3.5. 62
7 Average TTR for each benchmark sample dataset using GPT-4. 62
8 Number of question types classified by CBench per benchmark

sample dataset. 64
9 Number of question types classified by GPT-3.5 per bench-

mark sample dataset. 64
10 Number of question types classified by GPT-4 per benchmark

sample dataset. 65
11 GPT-3.5’s POS tagging results for the question “What is the

foundational document of the Soviet Union?”. 65
12 GPT-3.5’s POS tagging results for the question “Which is the

Wikimedia category for the category of associated people of
Oslo?”. 66

13 GPT-3.5’s POS tagging results for the question “washington
square is a story by which American writer”. 66

14 Resource identifiers generated by GPT-3.5 for the question
“What is the foundational document of the Soviet Union?”. . . 74

15 Resource identifiers and their label for the question “What is
the foundational document of the Soviet Union?” generated
by GPT-3.5. 75

16 Resource identifiers and their label for the question “who is the
record label and genre of The_Velvet_Underground?” gener-
ated by GPT-3.5. 75

17 Resource identifiers generated by GPT-4 for the question “What
is the foundational document of the Soviet Union?”. 77

18 GPT-3.5’s results of direct query construction by category. . . 78
19 GPT-4’s results of direct query construction by category. . . . 79
20 GPT-3.5’s results of URI fed query construction by category. . 80
21 GPT-4’s results of URI fed query construction by category. . . 80
22 GPT-3.5’s results of template-based query construction by

category. 81
23 GPT-4’s results of template-based query construction by cat-

egory. 82

6

24 GPT-3.5’s results of URI-fed template-based query construc-
tion by category. 83

25 GPT-4’s results of URI-fed template-based query construction
by category. 83

26 Average execution time per question for each task in the KGQA-
process (in seconds). 84

7

Abstract

While research covering large language models such as OpenAI’s
GPT-models is on a sharp rise, their usage in Knowledge Graph Ques-
tion Answering has barely been addressed. In this study, we there-
fore assess both GPT-3.5 and GPT-4’s performance in some of the
most commonly found tasks in KGQA. We find that both models show
promising capabilities in classic NLP-tasks, and that GPT-4 is even
capable of generating functioning SPARQL-queries based on a given
natural language question. However, both models struggle with issues
related to their reliability, in particular following given instructions and
their API’s stability. Additionally, we analyze sample sets of popular
KGQA-benchmarks and find that no particular question type provides
a harder challenge for the LLMs. Instead, we uncover problems lying
within these benchmarks.

8

1 Introduction
The purpose of a Knowledge Graph Question Answering (KGQA)-system is
to allow end-users to retrieve information stored in a KG by means of natural
language questions, without being familiar with the KG’s structure or the
query language used to access said KG.

In order to achieve this goal, often some kind of translation of natural
language questions into a query is taking place [16]. Many different KGQA
approaches exist, ranging from template-based approaches [15] to approaches
based on unsupervised message passing [60] or approaches using methods of
machine learning [33]. The capabilities of KGQA-systems range from an-
swering simple questions [13] to complex questions [67] as well as engage in
single- and multi-turn (or conversational) question answering [69]. Addition-
ally, some of these approaches even try to enable QA independent of a fixed
KG or language [16].

To train and evaluate these models, numerous benchmarks have been
created, enabling a direct comparison between existing and new QA-systems
[43].

At the same time, with the recent success of OpenAI’s ChatGPT[36] and
its many competitors [23], we see many applications of such large language
models (LLMs), not only restricted to question answering alone, but also in
producing more or less useful code in programming and query languages.

With these rapid developments, uncertainty regarding the reliability and
performance of these models [22, 29], as well as their future as a whole [3] is
as relevant as their potential fields of application.

Facing these developments, we may ask ourselves both (a) if such LLMs
can act as serious contenders to bespoke KGQA systems, and (b) whether
LLMs could be used as a supportive technology for query formulation in the
context of KGQA. However, literature covering this subject is still scarce
and end-to-end QA-systems using LLMs such as ChatGPT in a synergistic
combination with KGQA have not yet been proposed in abundance.

The aim of this thesis is therefore to fill this gap by exploring the pos-
sibilities of using LLMs such as ChatGPT in the task of KGQA and to
challenge the status quo of existing benchmarks aimed at training and eval-
uating KGQA-systems.

9

1.1 Research Question
To fill the gap in the existing literature, wrt. LLMs in the context of KGQA
this study aims at answering the following research questions:

1. How could LLMs be used to execute the KGQA-task.

2. Which components used in KGQA-systems could be enhanced using
LLMs?

3. What types of questions are found in existing benchmarks for KGQA
approaches, and in how far can these be used in benchmarking LLM-
based QA-approaches?

1.2 Research Method
In order to answer these research question, we conducted a comprehensive
literature review covering established KGQA-systems and their components,
popular benchmarks used to evaluate these systems, as well as related work
wrt. LLMs.

Following that, we conducted an experiment consisting of selecting a set of
sample questions from some of the most popular benchmarks and evaluating
these questions before establishing methods to use LLMs to execute some of
the most commonly occurring tasks found in KGQA-systems.

Next, we use these methods to test the LLMs on the sample questions
and analyze the results as well as the models’ overall performances.

Last, we summarize the results and offer insights to further areas of re-
search fit to extend the current state of the art of the usage of LLMs in the
KGQA-process.

1.3 Preliminary Results
Note that preliminary results of this thesis have already been published in
the Joint Proceedings of the Second International Workshop on Knowledge
Graph Generation From Text and the First International BiKE Challenge
co-located with 20th Extended Semantic Conference (ESWC 2023) [31].

In this preliminary study, we compared both GPT-3.5’s and GPT-4’s ca-
pability of answering questions of some of the most popular KGQA-benchmarks
and a short dataset containing questions that, at the time, could not be
answered correctly by the LLMs, as well as their capability of generating
SPARQL-queries aimed at answering these questions over Wikidata.

10

The full paper can be found in the appendix A.

2 Preliminaries
This section is dedicated to provide an overview of the fundamental con-
cepts that this study is based upon and therefore should be understood to
comprehend the contents of this thesis.

2.1 Semantic Web
The Semantic Web or Web 3.0 has been an ongoing area of research for many
years and in essence describes a machine-readable version of the World Wide
Web [10]. Research on the topic of the Semantic Web covers aspects such as
the transformation of existing documents into semantic web services [40], as
well as many different languages and technologies related to it, such as the
extensible mark-up language (XML), the Resource Description Framework
(RDF) and the Web Ontology Language (OWL) [6]. Together with these
languages and technologies, open knowledge bases or Knowledge Graphs such
as Wikidata, storing highly interlinked data, received their spotlight in recent
literature [21].

2.2 Knowledge Graphs
Knowledge Graphs (KGs) are knowledge bases using a graph-structured data
model or ontology (i.e., a collection of interlinked descriptions of concepts,
entities and their relations) to put this data into context by linking it and
providing semantic metadata [42].

In this study we follow the definition used by Vakulenko et al. [60] in
which a KG K defines a tuple hE,G, P i consisting of a set of entities E, as
set of properties P and a set of labeled edges G. Both E and P are repre-
sented by uniform resource identifiers (URIs) connecting edges and properties
(hei, p, eji 2 G, with e 2 E and p 2 P).

2.2.1 Wikidata

Assembled from repositories in various fields, Wikidata is a community-
maintained knowledge graph, adhering to the FAIR principles (findability,
accessibility, interoperability and reusability) [62].

In Wikidata, any object or thing that can be considered, discussed, or ob-
served is represented by so-called entities [47], which match to the Resource

11

Description Framework (RDF) schema [41]. Each entity (or statement) in
Wikidata therefore represent a triple containing a subject called item, a pred-
icate called property, and an object called value. These items and properties
are identified using a Uniform Resource Identifier (URI) making them distin-
guishable from all other items and properties. A value can either be another
item or a value of a certain datatype, such as a number.

In Figure 1 we visualize an example of this data model based on the
first question in the StudentQuestions benchmark dataset used in this study
“Who is the current president of the united states?”.

Figure 1: Example of the Wikidata data model for “United States of Amer-
ica”.

12

Here, items and values are represented as vertices while the properties
linking such items and values are represented as undirected edges between
them.

The item “United States of America” (Q30) is connected to certain values
over various properties. Over the property “is instance” (P31) the United
States is not only an instance of the items “sovereign state” (Q3624078) and
“constitutional republic” (Q1520223) but of many other items as well (...).
On the other hand, the item “United States of America” is related to “Joe
Biden” (Q6279) over the property “head of state” (P1906). Hence, Joe Biden
is the head of state (i.e., president) of the United States of America. The
property “population” (P1082) connects the item “United States of America”
to the non-item value “3,929,214” (n). This number presents a “numerical”
and has, in contrast to items, no URI to distinguish it.

2.2.2 DBpedia

DBpedia is another knowledge graph representing a crowdsourced community
effort [1]. However, DBpedia consists of structured information extracted
from Wikipedia.

Similarly to Wikidata, data on DBpedia can be represented and queried
using RDF model. All entities in DBpedia are considered resources while
properties can be categorized in ontology properties, which are part of the
DBpedia ontology and non-ontological properties, which represent informa-
tion found on Wikipedia and are used to represent factual data.

One of the main differences between DBpedia and Wikidata lies within
their URIs. While Wikipedia’s URIs consist of a letter followed by a number
(Q for items and P for properties), DBpedia’s URIs take the form of a URL,
such ones commonly used for websites of various kinds. Since these URIs are
not limited to numeric identifiers, they often contain information directly
linked to the entity they represent. A similar example to the one shown for
Wikidata in figure 1 is shown in figure 2.

13

Figure 2: Example of the DBpedia data model for “President of the United
States”.

Here, the entity “Joe Biden” (dbr:Joe_Biden) is linked to the entity “Pres-
ident of the United States” (dbr:President_of_the_United_States) via the
property “is incumbent of” (dbp:incumbent). The resources “Beau Biden”
(dbr:Beau_Biden), “Hunter Biden” (dbr:Hunter_Biden), and “Ashley Biden”
(dbr:Ashley_Biden) on the other hand are linked to “Joe Biden” over the
property “is child of” (dbp:child).

Although simple, this example showcases DBpedia’s intuitive naming con-
vention wrt. its URIs.

14

2.3 Knowledge Graph Question Answering
“Knowledge Graph Question Answering” (KGQA) refers to the task of using
the information stored in a KG to answer questions in natural language.

To query data from either Wikipedia or DBpedia the SPARQL-query
language can be used. SPARQL is a query-language used to express queries
for data stored (or viewed) as RDF [48].

2.3.1 Wikidata

For Wikidata, a query answering the question “Who is the current president
of the United States?” could be constructing as shown in Listing 1.

SELECT ?P
WHERE {

wd:Q1467287 wdt:P1308 ?P
}

Listing 1: Example query for Wikidata.

In this query, P represents the resource we want to identify, holding the value
of property P1308 (officeholder) for the item Q1467287 (President-elect of
the United States).

Note that items should be prefixed with wd: while properties should be
prefixed with wdt: when querying Wikidata using SPARQL. However, only
fixed values should be prefixed, hence the item we are searching for (P) does
not receive a prefix.

2.3.2 DBpedia

Similarly to the Wikidata example, a possible answer to the question “Who
is the current president of the united states?” could be retrieved using the
query shown in listing 2.

SELECT DISTINCT ?P
WHERE {

dbr:President_of_the_United_States dbp:incumbent ?P.
}

Listing 2: Example query for DBpedia.

Again, we want to determine the resource or in this case the president (?P)
having the property “is incumbent of” (dbp:incumbent) for the resource “Pres-
ident of the United States” (“dbr:President_of_the_United_States”).

15

2.4 Artificial Intelligence
Aimed at enabling computers to function in a way similar to the human
brain and to be able to do the same things human minds can do [7], artificial
intelligence (AI) covers a variety of fields, concepts and models.

2.4.1 Symbolic vs. Sub-Symbolic AI

AI is usually categorized in two different branches, namely symbolic and
sub-symbolic AI [26].

Symbolic AI represents methods that produce logical conclusions and
is also known as rule-based or knowledge-based AI. It relies on symbols
(e.g., words, mathematical expressions) representing knowledge and rules
set through human intervention to manipulate these symbols (e.g., encoded
expert knowledge). Due to this rule-based nature, symbolic methods can be
ineffective when used with noisy or large datasets.

Sub-symbolic, connectionist or neural network-based AI on the other
hand aim at mimicking the human brain via a network of interconnected
neurons. Relying on statistical learning methods and genetic algorithms,
sub-symbolic methods are capable of learning and adapting based on new
data. For this reason, sub-symbolic methods outshine its symbolic counter-
parts in dealing with large and noisy datasets where patterns and relation-
ships cannot easily be defined via rules, such as image recognition or natural
language processing.

Both symbolic and sub-symbolic methods find their usage ind knowledge
graph tasks where symbolic methods can be used for tasks such as schema
representation and triple classification while sub-symbolic methods are found
to be used in predicting missing links in a knowledge graph or identifying
the same entities across different knowledge graphs.

2.4.2 Neural Networks

Belonging to the branch of sub-symbolic AI and being inspired by the human
brain, neural networks (NNs) describe computational models are made up
of layers of interconnected nodes (artificial neurons) [32]. To process data, a
so-called input layer matches each element in the input data (e.g., a number,
a word in a text, a pixel in an image) to a specific neuron. Between this
input layer and the output layer, a series of hidden layers is placed in which
each neuron in each layer is connected by a weighted connection to each
neuron in the previous, as well as the next layer. Via a so-called activation
function, each neuron determines its output based on the sum of inputs it
receives. Based on their shape (e.g., sigmoid, semi linear, rectified linear unit,

16

etc.), these activation functions allow for non-linearity in the model. In a step
called forward propagation, the input data is being processed by being passed
through the input layer and the hidden layers before reaching the output
layer. The model is then being trained by comparing the output to a target
output. Based on the difference computed by the loss function, between the
real output and the target output (the so-called loss), the weights within
the network are being updated in a way that minimizes this loss (backward
propagation). After updating the weights, the input data is fed through the
model and the loss is computed once again. This process will be repeated
until the model is deemed accurate enough. To use the model on new data,
the last set of weights will be used, and the input will be sent through the
model only once.

2.4.3 Transformer Models

Transforming a sequence of inputs into a sequence of outputs (also called
sequence transduction) is the core of many machine learning tasks, such as
speech recognition, machine translation and text-to-speech [25].

To solve these tasks, so-called transformer models (or transformers) have
been developed. A transformer represents a type of neural network archi-
tecture based entirely on attention mechanisms [61]. Resulting not only in
higher quality results than traditional neural sequence transduction models,
but also requiring less time to train and being more parallelizable, transform-
ers make use of the possibility to draw global dependencies between input
and output, yet not relying on recurrence and convolutions.

2.5 Large Language Models
Large Language Models (LLMs) are AI models capable of processing and gen-
erating human-like language [11]. LLMs are usually trained on large amounts
of text data and make use of transformer models in order to learn patterns
and relationships between words and phrases in a text.

In this section, we provide an overview of how LLMs function and the
LLMs used in this study, as well as other literature surrounding them relevant
to this study.

2.5.1 GPT-3

With over 175 billion parameters, GPT-3 was one of the largest autoregres-
sive language models of its time [9]. Able to generate human-like text and

17

completing a variety of tasks including translation, question-answering and
performing on-the-fly reasoning or domain adaptation, the model performs
well on many NLP datasets. The model was pre-trained on a large corpus of
text data and, using a self-supervised learning approach, it learns to predict
the next word in sequence based on the previous words.

2.5.2 GPT-3.5

OpenAI’s GPT-3.5 model series is an upgrade to the GPT-3 based models
and is based on the code-davinci-002 model released for code generation tasks
[68]. The GPT-3.5 series models were trained by the usage of supervised fine-
tuning and the Illustrating Reinforcement Learning from Human Feedback
(RLHF) training strategy.

Note that an initial comparison of GPT-3 and GPT-3.5 for KGQA has
already been done in our previous work [31].

2.5.3 GPT-4

Released in March 2023, OpenAI’s GPT-4 provided a significantly further
developed alternative to the GPT-3.5 based models. The model is able to
outperform humans on various tasks and was able to be among the best 10%
of test takers for a simulated bar exam. Besides improving GPT-3.5’s perfor-
mance, wrt. general knowledge and its reasoning capabilities the developers
also directed their resources at improving the model wrt. its adherence to de-
sired behavior and various safety concerns, such as the generation of harmful
content.

Additionally, GPT-4 can not only generate code but test it as well and
therefore exceeding the capabilities of classic transformer models.

While not implemented at the time of writing, GPT-4 has furthermore
been designed to accept not only textual input but also images in the future
[2].

3 Related Work
With the growing attention given to KGQA in recent years, one can also
observe a large growth of literature covering KGQA-systems and in terms of
different methods and benchmarks to evaluate these systems. This section
is dedicated to providing an overview of this literature and laying out the
foundation for our planned research.

18

3.1 KGQA-Systems
To answer natural language questions using linked data stored on KGs a
variety of different approaches and KGQA-systems have been created and
covered in academic literature. This section aims at providing an overview
of some of the existing KGQA-systems, their components, as well as other
studies evaluating them and discussing some of their characteristics.

3.1.1 Components of KGQA-Systems

To solve the multitude of challenges related to KGQA, KGQA-systems usu-
ally combine various techniques ranging from natural language processing,
information retrieval and machine learning to Semantic Web, Diefenbach et
al. conducted a survey covering numerous KGQA-systems aimed at describ-
ing the techniques commonly used in the KGQA-process [17].

The KGQA-systems used in their study were evaluated over the popular
QALD benchmark series, as well as the WebQuestions and the SimpleQues-
tions benchmarks. The authors grouped the various techniques used in these
systems into the five categories “Question Analysis”, “Phrase Mapping”, “Dis-
ambiguation”, “Query Construction” and “Querying Distributed Knowledge”.

Question Analysis

During the “Question Analysis” phase, syntactic features of the natural lan-
guage question are used to extract information about the question, such as
determining the question type, identifying named entities, and identifying
entities, relations and their dependencies. Common techniques used in this
category are techniques to recognize named entities, such as entity recogni-
tion and entity linking approaches, and N-gram strategies, segmenting the
question using part-of-speech (POS) tagging approaches using handmade or
learning rules and parsing techniques based either on the phrase structure
grammars or dependency grammars to identify dependencies.

Phrase Mapping

The task of “Phrase Mapping” deals with finding resources that have a high
likelihood of corresponding to a given phrase or word in the natural lan-
guage question. Techniques of “Phrase Mapping” use Knowledge Base la-
bels, dealing with misspelling using string similarities such as measurements
of the distance between a phrase and the labels of resources in the KG, and
measures to deal with semantic similarities, such as using databases with
lexicalizations and redirects.

19

Disambiguation

The “Disambiguation” deals with ambiguous segmentations and dependencies
resulting from the question analysis step and with multiple possible resources
for a single phrase returned by the “Phrase Mapping” step. Techniques in
this step range from local disambiguation and graph search techniques using
the structure of the KG to hidden Markov models, integer linear programs
and even the incorporation of user feedback.

Query Construction

“Query Construction” is the task of constructing the corresponding query
to a given natural language question. During this task the problem of the
“semantic gap” arises which refers to the fact that the KG might encode an
information differently than one could deduce from the question making it
in theory impossible to deduce a SPARQL queries using only the natural
language question. The techniques used in this step range from filling in
SPARQL templates to using information gained from the previous steps such
as the results of the “Phrase Mapping” phase, semantic parsing approaches to
machine learning approaches and even approaches that do not use SPARQL.

Querying Distributed Knowledge

Last, “Querying Distributed Knowledge” covers the aspect of using multiple
KGs to answer a single question instead of one. The approaches related to
this setting either assume the KGs to be either disjoint graphs or interlinked,
meaning that the resources on the different KGs representing the same entity
are linked.

3.1.2 Established Systems and Methods

Diefenbach et al. proposed a QA-system capable of querying multiple KGs
independent of the natural language used [16]. Their approach has been
evaluated on five well-known KGs and five different languages using three
different benchmarks. This proposed QA-system first performs entity recog-
nition in terms of searching corresponding international resource identifiers
(URIs) whose lexicalization forms an N-gram (i.e., consecutive elements in a
text) in the asked natural language question. After removing stop words from
the set of URIs, queries that could represent possible interpretations of the
question are constructed before being ranked based on multiple aspects, such
as the number of words matching the words in the original question. Next, a
logistic regression based on labeled SPARQL-queries will be trained to com-
pute a confidence score for each query. Last, the highest ranked query above

20

a certain threshold will be used to answer the question. If no query with
confidence above this threshold is found, the whole question will be deemed
unanswerable. During their study, the authors discovered performance dif-
ferences in their approach wrt. different (natural) languages used, and link
these differences to the quality of the available data for each language.

Vakulenko et al. took a different approach based on the usage of unsuper-
vised message passing [60]. Their approach, named QAmp, consists of two
phases: in the first phase called question interpretation, the relevant sets of
entities and predicates necessary for answering the input question are again
being identified, and their confidence scores are being computed. In the sec-
ond phase, the so-called answer inference phase, these confidence scores a
propagated and aggregated over the underlying KG’s structure, providing a
confidence distribution over a set of possible answers which is then be used to
locate the corresponding answer entities, rather than translating the query
to SPARQL.

Yani et al. propose a method to detect entities and their position on
triples that have been mentioned in a complex question [67]. Their approach
is capable of not only detecting the entity name, but also of determining in
which triple the entity is located and if the given entity is a head or tail of
the triple. In their approach, Yani et al. split a natural language into tokens
and detect the position of triples in the question before finding the head and
tail positions in the underlying KG. This process is split into two phases.

In the position-based pattern set construction, a question-answer pair is
used as an input to obtain the triple set in the KG expressing the answer to
the question. Afterward, a position-based pattern set will be constructed for
the question.

During the classification of the input question, words are being grouped
into synonyms following a Wordnet-based approach. These synonyms are
then being explored to find verbs and nouns before generating synonym
questions. Last, using a multi-class classifier with an underlying transformer
model the position-based patterns of the question are being predicted.

Another QA-system proposed by Liang et al. is based on the idea of
splitting the process of translating natural language questions into SPARQL-
queries into five sub-tasks [33]. First, a random forest model is trained to
identify a question’s type. Next, various entity recognition and property
mapping tools are used to map the question’s phrases before all possible
triple patterns are created based on these mapped resources. Afterward,
possible SPARQL are generated by combining these triple patterns into a

21

based on the question’s type, before a Tree-LSTM based ranking model is
used to select the most plausible SPARQL query representing the correct
intention behind the natural language question. Possible SPARQL queries
are then constructed by combining these triple patterns in the query genera-
tion step. In order to select the correct SPARQL query among a number of
candidate queries for each question, a ranking model based on Tree-LSTM is
used in the query ranking step. The ranking model takes into account both
the syntactical structure of the question and the tree representation of the
candidate queries to select the most plausible SPARQL query representing
the correct intention for the respective question.

The pipeline framework for KGQA proposed by Cui et al. focuses on
single-relation questions (questions that can be answered through a single
fact in the KG) and is divided into three components [13].

The entity detection model is tasked with labeling the mentioned entities
in the question. This is done by viewing the question as a sequence of tokens
and assigning a label by using a combination of a bi gated recurrent units
(BiGRU) network, as well as a conditional random field (CRF) network.

To generate candidate entities for each token, the entity linking model,
based on Mohammed et al. [38], uses a pre-build inverted index mapping all
N-grams of an entity to its name before extracting all N-grams from the entity
mention and generating an entity candidate set via matches in the inverted
index. Last, these entity candidates are then ranked via their Levenshtein
distance.

Finally, an attention-based model consisting of a relation encoder, a ques-
tion pattern encoder and a similarity measure is used to measure the semantic
similarities between the question and its corresponding relation candidates.

Due to the linguistic differences between the Korean language and other
languages, Jung and Kim proposed a method to translate Korean natural lan-
guage queries into SPARQL queries, in order to extend the field of ontology-
based QA wrt. the Korean language [30]. In their approach, the input
natural language query is first being split into tokens before mapping each
token to certain resources in the ontology. Afterward, multiple query graphs
are generated from these mappings by arranging resources and identifying
the relationships between them using a path search algorithm based on the
domain ontology schema’s structure. Finally, these query graphs are scored
based on how accurately they reflect the user’s intent, and the query graph
with the highest ranking is being converted into a SPARQL-query.

Shin et al. noticed that QA systems suffer notably from the divergence of

22

the unstructured data composing natural language questions and the struc-
tured data composing a KG [54]. Existing approaches to deal with this
issue use lexicons in order to cover differently represented data. Since these
lexicons only consider representations for entity and relation mentions, the
authors propose a new predicate constraint lexicon restricting subject and
object types for a predicate. This so-called Predicate Constraints based
Question Answering (PCQA) lexicon does not make use of any templates.
Rather, the authors generated query graphs focusing on matching relations
in order to cover diverse types of questions.

A more complex task in the field of KGQA is multi-hop KGQA, which
requires reasoning over the multi-hop relational chain within the underly-
ing KG in order to answer the natural language question [28]. Multi-hop
questions in this context define natural language questions involving more
than one predicate between their topic entity and their answers. The pro-
posed Relational Chain based Embedded KGQA (Rce-KGQA) model makes
simultaneous use of both the explicit relational chain observed in a natural
language question, and the implicit relational chain within the underlying
KG.

In the so-called Answer Filtering Module, filters a set of possible answers
(entities) from the KG via the methods of graph embedding, semantic pars-
ing, as well as answer scoring.

The Relational Chain Reasoning Module on the other hand is dedicated
to improving the reasoning accuracy by consideration of the reasoning chain
order and its relational type.

To counteract inefficiencies rooted in relying on question understanding
and conventional graph-based algorithms, Wang et al. proposed a framework
to construct queries via Knowledge Graph Embedding [63].

In their approach, the underlying KG is first being encoded into a low-
dimensional embedding space using generalized local KGs.

This embedding representations are then used to compute the query struc-
ture and assemble vertices and edges into the query (i.e., generate the query).

(AQQUCN) is a QA system combining the usage of KGs and corpus evi-
dence [53]. Instead of relying on one semantic interpretation of the query, the
system aggregates signals from both KGs and large corpora to rank entities
within the KG. For this, the question’s ideal interpretation is modeled as a
latent variable and its interpretations and candidate entities are being scored
as pairs.

23

3.1.3 Additional Research

Conversational Question Answering (CQA) is a process in which the CQA-
system must be able to understand questions asked in the context of the
previously asked questions [69]. Zaib et al. conducted a survey in their effort
to provide a comprehensive review of the state-of-the-art research trends in
the field of CQA.

Covering over 80 conference and journal papers, the authors acknowl-
edged a trend from single-turn to multi-turn QA and categorize CQA-systems
based on the data domain, the types of questions answered, the data sources
and the types of systems built for the question at had.

The authors deem CQA-systems to be potentially used in different types
of QA such as open-domain or closed-domain QA (e.g., in the medical field),
as well as in various commercial areas.

While simple questions can be answered with a subject-predicate-object
triple, complex questions require more information and the usage of more
advanced query operations to be answered. In their study, Gomes et al.
aim at providing an overview of the methods used to answer such complex
questions over knowledge bases [24].

The authors divide complex questions into multi-hop and constraint ques-
tions. While multi-hop questions require the combination of information from
multiple facts in the KG to be answered, additional constraints beyond the
original questions must be considered by the QA-system to answer constraint
questions.

Additionally, they find that most approaches are either based on neural
networks or semantic parsing. Additional, so-called neural network-based
semantic parsing, which presents a combination of the two methods, estab-
lished itself as the state of the art.

3.2 Benchmarking
In order to evaluate KGQA-systems such as the ones mentioned in section
3.1.2 numerous benchmarks have been created. This section aims to provide
an overview of and describe the benchmarks used in this study, as well as
of some of the most popular and important benchmarks used in research
relating to KGQA. We furthermore discuss the properties of each of the used
benchmarks and point out noteworthy observations.

Additionally, we cover existing research focusing on comparing, evaluating
and constructing benchmark datasets for KGQA.

24

3.2.1 QALD

The probably most widely used family of datasets for Question Answering
is represented by the Question Answering over Linked Data (QALD) cam-
paign. This series of challenges aims at providing multilingual benchmarks
for all QA-systems designed for using natural language requests of a user to
retrieve information stored as structured data, such as the RDF data for-
mat. Additionally, the challenge aims at comparing current state-of-the-art
QA-systems wrt. their individual strengths and shortcomings. In order to
participate in the current QALD challenge, users can simply run their QA-
system using the current challenge’s dataset before storing their results in an
XML-file and upload it to the challenge’s website [34].

At the time of writing, the QALD challenge is currently taking place in
its 10th iteration, which laid its focus on Wikidata. The reason for this lies
within the ongoing shift from the popular Knowledge Graphs Freebase and
DBpedia to Wikidata occurring in research. This shift is rooted in Freebase
being defunct, since it was shut down by Google, and DBpedia lacking the
structural validity of Wikidata. The new dataset therefore adapted the exist-
ing corpus, which was based on DBpedia by increasing its size and adjusting
it to Wikidata’s ranking mechanism of properties [50].

While the 10th iteration of the QALD challenge with its focus Question
Answering over Wikidata might be able to provide valuable insights for our
study when used, we decided to use the 9th iteration of the challenge instead
[59]. The reason for this is twofold. First, we did not experience a lack
of benchmarks to assess the effectiveness of the GPT models on Wikidata.
Second, since the QALD-9 challenge is already completed at the time of writ-
ing it not only provides a complete set of questions and their corresponding
sample solutions, but potential faults within the dataset might have already
been discovered at this point.

The QALD-9 dataset contains not only its questions in multiple languages
but also provides their corresponding keywords, answer types, sample solu-
tion queries, as well as other information related to them.

3.2.2 SimpleQuestions

SimpleQuestions is a dataset containing 100k questions aimed at training and
evaluating QA-systems wrt. solving the simple question answering problem,
which consists of answering questions that can be rephrased as (single triple)
queries that ask for all objects linked to a question’s given subject by the
subject’s given relationship. In this context, simple QA is a term used to
refer to the simplicity of the reasoning process necessary to answer questions

25

[8].
While SimpleQuestions was originally designed to be used over Freebase,

Diefenbach et al. have adapted the original SimpleQuestions dataset in order
for it to be usable over Wikidata [19].

While the benchmark is close to being solved and some of its questions
clearly have more than one correct interpretation, it remains one of the most
popular datasets used [45].

Besides a variety of questions, the dataset also includes the corresponding
triple consisting of a subject, a predicate and an object for each question,
where the object represents the answer to the given question.

3.2.3 LC-QuAD 2.0

As an alternative to simple questions, the Large-Scale Complex Question
Answering Dataset 2.0 [20] (LC-QuAD 2.0) is an extension to the original
LC-QuAD dataset [57] containing 30k complex questions as well as their cor-
responding paraphrased versions and SPARQL queries. The dataset is both
compatible with Wikidata and DBpedia (2018) containing 21,258 unique en-
tities and 1,310 unique relations. The dataset was created by generating a
number of SPARQL queries before verbalizing them into natural language
questions using the Amazon Mechanical Turk. Afterward, these questions
have been paraphrased to create additional natural language questions. The
questions in the LC-QuAD 2.0 benchmark dataset are categorized into ten
different question types. “Single fact” questions can be answered using queries
over a single fact (subject-predicate-object) which could return either a sub-
ject or an object. “Single fact with type” questions include constraints in
a single triple query. “Multi-fact” questions can be answered using queries
over two connected facts in Wikidata. “Fact with qualifiers” questions use
additional properties for facts stored in the KG to make more informative
questions. “Two intention” questions represent questions posing two inten-
tions, while “boolean” questions can be answered using only “true” and “false”
statements. Additionally, “count” queries perform a count over how often the
predicate is used with an entity or an object using the “COUNT” keyword in
SPARQL. “Ranking” questions ask for entities with either a maximum or a
minimum value of a given property. “String Operation” questions ask about
entities at word level or at character level. Last, “temporal aspect” questions
cover temporal properties in both the question space, and the answer space.

26

3.2.4 WDAquaCore0Questions

Another approach of creating a benchmark for KGQA has been used for the
WDAquaCore0Questions dataset. This dataset consists of questions that
have been asked by users of the demo of the WDAquaCore0 QA-system [18]
and corresponding sample solution queries that have been collected using the
feedback function [14]. While the original QA-system was able to be used
for both DBpedia and Wikidata [18] most of the provided SPARQL-queries
for questions in the benchmark are written to work on Wikidata.

3.2.5 StudentQuestions

In light of recent developments, and with social media being full of examples,
there is — to the best of our knowledge — not yet a dedicated QA dataset
originally tailored to LLMs and GPT specifically. In order to fill this gap,
we asked students of the Digital Economy masters’ program at the Vienna
University of Economics and Business to generate a set of natural language
questions aimed at asking ChatGPT to formulate queries GPT-3 would fail
upon but suspected to be possible to answer with the information in publicly
available KGs such as Wikidata. As a hint, we emphasized that we suspect
LLMs to struggle with recent events’ information beyond the training phase
of the LLM, as well as complex questions that require non-obvious conceptual
understanding and reasoning. The students’ task was to further formulate
the corresponding SPARQL queries and – in the light of recent advances of
LLMs for code and query generation – attempt to write prompts that would
lead ChatGPT to be able to create such queries.

This experiment resulted in a dataset containing 13 questions, as well as
their corresponding sample solution SPARQL queries for Wikidata. Addi-
tionally, we added the question “Who is the current president of the united
states?” to the dataset in order to provide a question following a simple
structure, for which we assume that Large Language Models should be able
to generate a functioning SPARQL query for.

3.2.6 WebQuestions

Berant et al. [5] created a new QA dataset named WebQuestions. The
WebQuestions dataset acts as an extension to the FREE917 dataset (based
on Freebase) aimed at evaluating QA-systems. The authors created this
dataset due to the FREE917 dataset [29] requiring logical forms, making
it inherently more difficult to scale it up due to the requirement of having
expertise in annotating logical forms. Using the Google Suggest API, the
authors obtained questions beginning with a wh-word (where, who, when,

27

etc.) and containing exactly one entity. For each question, five candidate
queries have been created. After collecting 1M questions in this process, 100k
randomly selected questions have been submitted to Amazon Mechanical
Turk where workers answered questions, detecting duplicates and filtering
out questions that could not be answered. The remaining dataset contained
5,810 questions.

3.2.7 Additional Research

Jiang and Usbeck analyzed 25 KGQA benchmark datasets, wrt. five differ-
ent KGs namely DBpedia, EventKG, Freebase, Wikidata, and WikiMovies.
Their study showed that many available KGQA datasets are unfit to train
KGQA-systems due to their underlying assumptions or because these datasets
are outdated and based on discontinued KGs, such as Freebase. Additionally,
the authors share light on the difficulties and high costs related to the gen-
eration of new datasets for benchmarking KGQA-systems. Therefore, they
propose an automated method to re-split existing datasets and enabling their
generalization, as well as a method to analyze existing KGQA datasets with
regard to their generalizability [27].

While many different benchmarks aimed at evaluating QA-systems for
different KGs exist the question of which benchmark one should use can be
a difficult one to answer. To answer this question Orogat, Liu, and El-Roby
proposed CBench, a suite that enables users to analyze either the 17 bench-
marks already included in CBench or any benchmark added by the user with
regard to linguistic, syntactic, and structural properties of the datasets’ ques-
tions [43].
The analysis of natural language questions covers for example the determi-
nation of the questions’ types. These types consist of “wh”-questions which
represent questions starting with a “wh”-pronoun (i.e., What, When, Where,
Who, Whom, Which, and Whose), “how”-questions marking questions start-
ing with the keyword “how”, “yes/no” questions that can be answered with
“yes” or “no”, “request” which represent rephrased “what”-questions but are
usually handled differently in QA-systems, and “topicalized” questions, top-
icalizing entity or prepositional phrases for the purpose of emphasis.

The analysis of structured queries on the other hand analyzes for example
the frequency of the operators used in queries, the percentage of keyword
occurrences in the queries of a given benchmark, as well as an analysis of the
structural shape of the queries.

Additionally, CBench can be used in order to evaluate a KGQA-system
over a given benchmark dataset.

28

Last, the authors provide an overview of different creation methods for
benchmarks, ranging from manual creation based on heuristics to bench-
marks created automatically from the KG in question.

In this study, we use CBench to analyze both the questions in our selected
benchmark datasets, and their corresponding sample solution queries.

4 Methodology
In order to determine the GPT-models’ fitness for KGQA we first determined
individual components or tasks commonly occurring in KGQA. Next, we
drew a random sample of each benchmark dataset before developing methods
to let the previously defined tasks be executed by the GPT-models before an-
alyzing the obtained results and comparing them to the benchmark datasets’
sample solutions. Similarly to the previously done assessment of the GPT
models’ performances, wrt. the task of KGQA as whole [31] the R program-
ming language [49] has been used to generate the results of the assessment of
GPT models’ performances, wrt. the different components found in common
KGQA-systems. Last, we conclude in which areas the GPT models returned
promising results, where the models showed to be strongly limited, and how
these limitations could be overcome in further research.

4.1 Sample Benchmarks
To evaluate the LLMs’ performance on the KGQA tasks, we analyzed the
benchmarks mentioned in section 3.2 and randomly drew a set of sample
questions for each one of them.

4.1.1 Sample Questions

To evaluate the performance of the tested GPT models, we selected a mul-
titude of benchmark datasets out of the ones mentioned in section 3.2 and
limited each one to a maximum 15 random questions. The datasets have
been selected based on both their popularity, and their availability. Limiting
the number of questions per benchmark dataset was done for the following
reason: Since the assessment of the GPT models’ performances, wrt. each
task in a typical KGQA-process is a manual and qualitative task itself, the
number of questions and therefore the number of results had to be chosen
in a way that ensures that the resulting findings remain meaningful and
generalizable while being small enough to obtain these findings during a rea-
sonable time frame. Listing 3 shows the R-code used to sample the questions

29

where jData is the original benchmark dataset, n is the number of questions
wanted, and 47 is a random number selected by ChatGPT used as seed to
keep the results reproducible.

Limiting to n random questions ----
n <- 15
set.seed (47)
jData <- jData [[2]]
jData <- jData[sample (1: length(jData), n)]

Listing 3: R-code used to sample benchmark questions.

The selected questions for each of the benchmark datasets used in this study
are shown in tables 1 to 5.

Table 1: Sample questions of the StudentQuestions benchmark.
Question

1 Who is the current president of the united states?
2 Who won the football worldcup 2022?
3 Give me all Austrian female actors that are aged over 50.
4 Give me all Austrian female actors aged over 50 years that are also

dancers or singers.
5 When did the famous Brazilian football player Pelá
6 For which team does Lionel Messi play?
7 What is the most recent MineCraft Java Edition version?
8 How many people do live on earth?
9 What was the average temperature in Vienna in 2022?
10 Who is the fastest person in the world?
11 What is the oldest painting in the world?
12 Where does the handball world cup take place this year (2023)?
13 Who is CEO of Twitter?
14 Which team won the ’Serie A’ championship last season?

30

Table 2: Sample questions of the QALD-9 benchmark.
Question

1 Who is the daughter of Ingrid Bergman married to?
2 How often did Jane Fonda marry?
3 Give me a list of all lakes in Denmark.
4 Who are the developers of DBpedia?
5 Who composed the soundtrack for Cameron’s Titanic?
6 Give me the grandchildren of Bruce Lee.
7 How many inhabitants does the largest city in Canada have?
8 Was the Cuban Missile Crisis earlier than the Bay of Pigs Invasion?
9 Who is the president of Eritrea?
10 In which country does the Ganges start?
11 What is the timezone in San Pedro de Atacama?
12 Who writes the Farmers’ Almanac?
13 What is the birth name of Adele?
14 Show me all songs from Bruce Springsteen released between 1980 and

1990.
15 Give me all actors who were born in Paris after 1950.

Table 3: Sample questions of the SimpleQuestions benchmark.
Question

1 Is the sex of anuradha sriram male or female?
2 where was bob stewart born?
3 what kind of music did bret michaels make
4 which country is antonio dixon from
5 What is anvar rajabov’s gender
6 what book was written by rabindranath tagore?
7 what bridge is a cable-stayed bridge?
8 what is destro’s gender?
9 what coast does was nominated for Classical Album of the Year
10 Who directed ghajini?
11 Where is william watt from?
12 what is oliver holzwarth’s gender?
13 what is the producing company of the movie lamhe
14 what labels has ron white signed to
15 washington square is a story by which American writer?

31

Table 4: Sample questions of the LC-QuAD 2.0 benchmark.
Question

1 What is the foundational document of the Soviet Union?
2 On which island is the HQ location of the Carlsberg Group?
3 What volcanic eruption occurred in the Dutch East Indies?
4 What is the architecture firm that is based in Saint Longinus?
5 who is the record label and genre of The_Velvet_Underground?
6 What is Loop ID for Simon Baron-Cohen?
7 What is the religious affiliation of the victim of the Battle of Stalin-

grad?
8 What time did Aarhus serve as an adminstrative body at Rostock?
9 What is the position of political office held by a member of Augustus’

family?
10 What are the beliefs of the Chinese Communist Party’s Chair, Hu

Jintao?
11 Which is the {international sport governing body} for {authority} of

{baseball}?
12 What are the plays of the organizer of the UMB World Three-cushion

Championship?
13 Which is the Wikimedia category for the category of associated people

of Oslo?
14 When did Battle of Quiberon Bay happen?
15 How many country citizenship are taken by Antonio José de Sucre

Farell?

32

Table 5: Sample questions of the WDAquaCore0Questions benchmark.
Question

1 which currency lyon
2 zell teilung
3 in which continent is slovenia
4 When was J. K. Rowling born?
5 who is barack obama
6 university of ottawa
7 who won the eurovision song contest 2016
8 part of a thunderstorm
9 Give me all the german writers.
10 lyon
11 tagesschau website
12 is barck obama’s wife name michelle?
13 who leonardo dicaprio
14 food france
15 london

Additionally, a set of further preparations have been done in order to
enable the assessment of the GPT model’s fit for executing the various tasks
within KGQA.

While most of the selected benchmark datasets included a sample solution
SPARQL query for each question, two benchmarks required some efforts in
this direction.

Since the StudentQuestion dataset has been created as an in-class ex-
periment aimed at finding questions unanswerable by ChatGPT that can be
answered via SPARQL and Wikidata, it already included sample solution
queries. However, for some of the questions, these queries were either faulty
or did not exist. We therefore manually corrected or added the queries in
question.

The SimpleQuestions benchmark did not provide any sample solution
queries at all but added the corresponding object, predicate, and subject
triple from which we were able to construct each sample solution query for
our subset. Again, we did this manually. Since the original benchmark
dataset came with wrongly labeled predicate-identifiers, we corrected these
keywords manually.

The QALD-9 benchmark dataset already provides the keywords for each
question, while others do not. For this reason, we added the keywords for
each question to each benchmark dataset. This was done manually for the

33

StudentQuestion, SimpleQuestions and the WDAquaCore0Question bench-
mark datasets, by selecting the relevant keywords in each question. The
selected keywords therefore stem out of the authors’ own subjective interpre-
tation and therefore only provide a loose idea as to what for example by the
GPT models’ extracted keywords should be compared against. Since the LC-
QuAD 2.0 benchmark already highlighted the keywords for most questions
by wrapping them in curly brackets, we extracted these keywords using regu-
lar expressions. The question “What is the {architecture firm} that is {based
in} {Saint Longinus} ?” for example. Its corresponding keywords would
therefore be “architecture firm”, “based in” and “Saint Longinus”. Listing 4
shows the R-code for this step.

Adding keywords
dfResWD$Keywords <- NA
for(q in 1:nrow(dfResWD)){

cKeywords <- jData [[q]]$NNQT_question
cKeywords <- unlist(str_extract_all(cKeywords , "\\{.*

?\\}"))
cKeywords <- gsub("[{}]", "", cKeywords)
cKeywords <- paste(cKeywords , sep = "", collapse = ", "

)
dfResWD$Keywords[q] <- cKeywords

}
dfResWD$Keywords [6] <- "Loop ID, Simon Baron -Cohen"

Listing 4: R-code used to extract the keywords for the questions of the
LCQuAD 2.0 benchmark dataset.

Note that no keywords were highlighted using curly brackets for the question
“What is Loop ID for Simon Baron-Cohen?”. We therefore manually added
“Loop ID” and “Simon Baron-Cohen” as keywords for this question.

Last, we ensured that all of our benchmark dataset samples include the
corresponding URIs for keywords/named entities for each sample solution
query to be able to pass these as input to the GPT models during the query
construction tasks.

Since the naming conventions for DBpedia’s SPARQL query prefixes was
inconsistent in our subset of the QUALD-9 benchmark dataset, we did not
construct these URIs in an automated manner, but rather did so manually
ourselves. For the question “Who is the daughter of Ingrid Bergman married
to?” an example of these URIs would be “dbr:Ingrid_Bergman, dbo:child,
dbo:spouse” where “dbr:” represents a DBpedia-resource and “dbo:” repre-
sents a DBpedia-ontology. DBpedia-concepts are represented by the prefix

34

“dbc:”.
For the SimpleQuestions benchmark dataset, we simply used the subject

and predicate identifiers provided by the dataset. We excluded the object
identifiers since these represented the solutions to the questions and might
therefore distort the results of this study. Since Wikidata’s URIs are of
a numeric type, we cannot assume that the GPT models will know which
term is represented by these URIs. We therefore retrieved the labels of each
URI using Wikidata’s query service in R and linked these to URIs provided
by the dataset. Listing 5 shows the R-code extracting the URIs for the
SimpleQuestions benchmark dataset.

Adding column with URIs
dfRes$URIs <- ""
for(i in 1:nrow(dfRes)){

for(j in 2:3){
cQuery <- paste0(

"SELECT ?name WHERE { wd:",
dfRes[i, j],
"rdfs:label ?name. FILTER (LANG(?name) = \"en\").}"

)
cName <- query_wikidata(

sparql_query = cQuery ,
format = "simple"

)
cName <- unlist(cName)
dfRes$URIs[i] <- paste0(dfRes$URIs[i], dfRes[i, j], "

= ", cName , ", ")
}
dfRes$URIs[i] <- substr(dfRes$URIs[i], 1, nchar(dfRes$

URIs[i]) - 2)
}

Listing 5: R-code used to extract the URIs for the questions of the
SimpleQuestions benchmark dataset.

Since the SimpleQuestions benchmark datasets includes a column for the
questions’ predicate-URIs, as well as one for their subject-URIs, this code
extracts the URIs of the respective columns in the benchmark data frame
and links them to their corresponding label retrieved over Wikidata’s query
service. Listing 6 shows the resulting query for retrieving the subject label
for the question “what kind of music did bret michaels make”.

SELECT ?name WHERE {
wd:Q365042 rdfs:label ?name.

35

FILTER (LANG(?name) = "en").
}

Listing 6: SPARQL-query for Wikidata to retrieve the subject label of the
question “what kind of music did bret michaels make” in the SimpleQuestions
benchmark.

Note that some of the sample identifiers have been labeled incorrectly (see
section 4.1.2). Using this method, it was not possible to add labels to the
wrongly labeled predicate-identifiers mentioned earlier. Despite the easy fix
of replacing the letter R in the predicate identifiers with the letter Q before
labeling these identifiers, we opted for not doing this in order to keep our
results comparable to others achieved using the SimpleQuestions benchmark
dataset.

While the LC-QuAD 2.0 benchmark dataset did not provide URIs to
its questions, it provided sample solution queries for both Wikidata, and
DBpedia. However, these queries use Wikidata’s identifiers for both KGs.
Take for example the question “What is the foundational document of the
Soviet Union?”. Listing 7 shows the sample solution query for Wikidata,
while listing 8 shows the sample solution query for DBpedia.

select distinct ?obj where {
wd:Q15180 wdt:P457 ?obj .
?obj wdt:P31 wd:Q49848

}

Listing 7: SPARQL-query for Wikidata to answer the question “What is
the foundational document of the Soviet Union?” in the LCQuAD 2.0
benchmark.

select distinct ?obj where {
?statement <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> <

http://wikidata.dbpedia.org/resource/Q15180> .
?statement <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate>

<http://www.wikidata.org/entity/P457> .
?statement <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> ?

obj .
?obj <http://www.wikidata.org/entity/P31> <http://wikidata.

dbpedia.org/resource/Q49848>
}

Listing 8: SPARQL-query for DBpedia to answer the question “What is
the foundational document of the Soviet Union?” in the LCQuAD 2.0
benchmark.

36

For this reason, it was possible for us to single out the sample queries’ indi-
vidual URIs for Wikidata in the same way as we did for the SimpleQuestions
benchmark dataset and used them for both Wikidata and the DBpedia in
our study.

Last, since the StudentQuestions and the WDAquaCore0Questions bench-
mark datasets did come with missing or faulty sample solution queries, we
manually added the corresponding URIs for each question.

4.1.2 Benchmark Analysis

Upon analyzing the selected benchmarks, we noted a few problems affecting
their reliability.

This section is therefore aimed ad giving a summary of these problems.

Differences between Wikidata and DBpedia

While both versions of the LC-QuAD 2.0 benchmark came with a sample
solution query for each question, we observed a difference between the re-
sults for one of our sample questions. For the question “How many country
citizenship are taken by Antonio José de Sucre Farell?” Wikidata’s sample
solution query returned two, while its DBpedia counterpart returned zero.
In order to evaluate the results in this study, we followed the sample solution
queries and marked only those queries correct which returned the same an-
swer as the sample solution query for the same underling KG. Listing 9 shows
the sample solution query for Wikidata, while listing 10 shows its DBpedia
counterpart.

SELECT (COUNT(?obj) AS ?value) {
wd:Q189779 wdt:P27 ?obj

}

Listing 9: Sample solution query for the question “How many country
citizenship are taken by Antonio José de Sucre Farell?” for Wikidata.

SELECT (COUNT(?obj) AS ?objs) {
?statement <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> <

http://wikidata.dbpedia.org/resource/Q189779> .
?statement <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate>

<http://www.wikidata.org/entity/P27> .
?statement <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> ?

obj .
}

37

Listing 10: Sample solution query for the question “How many country
citizenship are taken by Antonio José de Sucre Farell?” for DBpedia.

SimpleQuestions Labels

Despite the simplicity of its questions’ structure, the SimpleQuestions bench-
mark dataset for Wikidata came with two problems.

First, some of the predicate-identifiers have been labeled incorrectly. Take
for example the question “what book was written by rabindranath tagore?”.
This question’s corresponding predicate-identifier provided by the benchmark
dataset is R50. However, no identifiers starting with an R exist for Wiki-
data. When replacing the R with a P the resulting identifier represents the
property “author” which does not only make sense in the context of the ques-
tion but would, when used to construct a query in combination with the
subject-identifier provided for this question, lead to the correct answer to
this question.

Second, some of the questions relate barely or not at all to their corre-
sponding triple. As an example, the question “what coast does was nominated
for Classical Album of the Year” does not only make no sense from a syn-
tactic and semantic point of view but its triple <Q3287722, P27, Q1008>
which represents the resources “Marc-Éric Gueí”, “country of citizenship” and
“Ivory Coast” indicates that the actual question related to this triple more
likely aims at asking either for Marc-Éric Gueí’s country of citizenship or for
people whose country of citizenship is Ivory Coast.

WDAquaCore0Question

Upon taking a closer look at the WDAquaCore0Question’s questions and
their corresponding sample solution queries, it became clear that also the
benchmark was not free of potential problems.

The first notable observation relates to the formulation of the questions.
While some questions in the dataset, such as the question, “who won the
eurovision song contest 2016” do not seem particularly poorly formulated,
other questions do. Take for example the question “who leonardo dicaprio”
which is missing all stop words and punctuation, and looks like a question
that has been reduced to its keywords. While a properly formulated version
of this question such as “Who is Leonardo Dicaprio?” can still be assumed
somewhat confidently, its solution remains ambiguously. From this formula-
tion, it is impossible to argue for example whether the answer “An American

38

actor.” or “A (at the time of writing) 48-year-old man.” present a better fit-
ting or more correct answer to the question. Therefore, the sample solution
query for this question, as shown in listing 11, which returns the Q-identifier
for Leonardo DiCaprio’s Wikidata entry, can in theory not be used to assess
the correctness of the result of a query generated by QA-system that would
for example return the term “man” and Leonardo DiCaprio’s age.

SELECT DISTINCT ?x WHERE {
VALUES ?x {

<http://www.wikidata.org/entity/Q38111>
}
<http://www.wikidata.org/entity/Q38111> ?p <http://www.wikidata.

org/entity/Q5>
} limit 1000

Listing 11: Sample solution of a SPARQL-query answering the question “who
leonardo dicaprio” in the WDAquaCore0Questions benchmark.

Other questions consist only of single terms, such as “lyon” or “london”. These
can therefore hardly be considered questions, and the problem of ambiguity
wrt. their answer worsens. Without an interrogative word such as “what” or
a word providing context such as “city” a question, such “london” becomes so
vague that basically all samples solution queries become unusable to evaluate
the correctness of other queries’ results.

The next problem lies within the labeling of the questions. The WDAqua-
Core0 QA-system was able to answer questions written in four languages
over Wikidata [18]. Therefore, the questions in the WDAquaCore0Questions
dataset are labeled according to their language. However, for some questions
these labels are incorrect. Take for example the questions “tagesschau web-
site” or “zell teilung”. “Tagesschau” is a German television news service [65].
Since the term website exists in both the English and the German language
(“Website”) this question can be labeled as both English, and German. The
phrase “Zell Teilung” however, was probably meant to be term “Zellteilung”,
which is the German term for cell division and does not exist in the English
language. Yet, this question has been labeled as English.

Continuing to look at the question “tagesschau website” brings us to the
last problem of the dataset, namely queries whose results can almost confi-
dently be categorized as wrong. While the proper solution to the question
“tagesschau website” is again ambiguous, the provided sample solution query
shown in listing 12 returns Wikidata’s Q-identifier for “Zell im Fichtelgebirge”
which is a German market municipality located in Bavaria and has obviously
close to nothing to do with cell division and rather stems from the term “zell”.

39

SELECT ?x where {
VALUES ?x {

<http://www.wikidata.org/entity/Q31614>
}

}

Listing 12: Sample solution of a SPARQL-query answering the question “zell
teilung” in the WDAquaCore0Questions benchmark.

Note that we used the term “almost confidently” here, since this answer
could still be considered correct if the website would mention this market
municipality or was hosted in it. However, one would most likely still assess
this answer as incorrect in this case, since no additional information that
specifies this context is part of the answer.

Since the benchmark’s GitHub-page did not specify further whether the
sample solution queries stem from users or have been refined in any way [14]
the problems observed here lead us to believe that these queries stem directly
from the WDAquaCore0 QA-system itself.

4.2 Implementation of the Experiment
To limit the influences of human error in our experiment, we used the R
programming language to conduct this study. While this does not only allow
us to reliably execute each step in our study and to keep the results repro-
ducible, it also enables us to automate parts of the evaluation process, as
well as to refine and extend this experiment’s setup if needed.

Additionally, to the default toolkit of R, the “openai” library for R was
used as the endpoint to OpenAI’s API [52] while Wikidata’s query service for
R was used to execute all SPARQL queries on Wikidata and retrieve their
results [46].

Since this study aims not only at evaluating a single but two different GPT
models over a multitude of different benchmark datasets for different KGs
we set up our R-scripts to allow for flexibility wrt. these aspects. Listing 13
shows the corresponding R-code used to set up the evaluation of the assessed
component.

Setup ----
Knowledge graph
cKG <- "Wikidata"
Query language
cQL <- "SPARQL"

40

openAI API key
cAPIKey <- "sk -..."
Temperature
nTemp <- 0
GPT version
cGPTVersion <- "gpt -3.5- turbo"
Benchmark path
cBMPath <- "C:/Users/..."
Result path
cResPath <- "C:/Users/..."
Benchmark
cBenchmark <- "QALD_9"
Component
cComponent <- "Phrase_Variation"

Listing 13: R-code to set up the evaluation of the GPT models.

The variable cKG defines the KG used and is used not only for naming the
resulting files but also for the generation of the given prompts used.

Despite limiting this study to KGs that can be queried using SPARQL
and therefore SPARQL being the only query language, we used the variable
cQL to enable our study to be easily extended to different query languages.

The variables cAPIKey and cGPTV ersion are used to enable and select
the GPT-model used in this study.

cTemp sets the so-called “temperature” parameter of the given GPT
model which allows controlling how deterministic the behavior of the model
should behave with a value of 0 resulting in the model behaving completely
deterministic.

On the other hand, cResPath and cComponent are used to name and
store the results for each iteration of each component’s assessment.

Last, the variable cBMPath sets the path to load the benchmark sample
datasets from and cBenchmark defines witch benchmark should be loaded
for the given iteration of the assessment. Listing 14 shows the R-code used
to load the benchmark sample datasets.
Benchmark ----
dfBenchmark <- readRDS(

paste0(
cBMPath ,
"SampleSet_",
cBenchmark ,
".rds"

)
)

41

Listing 14: R-code to load the given benchmark sample dataset.

Furthermore, we recorded the time it took for each iteration of each KGQA-
component’s assessment to complete. This was done to get an idea on how
efficient the GPT-models are when used in KGQA and to assess whether they
provide a reliable option for KGQA-tasks when trying to answer a larger num-
ber of questions. Listing 15 shows the R-code used to record this execution
time, where lKGQA_Component is a list object storing the results of the
given KGQA-task.

42

lKGQA_Component <- list()
tStart <- Sys.time()
.
.
.
tEnd <- Sys.time()
lKGQA_Component [[length(lKGQA_Component) + 1]] <- tEnd -

tStart

Listing 15: R-code to record the execution time for the assesment of a KGQA-
task over a given benchmark.

Finally, all the results have been stored as RDS-files to be easily imported
and analyzed using the R programming language.

4.3 GPT-Based Components of KGQA
In order to determine the GPT-models’ fitness for KGQA we first determined
individual components or tasks commonly occurring in KGQA before devel-
oping methods to let these tasks be executed by the GPT-models. Since
many tasks occurring in KGQA require for example specific knowledge of
the underlying graph, we excluded such tasks from our analysis and limited
this study to tasks that can be executed solely by the GPT-models and some
additional information provided within the given prompts.

To structure our findings, we follow the afore-mentioned categorization
of different KGQA-tasks proposed by Diefenbach et al. [17].

4.3.1 Question Analysis

In order to evaluate the GPT-models’ fits for “Question Analysis” tasks,
we tried to use the LLMs analyzed in this study to execute the tasks of
phrase variation, question variation, question pseudonymization, type detec-
tion, POS tagging, named entity recognition, entity and relationship detec-
tion and semantic parsing.

Phrase Variation

Phrase variation describes the task of generating variations of individual
phrases or words within a natural language question. The aim of this task
is to increase the chance of finding the correct resources for a given question
within a given KG by increasing the number of phrases for which potential
resources can be found. An established KGQA-system performing a task
that follows this definition of phrase variation is [67].

43

For example, the phrase “male” could be varied by instead using the
phrase “man” or the phrase “guy”.

To assess the GPT-models’ performance, wrt. this task, we first asked the
LLMs to determine all possible terms or phrases within the question before
asking the models to generate 3 variations for each term or phrase. We
decided to only generate 3 variations to limit the number of results that need
to be evaluated while simultaneously enabling a detailed enough assessment
of the models’ performance wrt. this task. Listings listings 16 and 17 show
the prompts used to determine and vary the phrases occurring in the natural
language question.
Please give me all possible terms/phrases of the question ’

cQuestion’, without stop words separated by a ;

Listing 16: Prompt used to determine all possible phrases in a natural
language question.

Please give me nVariations variations/synonyms for each term
and phrase in the question ’cPhrase’, without the original
term, without numbering, in one line and separated by a ;

Listing 17: Prompt used to vary a phrase.

Here the variable cQuestion represents the natural language question while
cPhrase represents the given term or phrase. nV ariations on the other
hand, defines the number of variations to be created which as mentioned
earlier has been set to 3 across the entire study.

Additional orders such as “without stop words” have been given to the
LLMs to enable further automated processing of the results within R. Listing
18 shows the entire R-code used for the phrase variation task.
Phrase Variation ----
lPhrase_Variation <- list()
tStart <- Sys.time()
for(q in 1:nrow(dfBenchmark)){

Phrase
cQuestion <- dfBenchmark$Question[q]
Number of variations
nVariations <- 3

Prompt 1
cPrompt <- paste0(

"Please give me all possible terms/phrases of the
question ’",

44

cQuestion ,
"’, without stop words separated by a ;"

)

Result 1 - Phrases
lPhrases <- create_chat_completion(

messages = list(
list(

"role" = "user",
"content" = cPrompt

)
),
model = cGPTVersion ,
openai_api_key = cAPIKey ,
temperature = nTemp

)
lPhrases <- lPhrases$choices$message.content
lPhrases <- unlist(lPhrases)
lPhrases <- unlist(strsplit(lPhrases , ";"))

Phrase variation
dfVariations <- data.frame(Phrase = NA, Variations = NA

)
for(i in seq_along(lPhrases)){

Selecting the phrase
cPhrase <- trimws(lPhrases[i])

Prompt 2
cPrompt <- paste0(

"Please give me",
nVariations ,
" variations/synonyms for each term and phrase in

the question ’",
cPhrase ,
"’, without the original term , without numbering ,

in one line and separated by a ;"
)

Result 2 - Variations
lRes <- create_chat_completion(

messages = list(
list(

"role" = "user",

45

"content" = cPrompt
)

),
model = cGPTVersion ,
openai_api_key = cAPIKey ,
temperature = nTemp

)
lRes <- lRes$choices$message.content
lRes <- trimws(unlist(strsplit(lRes , ";")))
lRes <- lRes [1: nVariations]
lRes <- gsub("^(.*?): ", "", lRes)

dfVariations[i, 1] <- cPhrase
dfVariations[i, 2] <- paste(lRes , sep = "", collapse

= ", ")
}
lPhrase_Variation [[q]] <- dfVariations

}
tEnd <- Sys.time()
lPhrase_Variation [[length(lPhrase_Variation) + 1]] <-

tEnd - tStart

Saving
saveRDS(

lPhrase_Variation ,
file = paste0(

cResPath ,
cComponent ,
"_",
cBenchmark ,
"_",
cKG ,
".rds"

)
)

Listing 18: R-code used for Phrase Variation

The R-codes used to execute the assessment of most of the following tasks in
the “Question Analysis” step are mostly identical to the one used during for
the assessment of the phrase variation task and will therefore not be shown.

Question Variation

While phrase variation deals with the generation of different variations for

46

a single phrase or word in a natural language question the task of question
variation describes the generation of variations of the whole natural language
question. Therefore, the goal of this task lies similar to the phrase variation
task in increasing the likelihood of finding the proper resources in the KG
and therefore being able to generate the right queries to answer the natural
language question by increasing the number of natural language questions
leading to a larger number of potential results. See [67] for a KGQA-system
incorporating question variation.

Similar to the example for phrase variation, an example for question vari-
ation would be to change the question “Is Joel Zimmerman male or female?”
to “What is the gender of Joel Zimmerman?”,

We assessed the LLMs’ performance wrt. the question variation task in
a similar way as we did for the phrase variation task. For each question 3
variations were created. The prompt used for this task is shown in listing 19.

Please rephrase the question ’cQuestion’, nVariations times,
without numbering, in one line and separated by a ;

Listing 19: Prompt used to generate variations of a natural language
question.

Question Pseudonymization

We define question pseudonymization as the translation of a question into a
pseudo-code like version of itself. Here the idea is to reduce the question to
a form that unambiguously represents its true intention using the minimal
amount of words and characters necessary. Such a minimal form might enable
different tasks in the KGQA process such as phrase variation or entity and
relationship detection to yield better results than when using the full natural
language question.

Following our previous example the question “What is the gender of Joel
Zimmerman?” could be pseudonymized to the phrase “Gender Joel Zimmer-
man”.

To achieve this task using the GPT-models we used the prompt shown in
listing 20.

Please give me a simplified pseudo-language version of the
question ’cQuestion’, without comments and neglecting stop
words.

Listing 20: Prompt used to generate a pseudo-code like version of a natural

47

language question.

Type Detection

Type detection refers to the categorization of a given natural language ques-
tion wrt. to a set of question types. In order to asses the GPT-models’
performance wrt. this task we followed Orogat et al. and the question types
defined in the CBench benchmarking suite [43]. These question types do
not only provide a generally good categorization scheme for questions but
using them allows for a comparison of the GPT-models’ results against an
established approach, in this case CBench. Type detection is used in various
KGQA-systems such as [60, 33].

To determine the question types of the natural language questions in our
benchmark sample datasets we first defined a string containing all question
types as shown in listing 21 before generating a prompt that asks the GPT-
model to decide to which of these question types the given natural language
question would most likely correspond to. This prompt is shown in listing
22.

Type Detection ----
Types
cTypes <- c("What", "When", "Where", "Which", "Who", "

Whom", "Whose", "How",
"Yes/No", "Requests", "Topical")

cTypes <- paste(cTypes , sep = "", collapse = "’, ’")
cTypes <- paste0("’", cTypes , "’")

Listing 21: R-code used to define the question types following CBench.

Which of the question types ’What’, ’When’, ’Where’, ’Which’, ’
Who’, ’Whom’, ’Whose’, ’How’, ’Yes/No’, ’Requests’, ’
Topical’ best describes the question ’cQuestion’? Please
give me only the type word!

Listing 22: Prompt used to determine the type of a natural language question.

Following this definition, our example question “What is the gender of Joel
Zimmerman?” would be classified as a “What”-question.

POS Tagging

Part-of-speech (POS) tagging defines the process of labeling each word in a
sentence with its corresponding part of speech, such as noun, verb, adjective,

48

etc., and is an essential task in the context of pre-processing for NLP applica-
tions, such as text classification [35]. In the context of KGQA, POS tagging
aims at disambiguating the meaning of a question and to therefore increase
the effectiveness of the KGQA process’ result. POS tagging can be found in
various KGQA systems, such as for example [54]. While both handmade rule
based and stochastic method based POS tagging algorithms are commonly
used we did supply the GPT models with any rules neither did we specify
which of these methods the models should use in this study. The prompt
used to execute the POS tagging task via the GPT models is shown in listing
23.

Please do part-of-speech tagging for the question ’cQuestion’
without adding comments in the format: word - tag

Listing 23: Prompt used for POS tagging.

Note that the section “without adding comments in the format: word - tag”
was added in order to easily store and analyze the results in the form of a
table.

Our example question “What is the gender of Joel Zimmerman?” would
be tagged as follows, “gender”, “Joe” and “Zimmerman” would be tagged as
nouns, “What” would be tagged as pronoun, “is” would be tagged as a verb,
“the” would be tagged as a determiner, and lastly “of” would be tagged as a
preposition.

Named Entity Recognition

The term named entity recognition describes the task of locating and cat-
egorizing important nouns and proper nouns, mainly contiguous spans of
tokens referring to a resource in a text [39]. In KGQA systems such as
[16, 33, 13, 54, 28] named entity recognition tools are used to identify contin-
uous spans of tokens within a question that refer to a resource in the given
KG.

In our example case, the term “Joe Zimmerman” should be recognized as
one name entity while it could be recognized as the two entities “Joel” and
“Zimmerman”.

To test the GPT models’ fit for this task the prompt shown in listing 24
was used.

Please give me all named entities in the question ’cQuestion’
without adding comments

49

Listing 24: Prompt used to recognize named entities.

Entity and Relationship Detection

Since the task of recognizing named entities is usually strongly dependent
on knowledge about the given domain [17] we adapted this task by letting
the GPT models not only detect a question’s named entities but also the
relationships between them. In theory, this should provide further compo-
nents along the KGQA pipeline with a better understanding of the questions
intention and therefore could result in increased performance of the KGQA
system. This task will be referred to as entity relationship detection from
here on and is found in systems, such as [60, 33, 54, 28].

The prompt used to detect both a question’s named entities and their
relationships is shown in listing 25.

Please give me all named entities and their relations for the
question ’cQuestion’ and return the results in 2 lines: the
entities and the relations

Listing 25: Prompt used to recognize named entities and their relations.

To follow our example question, the entities “gender” and “Joel Zimmer-
man” are related over the term “of” (i.e., gender of Joe Zimmerman).

Semantic Parsing

“Semantic Parsing” defines the process of coupling syntactic rules to a text’s
semantic composition to generate a semantic interpretation (or logical form)
of the text [17]. It finds its application various KGQA-systems, such as
[60, 33, 28].

Staying with Joel Zimmerman the phrase “Joel Zimmerman is male” could
be parsed as follows. “Joel Zimmerman” would be categorized as a noun
phrase (NP). Similarly, “male” could be categorized as a noun phrase. With
these categorizations, “is” could be categorized as (S\NP)/(S\NP), meaning
it can be combined with a noun phrase on both the left and the right side to
form a sentence S.

To test how the GPT-models would handle this task we did not supply
them with any particular grammars or other rules. Rather we aimed at
keeping the prompt as minimalistic and simple as possible, and focused on
the structure and format of the results. The addition “ and return the results

50

in 3 lines: the logical form, the entities and the actions and do not add any
other linebreaks but separate the individual entities and actions by a comma”
has been made to format the results of this steps in a way that allows for
easier analysis. Listing 26 shows the prompt used for “Semantic Parsing”.

Please apply semantic parsing to the question ’cQuestion’ and
return the results in 3 lines: the logical form, the
entities and the actions and do not add any other
linebreaks but separate the indivudal entites and actions
by a comma

Listing 26: Prompt used for semantic parsing.

4.3.2 Phrase Mapping

Under “Phrase Mapping” we classify all tasks that deal with linking the ele-
ments of a natural language question such as words and phrases to resource
identifiers in a given KG. While various approaches exist to handle this task,
many of them require knowledge about the underlying KG that goes beyond
what can be reasonably supplied to a GPT-model via its prompt. We there-
fore limit this study to approaches in which no specific knowledge of the
underlying KG is assumed or supplied.

Direct Phrase Mapping We label the first variation of the “Phrase Map-
ping” task as direct phrase mapping. In this approach we tried to generate the
corresponding resource identifier of a given KG for each phrase or keyword
in a natural language question. Almost all KGQA-systems link individual
phrases and keywords to a KG’s resource identifiers.

In order to use the GPT-models to execute this task we used the keywords
that have either been supplied by the selected benchmark or the ones that
have been manually created by us when preparing the benchmark sample
datasets.

Listing 27 shows the R-code used to generate the GPT-models’ results
for the direct phrase mapping task where we first split up the given phrases
for each question before generating their corresponding resource identifiers.
These identifiers have been combined and stored afterwards.

Direct Phrase Mapping ----
lDirect_Phrase_mapping <- list()
tStart <- Sys.time()
for(q in 1:nrow(dfBenchmark)){

51

cPhrases <- dfBenchmark$Keywords[q]
cPhrases <- unlist(strsplit(cPhrases , ", "))

dfRIs <- data.frame(Phrase = NA, Resource_Identifier =
NA)

Phrase
for(p in seq_along(cPhrases)){

cPhrase <- cPhrases[p]

Prompt
cPrompt <- paste0(

"Please give me ",
cKG ,
"’s resource identifier for the term/phrase ’",
cPhrase ,
"’ without adding any comments"

)

Result
lRes <- create_chat_completion(

messages = list(
list(

"role" = "user",
"content" = cPrompt

)
),
model = cGPTVersion ,
openai_api_key = cAPIKey ,
temperature = nTemp

)
lRes <- lRes$choices$message.content

cMappedPhrase <- c(cPhrase , lRes)
dfRIs <- rbind(dfRIs , cMappedPhrase)
colnames(dfRIs) <- c("Phrase", "Resource_Identifier")

}
dfRIs <- dfRIs [2: nrow(dfRIs),]
lDirect_Phrase_mapping [[q]] <- dfRIs

}
tEnd <- Sys.time()
lDirect_Phrase_mapping [[length(lDirect_Phrase_mapping) +

1]] <- tEnd - tStart

Listing 27: R-code use to assess the GPT-models’ performance wrt. direct

52

phrase mapping.

To generate these resource identifiers the prompt shown in listing 28 has
been used, where the variable cKG refers to the underlying KG, and where
cPhrase refers to the given phrase or keyword.

Please give me ’cKG’’s resource identifier for the term/phrase
’cPhrase’ without adding any comments

Listing 28: Prompt used to execute direct phrase mapping using the GPT-
models.

Again, cKG refers to the underlying KG, while cPhrase represents the phrase
or term for which the corresponding resource identifier should be generated.

In order to analyze the resource identifiers for Wikidata generated by the
models, we retrieved their labels using the query shown in listing 29, where
cQID represents the resource identifier generated by the LLM.

SELECT ?name
WHERE {

wd:cQID rdfs:label ?name.
FILTER(LANG(?name)="en").

}

Listing 29: Query used to retrieve resource identifier labels from Wikidata.

Global Phrase Mapping When trying to map individual phrases or key-
words to a resource identifier in a given KG, some potential problems arise.
First, the meaning of a given phrase might be strongly dependent on the
context and therefore the entire question. Second, individual keywords or
phrases might not be directly linkable to a certain resource in the underly-
ing KG, leading to the return of either no result at all or linking the closest
resource to the given keyword and phrase. These problems could lead to
the mapped resource identifiers being either useless or even harmful to the
generation of a functioning SPARQL query.

For this reason, we define global phrase mapping as the act of linking an
underlying KG’s corresponding resource identifiers to a given natural lan-
guage question based on the entire question and therefore without isolating
individual phrases or keywords.

In order to generate the resource identifiers that correspond to the ques-
tion, we first used the prompt shown in listing 30.

53

Please give me all of DBpedia’s relevant resource identifiers
for the question ’Who is the daughter of Ingrid Bergman
married to?’ without adding any comments

Listing 30: First prompt used to execute global phrase mapping using the
GPT-models.

However, using this prompt resulted in the generation of only one resource
identifier for each question during our first trial using GPT-3.5. Take for
example the question “Who is the daughter of Ingrid Bergman married to?”
for which GPT-3.5 returned only the resource identifier
“http://dbpedia.org/resource/Isabella_Rossellini” for DBpedia.
To enable the generation of multiple resource identifiers, we rephrased the
original prompt, resulting in the prompt shown in listing 31.

Please give me all resource identifiers for DBpedia that relate
to the question ’How often did Jane Fonda marry?’ without

adding any comments. Limit the number of resource
identifiers per term to 10.

Listing 31: Second prompt used to execute global phrase mapping using the
GPT-models.

Using the same question as in the previous example, GPT-3.5 now returns
the resource identifiers “http://dbpedia.org/page/Ingrid_Bergman”,
“http://dbpedia.org/ontology/spouse”,
“http://dbpedia.org/page/Roberto_Rossellini” and
“http://dbpedia.org/page/Isabella_Rossellini”.

Note that the phrase “Limit the number of resource identifiers per term
to 10.” was added to the prompt since GPT-3.5 would otherwise sometimes
return an unreasonably large number of resource identifiers, from which most
of them have nothing to do with the original question.

4.3.3 Disambiguation

Diefenbach et al. define the “Disambiguation” task as the task of identifying
which of the resources found in the “Phrase Mapping” task is the right one
[17]. The techniques used for this task range from using local disambigua-
tion and graph search techniques to statistical approaches such as the usage
of hidden Markov models (HMM), integer linear programming (ILP) and
Markov logic networks (MLN) and even the incorporation of user feedback.

54

Imagine we found the possible identifiers for the term “bark” for the ques-
tion “Which dog does bark the loudest?” during the phrase mapping task.
We might have found the identifier for a tree’s out layer (i.e. its bark) as
well as the sound a dog makes. Given the context of the question and the
structure of the underlying KG, we can determine that for our question, we
most likely are interested in the second identifier.

While it would be possible to test LLMs wrt. this task it would require
the generation of a set of multiple resources for each term or phrase in all
the questions used in this study. Each set of resources should additionally
contain at least one resource fit and one resource unfit to represent the given
term or phrase. This generation of sets of resources would require significant
effort and might be reliant on the usage of the component of different KGQA
systems, which lies outside the scope of this study. We therefore did not test
the LLMs’ fit for this task.

4.3.4 Query Construction

In the process of constructing the query to answer a given question, KGQA-
systems must deal with the semantic gap problem, which refers to the fact
that a KGQA-system might encode an information differently from what one
could deduce from the question [17]. Approaches in this field range from using
templates or semantic information resulting from the “Question Analysis”-
phase to ones using machine learning or using no SPARQL at all. Again,
we limited the analyzed approaches to those that mainly rely on the GPT-
models instead of ones requiring results from previous KGQA-components.

Direct Construction Direct construction labels the simplest approach
analyzed in this study. This approach is in line with our preliminary exper-
iment in which GPT-3.5 was used to directly generate SPARQL-queries to
answer a given question over Wikidata without the aid of additional infor-
mation, such as resource identifiers [31].

To enable this approach to be used across multiple KGs and query lan-
guages, the prompt shown in listing 32 was used.

Please write me a cQL-query without comments for cKG to answer
the question ’cQuestion’

Listing 32: Prompt used for direct query construction.

To evaluate the generated queries we followed the approach used in our initial
study in which retrieved the results for each query and assign the queries to

55

three categories [31]. Executable queries label queries that are syntactically
correct, i.e., queries that can be executed without receiving an error mes-
sage. Since the syntactical correctness of a query does not allow one to make
statements about its fit to answer a certain question, we label queries that
can be executed but do not return any result as empty queries while queries
whose results were considered to be a possible correct answer to the given
question as correct queries.

URI-Fed Construction Since we already showed that the GPT-models
are not capable of reliably linking phrases or terms to the resources with
a given KG, one cannot expect the LLMs to construct fitting SPARQL-
queries without being fed additional information wrt. the necessary resource
identifiers. For this reason, the direct construction task has been modified
by supplying the model with the resource identifiers taken from the sample
solution queries. This approach to construct queries was labeled URI-fed
construction.

To test the GPT-models for this version of the query construction task,
we added the phrase “using the URIs ’cURIs” ’ to the original prompt as
shown in listing 33. Here, cURIs represents a string containing both the
KGs resource identifiers, and their labels. An example of this string for the
question “What is the foundational document of the Soviet Union?” in the
LC-QuAD 2.0 benchmark for Wikidata would be “Q15180 = Soviet Union,
Q49848 = document, P457 = foundational text, P31 = instance of”.

Please write me a cQL-query without comments for cKG to answer
the question’cQuestion’ using the URIs ’cURIs’

Listing 33: Prompt used for direct query construction.

Template-Based Construction While the direct construction and URI
fed construction tasks represent versions of the query construction task that
solely rely on an LLM’s knowledge about SPARQL, another common ap-
proach is to use SPARQL-templates to construct a question’s corresponding
SPARQL-query. These templates based approaches usually make use of so-
called slots. A slot represents a triple consisting of the natural language
expression in the question, the type of the resource identifier (class, property
or resource) and a placeholder variable. Upon linking the question to a given
SPARQL template, these slots will then be replaced by the resource identi-
fiers corresponding to the question [58].

56

In order to test the LLMs for this task, we followed Park et al. [44] and
the SPARQL-templates used by them. Listing 34 shows these templates.
Boolean
ASK WHERE { ?x ?p ?y. }
Simple
SELECT DISTINCT ?x WHERE { ?x ?p ?y . (Option:?x rdf:type ?c.)}
Count
SELECT COUNT (DISTINCT ?x) WHERE { ?x ?p ?y. }
Filter
SELECT DISTINCT ?x WHERE {?x ?p ?y. } ORDER BY DESC(?x) OFFSET 0

LIMIT n
Order
SELECT DISTINCT ?x WHERE {?x ?p ?y . FILTER (?y <1950)}

Listing 34: SPARQL-templates used in the template based-construction task.

Each template corresponds to a certain type of question, namely boolean,
count, filter, order and simple questions. In our approach, the LLM first
links a question to one of the question types. For this we supplied the LMM
with both the question types and their definitions as seen in listing 36. Due
to the lack of a proper definition of a simple question in the original paper
by Park et al. [58] we used the definition of Yani and Krisnadhi [66].
Which of the following question-types best fits the question ’

cQuestion’?
Boolean: Shall be answered with a yes/no or true/false

statement.\n",
Count: The answer is based around a count of something (e.g.,

questions starting with ’How many..’).
Filter: The question contains a comparative (e.g., ’more

citizens than..’).
Order: The question contains a superlative (e.g., ’most

citizens’).\n",
Simple: The answer can be captured by a factoid statement with

one relation or predicate.
Please return only the question type!

Listing 35: Prompt used to determine the question type in the template-
based construction task.

After receiving the question type selected by the LLM, we expanded the
prompt used in the direct construction task by instructing the model to
make use of the SPARQL-template corresponding to the detected question
type.

57

Please write me a cQL-query without comments for cKG to answer
the question ’cQuestion’ using the following cQL-template:
’cTemplate’

Listing 36: Prompt used to generate SPARQL-queries in the template-based
construction task.

URI-Fed Template-Based Construction Last, we also extended the
template-based construction task by supplying the LLMs with the correct
resource identifiers. This was done in the same way as for the URI-fed con-
struction task. Listing 37 shows the resulting prompt used to generate the
SPARQL-queries in the URI-fed template-based query construction task.

Please write me a cQL-query without comments for cKG to answer
the question ’cQuestion’ using the following cQL-template:
’cTemplate’ and the URIs ’cURIs’

Listing 37: Prompt used for direct query construction.

4.3.5 Querying Distributed Knowledge

Querying Distributed Knowledge refers to techniques that answer a single
question over multiple KGs by either assuming the KGs to be disjoint graphs
or that the KGs are interlinked [17].

However, due to this study’s focus on LLMs and their performance, wrt.
KGQA we did limit our area of interest to answering questions over a single
KG.

5 Results
Given the variety of different KGQA-tasks analyzed in the study, we also
received a variety of results. The quality of these results does not only differ
between the tasks themselves, but also between the LLMs used.

This section is dedicated to presenting the acquired results.

5.1 Question Analysis
Despite the fact that the LLMs have generally been able to perform many
of the tasks in the “Question Analysis” phase well, various problems became
apparent. This section therefore presents these results.

58

5.1.1 Phrase Variation

While GPT-3.5 was able to generate reasonable variations for most phrases
or keywords in all the sample questions, a few problems and habits were
observed repeatedly.

First, some of the variations deviate in meaning from the original phrase
or keyword. Take for example the term “island” in the question “On which
island is the HQ location of the Carlsberg Group” in the LC-QuAD 2.0
benchmark dataset. One of the variations generated by GPT-3.5 was “atoll”
which while being defined as an island is also defined by its ring-like shape and
the inclusion of a coral ring encircling a lagoon [64]. If used, this variation
therefore would strongly limit the possible instances of the original object
that is an island.

A similar issue is the observed loss of context. In the question “What
is the architecture firm that is based in Saint Longinus” in the LC-QuAD
2.0 benchmark, the term “based” spawns the variations “derived”, “grounded”
and “build upon” while the term “taken” in the question “How many country
citizenship are taken by Antonio José de Sucre Farell” spawns the variations
“captured”, “derived”, and “acquired”. Obviously, most of these variations
might be synonyms for the original terms, but do not hold the same meaning
in the context of the full questions.

On the other hand, some of the variations are only remotely related to
the original phrase or keyword. For example, the term “baseball” in the LC-
QuAD 2.0 benchmark’s question “Which is the international sport governing
body for authority of baseball?” spawned the variations “America’s pastime”,
“ballgame” and “slugger”. The term “slugger” defines “a hard-hitting batter
in baseball” [37] and therefore not the game itself.

Obvious patterns can be observed wrt. names and dates. While names
such as “Simon Baron-Cohen” in the LC-QuAD 2.0 benchmark datasets’
question “What is Loop ID for Simon Baron-Cohen?” usually get shorter
in their variations (“Simon Baron-Cohen”, “Simon B. Cohen” and “S. Baron-
Cohen”) dates written as number will be written out. For example, “2023” in
the StudentQuestions benchmark datasets’ question “Where does the hand-
ball world cup take place this year (2023)?” spawned the variations “twenty
twenty-three”, “two thousand twenty-three” and “variations”.

The last term already points out additional problems in the form of ran-
dom results. These often include parts of the prompts as the term “lyon” from
the WDAquaCore0Questions benchmark datasets’ question “lyon” spawns
the variations “variations”, “synonyms”, “phrases”, “possible terms”, “one line”,
“separated”, “by a” and two empty results.
Last, the LLM sometimes returned more variations than required. While

59

we asked for 3 variations per phrase, GPT-3.5 generated 9 variations for
the term “genre” in the LC-QuAD 2.0 benchmark datasets’ question “who
is the record label and genre of The_Velvet_Underground?” (“variation”,
“synonym”, “phrase”, “category”, “style”, “type”, “kind”, “classification” and
“form”).

The variations generated by GPT-4 were similar to those generated by
GPT-3.5. While deviations in meaning of the generated phrases such as using
the term “atoll” as a synonym for “island” remained, the model did comply
to the given formatting instructions and consistently returned the desired
number of variations for each phrase.

However, GPT-4 on average detected significantly more phrases within
a question than its predecessor. For the question, “On which island is the
HQ location of the Carlsberg Group” GPT-4 extracted 16 different phrases
compared to the three phrases extracted by GPT-3.5.

5.1.2 Question Variation

Overall, GPT-3.5 was again able to generate reasonable variations for most
of the sample questions.

Yet, poorly formulated questions (e.g., questions consisting of only one
word or phrase, questions missing stop words, etc.) such as many of those
found in the WDAquaCore0Questions benchmark dataset often led to unfit
and rather random variations. Take the question “lyon” for example. For this
question, GPT-3.5 generated the variations “What is the city of Lyon known
for?”, “What are some notable features of Lyon?” and “What makes Lyon
unique?”. As discussed earlier, the original question cannot really be defined
as such, and therefore every answer related to the city of Lyon could be clas-
sified as direct. Therefore, one could make the argument that any question
related to the city of Lyon could be classified as a reasonable variation of the
original question. Yet, it is clear that the generated variations strongly limit
the number of possible correct responses to the question.

Reasonable variations on the other hand were often limited to a single
part of the question, i.e. GPT-3.5 only varies one part or phrase of the given
question. See for example the question “What is the architecture firm that
is based in Saint Longinus?” from the LC-QuAD 2.0 benchmark dataset
for which GPT-3.5 generated the variations “What is the name of the archi-
tecture firm located in Saint Longinus?”, “Which architecture firm is based
in Saint Longinus?” and “What is the architecture firm situated in Saint
Longinus called?”.

One reoccurring habit of GPT-3.5 was changing the questions’ tense.

60

LC-QuAD 2.0’s question “What is the position of political office held by a
member of Augustus’ family?” spawned the variations “What political office
did a member of Augustus’ family hold?”, “What position in politics was held
by a member of Augustus’ family?” and “Which political office was occupied
by a member of Augustus’ family?”. As one can see, the generated variations
are all past tense. This habit can be seen as problematic since the original
question implies that a member of the Augustus’ family must currently be
holding a position of political office, while its variations imply that it would
be enough if a member of the Augustus’ family held a position of political
office at any point in time.

Similar to the phrase variation task, GPT-3.5 sometimes fails at exe-
cuting the task by either returning only one variation and adding parts of
the prompt to it or by not following the formatting instructions. In the
WDAquaCore0Questions benchmark sample dataset for example, the ques-
tion “london” only spawned the variation “What are three different ways to
rephrase the word ’London’ in one line, separated by a semicolon?” while
the question “barack obama’s wife name michelle?” only spawned “What is
the name of Barack Obama’s wife, Michelle?\nWhat is the name of Michelle,
Barack Obama’s wife?\n Barack Obama’s wife is named Michelle, right?”

In line with the results of the phrase variation task, GPT-4’s results
mostly resemble those generated by GPT-3.5. Again, the newer model shows
a drastic improvement wrt. to complying with our instructions. Additionally,
GPT-4 followed a more vague approach when creating variations for poorly
phrased questions. For the question “Lyon” in the WDAquaCore0Questions
benchmark sample dataset, GPT-4 generated the variations “What can you
tell me about Lyon?”, “Can you provide information on Lyon?” and “Could
you elaborate on the subject of Lyon?”. Compared to the variations gen-
erated by GPT-3.5 these questions allow for a much larger set of correct
answers and are therefore less likely to exclude correct responses to the orig-
inal question if used instead.

Last, we analyzed the lexical diversity of each question and their varia-
tions to determine whether the GPT-models have a tendency to increase or
decrease the question’s lexical diversity in its variations. For this, the type-
token ratio (TTR) [51] has been computed for the original question, as well
as for each of its variation. Afterward, the mean of each variation’s TTR
has been computed before averaging the results for each benchmark sample
dataset. Table 6 and table 7 shows the average TTR for each benchmark
sample dataset’s questions and their variations generated by GPT-3.5 and
GPT-4.

61

Table 6: Average TTR for each benchmark sample dataset using GPT-3.5.
Benchmark Question V1 V2 V3 Variant Mean
LC-QuAD 2.0 0.993 1 1 1 1
QALD-9 1 1 1 1 1
SimpleQuestions 0.975 0.986 0.986 1 0.991
StudentQuestions 1 1 1 1 1
WDAquaCore0Questions 1 0.980 1 1 0.993

As one can see, using GPT-3.5 the lexical diversity did on average not
differ much across the different benchmark sample datasets nor between the
original questions and their variations. This effect became even stronger
when using GPT-4, where each variation had a lexical diversity score of one.

Table 7: Average TTR for each benchmark sample dataset using GPT-4.
Benchmark Question V1 V2 V3 Variant Mean
LC-QuAD 2.0 0.993 1 1 1 1
QALD-9 1 1 1 1 1
SimpleQuestions 0.975 1 1 1 1
StudentQuestions 1 1 1 1 1
WDAquaCore0Questions 1 1 1 1 1

5.1.3 Question Pseudonymization

Since no specific method to pseudonymize a question has been included in
the prompt, it is hard to determine whether the GPT-models’ are fit for this
task. However, some observations indicate that GPT-3.5 might not prove to
be reliable wrt. question pseudonymization.

First, GPT-3.5 is inconsistent with the removal of words that further
specify the meaning of the question. For example, GPT-3.5 removes the
word “when” from the question “When did Battle of Quiberon Bay happen?”
in the LC-QuAD 2.0 benchmark sample dataset, resulting in the question’s
pseudonymized version “Battle Quiberon Bay happen”. Without the word
“when” the term “happen” in pseudonymized question could not only refer to
a point in time or a time frame but also to other aspects of the battle such
as what happened during it. On the other hand, the pseudonymized version
of the question “How many country citizenship are taken by Antonio José de
Sucre Farell?” still included the phrase “how many” and thereby keeping the
original question’s meaning intact.

Second, phrases indicating relations have also been removed inconsis-
tently. So did the pseudonymized version of the question “What is the foun-

62

dational document of the Soviet Union?” not include the phrase “of the”
while the pseudonymized version of the question did “Which is the inter-
national sport governing body for authority of baseball?” keep the phrases
“..body for” and “..authority of”.

Questions consisting of single terms such as those often found in the
WDAquaCore0Questions benchmark dataset did not change during the ques-
tion pseudonymization process.

GPT-4 seemingly took another approach to execute this task by using
a type of pseudocode reminiscent to query languages, such as SQL. Here
the question “When did Battle of Quiberon Bay happen?” returned “Battle
Quiberon Bay date”, replacing the term “happen” used by GPT-3.5 with the
term “date” which is arguably better suited to capture and convey the original
question’s intention. Similarly to this, the question “How many country
citizenship are taken by Antonio José de Sucre Farell?” now returned “Count
country citizenship Antonio José de Sucre Farell”, replacing the phrase “how
many” with the query-like keyword “count” and therefore formulating a sort
of instruction.

5.1.4 Type Detection

The results of this assessment show that the results obtained from GPT-3.5
differ vastly from those obtained by CBench. Only one of the questions in
the sample datasets was labeled as request, and the question “Is the sex of
anuradha sriram male or female?” has been labeled as a question that can
be answered with either “yes” or “no”. This label is obviously not a suitable
categorization for the question, since it should be answered with either “male”
or “female”. The misclassification might root in a lack of description of how
these individual question types are defined.

We could also observe that all answers generated by GPT-3.5 confirm
to our instruction of only returning the question type label. This makes
GPT-3.5’s result for this task fit to be reliably processed without further
intervention or i.e. in an automated manner, making it fit to be integrated
in a complete KGQA-system.

While again conforming flawlessly to our instructions, the results gener-
ated by GPT-4 are not identical to those generated by its predecessor. The
most notable difference occurred in the WDAquaCore0Questions benchmark
sample dataset. Here GPT-4 failed to classify the question “lyon” and instead
returned the message “The question ’lyon’ is not a properly formed question,
so it doesn’t fit into any of the given question types.” while GPT-3.5 classified

63

this question as a topical question. However, the question “london” which is
arguably as little of a properly formed question as the question “lyon” was
classified as a topical question by GPT-4.

Yet, GPT-4’s results differed far less from the question types detected by
CBench, again indicating the model’s superiority over its predecessor.

A summary of the results of the CBench benchmarking suite, as well
as GPT-3.5’s and GPT-4’s execution of the type detection task for each
benchmark sample dataset, are shown in tables 8 to 10.

Table 8: Number of question types classified by CBench per benchmark
sample dataset.
Type Student Simple QALD-9 LC-QuAD 2.0 WDAquaCore0
What 3 9 2 9 0
When 1 0 0 1 1
Where 1 2 0 0 0
Which 2 1 1 3 2
Who 4 1 5 1 3
Whom 0 0 0 0 0
Whose 0 0 0 0 0
How 1 0 2 1 0
Yes-No 0 2 1 0 1
Requests 2 0 4 0 1
Topical 0 0 0 0 7

Table 9: Number of question types classified by GPT-3.5 per benchmark
sample dataset.
Type Student Simple QALD-9 LC-QuAD 2.0 WDAquaCore0
What 1 6 1 2 1
When 1 0 0 2 1
Where 1 2 0 0 1
Which 2 4 1 4 2
Who 4 1 6 1 3
Whom 0 0 0 0 0
Whose 0 0 0 0 1
How 0 0 0 0 0
Yes-No 0 1 0 0 0
Requests 0 0 1 0 0
Topical 5 1 6 6 6

64

Table 10: Number of question types classified by GPT-4 per benchmark
sample dataset.
Type Student Simple QALD-9 LC-QuAD 2.0 WDAquaCore0
What 3 9 1 8 0
When 1 0 0 2 1
Where 1 2 0 0 0
Which 2 1 1 3 2
Who 4 1 5 1 3
Whom 0 0 0 0 0
Whose 0 0 0 0 0
How 1 0 2 1 0
Yes-No 0 1 1 0 1
Requests 2 0 4 0 1
Topical 0 0 0 0 6

5.1.5 POS Tagging

Upon analyzing the results of this task, we can see that the results obtained
by GPT-3.5 appear to mostly follow the Penn Treebank tagset for the English
language [55]. In total 63 out of the 74 sample questions have been seemingly
tagged using this tagset. Table 11 shows GPT-3.5’s POS tagging result for
the question “What is the foundational document of the Soviet Union?” from
the LC-QuAD 2.0 benchmark sample dataset, which appears to have been
tagged using the Penn Treebank tagset for the English language.

Table 11: GPT-3.5’s POS tagging results for the question “What is the foun-
dational document of the Soviet Union?”.

Word Tag Description
What WP Wh-pronoun
is VBZ Verb, 3rd person singular present
the DT Determiner
foundational JJ Adjective
document NN Noun, singular or mass
of IN Preposition or subordinating conjunction
the DT Determiner
Soviet JJ Adjective
Union NN Noun, singular or mass
? . Sentence-final punctuation

However, for other questions, GPT-3.5 seemingly uses a different type of

65

tagset to tag the questions. An example for this is shown in table 12.

Table 12: GPT-3.5’s POS tagging results for the question “Which is the
Wikimedia category for the category of associated people of Oslo?”.

Word Tag
Which PRON
is VERB
the DET
Wikimedia NOUN
category NOUN
for ADP
the DET
category NOUN
of ADP
associated VERB
people NOUN
of ADP
Oslo NOUN
? PUNCT

Last, GPT-3.5 is seemingly inconsistent when it comes to the alternative
labels themselves. While the labels used to tag the question shown in table
12 have all been capitalized and seemingly abbreviated, the labels shown in
table 13 are presented as fully written out words in lowercase.

Table 13: GPT-3.5’s POS tagging results for the question “washington square
is a story by which American writer”.

Word Tag
washington noun
square noun
is verb
a determiner
story noun
by preposition
which determiner
American adjective
writer noun

GPT-4 again used the Penn Treebank tagset for most of the questions
(59 out of 74).

66

Yet, every question that was not tagged using the Penn Treebank tagset did
follow the pattern shown in table 13, that is fully writing out the different
parts of speech instead of using abbreviations.

While these results indicate that the GPT-models are in fact able to apply
POS-tagging to a question, its usage of tagsets is inconsistent. Therefore,
further specifying the approach that should be taken by the models such
as defining which tagset should be used might enable the LLMs to reliably
apply POS-tagging to questions in the process of KGQA.

5.1.6 Named Entity Recognition

While the entities recognized by GPT-3.5 mostly seemed pretty reasonable,
the model again sometimes failed to follow the given formatting instruction.
The question “Show me all songs from Bruce Springsteen released between
1980 and 1990.” from the QALD-9 benchmark sample dataset spawned the
result “Named entities in the question ’Show me all songs from Bruce Spring-
steen released between 1980 and 1990.’ are:\n \n- Bruce Springsteen (person)
\n- 1980 (date) \n- 1990 (date)”.
On the other hand, for the question “lyon” in the WDAquaCore0Questions
benchmark sample dataset, GPT-3.5 was not able to detect any named en-
tities and instead returned the output “There are no named entities in the
question ’lyon’.” while simultaneously returning “London” as the named en-
tity for the question “london”.

In order to provide an overview of how GPT-3.5 performs, wrt. the named
entity recognition task, its results for the LC-QuAD 2.0 benchmark sample
dataset are shown in table 5.1.6.

67

Question Named Entities
What is the foundational document
of the Soviet Union?

foundational document, Soviet
Union

On which island is the HQ location
of the Carlsberg Group?

island, HQ, location, Carlsberg
Group

What volcanic eruption occurred in
the Dutch East Indies?

volcanic eruption, Dutch East In-
dies

What is the architecture firm that is
based in Saint Longinus?

architecture firm, Saint Longinus

who is the record label and genre of
The_Velvet_Underground?

The_Velvet_Underground

What is Loop ID for Simon Baron-
Cohen?

Loop ID, Simon Baron-Cohen

What is the religious affiliation of
the victim of the Battle of Stalin-
grad?

religious affiliation, victim, Battle of
Stalingrad

What time did Aarhus serve as an
adminstrative body at Rostock?

Aarhus, Rostock

What is the position of political of-
fice held by a member of Augustus’
family?

position, political office, member,
Augustus, family

What are the beliefs of the Chinese
Communist Party’s Chair, Hu Jin-
tao?

beliefs, Chinese Communist Party,
Chair, Hu Jintao

Which is the {international sport
governing body} for {authority} of
{baseball}?

- international sport governing body
- authority - baseball

What are the plays of the organizer
of the UMB World Three-cushion
Championship?

plays, organizer, UMB World
Three-cushion Championship

Which is the Wikimedia category
for the category of associated peo-
ple of Oslo?

Wikimedia, Oslo

When did Battle of Quiberon Bay
happen?

Battle of Quiberon Bay

How many country citizenship are
taken by Antonio José de Sucre
Farell?

Antonio José de Sucre Farell

Again, GPT-3.5’s troubles with conforming to the provided formatting

68

instructions or seemingly random errors in execution did not occur when
using GPT-4.

Also, GPT-4 the problem of not being able to detect named entities for
certain questions did occur again. This time, however, GPT-4 was only
unable to detect entities in the WDAquaCore0Questions question “part of a
thunderstorm”.

5.1.7 Entity and Relationship Detection

GPT-3.5 was again able to provide seemingly good results, such as for the LC-
QuAD 2.0 benchmark’s question “How many country citizenship are taken by
Antonio José de Sucre Farell?”, for which it returned “Entities: Antonio José
de Sucre Farell, country citizenship” and “Relations: taken by”. However,
most results were plagued by various problems.

Again, the model often did not comply to the given instructions, wrt.
formatting its answer. To the question “Which is the international sport
governing body for authority of baseball?” its answer has been returned as
“Entities: \n- international sport governing body \n-authority \n-baseball
\n\nRelations:\n-governing body for authority\n-authority of baseball”.

To some questions, such as the question “who is the record label and genre
of The_Velvet_Underground?” from the LC-QuAD 2.0 benchmark sample
dataset, the answer did not contain any relationships at all.

Also, GPT-3.5 seemingly has a habit of adding descriptions or labels
of some sort to some of its answers despite being asked to not add any
comments. An example for this would be the question “What is Loop ID for
Simon Baron-Cohen?” for which GPT-3.5 generated the answer “Loopd ID
- UNKNOWN\n\nPERSON - UNKNOWN”. These descriptions sometimes
include named entities as well, such as in the relationship “- between (relation
between 1980 and 1990)” for the question “Battle Quiberon Bay happen” from
the LC-QuAD 2.0 benchmark sample dataset. Yet, named entities might
be added to relationships without the addition of any descriptions as well.
An example for this is the question “what is the producing company of the
movie lamhe” from the SimpleQuestions benchmark sample dataset. For this
question, GPT-3.5 returned “’producing company of’, ’movie lamhe” ’ as the
named entities and “” as their relationships.

However, the addition of named entities is not limited to relations but
includes other named entities as well. Take for example the question “What
is the foundational document of the Soviet Union?” from the LC-QuAD 2.0
benchmark sample dataset for which GPT-3.5 determined the named entities
“Foundational document; Soviet Union; named entities”.

Also, GPT-3.5 sometimes added brackets or quotations to its results,

69

which can be observed for example for the question “Who is the president
of Eritrea?” from the QALD-9 benchmark sample dataset. Here, GPT-3.5
returned the entities “[’president’, ’Eritrea’]” and the relationships “[’is the
president of’]”.

Besides misbehavior wrt. formatting, GPT-3.5 also produced other ar-
tifacts. For some questions such as the question “What is the most re-
cent MineCraft Java Edition version?” the model added some sort of map-
ping between the entities and their relationships to its output (“MineCraft
Java Edition version - most recent\nEntities: MineCraft Java Edition ver-
sion\nRelations: most recent”).

Last, for questions with missing relations such as those found in the
WDAquaCore0Questions benchmark, GPT-3.5 might make up those rela-
tions itself. Take for example the question “tagesschau website” for which
the LLM generated the named entities “tagesschau” and “website”, and the
relations “tagesschau is a website”.

Using GPT-4 to detect named entities and their relationships resulted in
most of the problems mentioned before not occurring at all. However, a few
of the results could be assessed as wrong. In these cases, potential entities
were returned as part of the relationships or relationships were returned as
entities. Take for example again the question “Battle Quiberon Bay happen”
for which the term “happen” was returned as an entity, or the question “what
is the producing company of the movie lamhe” for which GPT-4 returned
the relationship “is the producing company of”.

Despite this, most entities and relationships detected by GPT-4 were of
similar quality as those returned by GPT-3.5 without any of the problems
mentioned before.

These results show that GPT-4 is for the most part capable of detecting
acceptable entities and relationships within a question, indicating the models’
advantage over its predecessor.

5.1.8 Semantic Parsing

Upon analyzing the results, it becomes clear that GPT-3.5 did not have an
easy time upon executing this task. While able to generate a logical form
of some sort, a set of entities and a set of actions. The model was vastly
inconsistent in how it formulated these sets.

Take for example GPT-3.5’s results for the LC-QuAD 2.0 benchmark
sample dataset. While the logical form for the question “What is the foun-
dational document of the Soviet Union?” was formulated as “(document:
foundational, entity: Soviet Union)”, the logical form of the question “On

70

which island is the HQ location of the Carlsberg Group?” reads itself as
“locate_hq(Carlsberg_Group, HQ_location)”. Besides the syntactical dif-
ference, the logical form lacks the action necessary to clearly state the ques-
tion’s intent.

This becomes even clearer when comparing the entities and actions gen-
erated for the question. The first question’s entities generated by GPT-3.5
are “document” and “Soviet Union” while its actions are “is” and “founda-
tional”. Seeing this it one could assume that both actions might need to
be combined (e.g, “is is foundational”) in order to properly link the entities
in the logical form. This approach was taken for the second question’s set
of actions, containing only of the action “locate_hq” which properly conveys
the question’s intent when combined with its entities “Carlsberg_Group” and
“HQ_location”.

In line with the previous tasks, GPT-3.5 also failed to properly execute
the task at all times, using inconsistent notations and producing random re-
sults for certain questions, such just repeating “(and ” for the question “Give
me all Austrian female actors aged over 50 years that are also dancers or
singers.” in the StudentQuestions benchmark sample dataset.

While some of GPT-4’s results resemble the ones of its predecessor, most
of them follow a different pattern.

Take again the question “What is the foundational document of the Soviet
Union?”. While different, “HQ_Location(Carlsberg_Group, X), Island(X)”,
the logical form generated by GPT-4 still forms a function surrounding the
entity “Carlsberg_Group”. However, this time it includes a function “Is-
land(X)” which resembles a new entity detected by the model. Additionally,
the LLM also added “is” and “on which” to the previous set of actions.

While these differences are notable, the biggest difference compared to
GPT-3.5 was that most of the logical forms follow a query-like structure.
Take again the question “What is the foundational document of the Soviet
Union?”. The logical form generated by GPT-4 reads as “SELECT (foun-
dational document) WHERE (country = ’Soviet Union’)”, with its corre-
sponding entities “Foundational document” and “Soviet Union”. Note that
the actions corresponding to this question simply represent basic keywords
found in most query languages (“SELECT, WHERE”).

Despite most logical forms generated by GPT-4 following this query-like
structure, its results are still too inconsistent in their form for to be graded
fit for the task of “Semantic Parsing”. To generate reliable results, one might
include further instructions as to how the LLM should execute the task in
his prompt.

71

5.2 Phrase Mapping
Since the tasks within the “Phrase Mapping” step of the KGQA-process differ
vastly from those within the “Question Analysis” step, the results differ as
well.

5.2.1 Direct Phrase Mapping

Upon analyzing its results, some patterns can be observed in GPT-3.5’s be-
havior.

The most notable observation was made wrt. Wikidata. Here, GPT-
3.5 tends to assign mostly Q-identifiers to the questions’ resources while
rarely using P-identifiers. Hence, GPT-3.5 assumes that most resources are
represented as items rather than properties.

Next, GPT-3.5 was again inconsistent with its output’s format. Some of
the identifiers generated contain unwanted punctuation. Take for example
the question “What time did Aarhus serve as an adminstrative body at Ro-
stock?” from the LC-QuAD 2.0 benchmarks sample dataset. For the term
“start time” GPT-3.5 generated the identifier “Q186081.”. Since no resource
identifier for Wikidata contains punctuation and since removing punctuation
is a task that can be easily implemented, we removed all punctuation from
the returned resource identifiers before retrieving their labels.

Additionally, some of the generated resource identifiers such as the re-
source identifier for “HQ location” (“Q18674726”) in the LC-QuAD 2.0 bench-
mark sample dataset’s question “On which island is the HQ location of the
Carlsberg Group?” do not exist on Wikidata.

The remaining resource identifiers generated range from being completely
unrelated to the original phrase or term (e.g., “Q2074737” or “municipality
of Spain” for “located on island”, and “Q27020041” or “sports season” for
“based in”) to being partially correct (e.g.,“Q8072” or “volcano” for “volcanic
eruption”). Even phrases for which Wikidata definitely has a corresponding
resource identifier such as “Battle of Stalingrad” (“Q38789”) will get linked
to totally arbitrary resource identifiers by the model (“Q16709” which does
not exist).

To obtain the labels of the resource identifiers generated for DBpedia
we used the query shown in listing 38 where cDBID again represents the
resource identifier whose label we want to retrieve.

SELECT ?label
WHERE {

’cDBID’ rdfs:label ?label.

72

FILTER(LANG(?label)="en").
}

Listing 38: Query used to retrieve resource identifier labels from DBpedia.

Note that we did not check the DBpedia resource identifiers for added punctu-
ation. This has not been done since resource identifiers for DBpedia already
include punctuation, therefore limiting the possibilities of automatic removal
of punctuation. However, left angle brackets and right angle brackets were
added to the identifiers, since the GPT-model did not add them itself.

The generated identifiers for the two benchmark sample datasets show
that GPT-3.5 performs even worse on DBpedia than on Wikidata.

Most of the generated resource identifiers returned no result at all when
querying their label.

For the LC-QuAD 2.0 benchmark sample dataset, only the phrase “lo-
cated on island” in the question “On which island is the HQ location of the
Carlsberg Group” returned “dbo:island” which is the resource identifier for
“island”. For the QALD-9 benchmark sample dataset, on the other hand,
none of the resource identifiers generated by GPT-3.5 returned a label.

In line with the results of the previous tasks, GPT-4 had fewer problems
with conforming to our formatting instructions. However, GPT-4 did occa-
sionally add a text in front of the resource identifier stating that it is the
resource identifier for the given term or question.

While GPT-3.5 consistently made up resource identifiers, its successor of-
ten stated that the KG in question does not have a specific resource identifier
for the given phrase or term. While this might seem like an improvement, a
few problems remained.

First, Wikidata would still link wrong resource identifiers to certain phrases
or terms. For example, for the term “Communist Party of China” GPT-4
generated the Wikidata resource identifier “Q7838” which represents the lan-
guage Swahili. Furthermore, GPT-4 still made up resource identifiers that
do not exist, such as “Q294466” for the term “chairperson”. Last, some of the
terms or phrases for which GPT-4 states that no resource identifier exists
for the given KG do in fact have a corresponding resource identifier on said
KG. This was for example the case with “Antonio José de Sucre”. While the
politician has in fact a specific resource identifier for Wikidata (Q189779)
the LLM stated that this was not the case.

On the other hand, GPT-4 generated significantly more P-identifiers than
its predecessor.

73

5.2.2 Global Phrase Mapping

When it comes to DBpedia, GPT-3.5 seemingly starts adding or changing
numbers of its resource identifiers in order to forcefully generate exactly 10
results. Take a look at table 14 for instance, which shows the resource iden-
tifiers generated for the question “What is the foundational document of the
Soviet Union?”. While the first five identifiers represent real resources found
on DBpedia, the following 5 identifiers are simply variations of the previous
identifiers containing numbers.

Table 14: Resource identifiers generated by GPT-3.5 for the question “What
is the foundational document of the Soviet Union?”.
Resource identifier
http://dbpedia.org/resource/Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/Declaration_of_the_Creation_of_the_USSR
http://dbpedia.org/resource/1924_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1936_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1977_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1925_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1931_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1937_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1947_Constitution_of_the_Soviet_Union
1http://dbpedia.org/resource/1978_Constitution_of_the_Soviet_Union

Upon trying to query the generated identifiers’ labels, none of them re-
turned any result.

For Wikidata, GPT-3.5 again showed various strange behaviors.
First, the model sometimes added text before and after the identifier,

such as enumerations. The resource identifiers for the question “What is
the foundational document of the Soviet Union?” from the LC-QuAD 2.0
benchmark sample dataset were preceded by the letter A followed by the
numbers 1 to 10, and a colon. Since the formulation of Wikidata’s identifiers
is very strict and simple, we isolated all Q- and P-identifiers from the LLMs’
results before querying the resource identifiers’ labels.

Similar to the direct phrase mapping results, GPT-3.5 would often use
one of the generated identifiers, increase its number by one, and use the new
identifier as a new result. Take for example the resource identifiers for the
question “What is the foundational document of the Soviet Union?” as shown
in table 15. While the first two resource identifiers differ significantly, the

74

following 8 identifiers are simply increments of the previous identifier, and
therefore vary strongly in context.

Table 15: Resource identifiers and their label for the question “What is the
foundational document of the Soviet Union?” generated by GPT-3.5.

Resource identifier Label
NA NA
A1: Q1321 Spanish
A2: Q1860 English
A3: Q1861 Bangkok
A4: Q1862 Wolin
A5: Q1863 Andorra le Vella
A6: Q1864 NA
A7: Q1865 Kuala Lumpur
A8: Q1866 Bangka Belitung Islands
A9: Q1867 Taipei
A10: Q1868 Paul Otlet

On the same note as adding enumerations, GPT-3.5 also sometimes did
add labels to the generated resource identifiers. An example for this is shown
in table 16 which shows the resource identifiers for the question “who is the
record label and genre of The_Velvet_Underground?” and their labels.

Table 16: Resource identifiers and their label for the question “who is the
record label and genre of The_Velvet_Underground?” generated by GPT-
3.5.

Resource identifier Label
Q7366 (The Velvet Underground) song
P264 (record label) record label
P136 (genre) genre
Q334 (rock music) Singapore
Q18953 (experimental rock) Peter DeLuise
Q18963 (art rock) Danish Touringcar Championship
Q18967 (proto-punk) National Lampoon’s Van Wilder
Q18968 (noise rock) James DeGale
Q18969 (avant-garde) Bicknell’s Thrush
Q18970 (psychedelic rock) Ambon City

While these labels give us a hint of what part of the question was used to
construct each resource identifier, they also show that most of the generated

75

resource identifiers do not fit their corresponding phrase or term at all.
For some questions, such as the question “Which is the Wikimedia cat-

egory for the category of associated people of Oslo?” in the LC-QuAD 2.0
benchmark sample dataset, GPT-3.5 just returned the same resource identi-
fier (“Q1207682”) 10 times.

For other questions however, the results are returned in some sort of
logical form. Take for example the question “what is destroâ€™s gender?”
from the SimpleQuestions benchmark sample dataset. For this question,
GPT-3.5 returned “Q131336: P21 (gender) of Q370346” and “Q370346: P21
(gender) of Q131336”. Both results were returned five times.

Also, for the question “who won the eurovision song contest 2016” in the
WDAquaCore0Questions benchmark sample dataset, the resource identifier
returned was followed by its Wikidata URL (“Q180684:
https://www.wikidata.org/wiki/Q180684”). Again, this identifier has been
returned 10 times.

Last, GPT-3.5 sometimes returned all identifiers in one line such as
“Q1048, Q1048, Q1048, Q1048, Q1048, Q1048, Q1048, Q1048, Q1048, Q1048”
for the LC-QuAD 2.0 benchmark sample dataset’s question “On which island
is the HQ location of the Carlsberg Group?”, and often included empty re-
sults. Adjustments for this have been made in the code used to retrieve the
generated resource identifiers’ labels.

Compared to GPT-3.5, GPT-4 did not tend to just increase or change
the numbers found in its resource identifiers. For the question “What is
the foundational document of the Soviet Union?” from the LC-QuAD 2.0
benchmark sample dataset, for example, GPT-4 was able to generate a larger
variety of resource identifiers related to the question. These identifiers are
shown in table 17.

76

Table 17: Resource identifiers generated by GPT-4 for the question “What
is the foundational document of the Soviet Union?”.
Resource Identifier
http://dbpedia.org/resource/Soviet_Union
http://dbpedia.org/resource/Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1924_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1936_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/1977_Constitution_of_the_Soviet_Union
http://dbpedia.org/resource/Founding_of_the_Soviet_Union
http://dbpedia.org/resource/History_of_the_Soviet_Union
http://dbpedia.org/resource/Politics_of_the_Soviet_Union
http://dbpedia.org/resource/Government_of_the_Soviet_Union
1http://dbpedia.org/resource/Legal_history_of_the_Soviet_Union

For Wikidata, however, GPT-4 still sometimes failed to comply with the
given formatting instructions. For the same question, GPT-4 added what it
believes to be the identifiers name in front of it (e.g.,“Soviet Union - Q15180”).

However, the resource identifiers generated by GPT-4 were as likely to be
wrong as those generated by its predecessor, despite the model stating their
label in front of them. An example for this can be found in the same question,
where GPT-4 used the resource identifier “Q1237733” for the term “Declara-
tion of the Creation of the USSR”. Yet, this resource identifier represents the
German artist “Hans Kloss”.

Similar to the direct phrase mapping task, GPT-4 acknowledged if it be-
lieved that certain resource identifiers do not exist for the KG in question.
An example for this would be the question “What is Loop ID for Simon
Baron-Cohen?” from the LC-QuAD 2.0 benchmark sample dataset. For this
question, GPT-4 stated that the term “Loop ID” does not have a correspond-
ing resource identifier on Wikidata and instead returned other identifiers for
Simon Baron-Cohen, including his supposed ORCID and his Wikidata iden-
tifier (“Q334029”). However, both were incorrect, with the latter instead
representing the Battle of Bunker Hill.

The lack of correct resource identifier generated by both GPT-3.5 and
GPT-4 using either single phrases or whole questions indicate that the LLMs
lack knowledge about the underlying KGs and are not well suited to execute
phrase mapping tasks in a KGQA-context.

77

5.3 Query Construction
Upon analyzing the results of the “Query Construction” phase, the differences
between GPT-3.5 and GPT-4 became even more apparent. This section
is therefore aimed at describing how the models differ wrt. constructing
SPARQL queries to answer natural language questions.

5.3.1 Direct Construction

While GPT-3.5 was able to generate syntactically correct queries for almost
all questions across all of the benchmark sample datasets, most of these
queries did not return any result when executed. However, most of the
returned results were correct answers to the generated queries. Table 18
shows the number of queries for each category across all benchmark sample
datasets.

Table 18: GPT-3.5’s results of direct query construction by category.
Benchmark Executable Empty Correct
StudentQuestions 12 9 2
SimpleQuestions 14 11 3
QALD-9 10 8 2
WDAquaCore0Questions 15 8 6
LC-QuAD 2.0 (Wikidata) 15 14 0
LC-QuAD 2.0 (DBpedia) 14 11 2
Sum 80 61 13

One notable observation was that most of the correct queries generated
by GPT-3.5 return the exact same answer as the benchmark’s sample so-
lution query. Take for example the question “Give me a list of all lakes in
Denmark.” from the QALD-9 benchmark for which the results of both the
query generated by GPT-3.5, and the sample solution query return the same
results in the identical order. While this might lead to the assumption that
the LLM already knew the solution of the sample solution query due to the
benchmark’s popularity, a comparison of the two queries shown in listing 39
and listing 40 show that this was seemingly not the case. Hence, GPT-3.5
is in fact capable of generating proper SPARQL-queries for at least some
of the most popular benchmarks’ questions without the aid of additional
information.
SELECT ?lake
WHERE {
?lake rdf:type dbo:Lake ;

78

dbo:country dbr:Denmark .
}

Listing 39: GPT-3.5 generated query to answer the question “Give me a list
of all lakes in Denmark.”.

SELECT DISTINCT ?uri WHERE {
{

?uri a <http://dbpedia.org/ontology/Lake> ;
<http://dbpedia.org/ontology/country> <http://dbpedia.org/

resource/Denmark>
} UNION {

?uri a <http://dbpedia.org/class/yago/LakesOfDenmark>
}

}

Listing 40: Sample solution query to answer the question “Give me a list of
all lakes in Denmark.”.

Looking at GPT-4, the results for this task show that while the number of
syntactically correct queries generated by GPT-4 was far below that of GPT-
3.5, the number of queries resulting in nothing also decreased significantly.
By far the biggest improvement however can be seen in the number of queries
yielding the correct result, going from 13 correct queries generated by GPT-
3.5 up to 24 correct queries generated by GPT-4. A summary of results of
GPT-4 in the context of direct query generation is shown in table 19.

Table 19: GPT-4’s results of direct query construction by category.
Benchmark Executable Empty Correct
StudentQuestions 10 5 3
SimpleQuestions 14 7 5
QALD-9 13 5 8
WDAquaCore0Questions 11 4 5
LC-QuAD 2.0 (Wikidata) 1 12 1
LC-QuAD 2.0 (DBpedia) 13 10 3
Sum 62 43 24

5.3.2 URI-Fed Construction

While one could assume that it would be easier for the LLMs to generate
fitting SPARQL-queries if supplied with the correct resource identifiers, this
was seemingly not the case. Despite the models’ high success rate, wrt.

79

generating syntactically correct queries in the direct query construction task,
the number of syntactically incorrect queries decreased slightly when the
correct resource identifiers were supplied to the LLMs. However, the number
of queries returning no result significantly decreased, indicating an increase
in the models’ accuracy when constructing SPARQL-queries. Most notably,
however, most of the SPARQL-queries generated by GPT-3.5 that did return
a result can be considered correct. Therefore, GPT-3.5 performs significantly
better at generating fitting SPARQL-queries when being supplied with the
correct resource identifiers. Table 20 again shows the number of queries for
each category across all benchmark sample datasets.

Table 20: GPT-3.5’s results of URI fed query construction by category.
Benchmark Executable Empty Correct
StudentQuestions 14 4 10
SimpleQuestions 15 2 13
QALD-9 10 2 1
WDAquaCore0Questions 15 8 3
LC-QuAD 2.0 (Wikidata) 15 8 7
LC-QuAD 2.0 (DBpedia) 8 7 1
Sum 76 31 35

While the number of syntactically correct queries generated by GPT-3.5
decreased slightly when supplying the model with the correct resource iden-
tifiers, GPT-4’s results improved in every category. Not only did the number
of syntactically correct queries increase, but the number of empty queries
almost halved when the correct resource identifiers were supplied. Last, also
the number of queries returning the correct result increased drastically. A
summary of GPT-4’s results of the URI-fed query construction task is shown
in table 21.

Table 21: GPT-4’s results of URI fed query construction by category.
Benchmark Executable Empty Correct
StudentQuestions 12 2 10
SimpleQuestions 14 1 13
QALD-9 13 4 9
WDAquaCore0Questions 15 5 7
LC-QuAD 2.0 (Wikidata) 15 6 6
LC-QuAD 2.0 (DBpedia) 9 7 2
Sum 78 25 47

80

5.3.3 Template-Based Construction

While supplying resource identifiers to the LLMs drastically improved the
SPARQL-queries generated by GPT-3.5, the usage of SPARQL-templates
had the opposite effect. While the number of syntactically correct or empty
queries decreased only slightly, almost none of the queries returning a result
returned the correct result. The constantly reoccurring problem was that
GPT-3.5 was unable to replace the templates’ slots by the correct resource
identifiers. For the question “What is the foundational document of the
Soviet Union?” in the LC-QuAD 2.0 benchmark sample dataset for example,
the resulting query shown in listing 41 follows the SPARQL-template for a
simple question, yet none of the slots have been replaced.
SELECT DISTINCT ?x WHERE {
?x ?p ?y .
?x rdf:type ?c .

}

Listing 41: Template-based SPARQL-query generated by GPT-3.5 to answer
the question “What is the foundational document of the Soviet Union?”.

One could therefore imagine that the LLM might need to be supplied with
additional instructions of how to fill in the supplied SPARQL-template in
order to generate more fitting queries.

A summary of the results of the template-based query construction task
using GPT-3.5 is shown in table 22.

Table 22: GPT-3.5’s results of template-based query construction by cate-
gory.

Benchmark Executable Empty Correct
StudentQuestions 11 7 0
SimpleQuestions 14 7 0
QALD-9 10 2 1
WDAquaCore0Questions 14 1 1
LC-QuAD 2.0 (Wikidata) 11 7 0
LC-QuAD 2.0 (DBpedia) 10 2 1
Sum 70 26 3

The results for GPT-4 were in line with the results of the previous sec-
tions. Again, the number of correct queries increased drastically, while the
number of queries not returning a result decreased. A summary of GPT-4’s
results for the task of template-based query construction is shown in table
23.

81

Table 23: GPT-4’s results of template-based query construction by category.
Benchmark Executable Empty Correct
StudentQuestions 9 8 1
SimpleQuestions 15 11 2
QALD-9 13 5 5
WDAquaCore0Questions 14 2 8
LC-QuAD 2.0 (Wikidata) 14 12 1
LC-QuAD 2.0 (DBpedia) 14 10 3
Sum 79 48 20

However, upon inspecting the generated queries, it is unclear whether
GPT-4 does in fact make use of the provided SPARQL-template or if it
generates the queries itself. Again, take a look at the query generated for
the question “What is the foundational document of the Soviet Union?” from
the LC-QuAD 2.0 for Wikidata shown in listing 42.

SELECT DISTINCT ?document ?documentLabel WHERE {
wd:Q15180 wdt:P457 ?document.
SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_

LANGUAGE],en". }
}

Listing 42: Template-based SPARQL-query generated by GPT-4 to answer
the question “What is the foundational document of the Soviet Union?”.

While returning a result that can be considered correct, the query does not
hold much similarity to the SPARQL-template provided.

5.3.4 URI-Fed Template-Based Construction

As expected, supplying the correct resource identifiers to the LLM did not
improve its performance, since the problem of it being unable to replace the
slots in the SPARQL-templates still remained. Supplying the correct resource
identifiers to GPT-3.5 even worsened its performance, leading to even less
executable queries and only one query returning the correct answer. Table 24
shows GPT-3.5’s results of the URI-fed template-based query construction
task.

82

Table 24: GPT-3.5’s results of URI-fed template-based query construction
by category.

Benchmark Executable Empty Correct
StudentQuestions 10 8 1
SimpleQuestions 10 9 0
QALD-9 10 7 1
WDAquaCore0Questions 10 10 0
LC-QuAD 2.0 (Wikidata) 12 12 0
LC-QuAD 2.0 (DBpedia) 11 10 0
Sum 63 56 1

Contrary to its predecessor, GPT-4’s performance when using SPARQL-
templates did increase significantly once the model was supplied with the
correct resource identifiers. With the number of queries returning correct
answers being more than twice the number of correct queries generated by
GPT-3.5, it is clear that the problems GPT-3.5 faced when being instructed
to use a SPARQL-template do not hinder GPT-4 similarly. However, with
the number of syntactically correct, empty and correct queries being close for
both the URI-fed construction, and the URI-fed template based construction
task, the suspicion that GPT-4 might simply ignore the provided templates,
raised in the previous section, cannot be neglected. The summary of GPT-
4’s results for the URI-fed template-based query construction task is shown
in table 25.

Table 25: GPT-4’s results of URI-fed template-based query construction by
category.

Benchmark Executable Empty Correct
StudentQuestions 14 1 13
SimpleQuestions 12 1 11
QALD-9 13 5 8
WDAquaCore0Questions 13 4 3
LC-QuAD 2.0 (Wikidata) 13 5 8
LC-QuAD 2.0 (DBpedia) 12 11 1
Sum 77 27 44

5.4 Technical Performance
Besides issues such as the GPT-models not conforming to the given instruc-
tions, other problems wrt. reliability occurred frequently during this study.
Most of these problems came in the form of errors, such as the error for

83

failed request to the OpenAI API (Error 503) or the error for when the host
api.openai.com could not be resolved.

Additionally, GPT-4 often did not respond to its requests. Yet, the LLM
did not return any error messages in these cases. While this behavior was
mostly limited to the questions in the WDAquaCore0Questions benchmark
sample dataset, it strongly impacts the LLM’s reliability when used in loops
or being nested in larger problems, since these would not stop their opera-
tions.

Aside from the evaluations of the models’ generated content and their
stability, we also recorded the execution time for each task. This means that
for each sample benchmark dataset, the time it took each LLM to execute the
given task across all questions was recorded. The different models’ average
execution time per question for each task is shown in table 26.

Table 26: Average execution time per question for each task in the KGQA-
process (in seconds).

Task GPT-3.5 GPT-4
Phrase variation 19.449 30.202
Question variation 1.643 5.331
Question pseudonymization 0.652 1.768
Type detection 0.487 1.036
POS tagging 1.86 4.762
Named entity recognition 0.757 1.682
Entity and relationship detection 1.071 2.321
Semantic parsing 3.679 3.963
Direct phrase mapping 2.123 4.402
Global phrase mapping 3.63 11.097
Direct construction 2.97 6.949
URI-fed construction 2.563 5.656
Template-based construction 2.564 5.956
URI-fed template-based construction 2.564 5.682
Average 3.287 6.486

Looking at these results, one can see that despite its lackluster stability,
GPT-4 executed the different task at almost twice the speed of its predeces-
sor.

While the task of phrase variation required a seemingly disproportional
time to be executed, especially when compared to the question variation
task, it must be noted that while each question in the question variation task

84

received only three variations in total, each question in the phrase variation
task received three variations for each phrase within the question. Therefore,
the task of phrase variation naturally requires more time to be executed than
the task of varying the question, for example.

6 Limitations
The results of this study show that OpenAI’s GPT-3.5 and GP-4 based mod-
els perform drastically differently wrt. KGQA-sub-tasks.

When it comes to simple natural language processing tasks in the KGQA-
process such as phrase variation, type detection or POS tagging, both GPT-
models performed rather well. This might be to be expected due to the fact
that these models have been developed to succeed on exactly such tasks.
However, we were able to observe some inconsistencies wrt. some of these
tasks, such as using different tag sets in the POS tagging task. We do believe,
however, that these artifacts can be controlled if sufficient information such
as which tag set to use and a detailed instruction on how to execute the
given task would be supplied to the model via the prompt. Regardless,
GPT-3.5’s arguably biggest weakness lied in its inconsistency and instability.
Failing to conform to the given formatting instructions drastically decreases
the model’s potential value for being implemented in real-life applications,
such as publicly available KGQA-systems. While the problem still occurred
when using GPT-4, it did so at a much smaller scale, making the newer model
much more reliable in this regard. Here it must be noted that OpenAI now
allows users to fine-tune GPT-3.5 by enabling developers to customize the
model to their needs, achieving improved reliability and more reliable output
formatting, hence directly counteracting the observed issues [4]. At the time
of writing, the ability to fine-tune the GPT-4 model has been announced, jet
not enabled.

On the other hand, both GPT-3.5 and GPT-4 were unable to reliably
link keywords or phrases to their corresponding resource identifiers in the
underlying KGs. This could be explained by the models simply lacking suf-
ficient knowledge about most resource identifiers in the chosen KGs (i.e.,
resource identifiers that have not been commonly used in example queries).
With most resource identifiers being either unrelated to the original term or
phrase or non-existent, it is safe to say that neither GPT-3.5 nor GPT-4 are
suited for Phrase Mapping tasks, as described by Diefenbach et al. [17].

Very different results were observed during the effort of using the GPT-
models to construct SPARQL-queries. Here, GPT-3.5 did not perform well
when constructing SPARQL-queries without additional information besides

85

the question to be answered. Once supplied with the correct resource iden-
tifiers needed to answer the question, the model’s results improved signif-
icantly. However, these results were still far from astonishing. Supplying
SPARQL-templates to the model even worsened the quality of the generated
queries, even once a SPARQL-template and the necessary resource identifiers
were given to the LLM. From the generated queries, it can be assumed that
GPT-3.5 was not able to fill out the given templates. These results indicate
that using GPT-3.5 should not necessarily be considered over other methods
to generate SPARQL-queries. GPT-4 on the other hand outperformed GPT-
3.5 in every approach taken to generate SPARQL-queries using it. However,
since the LLM delivered similar results when using SPARQL-templates and
when not and the large difference between the given templates and the gen-
erated queries, we have reason to believe that GPT-4 might not have used
the given templates at all when generating queries. Despite this, GPT-4 per-
formed well enough for us to believe that the LLM has potential to be used
in the query construction task within the KGQA-process.

Besides the LLMs’ struggles to conform to instructions mentioned before,
various problems wrt. the API’s stability strongly limit the models’ poten-
tial use in applications requiring high degrees of reliability, such as publicly
available KGQA-systems.

Last, while certain questions such as many of those found in the WDAqua-
Core0Questions benchmark propose problems for KGQA-systems as a whole,
we did not observe any patterns indicating that certain question types are
better suited to evaluate LLM-based KGQA-systems over others.

Despite these findings seemingly strong indication of a significant superi-
ority of GPT-4 over its predecessor and for which tasks in the KGQA-process
these LLMs could be reasonably used, they must be considered with care.
As Chen et al. noted, one should closely monitor the behavior of these LLMs
as their performance wrt. various tasks can change substantially, even over
a short time frame [12].

Nonetheless, the results of this study add a valuable foundation to the
still scarce body of literature related to the usage of LLMs in KGQA.

7 Conclusion and Further Research
Evaluating both GPT-3.5 and GPT-4 over multiple tasks commonly found
in KGQA-systems showed that both GPT-3.5 and GPT-4 yielded promising

86

results, wrt. NLP tasks. When it comes to linking keywords and phrases
to the resource identifiers of an underlying KG, neither of the two models
showed any sign of being suited for this task. While GPT-3.5 struggled with
the creation of SPARQL-queries to answer natural language questions, GPT-
4 showed a large improvement and could be considered a viable option for
this task. However, both models struggled with issues related to reliability
in the form of following the given instructions and the stability of OpenAI’s
API.

Evaluation of the models on different samples of popular benchmark
datasets showed that the LLMs are not particularly challenged by any spe-
cific question type, but rather by poorly formulated questions and ones that
hardly resemble a question at all.

While a KGQA-system consisting completely of GPT-3.5 or GPT-4 in-
stances seems unreasonable following these results, LLMs can still be con-
sidered viable options for certain tasks in the KGQA-process, leaving room
for further studies in this field. Future work should therefore consider the
following aspects.

First, due to the varying quality of benchmark questions a set of less am-
biguous questions that leave little to no room for misinterpretation should
be used when employing GPT models in the KGQA context. This point
becomes especially relevant if no context narrowing down the scope of pos-
sible interpretations and therefore possible answers is being provided to the
model.

Second, researchers should take into account the instability of the GPT
models when conducting their work. Although it can be expected that popu-
lar models such as GPT-3.5 and GPT-4 will become more stable and reliable
as time goes on, other alternatives able to counteract the problems we en-
countered in this study could consist of using locally ran LLMs, such as
LLaMa [56].

Given the general and differentiated nature of this experiment, researchers
are advised to fine tune their prompts when using LLMs such as the GPT
models in any KGQA tasks. Specifically when using templates to con-
struct SPARQL queries, additional instructions on how to use the given tem-
plates could drastically increase the change of LLMs construction functional
SPARQL queries, leaving prompt tuning specific to KGQA to be a promising
topic for further research.

Last, the GPT models have been evaluated fundamentally and in iso-
lation. While the models did not perform well in all components of the
KGQA-process, the results have been promising for certain tasks, such as the
construction of SPARQL queries. Further research should therefore take the

87

models out of isolation and combine them with established KGQA-systems.
This would allow for a more realistic assessment of whether the use of LLMs
could improve the quality of KGQA-systems.

References
[1] DBpedia Linked Data Fragments. https://fragments.dbpedia.org/,

2023. Accessed: 2023-07-21.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report, 2023.

[3] Bobby Allyn. ’New York Times’ considers legal action against ope-
nai as copyright tensions swir. https://www.npr.org/2023/08/16/
1194202562/new-york-times-considers-legal-action-against-
openai-as-copyright-tensions-swirl, 2023. Accessed: 2023-08-17.

[4] John Allard Logan Kilpatrick Andrew Peng, Michael Wu and Steven
Heidel. Gpt-3.5 turbo fine-tuning and api updates. https://
openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates.
Accessed: 2023.08.

[5] Jonathan Berant, Andrew K. Chou, Roy Frostig, and Percy Liang. Se-
mantic parsing on freebase from question-answer pairs. In Conference
on Empirical Methods in Natural Language Processing, 2013.

[6] Bettina Berendt, Andreas Hotho, Dunja Mladenic, Maarten van
Someren, Myra Spiliopoulou, and Gerd Stumme. A roadmap for web
mining: From web to semantic web. In Web Mining: From Web to
Semantic Web, pages 1–22. Springer Berlin Heidelberg, 2004.

[7] Margaret A Boden. Artificial intelligence. Elsevier, 1996.

[8] Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston.
Large-scale simple question answering with memory networks, 2015.

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

88

https://fragments.dbpedia.org/
https://www.npr.org/2023/08/16/1194202562/new-york-times-considers-legal-action-against-openai-as-copyright-tensions-swirl
https://www.npr.org/2023/08/16/1194202562/new-york-times-considers-legal-action-against-openai-as-copyright-tensions-swirl
https://www.npr.org/2023/08/16/1194202562/new-york-times-considers-legal-action-against-openai-as-copyright-tensions-swirl
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners, 2020.

[10] Jorge Cardoso. The semantic web vision: Where are we? IEEE Intelli-
gent Systems, 22(5):84–88, September 2007.

[11] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie
Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye,
Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. A
survey on evaluation of large language models, 2023.

[12] Lingjiao Chen, Matei Zaharia, and James Zou. How is chatgpt’s behav-
ior changing over time?, 2023.

[13] Hai Cui, Tao Peng, Lizhou Feng, Tie Bao, and Lu Liu. Simple question
answering over knowledge graph enhanced by question pattern classifica-
tion. Knowledge and Information Systems, 63(10):2741–2761, Septem-
ber 2021.

[14] D063520. Github - wdaquacore0questions. https://github.com/
WDAqua/WDAquaCore0Questions, 2017. Accessed: 2023-02-28.

[15] Aarthi Dhandapani and Viswanathan Vadivel. Question answering sys-
tem over semantic web. IEEE Access, 9:46900–46910, 2021.

[16] Dennis Diefenbach, Andreas Both, Kamal Singh, and Pierre Maret. To-
wards a question answering system over the semantic web, 2018.

[17] Dennis Diefenbach, Vanessa Lopez, Kamal Singh, and Pierre Maret.
Core techniques of question answering systems over knowledge bases: a
survey. Knowledge and Information Systems, 55(3):529–569, September
2017.

[18] Dennis Diefenbach, Kamal Singh, and Pierre Maret. WDAqua-core0: A
question answering component for the research community. In Semantic
Web Challenges, pages 84–89. Springer International Publishing, 2017.

[19] Dennis Diefenbach, Thomas Pellissier Tanon, Kamal Deep Singh, and
Pierre Maret. Question answering benchmarks for wikidata. In Proceed-
ings of the ISWC 2017 Posters & Demonstrations and Industry Tracks
co-located with 16th International Semantic Web Conference (ISWC
2017), Vienna, Austria, October 23rd - to - 25th, 2017., 2017.

89

https://github.com/WDAqua/WDAquaCore0Questions
https://github.com/WDAqua/WDAquaCore0Questions

[20] Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens
Lehmann. LC-QuAD 2.0: A large dataset for complex question answer-
ing over wikidata and DBpedia. In Lecture Notes in Computer Science,
pages 69–78. Springer International Publishing, 2019.

[21] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez,
and Denny Vrandečić. Introducing wikidata to the linked data web. In
The Semantic Web – ISWC 2014, pages 50–65. Springer International
Publishing, 2014.

[22] W. Floyd, T. Kleber, M. Pasli, J.J. Qazi, C.C. Huang, J.X. Leng, B. Ack-
erson, D.J. Carpenter, J.K. Salama, and M.J. Boyer. Evaluating the
reliability of chat-gpt model responses for radiation oncology patient in-
quiries. International Journal of Radiation Oncology*Biology*Physics,
117(2):e383, October 2023.

[23] Samanyou Garg. ChatGPT alternatives that will blow your mind in 2023
— writesonic.com. https://writesonic.com/blog/chatgpt-alternatives/,
2023. Accessed: 2023-05-06.

[24] Jorão Gomes, Rômulo Chrispim de Mello, Victor Ströele, and
Jairo Francisco de Souza. A study of approaches to answering complex
questions over knowledge bases. Knowledge and Information Systems,
64(11):2849–2881, August 2022.

[25] Alex Graves. Sequence transduction with recurrent neural networks,
2012.

[26] Eleni Ilkou and Maria Koutraki. Symbolic vs sub-symbolic ai methods:
Friends or enemies? 11 2020.

[27] Longquan Jiang and Ricardo Usbeck. Knowledge graph question an-
swering datasets and their generalizability. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, July 2022.

[28] Weiqiang Jin, Biao Zhao, Hang Yu, Xi Tao, Ruiping Yin, and Guizhong
Liu. Improving embedded knowledge graph multi-hop question answer-
ing by introducing relational chain reasoning. Data Mining and Knowl-
edge Discovery, 37(1):255–288, November 2022.

[29] Douglas Johnson, Rachel Goodman, J Patrinely, Cosby Stone, Eli
Zimmerman, Rebecca Donald, Sam Chang, Sean Berkowitz, Avni

90

Finn, Eiman Jahangir, Elizabeth Scoville, Tyler Reese, Debra Fried-
man, Julie Bastarache, Yuri van der Heijden, Jordan Wright, Nicholas
Carter, Matthew Alexander, Jennifer Choe, Cody Chastain, John Zic,
Sara Horst, Isik Turker, Rajiv Agarwal, Evan Osmundson, Kamran
Idrees, Colleen Kiernan, Chandrasekhar Padmanabhan, Christina Bai-
ley, Cameron Schlegel, Lola Chambless, Mike Gibson, Travis Osterman,
and Lee Wheless. Assessing the accuracy and reliability of ai-generated
medical responses: An evaluation of the chat-gpt model. February 2023.

[30] Haemin Jung and Wooju Kim. Automated conversion from natural
language query to SPARQL query. Journal of Intelligent Information
Systems, 55(3):501–520, January 2020.

[31] Gerhard Klager and Axel Polleres. Is GPT fit for kgqa? - preliminary
results. In Sanju Tiwari, Nandana Mihindukulasooriya, Francesco Os-
borne, Dimitris Kontokostas, Jennifer D’Souza, Mayank Kejriwal, and
Edgard Marx, editors, Joint Proceedings of the Second International
Workshop on Knowledge Graph Generation From Text and the First
International BiKE Challenge co-located with 20th Extended Semantic
Conference (ESWC 2023), Hersonissos, Greece, May 29th, 2023, volume
3447 of CEUR Workshop Proceedings, pages 171–191. CEUR-WS.org,
2023.

[32] Ben Krose. An introduction to neural networks. 1996.

[33] Shiqi Liang, Kurt Stockinger, Tarcisio Mendes de Farias, Maria Anisi-
mova, and Manuel Gil. Querying knowledge graphs in natural language.
Journal of Big Data, 8(1), January 2021.

[34] Vanessa Lopez, Christina Unger, Philipp Cimiano, and Enrico Motta.
Evaluating question answering over linked data. Web Semantics Science
Services And Agents On The World Wide Web, 21:3–13, 2013.

[35] Angel R. Martinez. Part-of-speech tagging. Wiley Interdisciplinary Re-
views: Computational Statistics, 4(1):107–113, September 2011.

[36] Conan Mercer. The rise of chat gpt: The future of conversa-
tional ai. https://medium.com/@conan.mercer/the-rise-of-chat-
gpt-the-future-of-conversational-ai-91622b9db303, 2023. Ac-
cessed: 2023-05-06.

[37] Merriam-Webster. Slugger definition meaning. https://www.merriam-
webster.com/dictionary/slugger, 2023. Accessed: 2023-08-10.

91

https://medium.com/@conan.mercer/the-rise-of-chat-gpt-the-future-of-conversational-ai-91622b9db303
https://medium.com/@conan.mercer/the-rise-of-chat-gpt-the-future-of-conversational-ai-91622b9db303
https://www.merriam-webster.com/dictionary/slugger
https://www.merriam-webster.com/dictionary/slugger

[38] Salman Mohammed, Peng Shi, and Jimmy Lin. Strong baselines for sim-
ple question answering over knowledge graphs with and without neural
networks, 2017.

[39] Behrang Mohit. Named entity recognition. In Natural Language Process-
ing of Semitic Languages, pages 221–245. Springer Berlin Heidelberg,
2014.

[40] Wardani Muhamad, Suhardi, and Yoanes Bandung. Transforming Ope-
nAPI specification 3.0 documents into RDF-based semantic web ser-
vices. Journal of Big Data, 9(1), April 2022.

[41] Jere Odell, Mairelys Lemus-Rojas, and Lucille Brys. Wikidata data
model, 2022.

[42] Inc. Ontotext USA. What is a knowledge graph? https:
//www.ontotext.com/knowledgehub/fundamentals/what-is-a-
knowledge-graph/, 2023. Accessed: 2023-09-07.

[43] Abdelghny Orogat, Isabelle Liu, and Ahmed El-Roby. Cbench: Towards
better evaluation of question answering over knowledge graphs, 2021.

[44] Seonyeong Park, Hyosup Shim, and Gary Geunbae Lee. Isoft at qald-4:
Semantic similarity-based question answering system over linked data.
In Conference and Labs of the Evaluation Forum, 2014.

[45] Michael Petrochuk and Luke Zettlemoyer. SimpleQuestions nearly
solved: A new upperbound and baseline approach. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, 2018.

[46] Mikhail Popov. WikidataQueryServiceR: API Client Library for ’Wiki-
data Query Service’, 2020. R package version 1.0.0.

[47] Contributors to Wikimedia projects. Wikibase/datamodel - mediawiki,
Dec 2023.

[48] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF — w3.org. https://www.w3.org/TR/rdf-sparql-query/,
2008. Accessed: 2023-09-07.

[49] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2022.

92

https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://www.w3.org/TR/rdf-sparql-query/

[50] Aleksandr Perevalov Longquan Jiang Julius Schulz Angelie Kraft Cedric
Moeller Junbo Huang Jan Reineke Axel-Cyrille Ngonga Ngomo Muham-
mad Saleem Andreas Both Ricardo Usbeck, Xi Yan. Qald-10 - the 10th
challenge on question answering over linked data. Under submission.,
2023.

[51] Brian Richards. Type/token ratios: what do they really tell us? Journal
of child language, 14:201–9, 07 1987.

[52] Iegor Rudnytskyi. openai: R Wrapper for OpenAI API, 2023. R package
version 0.4.0.

[53] Uma Sawant, Saurabh Garg, Soumen Chakrabarti, and Ganesh Ramakr-
ishnan. Neural architecture for question answering using a knowledge
graph and web corpus. Information Retrieval Journal, 22(3-4):324–349,
January 2019.

[54] Sangjin Shin, Xiongnan Jin, Jooik Jung, and Kyong-Ho Lee. Predicate
constraints based question answering over knowledge graph. Information
Processing & Management, 56(3):445–462, May 2019.

[55] Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The penn tree-
bank: An overview. In Treebanks, pages 5–22. Springer Netherlands,
2003.

[56] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. Llama: Open and efficient
foundation language models, 2023.

[57] Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens
Lehmann. Lc-quad: A corpus for complex question answering over
knowledge graphs. 10 2017.

[58] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille
Ngonga Ngomo, Daniel Gerber, and Philipp Cimiano. Sparql template-
based question answering. 01 2012.

[59] Ricardo Usbeck, Ria Gusmita, Muhammad Saleem, and Axel-Cyrille
Ngonga Ngomo. 9th challenge on question answering over linked data
(qald-9). 11 2018.

93

[60] Svitlana Vakulenko, Javier David Fernandez Garcia, Axel Polleres,
Maarten de Rijke, and Michael Cochez. Message passing for complex
question answering over knowledge graphs. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Manage-
ment. ACM, November 2019.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need, 2017.

[62] Andra Waagmeester, Gregory Stupp, Sebastian Burgstaller-
Muehlbacher, Benjamin M Good, Malachi Griffith, Obi L Griffith,
Kristina Hanspers, Henning Hermjakob, Toby S Hudson, Kevin Hy-
biske, Sarah M Keating, Magnus Manske, Michael Mayers, Daniel
Mietchen, Elvira Mitraka, Alexander R Pico, Timothy Putman, Anders
Riutta, Nuria Queralt-Rosinach, Lynn M Schriml, Thomas Shafee,
Denise Slenter, Ralf Stephan, Katherine Thornton, Ginger Tsueng,
Roger Tu, Sabah Ul-Hasan, Egon Willighagen, Chunlei Wu, and
Andrew I Su. Science forum: Wikidata as a knowledge graph for the
life sciences. eLife, 9:e52614, mar 2020.

[63] Ruijie Wang, Meng Wang, Jun Liu, Michael Cochez, and Stefan Decker.
Structured query construction via knowledge graph embedding. Knowl-
edge and Information Systems, 62(5):1819–1846, September 2019.

[64] Wikipedia. Atoll — Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Atoll&oldid=1165307990,
2023. [Accessed: 2023-08-10].

[65] Wikipedia. Tagesschau (German TV programme) — Wikipedia, the
free encyclopedia. http://en.wikipedia.org/w/index.php?title=
Tagesschau%20(German%20TV%20programme)&oldid=1161090999,
2023. Accessed: 2023-07-19.

[66] Mohammad Yani and Adila Alfa Krisnadhi. Challenges, techniques,
and trends of simple knowledge graph question answering: A survey.
Information, 12(7):271, June 2021.

[67] Mohammad Yani, Adila Alfa Krisnadhi, and Indra Budi. A better entity
detection of question for knowledge graph question answering through
extracting position-based patterns. Journal of Big Data, 9(1), June
2022.

94

http://en.wikipedia.org/w/index.php?title=Atoll&oldid=1165307990
http://en.wikipedia.org/w/index.php?title=Atoll&oldid=1165307990
http://en.wikipedia.org/w/index.php?title=Tagesschau%20(German%20TV%20programme)&oldid=1161090999
http://en.wikipedia.org/w/index.php?title=Tagesschau%20(German%20TV%20programme)&oldid=1161090999

[68] Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu,
Yuhan Cui, Zeyang Zhou, Chao Gong, Yang Shen, Jie Zhou, Siming
Chen, Tao Gui, Qi Zhang, and Xuanjing Huang. A comprehensive ca-
pability analysis of gpt-3 and gpt-3.5 series models, 2023.

[69] Munazza Zaib, Wei Emma Zhang, Quan Z. Sheng, Adnan Mahmood,
and Yang Zhang. Conversational question answering: a survey. Knowl-
edge and Information Systems, 64(12):3151–3195, September 2022.

A Is GPT fit for KGQA? â€“ Preliminary Re-
sults

95

Is GPT fit for KGQA? – Preliminary Results?

Gerhard G. Klager1,⇤,†, Axel Polleres1,†

1WU Wien - Vienna University of Economics and Business, Welthandelsplatz 1, Vienna, 1020, Austria

Abstract
In this paper we report about preliminary results on running question answering benchmarks against the
recently hyped conversational AI services such as ChatGPT: we focus on questions that are known to be
possible to be answered by information in existing Knowledge graphs such as Wikidata. In a preliminary
study we experiment, on the one hand, with questions from established KGQA benchmarks, and on the
other hand, present a set of questions established in a student experiment, which should be particularly
hard for Large Language Models (LLMs) to answer, mainly focusing on questions on recent events. In a
second experiment, we assess how far GPT could be used for query generation in SPARQL. While our
results are mostly negative for now, we hope to provide insights for further research in this direction,
in terms of isolating and discussing the most obvious challenges and gaps, and to provide a research
roadmap for a more extensive study planned as a current master thesis project.

Keywords
Question Answering, KGQA, LLMs, GPT

1. Introduction

With the ever-growing number of publicly available Knowledge Graphs and their increasing
relevancy the task of question answering (KGQA from here on) has risen in popularity as well
[1]. The purpose of a KGQA-system is to allow end-users to retrieve information stored in a KG
by means of natural language questions, without being familiar with the KG’s structure or the
query language used to access said KG.
In order to achieve this goal, often some kind of translation of natural language questions into a
query is taking place [2]. Many di�erent KGQA approaches exist, ranging from template-based
approaches [3] to approaches based on unsupervised message passing [4] or approaches using
methods of machine learning [5]. The capabilities of KGQA-systems range from answering
simple questions [6] to complex questions [7] as well to engage in single- and multi-turn (or
conversational) question answering [8]. Additionally, some of these approaches even try to
enable QA independent of a �xed KG or language [2].
To train and evaluate these models numerous benchmarks have been created, enabling a direct

TEXT2KG 2023: Second International Workshop on Knowledge Graph Generation from Text, May 28 - Jun 1, 2023,
co-located with Extended Semantic Web Conference (ESWC), Hersonissos, Greece
?
The text of this paper was hand-written without the support of text-generating AI, this – however – does not apply
to the SPARQL query examples in this paper ;-)

⇤Corresponding author.
†
These authors contributed equally.
� gerhard.klager@gmail.com (G. G. Klager); axel.polleres@wu.ac.at (A. Polleres)
� 0009-0000-2816-219X (G. G. Klager); 0000-0001-5670-1146 (A. Polleres)

© 2023 Copyright © 2023 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

comparison between existing and new QA-systems [1].

At the same time, with the recent success of OpenAI’s ChatGPT[9] and its many competitors
[10], we see many applications of such large language models (LLMs), not only restricted to
question answering alone, but also in producing more or less useful code in programming and
query languages. Facing these developments, we may ask ourselves both (a) if such LLMs can
act as serious contenders to bespoke KGQA systems, and (b) whether LLMS could be used as
a supportive technology for query formulation in the context of KGQA. However, literature
covering this subject is still scarce and end-to-end QA-systems using LLMs such as ChatGPT in
a synergetic combination with KGQA have not yet been proposed in abundance.

The aim of this paper is therefore to �ll this gap by exploring the possibilities of using LLMs
such as ChatGPT in the task of KGQA and to challenge the status quo of existing benchmarks
aimed at training and evaluating KGQA-systems.
In particular, we are interested in answering the following questions:

1. How does LLM-based QA di�er from established KGQA approaches and what are the
respective strengths, weaknesses and challenges of the two methods?

2. Which components used in KGQA-systems could be enhanced using LLMs?
3. What types of questions are found in existing benchmarks for KGQA approaches and in

how far can these be used in benchmarking LLM-based QA approaches?
4. How can a comprehensive benchmark for LLM-based, KGQA-based but also combined QA

approaches be constructed that is challenging the current weaknesses of both approaches?

In order to get closer to answering these questions, we have started with a comprehensive
literature review. The goal of this literature review is to establish an overview of the already
existing di�erent QA-systems and benchmarks on the one hand and to lay the foundations of
the approaches chosen to create our proposed new benchmark and QA-system as well as their
characteristics and main components. Our initial collection of articles[2, 4, 11, 1, 8, 12, 13, 7, 6, 14,
15, 5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]
contains both proposed solutions to
(KG)QA as well as existing benchmarks.

While still ongoing, we provide an overview of our current status of identi�ed benchmarks
and their main characteristics, as well as (components of) KGQA systems in Section 2 below.
In the next step, we plan to compare existing benchmarks and systems from the literature for
KGQA with LLM based question-answering. This shall be done by systematically comparing
the questions available in each benchmark, wrt. the (syntactic) structures of the questions
and – if available – corresponding structured queries, topic domains, and other characteristics
indicating the complexity of the question answering tasks (such as for instance aggregations
needed, etc.) and comparing the results of established KGQA and LLM based QA on each of
these benchmarks.
For this �rst preliminary study, we proceed by selecting a mini-benchmark from

• sample subsets from the SimpleQuestions [42] and QALD-5 [43] benchmark datasets,
• a small dataset we manually designed to challenge ChatGPT

both of which having in mind that – in principle – the respective answers should intuitively be
�ndable in existing KGs such as Wikidata [44]. We present this mini-benchmark in Section 3.

While certainly not yet representative of the �eld, we aim at drawing some initial conclusions
about LLMs/GPTs capabilities and challenges with respect to two separate subtasks of KGQA

• directly answering the natural language queries from our mini-benchmark vs.
• translating the natural language queries to SPARQL

We summarize the performance on both these subtasks in Section 3.4 and derive hypothesis for
further investigation.

We conclude in Section 4 with an outlook for further work that also include a workplan and
main tasks to be executed in an ongoing Master thesis, wherefore we eagerly look forward to
feedback during the TEXT2KG workshop. As an overall goal in our research agenda, we plan
to design and implement a new hybrid approach making use of LLMs, such as ChatGPT (or
also other emerging, and hopefully open LLMs) to improve upon the weaknesses of existing
KGQA-systems without “LLM support”.
Additionally, we hope our �ndings will serve as a base for new QA benchmarks aimed at
improving the training and evaluation of future, combined LLM-and-KGQA-systems.

2. Related work on KGQA

With the growing attention given to KGQA in recent years we can also observe a large growth
of literature covering KGQA-systems and in terms of di�erent methods and benchmarks to
evaluate these systems. This section is dedicated to provide an overview of this literature and
laying the foundation for our planned research.

2.1. KGQA Benchmarks

The topic of benchmarking in QA ranges from the methods of creating benchmarking datasets,
to the types of questions and queries used in a dataset, to methods to evaluate those benchmarks
themselves.
Probably the most widely used family of question answering datasets is represented by

the Question Answering over Linked Data (QALD from here on) campaign. This series of
challenges aims at providing benchmarks for all QA-systems designed at using natural language
requests of a user to retrieve information stored as structured data such as the RDF data format.
Additionally, the challenge aims at comparing current state-of-the-art QA-systems with regard
to their individual strengths and shortcomings. In order to participate in the current QALD
challenge users can simply run their QA-system using the current challenge’s dataset before
storing their results in an XML �le and upload it to the challenge’s website [45]. The QALD
challenge is currently taking place in its 10th iteration [39] and accordingly provides 10 datasets
that could be used within further elaborations of our study. A detailed analysis of these datasets
is on our agenda. For the moment, we have considered a sample from the 5th QALD [43] in our
preliminary experiments, see below.

As a more manageable starting point, SimpleQuestions is a dataset containing 100k questions
aimed at training and evaluating QA-systems with regard to solving the simple question an-
swering problem, which consists answering questions that can be rephrased as (single triple)
queries that ask for all objects linked to a questions given subject by its given relationship.
In this context, simple QA is a term used referring to the simplicity of the reasoning process
necessary to answer questions [46]. While SimpleQuestions was originally designed to be run
over FreebBase, Diefenbach et al. [42] have adapted/extended the original SimpleQuestions
dataset to Wikidata recently, which we include in our preliminary study since it is possible to
be tested against a large KG, available via a public SPARQL endpoint.

As for further relevant QA benchmarks, Berant et. al. [47] created a new QA dataset named
WebQuestions. The WebQuestions dataset acts as an extension to the FREE917 dataset (again
based on Freebase) aimed at evaluating QA-systems. The authors created this dataset due to
the FREE917 dataset requiring logical forms, making it inherently more di�cult to scale it
up due to the requirement of having expertise in annotating logical forms. Using the Google
Suggest API, the authors obtained questions beginning with a wh-word (where, who, when,
etc.) and containing exactly one entity. For each question, �ve candidate queries have been
created. After collecting 1M questions in this process, 100k randomly selected questions have
been submitted to Amazon Mechanical Turk (AMT from here on) where workers answered
questions detecting duplicates and �ltering out questions that could not be answered. The
remaining dataset contained 5.810 questions. In particular, the approach to crowd-source and
to cross-check labeling in order to compare humans against QA systems may also be useful for
us in further elaborations of our study.

As an alternative to simple questions the Large-Scale Complex Question Answering Dataset
2.0 [40] (LC-QuAD 2.0 from here on) is an extension to the original LCQuAD dataset [41]
containing 30k complex questions as well as their corresponding paraphrased versions and
SPARQL queries. This dataset is both compatible withWikidata and DBpedia (2018). The dataset
was created by generating a number of SPARQL queries before verbalizing them into natural
language questions using the AMT. Afterward, these questions have been paraphrased to create
additional natural language questions. The LC-Quad 2.0 dataset contains 10 di�erent question
types ranging from single fact questions which will be answered by returning either a subject or
object to complex questions requiring complex patterns, temporal information to be answered,
etc.
Another approach of how to create a benchmark has been taken by the creators of the

WDAquaCore0Questions dataset which represents a collection of questions asked by users
testing the demo of the WDAqua-core-0 QA-system for Wikidata [48].

Jiang and Usbeck analyzed 25 KGQA datasets with regard to �ve di�erent KGs. Their study
showed that many available KGQA datasets are un�t to train KGQA-systems due to their
underlying assumptions or that these datasets are outdated and based on discontinued KGs.
Additionally, the authors share light on the di�culties and high costs related to the generation
of new datasets. Therefore, they propose an automated method to re-split datasets enabling
their generalization as well as a method to analyze existing KGQA datasets with regard to their
generalizability [11].

While many di�erent benchmarks aimed at evaluating QA-systems for di�erent KGs exist the
question of which benchmark one should use can be a di�cult one to answer. To answer this

question Orogat, Liu, and El-Roby proposed CBench [1], a suite that enables users to analyze
existing benchmarks with regard to linguistic, syntactic, and structural properties of the dataset’s
questions and queries as well as to evaluate QA-systems. Additionally, the authors provide an
overview of di�erent creation methods for benchmarks ranging from manual creation based on
heuristics to benchmarks created automatically from the KG in question.
In light of recent developments, and while social media is full of examples, there is — to

the best of our knowledge — not yet a dedicated QA dataset originally tailored to LLMs and
GPT speci�cally. In order to �ll this gap, we asked students of the Digital Economy masters’
program at the Vienna University of Economics and Business to generate a set of natural
language questions aimed at asking ChatGPT to formulate queries GPT-3 would fail upon but
suspected to be possible to answer with the information in publicly available KGs such as
Wikidata. As a hint, we emphasized that we suspect LLMs to struggle with (a) recent events
information beyond the training phase of the LLM (b) complex questions that require non-
obvious conceptual understanding and reasoning. The students’ task was to also �nd/formulate
the corresponding SPARQL queries and – in the light of recent advances of LLMs for also code
and query generation, attempt whether ChatGPT was able to create such queries. We report on
a selected subset of these questions in section 3 below.

2.2. Question Answering Systems

With the existence of numerous QA-benchmarks it is no surprise that the literature presents an
abundance of di�erent QA-systems as well. These systems range from ones limited to single
KGs to systems able to access multiple KGs, from language dependent to language independent
systems, and from simpler template-based systems to complex systems incorporating elements
of machine learning.

Diefenbach et. al. propose a QA-system capable of querying multiple KGs indepen-
dent of the natural language used. Their approach has been evaluated on �ve well-known KGs
and �ve di�erent languages using three di�erent benchmarks. Their proposed QA-system �rst
performs entity recognition in terms of searching corresponding IRIs whose lexicalization is an
n-gram (consecutive elements in a text) in the asked natural language questions question. After
removing stop words from the set of IRIs queries that could represent possible interpretations
of the question are constructed before being ranked based on multiple aspects such as the
number of words matching the words in the original question. Next, a logistic regression based
on labeled SPARQL queries will be trained to compute the con�dence score for each query.
Last, the highest ranked query above a certain threshold will be used to answer the question. If
no query with con�dence above the threshold is found, the whole question will be deemed
unanswerable. During their study, the authors discovered performance di�erences in their
approach wrt. di�erent (natural) languages used and link these di�erences to the quality of the
available data for each language [2].

Vakulenko et al. [4] take a quite di�erent approach based on the usage of unsupervised
message passing (QAmp from here on) which consists of two phases: in the �rst phase called
question interpretation, the relevant sets of entities and predicates necessary for answering the

input question are again being identi�ed and their con�dence scores are being computed. In the
second phase, the so-called answer inference phase, these con�dence scores are propagated and
aggregated over the underlying KG’s structure, providing a con�dence distribution over a set of
possible answers which is then be used to locate the corresponding answer entities, rather than
translating the query to SPARQL.

Yani et al. [7] propose yet another a method to detect entities and their position on triples that
have been mentioned in a complex question. Their approach is capable of not only detecting
the entity name but also of determining in which triple the entity is located and if the given
entity is a head or tail of the triple.

Shin et. al. [15] notice that QA systems su�er notably from the divergence of the unstructured
data composing natural language questions and the structured data composing a KG. Existing
approaches trying Solve this issue often use lexicons in order to cover di�erently represented
data. Since these lexicons only consider representations for entity and relation mentions the
authors propose a new predicate constraint lexicon restricting subject and object types for a
predicate. This so-called Predicate Constraints based Question Answering (PCQA from here
on) lexicon does not make use of any templates. Rather the authors generated query graphs
focusing on matching relations in order to cover diverse types of questions.

Another QA-system proposed by Liang et. al. [5] is based on the idea of splitting the process of
translating natural language questions into SPARQL queries into �ve sub-tasks. First, a random
forest model is trained to identify a question’s type. Next, various entity recognition and
property mapping tools are used to map the question’s phrases before all possible triple patterns
are created based on these mapped resources. Afterward, possible SPARQL are generated by
combining these triple patterns before a Tree-LSTM based ranking model is used to select the
most plausible SPARQL query representing the correct intention behind the natural language
question. Possible SPARQL queries are then constructed by combining these triple patterns
in the query generation step. In order to select the correct SPARQL query among a number
of candidate queries for each question, a ranking model based on Tree-LSTM is used in the
query ranking step. The ranking model takes into account both the syntactical structure of
the question and the tree representation of the candidate queries to select the most plausible
SPARQL query representing the correct intention for the respective question.
As this short overview shows, the main tasks in many KGQA systems �rstly involve enti-

ty/property recognition and matching to respective IRIs in the KG. Secondly, some but not
all QA systems proceed by formulating SPARQL queries from these entities. Our following
preliminary experiment is therefore tailored to mainly challenge GPT in terms of whether these
tasks can be adequately supported by (currently existing) LLMs.

3. Benchmarking LLMs

In order to evaluate the raw performance of large language models we decided to use two
of OpenAI’s large language models. The �rst model we used is the GPT 3.5-based ChatGPT.
Additionally, we used OpenAI’s older GPT 3-based davinci model to give a comparison to
ChatGPT’s results and to possibly detect structural characteristics of LLMs in the context of
question answering.

For this we �rst let each system/model answer all natural questions directly and secondly
indirectly by �rst generating corresponding SPARQL queries for Wikidata, before subsequently
attempting to retrieve their results. This process was done for (i) the student dataset aimed at
providing questions that cannot be answered by ChatGPT, (ii) a subset of the SimpleQuestions
adaptation for Wikidata [42], and (iii) a subset of the QALD-5 dataset [43], with the student
dataset consisting of 14 questions and the two subsets consisting of 15 randomly drawn questions
from the original datasets. Extending this study to analogously test further KGQA benchmarks
is on our agenda.
We limited our study to the Wikidata KG. This decision has been made for multiple reasons.
First, while other popular KGs, such as Freebase, stopped their operations, Wikidata is one of
the most popular, and most actively maintained KGs. Besides accounting for the KGs relevancy,
this could also mean that Wikidata is better suited to be used when answering information on
current events, an expected weakness of LLMs wrt. QA. Secondly, this study aims at uncovering
LLMs limitations wrt. KGQA. This renders Wikidata speci�cally challenging since the task
of entity recognition can be assumed to be harder for Wikidata than for other KGs such as
DBpedia. This is due Wikidata’s numeric identi�ers, LLMs should not be able to derive the
correct identi�ers directly from the question asked, which could be blurred by the inherent
semantics of language-based URIs [49] as used for instance in DBpedia. While limiting ourselves
to one KG for this preliminary study allowed us to obtain �rst insights results, expanding and
comparing our research wrt. to a comparison with other/multiple KGs is on our agenda.

3.1. Question Answering, Query Generation and Query Execution

All necessary computations and all necessary programming in this study has been done by R
scripts [50], using the openai package (version 0.4.0) [51] in combination with OpenAI’s API to
interact with ChatGPT and davinci. At this point, it must be noted that OpenAI’s API allows
the usage of di�erent temperature options to control how deterministic the behavior of the
LLM should be. While the chosen setting might potentially have a signi�cant in�uence on
the results, we used the default temperature setting of 1 in this study to replicate especially
ChatGPTs behavior when accessed through its Web interface, to which we have been able to
record di�erences regardless. Secondly, upon trying to execute our scripts with a temperature
of 0, supposedly meaning fully deterministic behavior, a later mentioned problem of the LLMs
getting stuck at certain questions and repeating previous answers or query structures occurred
for most of the questions, rendering the results useless. At this point, we cannot con�rmwhether
this is a result of high server load or if the temperature setting is at least partially responsible
for this. Further investigation of the signi�cance of the temperature setting is therefore on our
agenda. In this context, note that question 12 and 15 in the sample of the QALD-5 dataset (cf.
Table 3) are identical. Since we drew 15 random questions, all having di�erent questions IDs,
this indicates that the original dataset contains duplicates. We did deliberately not remove those
for now, in order determine whether duplicates yield di�erent answers: while slightly di�erent
in their wording, the direct natural language answers’ content has been identical, and likewise
the generated SPARQL queries were identical in our preliminary experimental run. A more
in depth investigation in how far repeated "runs" of the experiment yield di�erent results or
improvements, also in the context of adapting GPT’s temperature parameter, is on our agenda.

In order to generate both the answers to a natural language question (NLQ) and its corre-
sponding SPARQL query the following natural language prompt was used:

“Please write me a SPARQL query on Wikidata without comments to answer the
following Question: NLQ.”.

Since the used LLMs usually add comments within their queries the passage “without comments”
has been added to eliminate these comments, which allows for easier processing and subse-
quently easier execution of these queries. Finally, we used the WikidataQueryServiceR package
(version 1.0.0) [52] to execute the generated queries and to retrieve their results.

We note that, besides the elimination of unwanted comments the selected prompt has been
carefully designed in a way that aims at preventing the prompt to in�uence the LLMs answers
besides their structural representation: as it was the aim of this preliminary study to determine
how LLM’s as a standalone option lend themselves to QA and KGQA tasks, we started with a
static, uniform prompt. The resulting �ndings should then form a foundation based on which
further insights on the topic of prompt engineering could be derived, i.e., how advanced methods
including speci�cally engineered prompts or hybrid QA approaches that dynamically generate
prompts could perform KGQA tasks. While exploring these questions further lies outside of the
current study’s scope, we consider it a potentially important direction for future work.

3.2. Performance Evaluation

In order to evaluate ChatGPT’s and GPT 3’s performance both their answers given in natural
language and the results of the queries generated by the LLMs have been assigned one out of
three possible grades: Correct, Incorrect, and No answer. Correct marks a case where the LLMs
were in fact able to answer the given question correctly. Incorrect results mark cases where
they were able to answer the question but did so incorrectly. Finally, no answer is assigned to
cases where the LLM’s where unable to generate an answer to the question asked. We assume
that this will be the case when the LLMs are asked about events happening outside of their
training period (hence after September 2021).

3.3. Results

In this section, we will show the results generated by ChatGPT and GPT 3 on the student dataset,
as well as our subsamples of the SimpleQuestions dataset and the QALD-5 challenge dataset.

3.3.1. Student Dataset

As described earlier, we generated SPARQL queries for each of the questions in the student-
generated dataset, retrieved their results as well as the direct answers NLAs) to the NLQs given
by ChatGPT and GPT 3, and evaluated them. Table 1 shows the questions in this dataset.
Unsurprisingly, ChatGPT was unable to answer most of the dataset’s questions correctly.

However, ChatGPT acknowledged its limitations wrt. dates and added a disclaimer at the
beginning of its answers stating that its knowledge is limited to dates up to September 2021.1

1Some further experiments also show that this behavior could seemingly – in the tested GPT versions – sometimes
be worked around by prompt reformulation, typically leading to a factually wrong answer.

Table 1
A sample of hard questions for GPT from our student experiment

Question

1 Who is the current president of the United States?
2 Who won the football worldcup 2022?
3 Give me all Austrian female actors that are aged over 50?
4 Give me all Austrian female actors aged over 50years that are also dancers or singers?
5 When did the famous Brazilian football player Pelé die?
6 For which team does Lionel Messi play?
7 What is the most recent MineCra� Java Edition version?
8 How many people do live on earth?
9 What was the average temperature in Vienna in 2022?
10 Who is the fastest person in the world?
11 What is the oldest painting in the world?
12 Where does the handball world cup take place this year (2023)?
13 Who is CEO of Twitter?
14 Which team won the ’Serie A’ championship last season?

Out of 14 questions with our standardized prompt, ChatGPT was able to provide 8 NLAs, out of
which three were correct.
As expected, incorrect answers have been given wrt. changes that happened after 2021, such as
when ChatGPT was asked to name the "most recent Minecraft Java Edition version" (1.19.3 at the
time of writing) to which it responded with "As of September 2021, the most recent version of
Minecraft Java Edition is 1.17.1.".
Another interesting observation is that ChatGPT seemingly can sometimes get “stuck” at

a given question. Consider the second and third questions in our student dataset: ChatGPT
stated that it is not capable of answering the second questionWho won the football worldcup
2022? due to it not having taken place by ChatGPT’s knowledge. However, ChatGPT gave the
same answer to the third question Give me all Austrian female actors that are aged over 50?.
The same anomaly occurred with question 7 "What is the most recent MineCraft Java Edition
version? and question 8 How many people do live on earth?. We so far did not entirely clarify,
whether this behavior was due to an API issue, or due to the sequential nature of the model
itself, where di�erent answers are obviously depending on the order of interactions. Regardless
of this, ChatGPT was able to generate SPARQL queries for all NLQs within the student dataset.
Out of these 14 queries 13 were syntactically correct and could indeed be executed. However, 10
out of these 13 queries returned no results. The three remaining queries returning results have
been the queries for question 1 "Who is the current president of the United States?" (Listing 1),
question 2 "Who won the football worldcup 2022?" (Listing 2), and question 8 "How many people
do live on earth?" (Listing 3).

The former, shown in listing 1 correctly returned Joe Biden, and — looking at the ORDER BY
and LIMIT combination, indeed semantically attempts to retrieve the most recent president. We
should note though, that question 1 was – as opposed to the other student questions – provided
by the instructor upfront, as an example of a question that was correctly translated by GPT,
having in mind to �nd a likely common example question referring to current data, but also
probably available verbatim in SPARQL examples that the LLM has been trained upon.

Listing 1: ChatGPT generated query for: Who is the current president of the united states?
SELECT ? p r e s i d e n t L a b e l
WHERE {

wd : Q30 p : P6 [ps : P6 ? p r e s i d e n t ; pq : P580 ? s t a r t _ t i m e] .
FILTER NOT EXISTS { ? p r e s i d e n t p : P582 [] }
SERVICE wik i ba s e : l a b e l { bd : s e rv i c ePa r am

wik i ba s e : l anguage " [AUTO_LANGUAGE } , en " . }
} ORDER BY DESC (? s t a r t _ t i m e)
LIMIT 1

Listing 2: ChatGPT generated query for: Who won the football worldcup 2022?
SELECT ? teamLabe l
WHERE {

? cup wdt : P31 wd : Q16510064 ;
wdt : P585 ? da t e ;
wdt : P1346 ? team .
FILTER (YEAR (? da t e) = 2 0 2 2)
SERVICE wik i ba s e : l a b e l { bd : s e rv i c ePa r am wik i b a s e : l anguage " en " }

} LIMIT 10

Listing 3: ChatGPT generated query for: How many people do live on earth?
SELECT (COUNT(? i t em) as ? count)
WHERE {

? i t em wdt : P31 wd : Q5 .
} LIMIT 10

On the contrary, the query for question 2, shown in Listing 2, correctly retrieves (somewhat
arguably generalizing on the question) winners of sports events in 2022, which could be correct,
but among ChatGPTs chosen LIMIT of 10, only persons and no teams (and certainly not the
football worldcup winning team) were retrieved. We note that question 2 has been a common
example to "challenge" ChatGPT, where earlier incarnations (such as davinci) would answer
"Brazil" as a statistically probable, but wrong answer and ChatGPT would, as mentioned above,
refuse an answer, hinting on having only training data up to 2021.
Finally, as for question 8 shown in Listing 2, while the query returned was able to return a

number, its result of 10546377 missed the target number of ⇠ 8 billion people by a signi�cant
amount and in fact, in this case interestingly, the resulting query simply counts all items that
belong to the class human within Wikidata.
In order to test these results for robustness we executed the whole process a second time.

In this second run, the before-mentioned problem of ChatGPT getting stuck at a question
did not occur at all. Additionally, ChatGPT was now able to answer 11 out of 15, i.e. one
additional question, question 11 regarding "the oldest painting in the world" now delivered a
result. However, the number of correct answers only increased by one.

Surprisingly, ChatGPT’s performance wrt. query generation su�ered signi�cantly, with the
chatbot on the second still being able to generate 15 queries, but out of which only 10 were
syntactically correct. This time, only one of these queries (question 1) returned the desired

Listing 4: davinci generated query for: How many people do live on earth?
de f au l tV i ew :Map
SELECT ? count ry (SAMPLE (? p opu l a t i on) AS ? t o t a l P o p u l a t i o n)
WHERE {

? count ry wdt : P36 wd : Q458 .
? count ry wdt : P1082 ? popu l a t i on .

} GROUP BY ? count ry
HAVING(? t o t a l P o p u l a t i o n > 0)
LIMIT 10

results.
An important observation here is that ChatGPT was unable to generate queries for each
question when asked manually through its web interface during an initial tryout of the chatbot.
At this point, it must be noted that a new OpenAI account, with no prior interactions with
ChatGPT, has been used to generate the respective SPARQL queries using the OpenAI API (in
order to ensure no bias was added through personalized adaptation on the user account).

Interestingly, upon using the GPT 3-based model davinci (as ChatGPT’s predecessor), we
were able to observe structural di�erences between its results and the ones obtained by using
ChatGPT.
First, the NLAs generated by davinci did not contain a disclaimer wrt. questions spanning
outside of its training time frame. Also, it becomes obvious that ChatGPT has been trained
with more recent data than davinci. While ChatGPT was able to correctly answer the question
For which team does Lionel Messi play? with Paris Saint-Germain (PSG), davinci answered this
question with Barcelona. We note that overall davinci produced a signi�cantly larger number of
factually wrong answers than ChatGPT, which may be partially due to its outdated training
data, and partially due to the smaller training date leading to more "made up" answers. We do
note though, that a detailed investigation (comparing factually wrong vs. outdated answers vs.
“accidentally right” guesses) in detail is yet on our agenda.

Next, davinci was unable to fully comply with our limitation of not adding any comments to
the generated query, while ChatGPT consistently complied with our instructions. Additionally,
11 out of the 14 queries generated by davinci had some sort of syntactical error, making them
not executable. See the query for question 8 How many people do live on earth? as an example
for both of these phenomena:
While this query can simply be syntactically �xed — by removing the whitespace between

the ? and the term population within the second line — it still diverts signi�cantly from the
original intention of the asked question.
Lastly, the problem of ChatGPT, i.e., getting stuck at a question during its �rst run, did

not occur when using davinci. We assume that this might be related to the amount of tra�c
ChatGPT experienced while generating the queries, i.e., rather being related to an API problem
than the model itself, since this problem does not seem to be consistent in its occurrence and
did not occur when using ChatGPT via its web interface.
Overall, davinci’s answers appeared, as expected, a lot more arbitrary and outdated than

Table 2
A sample of simple KGQA questions from the SimpleQuestions benchmark [42]

Question

1 What county is port hadlock in
2 is roll over and play live a hard rock album or an electronica album
3 where does adewale ojomo get his or her nationality from
4 What position does nenad stojakovi� play?
5 what kinds of movie is appassionata
6 what label is jeanne cherhal signed to
7 where did alberta gay die
8 what kind of film is esterhazy
9 who was albert brooks’s mother
10 is tony asher male or female
11 what is a film in the crime fiction genre.
12 What country was the underworld story filmed in
13 where is just married filmed?
14 What type of tv program is the flintstones
15 What football position does siem de jong play

those of the newer ChatGPT model in the preliminary study of our student dataset.

3.3.2. SimpleQuestions

We again generated SPARQL queries for each of the questions in the sample of the SimpleQues-
tions dataset, retrieved their results as well as the answers to the NLQs given by ChatGPT and
davinci and evaluated them.
Table 2 shows the questions listed in this sample of the SimpleQuestions dataset.2

The results for this dataset mostly mirror the observations made for the students dataset.
However, this time 6 out of 15 answers generated by ChatGPT are results of the chatbot being
stuck at a previous question. Out of the 15 generated queries 14 queries were executable but
none of them returned any result.
Again, a second run has been done which led to signi�cantly better results. In this second run
ChatGPT did not get stuck on a single question and 10 of the provided answers were correct.
Similarly, all of the 15 generated queries were syntactically correct, yet still only three out of the
15 queries returned the correct results, while the query for question 14 What type of tv program
is the �intstones returned a result completely detached from the questions (commune of Italy)
which can however be interpreted as one possible answer to question 13 where is just married
�lmed?, hinting at the ChatGPT API getting again stuck during the query generation this time
on a previous run.
A possible reason for the comparatively higher success rate observed for this dataset (less
emphasis on current or recent data) could be not only its age, with the dataset being unchanged
since 2017, but also the general nature of its questions, with many questions being instructions
to give an example of something or having many correct possible answers. Take for instance

2Please note missing question marks or di�erent capitalization stem from a random sample of the original dataset
without any modi�cations from our side.

Table 3
A sample of simple KGQA questions from the QALD-5 benchmark [43]3

Question

1 Who plays Phileas Fogg in the adaptation of Around the World in 80 Days directed by Buzz Kulik?
2 Who succeeded the pope that reigned only 33 days?
3 Which countries have more than ten caves?
4 Which other weapons did the designer of the Uzi develop?
5 A landmark of which city is the home of the Mona Lisa?
6 Was Margaret Thatcher a chemist?
7 Gaborone is the capital of which country member of the African Union?
8 In which country does the Ganges start?
9 Give me a list of all bandleaders that play trumpet.
10 How many missions does the Soyuz programme have?
11 For which movie did the daughter of Francis Ford Coppola receive an Oscar?
12 Are the Rosetta Stone and the Gayer-Andersen cat exhibited in the same museum?
13 What is the ruling party in Lisbon?
14 When were the Hells Angels founded?
15 Are the Rosetta Stone and the Gayer-Andersen cat exhibited in the same museum?

Listing 5: ChatGPT generated query for: How many missions does the Soyuz programme have?
SELECT (COUNT(? m i s s i on) AS ? coun tMi s s i on s)
WHERE {

? m i s s i on wdt : P31 wd : Q209343 .
? m i s s i on wdt : P361 wd : Q127846 .

} LIMIT 10

question 11 what is a �lm in the crime �ction genre. With numerous crime �ction �lms existing
and their success or popularity not being a limitation stated in the question it can be assumed
that ChatGPT should be able to name at least one item �tting the de�nition of being a �lm and
belonging to the genre crime �ction. From this, we can expect ChatGPT to be able to answer
most questions in this dataset correctly that do not ask for elements subject to change, such as
the CEO of a company or which player currently plays for a certain team.

3.3.3. QALD-5

Lastly, we analogously again generated SPARQL queries for each of the questions in a sample
of the QALD-5 dataset (shown in Table 3), retrieved their results, and analyzed direct answers
to the NLQs given by ChatGPT and davinci.

When directly answering the questions in this subset of QALD-5, ChatGPT did not get stuck
on any of the 15 questions and was able to answer 9 of the 15 questions correctly. However,
while ChatGPT was able to generate syntactically correct queries for all of the 15 questions, the
only query returning a result was the query for question 10 How many missions does the Soyuz
programme have?. Yet, the only element of this query closely related to the actual question is
the count function.

3Note: the duplicate question 12+15 were discussed in Section 3.1.

3.4. Summary of Results

Summarizing the results of our initial experiments, overall, we admittedly are only at the start
of our research. Yet, we have already gained valuable insights into the potential and gaps when
trying to leverage LLMs for (factual) question answering, with a focus on questions the answers
of which should be retrievable from KGs.
How does LLM-based QA di�er from established KGQA approaches and what are the
respective strengths, weaknesses, and challenges of the two methods?

While LLMs show promising results wrt. QA it became clear that these models are
limited by various factors. Most importantly, both ChatGPT’s and davinci’s limitations in direct
question answering were mostly related to outdated training data, such that they performed
particularly well on older QA benchmarks.
Unsurprisingly, the newer ChatGPT model performed signi�cantly better on both the direct
question answering tasks and also in particular in terms of the syntactical correctness of
queries; we may expect further signi�cant advances in the just released GPT4 model.
Additionally, some unexpected behaviors resulted from inexplicable e�ects of interacting with
the OpenAI APIs’, in terms of order-dependent answers that appeared to be actually "stuck"
answers to prior queries. Unfortunately, we could not yet determine whether these were related
to simple API bugs or due to the model; however really open LLMs would certainly allow
investigating order-dependency or alike in a much more transparent manner, than OpenAI’s
current, closed business model that in fact may switch to a paid only approach.
A summary of both ChatGPT’s and davinci’s results wrt. direct question answering can be
found in Tables 5 and 6.

In terms of query formulation, ChatGPT produced a high share of syntactically correct queries,
but very few re�ecting the actual question; we do hypothesize that this is largely due to a lack
of explicit entity recognition, i.e., recognizing correct relevant IRIS (i.e., in the case of Wikidata
relevant Q- and P-identi�ers of entities and properties. A more in depth analysis of the resulting
queries in terms of semantic distance of the extracted identi�ers, or investigating in how far
LLMS can be used for supporting the entity recognition subtask in isolation as part of a KGQA
pipeline is on our agenda.
Especially for the latter point, one has to assume that correct query formulations so far

rather stem from verbatim SPARQL examples in the training data for common questions than
from an actual understanding of the entities and query structure. We may still assume that the
quality of such queries will improve in the future, even now already we encountered hardly
any syntactical errors.
A summary of ChatGPT’s results wrt. query generation can be found in Table 7.

Which components used in KGQA-systems could be enhanced using LLMs?

While the LLMs in questions showed mediocre results by themselves they potentially
inherit the capabilities to improve already existing QA-approaches. We believe that LLMs
could provide especially useful in the task of entity recognition which forms part of many
existing KGQA-systems. Using LLMs to �nd synonyms for words occurring in the question
asked, extracting the questions underlying meaning, and using them in combination with query

generation templates or by implementing extensive prompt engineering to give the LLMs hints
on how to structure their queries.

What types of questions are found in existing benchmarks for KGQA approaches and
in how far can these be used in benchmarking LLM-based QA approaches?

While di�erent benchmarks use di�erent categories to categorize their questions some
studies provide a holistic categorization of the questions and queries provided in di�erent
benchmark datasets. A summary of the used (sub)datasets questions categorized in accordance
to CBench’s wh-questions classi�cation [1] can be found in Table 4 while Tables 5 and 6 provide
a summary of the correctly answered questions by their type.

The results of our study show that LLMs have a particularly hard time answering questions
forming some type of count or, resp., asking for all entities of a certain category (particularly
though, in terms of KGQA also because knowledge in common KGs is typically incomplete).
Aside from this, LLMs struggle to answer questions including recent events due to their limited
training period.

An additional analysis wrt. to the questions’ categories and patterns in the LLMs’ results will
be conducted in future work.

How can a comprehensive benchmark for LLM-based, KGQA-based but also
combined QA approaches be constructed that is challenging the current weaknesses of
both approaches?

While it became obvious that a comprehensive benchmark must contain questions
aimed at recent/current events, these types of questions are not only harder to fact-check
but inherit additional complications due to the resulting need of constant adaption of the
benchmark. Additionally, a comprehensive KGQA benchmark must include questions that
require the KGQA-system to form some sort of arithmetic or logical linking, such as counting
entities related to a word in the asked question, etc.

4. Conclusion

In our preliminary study, we analyzed the performance of two of OpenAI’s large language
models davinci (GPT 3) and ChatGPT (GPT 3.5) against a set of questions established by students
and two subsets of the established benchmark datasets SimpleQuestions and QALD-5. We used
both models to answer the questions in each dataset, as well as to generate SPARQL queries
aimed at retrieving these answers from the knowledge base Wikidata. Our results demonstrate
the limitations of large language models, which mainly lies in their training time frame as
well as their stability. Additionally, we show that LLMs are in principle capable of generating
functioning queries. While being able to consistently generate structurally and syntactically
correct queries, they however demonstrate bad performance wrt. entity detection, resulting
in the generated queries not returning the desired results. Therefore, the question remains
open how large language models can be used in combination with existing question answering

systems and speci�cally how existing approaches can be used to substitute the LLM’s de�cits
regarding entity detection. The presented preliminary paper comprises the �rst results of a
recently started master thesis project. Starting from these initial insights, we look forward to
discussing routes ahead at the workshop and collecting feedback for our ongoing experiments.

5. Tables

Student SimpleQuestions QALD-5

What 3 9 1
When 1 0 1
Where 1 3 0
Which 2 0 6
Who 4 1 2
Whom 0 0 0
Whose 0 0 0
How 1 0 1
Yes/No 0 0 3
Requests 2 0 1
Topical 0 2 0
Sum 14 15 15

Table 4
Distribution of wh-question types.

Student SimpleQuestions QALD-5

What 1 5 1
When 0 0 1
Where 0 2 0
Which 1 0 4
Who 2 1 1
Whom 0 0 0
Whose 0 0 0
How 0 0 0
Yes/No 0 0 2
Requests 0 0 0
Topical 0 2 0
Sum 4 10 9

Table 5
Correctly answered questions GPT 3.5.

Student SimpleQuestions QALD-5

What 0 4 0
When 0 0 1
Where 0 1 0
Which 1 0 4
Who 1 1 0
Whom 0 0 0
Whose 0 0 0
How 0 0 0
Yes/No 0 0 2
Requests 0 0 0
Topical 0 0 0
Sum 2 6 7

Table 6
Correctly answered questions GPT 3.

Student SimpleQuestions QALD-5

Generated queries 14 15 15
Syntactically correct 10 15 15
Syntactically incorrect 4 0 0
Correct 1 3 0
Incorrect 1 1 1
No answer 8 11 14

Table 7
Results for generated queries GPT 3.5.

References

[1] A. Orogat, I. Liu, A. El-Roby, Cbench: Towards better evaluation of question answering over
knowledge graphs, 2021. URL: https://arxiv.org/abs/2105.00811. doi:10.48550/ARXIV.
2105.00811.

[2] D. Diefenbach, A. Both, K. Singh, P. Maret, Towards a question answering system over the
semantic web, 2018. URL: https://arxiv.org/abs/1803.00832. doi:10.48550/ARXIV.1803.
00832.

[3] A. Dhandapani, V. Vadivel, Question answering system over semantic web, IEEE Access
9 (2021) 46900–46910. URL: https://doi.org/10.1109/access.2021.3067942. doi:10.1109/
access.2021.3067942.

[4] S. Vakulenko, J. D. F. Garcia, A. Polleres, M. de Rijke, M. Cochez, Message passing for
complex question answering over knowledge graphs, in: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, ACM, 2019. URL:
https://doi.org/10.1145/3357384.3358026. doi:10.1145/3357384.3358026.

[5] S. Liang, K. Stockinger, T. M. de Farias, M. Anisimova, M. Gil, Querying knowledge
graphs in natural language, Journal of Big Data 8 (2021). URL: https://doi.org/10.1186/
s40537-020-00383-w. doi:10.1186/s40537-020-00383-w.

[6] H. Cui, T. Peng, L. Feng, T. Bao, L. Liu, Simple question answering over knowledge
graph enhanced by question pattern classi�cation, Knowledge and Information Systems
63 (2021) 2741–2761. URL: https://doi.org/10.1007/s10115-021-01609-w. doi:10.1007/
s10115-021-01609-w.

[7] M. Yani, A. A. Krisnadhi, I. Budi, A better entity detection of question for knowledge graph
question answering through extracting position-based patterns, Journal of Big Data 9 (2022).
URL: https://doi.org/10.1186/s40537-022-00631-1. doi:10.1186/s40537-022-00631-1.

[8] M. Zaib, W. E. Zhang, Q. Z. Sheng, A. Mahmood, Y. Zhang, Conversational question
answering: a survey, Knowledge and Information Systems 64 (2022) 3151–3195. URL:
https://doi.org/10.1007/s10115-022-01744-y. doi:10.1007/s10115-022-01744-y.

[9] C. Mercer, The rise of chat gpt: The future of conversational ai,
https://medium.com/@conan.mercer/the-rise-of-chat-gpt-the-future-of-conversational-
ai-91622b9db303, 2023. Accessed on March 06, 2023.

[10] S. Garg, ChatGPT alternatives that will blow your mind in 2023 — writesonic.com,
https://writesonic.com/blog/chatgpt-alternatives/, 2023. Accessed on March 06, 2023.

[11] L. Jiang, R. Usbeck, Knowledge graph question answering datasets and their generalizabil-
ity, in: Proceedings of the 45th International ACMSIGIR Conference on Research andDevel-
opment in Information Retrieval, ACM, 2022. URL: https://doi.org/10.1145/3477495.3531751.
doi:10.1145/3477495.3531751.

[12] F. A. Acheampong, H. Nunoo-Mensah, W. Chen, Transformer models for text-based
emotion detection: a review of BERT-based approaches, Arti�cial Intelligence Review
54 (2021) 5789–5829. URL: https://doi.org/10.1007/s10462-021-09958-2. doi:10.1007/
s10462-021-09958-2.

[13] Z. Abbasiantaeb, S. Momtazi, Entity-aware answer sentence selection for question an-
swering with transformer-based language models, Journal of Intelligent Information Sys-
tems 59 (2022) 755–777. URL: https://doi.org/10.1007/s10844-022-00724-6. doi:10.1007/

s10844-022-00724-6.
[14] G. Mai, K. Janowicz, L. Cai, R. Zhu, B. Regalia, B. Yan, M. Shi, N. Lao, iSE-KGE/i : A

location-aware knowledge graph embedding model for geographic question answering
and spatial semantic lifting, Transactions in GIS 24 (2020) 623–655. URL: https://doi.org/
10.1111/tgis.12629. doi:10.1111/tgis.12629.

[15] S. Shin, X. Jin, J. Jung, K.-H. Lee, Predicate constraints based question answering over
knowledge graph, Information Processing & Management 56 (2019) 445–462. URL:
https://doi.org/10.1016/j.ipm.2018.12.003. doi:10.1016/j.ipm.2018.12.003.

[16] J. Gomes, R. C. de Mello, V. Ströele, J. F. de Souza, A study of approaches to answer-
ing complex questions over knowledge bases, Knowledge and Information Systems
64 (2022) 2849–2881. URL: https://doi.org/10.1007/s10115-022-01737-x. doi:10.1007/
s10115-022-01737-x.

[17] P. Do, T. H. V. Phan, Developing a BERT based triple classi�cation model using knowledge
graph embedding for question answering system, Applied Intelligence 52 (2021) 636–651.
URL: https://doi.org/10.1007/s10489-021-02460-w. doi:10.1007/s10489-021-02460-w.

[18] W. Jin, B. Zhao, H. Yu, X. Tao, R. Yin, G. Liu, Improving embedded knowledge graph
multi-hop question answering by introducing relational chain reasoning, Data Mining and
Knowledge Discovery 37 (2022) 255–288. URL: https://doi.org/10.1007/s10618-022-00891-8.
doi:10.1007/s10618-022-00891-8.

[19] R. Wang, M. Wang, J. Liu, M. Cochez, S. Decker, Structured query construction via
knowledge graph embedding, Knowledge and Information Systems 62 (2019) 1819–1846.
URL: https://doi.org/10.1007/s10115-019-01401-x. doi:10.1007/s10115-019-01401-x.

[20] U. Sawant, S. Garg, S. Chakrabarti, G. Ramakrishnan, Neural architecture for ques-
tion answering using a knowledge graph and web corpus, Information Retrieval Jour-
nal 22 (2019) 324–349. URL: https://doi.org/10.1007/s10791-018-9348-8. doi:10.1007/
s10791-018-9348-8.

[21] H. Jung, W. Kim, Automated conversion from natural language query to SPARQL query,
Journal of Intelligent Information Systems 55 (2020) 501–520. URL: https://doi.org/10.1007/
s10844-019-00589-2. doi:10.1007/s10844-019-00589-2.

[22] D. Diefenbach, V. Lopez, K. Singh, P. Maret, Core techniques of question answering systems
over knowledge bases: a survey, Knowledge and Information Systems 55 (2017) 529–569.
URL: https://doi.org/10.1007/s10115-017-1100-y. doi:10.1007/s10115-017-1100-y.

[23] S. Ka�e, N. de Silva, D. Dou, An overview of utilizing knowledge bases in neural networks
for question answering, Information Systems Frontiers 22 (2020) 1095–1111. URL: https:
//doi.org/10.1007/s10796-020-10035-2. doi:10.1007/s10796-020-10035-2.

[24] Y.-M. Kim, T.-H. Lee, S.-O. Na, Constructing novel datasets for intent detection and
ner in a korean healthcare advice system: guidelines and empirical results, Applied
Intelligence 53 (2022) 941–961. URL: https://doi.org/10.1007/s10489-022-03400-y. doi:10.
1007/s10489-022-03400-y.

[25] E. Erdem, M. Kuyu, S. Yagcioglu, A. Frank, L. Parcalabescu, B. Plank, A. Babii, O. Tu-
ruta, A. Erdem, I. Calixto, E. Lloret, E.-S. Apostol, C.-O. Truic�, B. �andrih, S. Martin�i�-
Ip�i�, G. Berend, A. Gatt, G. Korvel, Neural natural language generation: A sur-
vey on multilinguality, multimodality, controllability and learning, Journal of Arti�-
cial Intelligence Research 73 (2022) 1131–1207. URL: https://doi.org/10.1613/jair.1.12918.

doi:10.1613/jair.1.12918.
[26] T. Adewumi, F. Liwicki, M. Liwicki, State-of-the-art in open-domain conversational AI:

A survey, Information 13 (2022) 298. URL: https://doi.org/10.3390/info13060298. doi:10.
3390/info13060298.

[27] D. M. Korngiebel, S. D. Mooney, Considering the possibilities and pitfalls of generative
pre-trained transformer 3 (GPT-3) in healthcare delivery, npj Digital Medicine 4 (2021).
URL: https://doi.org/10.1038/s41746-021-00464-x. doi:10.1038/s41746-021-00464-x.

[28] Y. Matveev, O. Makhnytkina, P. Posokhov, A. Matveev, S. Skrylnikov, Personalizing
hybrid-based dialogue agents, Mathematics 10 (2022) 4657. URL: https://doi.org/10.3390/
math10244657. doi:10.3390/math10244657.

[29] Y. Yang, J. Cao, Y. Wen, P. Zhang, Multiturn dialogue generation by modeling sentence-
level and discourse-level contexts, Scienti�c Reports 12 (2022). URL: https://doi.org/10.
1038/s41598-022-24787-1. doi:10.1038/s41598-022-24787-1.

[30] Z. Ahmad, A. Ekbal, S. Sengupta, P. Bhattacharyya, Neural response generation for task
completion using conversational knowledge graph, PLOS ONE 18 (2023) e0269856. URL:
https://doi.org/10.1371/journal.pone.0269856. doi:10.1371/journal.pone.0269856.

[31] D. Jannach, L. Chen, Conversational recommendation: A grand AI challenge, AI Magazine
43 (2022) 151–163. URL: https://doi.org/10.1002/aaai.12059. doi:10.1002/aaai.12059.

[32] S. Huh, Are ChatGPT's knowledge and interpretation ability comparable to those of
medical students in korea for taking a parasitology examination?: a descriptive study,
Journal of Educational Evaluation for Health Professions 20 (2023) 1. URL: https://doi.org/
10.3352/jeehp.2023.20.01. doi:10.3352/jeehp.2023.20.01.

[33] G. Caldarini, S. Jaf, K. McGarry, A literature survey of recent advances in chat-
bots, Information 13 (2022) 41. URL: https://doi.org/10.3390/info13010041. doi:10.3390/
info13010041.

[34] V. Shankar, S. Parsana, An overview and empirical comparison of natural language
processing (NLP) models and an introduction to and empirical application of autoencoder
models in marketing, Journal of the Academy of Marketing Science 50 (2022) 1324–1350.
URL: https://doi.org/10.1007/s11747-022-00840-3. doi:10.1007/s11747-022-00840-3.

[35] N. Alswaidan, M. E. B. Menai, A survey of state-of-the-art approaches for emotion
recognition in text, Knowledge and Information Systems 62 (2020) 2937–2987. URL:
https://doi.org/10.1007/s10115-020-01449-0. doi:10.1007/s10115-020-01449-0.

[36] S.-E. Kim, Y.-S. Lim, S.-B. Park, Strong in�uence of responses in training dialogue response
generator, Applied Sciences 11 (2021) 7415. URL: https://doi.org/10.3390/app11167415.
doi:10.3390/app11167415.

[37] N. Tsinganos, P. Fouliras, I. Mavridis, Applying BERT for early-stage recognition of
persistence in chat-based social engineering attacks, Applied Sciences 12 (2022) 12353.
URL: https://doi.org/10.3390/app122312353. doi:10.3390/app122312353.

[38] H. Snyder, Literature review as a research methodology: An overview and guidelines,
Journal of Business Research 104 (2019) 333–339. URL: https://doi.org/10.1016/j.jbusres.
2019.07.039. doi:10.1016/j.jbusres.2019.07.039.

[39] A. P. L. J. J. S. A. K. C. M. J. H. J. R. A.-C. N. N. M. S. A. B. Ri-
cardo Usbeck, Xi Yan, Qald-10 - the 10th challenge on question answering over
linked data, 2023. URL: https://semantic-web-journal.net/content/qald-10-%E2%80%

94-10th-challenge-question-answering-over-linked-data-0, under submission.
[40] M. Dubey, D. Banerjee, A. Abdelkawi, J. Lehmann, Lc-quad 2.0: A large dataset for complex

question answering over wikidata and dbpedia, in: Proceedings of the 18th International
Semantic Web Conference (ISWC), Springer, 2019.

[41] P. Trivedi, G. Maheshwari, M. Dubey, J. Lehmann, Lc-quad: A corpus for complex question
answering over knowledge graphs, in: Proceedings of the 16th International Semantic
Web Conference (ISWC), Springer, 2017, pp. 210–218.

[42] D. Diefenbach, T. P. Tanon, K. D. Singh, P. Maret, Question answering benchmarks for
wikidata, in: Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks
co-located with 16th International Semantic Web Conference (ISWC 2017), Vienna, Austria,
October 23rd - to - 25th, 2017., 2017. URL: http://ceur-ws.org/Vol-1963/paper555.pdf.

[43] C. Unger, C. Forescu, V. Lopez, A.-C. Ngonga Ngomo, E. Cabrio, P. Cimiano, S. Walter,
Question answering over linked data (qald-5), 2015.

[44] D. Vrande�i�, M. Krötzsch, Wikidata: A free collaborative knowledgebase, Commun. ACM
57 (2014) 78–85. URL: https://doi.org/10.1145/2629489. doi:10.1145/2629489.

[45] V. Lopez, C. Unger, P. Cimiano, E. Motta, Evaluating question answering over linked data,
Web Semantics Science Services And Agents On The World Wide Web 21 (2013) 3–13.
doi:10.1016/j.websem.2013.05.006.

[46] A. Bordes, N. Usunier, S. Chopra, J. Weston, Large-scale simple question answering with
memory networks, 2015. URL: https://arxiv.org/abs/1506.02075. doi:10.48550/ARXIV.
1506.02075.

[47] R. F. Jonathan Berant, Andrew Chou, P. Liang, Semantic parsing on freebase from question-
answer pairs, Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing (2013) 1533–1544.

[48] D063520, Github - wdaquacore0questions, 2017. URL: https://github.com/WDAqua/
WDAquaCore0Questions, accessed on February 28, 2023.

[49] S. de Rooij, W. Beek, P. Bloem, F. van Harmelen, S. Schlobach, Are names meaningful?
quantifying social meaning on the semantic web, in: P. Groth, E. Simperl, A. J. G. Gray,
M. Sabou, M. Krötzsch, F. Lécué, F. Flöck, Y. Gil (Eds.), The SemanticWeb - ISWC 2016 - 15th
International Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings,
Part I, volume 9981 of Lecture Notes in Computer Science, 2016, pp. 184–199. URL: https:
//doi.org/10.1007/978-3-319-46523-4_12. doi:10.1007/978-3-319-46523-4_12.

[50] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation
for Statistical Computing, Vienna, Austria, 2022. URL: https://www.R-project.org/.

[51] I. Rudnytskyi, openai: R Wrapper for OpenAI API, 2023. URL: https://CRAN.R-project.org/
package=openai, r package version 0.4.0.

[52] M. Popov, WikidataQueryServiceR: API Client Library for ’Wikidata Query Service’, 2020.
URL: https://CRAN.R-project.org/package=WikidataQueryServiceR, r package version
1.0.0.

	Introduction
	Research Question
	Research Method
	Preliminary Results

	Preliminaries
	Semantic Web
	Knowledge Graphs
	Wikidata
	DBpedia

	Knowledge Graph Question Answering
	Wikidata
	DBpedia

	Artificial Intelligence
	Symbolic vs. Sub-Symbolic AI
	Neural Networks
	Transformer Models

	Large Language Models
	GPT-3
	GPT-3.5
	GPT-4

	Related Work
	KGQA-Systems
	Components of KGQA-Systems
	Established Systems and Methods
	Additional Research

	Benchmarking
	QALD
	SimpleQuestions
	LC-QuAD 2.0
	WDAquaCore0Questions
	StudentQuestions
	WebQuestions
	Additional Research

	Methodology
	Sample Benchmarks
	Sample Questions
	Benchmark Analysis

	Implementation of the Experiment
	GPT-Based Components of KGQA
	Question Analysis
	Phrase Mapping
	Disambiguation
	Query Construction
	Querying Distributed Knowledge

	Results
	Question Analysis
	Phrase Variation
	Question Variation
	Question Pseudonymization
	Type Detection
	POS Tagging
	Named Entity Recognition
	Entity and Relationship Detection
	Semantic Parsing

	Phrase Mapping
	Direct Phrase Mapping
	Global Phrase Mapping

	Query Construction
	Direct Construction
	URI-Fed Construction
	Template-Based Construction
	URI-Fed Template-Based Construction

	Technical Performance

	Limitations
	Conclusion and Further Research
	Is GPT fit for KGQA? â€“ Preliminary Results

