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Abstract

This thesis investigates whether a hierarchical agent architecture can im-
prove Graphical User Interface (GUI) automation. We compared a manager-
worker system, using GPT-4o0 for high-level planning and UI-TARS-7B-DPO
model for low-level execution, against a baseline where UI-TARS-7B-DPO op-
erated as a single end-to-end agent. Both systems were evaluated on a set of
tasks from the OSWorld benchmark, measuring Task Success Rate (T'SR) and
analyzing failure modes.

The hierarchical system achieved a modestly higher overall TSR (23.3% vs.
16.7%), demonstrating a clear advantage on simple, structured tasks. However,
this advantage disappeared with increasing complexity; both systems failed all
medium difficulty web-based tasks, and the monolithic baseline performed bet-
ter on hard tasks. Qualitative analysis revealed that even with correct high-level
plans, the worker agent consistently failed at fundamental Ul interactions like
handling web forms and pop-ups.

We conclude that while architectural improvements in planning offer some
benefits, they are ultimately undermined by persistent failures in low-level ac-
tion execution. Robust GUI automation requires foundational improvements in
the agent’s core interaction capabilities, highlighting that reliable execution is
a prerequisite for high-level strategies to be effective.



1 Introduction

Recent advancements in Large Language Models (LLMs) have unlocked unprece-
dented capabilities in natural language understanding and generation, sparking sig-
nificant interest in their application to automate complex, human-centric tasks. Au-
tomating interactions with Graphical User Interfaces (GUIs) remains a pivotal chal-
lenge, traditionally tackled with brittle scripts or complex computer vision [10]. How-
ever, the ability of modern LLMs to process multi-modal information and reason
about actions has led to the emergence of novel approaches, where models interpret
user requests in natural language and directly interact with interface elements to
achieve goals [30].

As research into LLM-powered GUI automation accelerates, distinct architectural
patterns are surfacing. One emerging approach relies on a specialized single LLM
paradigm, where the model directly processes the task description and screen context
to generate interaction steps end-to-end. Conversely, agentic architectures adopt a
more modular design, frequently employing LLMs within a framework that includes
explicit components for planning, task decomposition, tool usage, memory manage-
ment, and potentially self-correction. These agentic systems aim to mimic more
complex reasoning processes to handle intricate, multi-step tasks [24].

Recognizing the limitations inherent in monolithic approaches, recent research in-
creasingly explores compositional or hierarchical frameworks for GUI automation.
These agentic systems, which often delegate responsibilities like high-level planning,
sub-task execution, and visual grounding to different modules, are demonstrating im-
proved capabilities [3]. While this marks significant progress, the optimal design and
interaction patterns within such multi-component systems, particularly concerning
the synergy between high-level reasoning models and specialized execution agents,
remain an active area of investigation [2].

Building on this direction, this thesis proposes and evaluates a specific hierarchical
architecture. We employ a generalist Large Language Model as a high-level manager
tasked with decomposing complex user instructions into a sequence of low-level in-
structions. These instructions are then dispatched to UI-TARS [18], a capable vision-
language model specializing in GUI interaction, which acts as the low-level worker.
UIL-TARS is responsible for the execution of these discrete, state-dependent instruc-
tions, potentially leveraging its own inherent planning capabilities for finer-grained
actions within the scope of each instruction.

This study will implement this manager-worker framework and evaluate its perfor-
mance specifically on the OSWorld benchmark [26], using both quantitative met-
rics and qualitative analysis, contributing insights into effectively combining broad



reasoning abilities with specialized visual grounding and interaction for robust task
automation.

1.1 Research question

Stemming from the exploration of hierarchical agent architectures for GUI automa-
tion, this thesis aims to address the following research question:

Can a hierarchical manager-worker architecture, employing a generalist
Large Language Model as a high-level planner and UI-TARS as a special-
1zed low-level worker, improve task automation performance and influence
operational behavior for GUI automation tasks on the OSWorld benchmark
when compared to a single-agent UI-TARS baseline?

This will be assessed by:

e Implementing the proposed hierarchical system (GPT-40 planner and UI-TARS-
7B-DPO worker) and a baseline system (UI-TARS-7B-DPO operating as a sin-
gle, end-to-end agent).

e Executing a selected subset of tasks from the Chrome domain of the OSWorld
benchmark, covering a spectrum of difficulty levels, with multiple runs for each
system to ensure robustness of findings.

e Quantitatively evaluating and comparing the Task Success Rate (TSR) of the
hierarchical system against the baseline, with success determined by OSWorld’s
execution-based validation scripts.

e Qualitatively analyzing the interaction logs from both systems. This will involve
a manual review of action sequences, planner-generated instructions (for the
hierarchical system), and GUI screenshots to identify and compare operational
strategies, common patterns of interaction, and specific failure modes. Failures
will be categorized (Planning, Grounding, Interaction, Navigation, Infeasible)
to understand the root causes and how they differ between the two architectures.

This comparative evaluation will provide insights into the potential advantages, lim-
itations, and behavioral characteristics of the proposed hierarchical approach in the
context of complex GUI automation.



2 Background

The automation of human-computer interaction is being transformed by Graphical
User Interface (GUI) agents, particularly those powered by Large Foundation Models.
Nguyen et al. (2024) define a GUI agent as “an intelligent autonomous agent that
interacts with digital platforms... through their Graphical User Interface. It iden-
tifies and observes interactable visual elements displayed on the device’s screen and
engages with them by clicking, typing, or tapping, mimicking the interaction patterns
of a human user” [I7]. These agents aim to autonomously navigate and manipulate
software applications across diverse platforms by emulating human actions. While
related to fields like GUI testing and Robotic Process Automation, which often focus
on automating predefined workflows [10], the focus here is on agents capable of dy-
namic interaction with the GUI environment, often driven by complex user goals or
instructions.

2.1 LLM-Powered GUI Automation

The core concept behind LLM-Powered GUI Automation centers on employing Large
Foundation Models (LFMs), including Large Language Models (LLMs) and Multi-
modal Large Language Models (MLLMs), as the intelligent core of the agent [20].
This marks a paradigm shift from conversational chatbots towards using LFMs to
perform actions and interact with digital systems via GUIs in a human-like manner.
These agents leverage the extensive pre-trained knowledge, reasoning, and multimodal
processing capabilities acquired by these models during their general pre-training to
interpret user instructions and perceive the GUI environment [24].

Perception occurs through various observations like visual screenshots [18, 9] or textu-
al/structural data [11, 22] (e.g., HTML, DOM, Accessibility Trees). However, reliably
bridging this perception-action loop across the sheer diversity of GUIs and task com-
plexities remains a central challenge, driving much of the ongoing research in the field.
Based on this understanding, often guided by carefully crafted prompts, the model
generates the subsequent action required to progress towards the user’s goal. This
action might range from low-level mouse/keyboard inputs to interactions with specific
Ul elements or even the generation of executable code. This approach represents a sig-
nificant shift, harnessing the general problem-solving abilities of foundation models to
handle the complexities and dynamics of GUI interaction across diverse domains [17].

2.2  Origin and Evolution of GUI Automation

The evolution of GUI automation reveals a clear progression towards achieving greater
autonomy, flexibility, and generalization, driven by the need to minimize direct hu-



man intervention and overcome the limitations of preceding approaches [I8]. This
trajectory highlights a shift from rigid, narrowly defined systems to more adaptive
and intelligent models.

The origins of GUI automation are deeply embedded in software testing and early
Robotic Process Automation (RPA). Initial strategies, such as random 'monkey’ test-
ing, script-based record-and-replay (pioneered by tools like Selenium), and rule-based
planners [16], sought to mechanize human interaction. These systems treated GUIs
primarily as predictable, structural entities. They excelled within constrained envi-
ronments, automating repetitive validation checks and fixed business processes [15].
However, their fundamental limitation was their brittleness. Lacking semantic un-
derstanding or visual adaptability, they frequently broke with minor UI updates or
failed entirely when encountering unforeseen states [8]. This reliance on predefined
logic and explicit element identifiers highlighted a critical gap: these systems could
execute known sequences but could not understand or generalize tasks, necessitating
the shift towards more intelligent approaches.

The inherent rigidity of early automation spurred a shift towards embedding intelli-
gence. Machine learning, particularly computer vision, enabled agents to recognize
UI elements and adapt to visual changes [5]. Concurrently, early Natural Language
Processing allowed rudimentary command interpretation [I4], while Reinforcement
Learning explored by Lan et al. [12] also showed potential. While these ML-driven
approaches offered greater adaptability than their predecessors, they often required
extensive task-specific training, struggled with true generalization across diverse ap-
plications, and their natural language capabilities remained limited, highlighting the
need for more powerful reasoning engines.

The arrival of Large Foundation Models, with their unprecedented language under-
standing, marked the next major shift, leading to agent frameworks. These systems
moved beyond single-purpose ML models, using LLMs as a central ’brain’ within
modular architectures [30]. Frameworks like OmniParser [30] explicitly combined vi-
sual processing and language understanding, orchestrated through carefully designed
prompts and workflows. This offered a leap in flexibility and enabled agents to tackle
more complex, multi-step tasks. Wang et al. [24] point to the challenges in designing
these frameworks and ensuring efficient operation, particularly regarding inference la-
tency. Nguyen et al. [I7] underscore the limitations posed by LLM context windows
and the inherent difficulty of designing effective prompts, alongside the persistent
challenge of reliably grounding actions in diverse GUIs. These developments under-
score both the promise and complexity of LLM-centered architectures, highlighting a
crucial trade-off between generalization and system efficiency.

The limitations of agent frameworks spurred the development of Native Agent Mod-



els. These systems aim to learn core capabilities like perception, reasoning, and
action end-to-end, directly within the model’s parameters [18]. Models such as Ul-
TARS [18] and CogAgent [9] operate primarily on visual GUI screenshots, promising
better generalization and reduced manual engineering. These powerful native models
can also function as specialized components within compositional frameworks, like
Agent S2 [3], which delegates distinct cognitive tasks to various models for enhanced
performance. Nevertheless, challenges in developing robust native agents persist, in-
cluding substantial data needs and the complexities of GUI understanding [1§].

2.3 Current Paradigms and Approaches

This evolution from rule-based systems through agent frameworks has led to dis-
tinct paradigms currently shaping research in LLM-powered GUI automation. Two
prominent approaches stand out: native agent models aiming for end-to-end, data-
driven learning, and agentic architectures focusing on compositional or hierarchical
structures [20)].

2.3.1 Native Agent Models

One major direction involves developing native agent models, which strive for an end-
to-end, data-driven architecture where workflow knowledge and core capabilities like
perception, reasoning, memory, and action are learned and unified within the model’s
parameters. This paradigm, aims to improve adaptability and generalization while
reducing reliance on handcrafted rules or prompts [18].

Vision Language Models (VLMs) like CogAgent [9], for example, demonstrate strides
in native perception by enabling robust recognition of tiny page elements and text cru-
cial for GUT understanding. More comprehensive native agents such as UI-TARS [I§]
and Aguvis [27] further embody this end-to-end approach, operating directly on visual
GUI input to perform human-like interactions. UI-TARS, for instance, integrates sev-
eral key innovations: enhanced visual perception from large-scale GUI data, unified
cross-platform action modeling with precise grounding, reasoning patterns involving
explicit intermediate thoughts for planning and reflection.

These capabilities have enabled UI-TARS (72B-DPO) to achieve state-of-the-art re-
sults on complex benchmarks like OSWorld [26] (introduced in detail later), scoring
22.7 (15 steps). Similarly, industry models like Anthropic’s Claude-Computer-Use
also point towards this trend, achieving a score of 14.9 (15 steps) on OSWorld, while
Aguvis (72B) scored 10.3 on the same benchmark, showcasing the varying degrees of
success in this challenging environment.
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2.3.2 Agentic Architectures

Concurrent with the development of native models, an alternative and often com-
plementary paradigm centers on agentic architectures. These systems employ com-
positional or hierarchical frameworks, strategically delegating different cognitive re-
sponsibilities across multiple, potentially specialized, components or models. This
approach is motivated by the observation that a single monolithic model, even a
powerful generalist one, may not optimally perform all sub-tasks required for com-
plex GUI automation, such as high-level planning, fine-grained visual grounding, and
low-level action execution [3]. Wang et al. (2024) propose a generalized framework
for such (M)LLM-based GUI agents, typically encompassing distinct components: a
GUI perceiver to interpret Ul elements, a task planner for decomposing goals, a de-
cision maker to select actions, an executor to interact with the environment, and a
memory retriever to leverage past experiences or knowledge [24].

Agentic systems like Agent S2 [3] exemplify this compositional philosophy, utilizing
a hierarchical framework with a high-level generalist manager for planning and a
low-level worker for execution. Agent S2 achieves 27.0% on the OSWorld benchmark
15-step evaluation. Critically, such architectures can leverage capable native agent
models as specialized components, for instance, Agent S2 employs strategies like a
"Mixture of Grounding’ where the worker can route actions to specific grounding
experts, potentially including highly adept native visual models, to achieve precise el-
ement localization [3]. This modularity allows for dynamic plan refinement and aims
to overcome challenges in grounding and long-horizon planning by distributing cogni-
tive load. Frameworks like OmniParser [22] and Navi [4] also adopt such modular or
hierarchical designs. While offering benefits like the integration of specialized modules
and potentially more interpretable reasoning flows, these architectures must manage
the complexity of inter-component communication and ensure coherent collaboration
between diverse models.

The exploration of optimal designs within these multi-component systems continues.
This thesis builds directly upon this trajectory by proposing and evaluating a specific
hierarchical manager-worker architecture. We investigate whether employing a gener-
alist Large Language Model as a high-level planner, tasked with decomposing complex
instructions, can effectively direct a capable native vision-language model, to improve
task automation performance in GUI environments. This research specifically aims
to contribute insights into the synergistic potential and operational behaviors when
combining broad reasoning abilities with specialized, learned visual grounding and
interaction capabilities.

11



2.4 (M)LLM-based GUI Agent Components

LLM-based GUI agents, particularly those employing agentic or compositional de-
signs, are typically structured around several interacting components or functional
areas, each responsible for distinct aspects of the automation task. While the specific
identification and naming of these components can vary across different research works
and proposed frameworks for instance, generalized models presented by Wang et al.
(2024) |24] and Zhang et al. (2024) [30] offer slightly different structural perspectives
they generally encompass a similar set of core capabilities. These essential functions
include perceiving the state of the graphical user interface, reasoning about the user’s
goal and planning the necessary steps, executing actions within the environment, and
utilizing memory to maintain context and support learning. The following subsec-
tions will elaborate on these fundamental components based on common patterns
identified in the field.

To make the following abstract components more concrete, we will use a practical
running example throughout the following subsections. Imagine a user giving the
agent the command: 'In Google Chrome, make Bing the default search engine.’

2.4.1 Perception Module

The GUI perceiver, or perception module, is fundamental to an agent’s operation,
tasked with interpreting the screen’s visual and structural information to build an
understanding of the current GUI state [24].

This interpretation often involves processing direct visual input like screenshots, which
Multimodal Large Language Models (MLLMs) can increasingly handle. However,
reliance on raw visual data presents challenges: Recognizing tiny but crucial elements
often requires high-resolution image processing, as demonstrated by models such as
CogAgent [9] which utilize specialized encoders for this purpose, but this can lead to
significant computational overhead. Additionally, transmitting full sensitive screen
data can raise significant privacy concerns and increase the risk of data exposure,
making reliable systems a prominent area of recent research [21].

Alternatively, agents can utilize structural data such as HTML/DOM for web ap-
plications, or accessibility and widget trees for desktop and mobile platforms, which
provide element properties and hierarchy. While these sources can offer precise se-
mantic information, Wang et al. [23] address their limitations, noting that their effec-
tiveness often depends on specific implementations and may be insufficient for custom
UI components or dynamic content. Furthermore, raw HTML or DOM trees can be
noisy and verbose, often requiring substantial preprocessing or specialized models for
effective interpretation [17].
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To overcome these individual limitations, hybrid approaches that integrate visual
and structural data have also been investigated, although effectively merging these
streams presents complexities [31]. Advanced systems, utilizing vision-language foun-
dation parsers like OmniParser V2 [29], aim to generate structured UT representations
directly from screenshots. While promising for unifying parsing, such systems can
face challenges in precision and interpretability with novel or dense GUIs, alongside
issues of computational cost, and potential misinterpretations [30]. Reliably bridging
this perception to the agent’s reasoning across the sheer diversity of GUIs and task
complexities, however, remains a central research challenge.

Example 1 The Perception Module would process the browser screenshot to locate
and identify key Ul elements. This includes finding the 'more options’ icon, recogniz-
ing the ’settings’ menu item, and later, on the settings page, identifying the ’search
engine’ section and the dropdown menu to reveal the list of available search engines.

2.4.2 Planning Module

Following perception, the planning and reasoning module serves as the agent’s cog-
nitive core. Its primary function is to interpret the user’s overall goal, analyze the
current GUI state provided by the perception module, and determine a coherent
strategy and sequence of actions to achieve task completion [24]. A central capa-
bility of this module is task decomposition, breaking down complex, high-level user
instructions into more manageable sub-tasks or steps. This decomposition is vital for
tackling long-horizon problems, a significant challenge for GUT agents [3].

Several strategies facilitate this planning and reasoning process. Techniques like
Chain-of-Thought (CoT) prompting [25] encourage the underlying LLM to gener-
ate explicit intermediate reasoning steps, ostensibly leading to a more structured
plan. However, the efficacy of such pre-generated plans can be limited in highly dy-
namic GUI environments where each action can alter the state unpredictably. More
adaptive approaches, such as the ReAct framework [28], integrate reasoning tightly
with action execution and observation cycles, enabling the agent to adjust its plan
based on real-time environmental feedback. While ReAct enhances flexibility, it can
sometimes lead to inefficient exploration or repetitive loops.

Planning can draw upon the LLM’s inherent knowledge or leverage external knowl-
edge bases, such as retrieved documents or tool descriptions, to refine strategies [17].
However, relying on internal knowledge risks using outdated or overly generic in-
formation, while effective utilization of external knowledge hinges on accurate and
efficient retrieval mechanisms. To address these complexities, UI-TARS incorporates
deliberate 'System-2’ reasoning, featuring patterns such as task decomposition, re-
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flection, and milestone recognition to guide decision-making [I8]. Similarly, agentic
frameworks like Agent S2 employ proactive hierarchical planning, allowing for dy-
namic plan refinement at multiple levels in response to evolving observations, rather
than only reacting to failures [3]. The challenge remains to develop planners that are
robust, efficient, generalizable across diverse tasks, and capable of sophisticated error
recovery.

Example 2 The planning module would decompose the instruction into a logical plan,
generating an output like: "(1) Click the ‘'more options’ menu in the top-right corner.
(2) Click ’settings’ from the menu. (3) Navigate to and click the ’search engine’ tab.
(4) Click the dropdown menu for the default search engine. (5) Select 'Bing’ from the
list of options.”

The distribution of planning responsibilities, particularly in hierarchical or composi-
tional systems, mirrors the manager-worker structure investigated in this thesis.

2.4.3 Action Execution Module

Executing actions on a GUI requires translating the agent’s plan into specific, often
low-level interactions like clicks, key presses, or coordinate-based gestures, going be-
yond simple text commands or direct API usage. A primary challenge is determining
precisely where on the screen to perform the action [24].

One common strategy involves leveraging structured environmental data provided
by the platform. For web pages, agents can parse the DOM or HTML, while on
desktop or mobile, they might utilize accessibility trees to identify Ul elements based
on their defined attributes, such as unique IDs or descriptive labels [I7]. While
effective when this metadata is accurate and complete, this approach can be fragile
if the underlying structure is poorly defined, inconsistent, changes unexpectedly, or
is simply unavailable for certain UI elements [7].

To overcome these limitations, there is significant research interest in visual grounding
techniques. These methods attempt to directly map the agent’s intent or a textual
description onto the corresponding visual region within a screenshot, relying on under-
standing the visual appearance of elements rather than their declared structural prop-
erties [I7]. However, visual grounding presents its own set of difficulties. Precisely
localizing elements and determining exact coordinates from raw pixels is challenging
due to variability in GUI layouts, dynamic content, and the fine-grained accuracy
required [I§]. Even advanced Multimodal Large Language Models can struggle with
severe hallucination or misinterpreting spatial relationships on complex webpages,
making grounding a key bottleneck [31]. Advanced compositional frameworks like
Agent S2 propose a 'Mixture of Grounding’ mechanism, routing actions to special-
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ized experts to improve precision across diverse contexts [3].

Ultimately, accurately grounding the intended actiona€”whether derived from struc-
tural, visual, or hybrid analysisa€”to the correct screen target is crucial for success-
ful execution. Ongoing research focuses on improving the robustness of these map-
ping techniques, especially for coordinate-based interactions vital for pure-vision ap-
proaches, often through training on large-scale action traces to enhance precision [18§].

Example 3 To execute the plan, the Action Execution module translates a step into
a specific interaction. For the command "Select 'Bing’ from the list of options,” the
module must ground it by visually identifying the 'Bing’ option (which only became
visible after the previous action), determining its precise coordinates, and issuing a
click event at that location.

2.4.4 Memory Module

To effectively handle multi-step tasks and maintain coherence, LLM-based GUI agents
require a memory module for storing and retrieving relevant information, enabling
statefulness and learning from experience [24]. This is typically categorized into two
streams: Short-Term Memory (STM) holds immediate operational data like recent
action-observation pairs and the history of prior interactions. Its capacity is often
constrained by the LLM’s limited context window [30], demanding effective strate-
gies for information prioritization. For instance, UI-TARS retains the full history of
previous actions and thoughts as STM but conditions its iterative predictions on a
limited window of the last N (typically 5) screen observations to manage this con-
straint [I8]. Long-Term Memory (LTM), conversely, provides persistent storage for
accumulating knowledge across sessions, such as successful task trajectories, error
patterns, or distilled operational guidelines [30]. Systems like Agent S, for instance,
utilize specific narrative and episodic memories for continuous learning through re-
trieval and self-evaluation [2], while Agent S2 leverages a knowledge base built from
prior interaction experiences [3].

However, the effective design and utilization of LTM present substantial research chal-
lenges. Retrieval-Augmented Generation (RAG) is common for explicit LTM stores,
but ensuring the relevance and efficiency of retrieval from potentially vast or noisy
memory, and integrating it without overwhelming the decision-making process, is non-
trivial [30]. While some native agent models like UI-TARS aim to implicitly encode
experiences within parameters through iterative learning from interaction traces [1§],
the scalability and generalizability of such implicit memory are still under inves-
tigation. Critically, transforming stored experiences into actionable, generalizable
knowledge that genuinely enhances problem-solving beyond mere context repetition,
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and deciding what to store or forget, remains a key research frontier for robust agent
learning and adaptation.

Example 4 Short-Term Memory is essential for maintaining context. The agent’s
action-observation history reminds it that after clicking ’settings’, its goal is to find
the ‘search engine’ link, preventing it from getting lost. Long-Term Memory could be
leveraged if the agent has learned from prior tasks that browser settings are typically
accessible via a ‘three-dot menu’, allowing it to initiate the task more efficiently.

2.5 Evaluation of LLM-based GUI Agents

Evaluating LLM-powered GUI agents is critical not only for gauging performance
across different dimensions but also for identifying weaknesses, guiding continuous
improvement, and ensuring alignment with user expectations. The evaluation land-
scape involves assessing agents based on the diverse outputs they produce during
task execution, such as action sequences, intermediate GUI states (often captured as
screenshots or structural data), and the final environment state after task comple-
tion [30].

Key metric categories are commonly employed, though specific names and precise
calculations can vary between studies. Task completion metrics, such as Task Suc-
cess Rate (T'SR), are primary for determining overall effectiveness [20]. Additionally,
efficiency metrics (e.g., number of steps, time taken), generalization metrics (perfor-
mance on unseen tasks/websites/domains), safety metrics (adherence to policies), and
robustness metrics (e.g., to environmental distractions) are increasingly important for
a holistic assessment [30)].

To perform these evaluations consistently and enable comparison between different
agents, the field relies heavily on standardized benchmarks. These benchmarks vary
in several aspects, including the platform (web, mobile, desktop/OS), interactiv-
ity (static datasets versus dynamic, interactive environments), and world assump-
tions (closed-world versus open-world settings where external knowledge might be re-
quired) [30]. Prominent examples include web-focused environments like Mind2Web [6],
which emphasizes generalist agents on real-world websites with diverse tasks and in-
teraction patterns, and WebArena, which provides a highly realistic and reproducible
environment with fully functional websites and focuses on evaluating the functional
correctness of long-horizon tasks [32]. For mobile-centric evaluations, AndroidWorld
offers a dynamic benchmarking environment [19].

OSWorld [26], the benchmark used in this thesis, marks a major step forward in eval-
uating agents on real-world computer tasks. Unlike earlier benchmarks that relied
on static data and rigid evaluations, OSWorld offers a scalable, execution-based en-
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vironment across Ubuntu, Windows, and macOS. It supports diverse, realistic tasks
involving actual applications, file operations, and multi-app workflows. With 369
tasks and 134 custom evaluation scripts, it emphasizes outcome-based assessment
over fixed action sequences, enabling fair evaluation of multiple valid approaches.
Initial tests showed LLM/VLM agents perform poorly (best at 12.24% vs. humans
at 72.36%), revealing significant gaps in GUI interaction and practical knowledge.
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3 Methodology

This section details the methodology employed to evaluate the effectiveness of a spe-
cific manager-worker hierarchical architecture designed for automating complex in-
teractions within Graphical User Interfaces (GUIs). The primary goal was to assess
the performance of this proposed two-level system, comprising a high-level general-
ist Large Language Model (LLM) manager for task decomposition and the special-
ized ULI-TARS agent acting as a low-level instruction executor. This evaluation was
conducted using tasks from the OSWorld benchmark, and the hierarchical system’s
performance was quantitatively and qualitatively compared against a baseline con-
figuration where the UI-TARS agent attempted the same tasks operating as a single,
end-to-end system.

3.1 Prototypical System Design

To evaluate the research question, two distinct systems were designed. This section
details the prototypical design of these two systems. The primary system is a hier-
archical manager-worker architecture that distributes the cognitive load required for
complex tasks between a high-level planner and a low-level executor. To assess its
performance, this hierarchical system was compared against a baseline system where
the worker agent attempts the same tasks operating as a single, end-to-end system.
The following will elaborate on the specific architecture and operational flow of each
configuration.

3.1.1 Hierarchical Manager-Worker System

The core of this research involved the implementation and evaluation of a hierarchi-
cal manager-worker architecture specifically designed for GUI automation within the
OSWorld environment. As illustrated in Figure [I] this system distributes the cogni-
tive load required for complex task completion between two distinct components. A
high-level manager component is responsible for strategic planning and task decom-
position, breaking down complex user goals into simpler steps. These steps are then
delegated to a low-level worker component responsible for grounded execution and
direct interaction with the graphical user interface.

For the high-level planner role, we utilized GP'T-4o0, a state-of-the-art generalist Large
Language Model. The manager receives the overall task instruction and the current
screen context as input. Its primary function, guided by specific prompting, is to
decompose this high-level goal into a sequence of lower-level, state-dependent instruc-
tions suitable for the worker agent. The definition and granularity of these low-level
instructions drew inspiration from the types of actions used for UI control agents
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Figure 1: Hierarchical Manager-Worker Flow-Diagram

described by Li et al. (2024) [13], aiming for concrete sub-tasks like clicking specific
elements, typing text, or navigating menus. The planner generates these instructions
sequentially, planning the steps needed to progress towards the final objective. The
output instructions are formatted as simple natural language commands like ’click
the button labeled save’, or ’open the Chrome menu’.

The low-level worker component was instantiated using UI-TARS-7B-DPO. UI-TARS,
which operates under the direction of the planner, receives one low-level instruction at
a time, along with the current GUI screenshot. Its role is to interpret this specific in-
struction and execute the corresponding low-level actions. This leverages UI-TARS’s
established capabilities in visual grounding and generating fine-grained keyboard and
mouse operations. A slightly adapted version of the standard Bytedance prompt tem-
plate [I] for computer interaction was employed to focus the agent on executing the
single directive provided by the manager.

The interaction protocol is structured around an initial full-plan generation phase
followed by sequential execution with periodic planning intervention. Upon receiving
the task and initial state, the planner first generates a complete sequence of low-
level instructions anticipated to fulfill the entire task goal. This full plan is then
stored. Execution proceeds sequentially: a dispatcher provides the UI-TARS worker
with the next instruction from this pre-generated plan after the previous step is
attempted. To account for potential deviations or unexpected GUI changes, a periodic
re-planning mechanism is triggered. After a set number of instructions from the plan
have been dispatched and attempted by the worker, the planner is reactivated. At this
checkpoint, the planner analyzes the current screen state. Based on this feedback, it
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assesses progress against the original plan and generates a new, potentially adjusted,
sequence of instructions for the remaining steps required to complete the task. This
approach leverages the efficiency of upfront planning while incorporating necessary
grounding and course correction based on the actual state observed at regular intervals
Oor upon encountering errors.

3.1.2 The Baseline System

To effectively assess the performance and characteristics of the proposed hierarchi-
cal manager-worker architecture, a direct comparison against a relevant baseline is
necessary (Figure [2).

Input: Overall Goal,
Screenshots, Prompt

h 4

Worker: Execute goal
loop

Start with goal

Figure 2: Baseline Flow-Diagram

For this purpose, the baseline system employed the UI-TARS-7B-DPO model as a
single, end-to-end agent. This configuration represented the standard usage pat-
tern for such a capable vision-language GUI agent. In the baseline setup, UI-TARS
was directly provided with the same high-level task instructions from the OSWorld
benchmark that were given to the planner in the hierarchical framework. The stan-
dard UI-TARS prompt template for computer interaction tasks, as described in [1],
was used. This approach provided a benchmark to measure the relative effective-
ness, success rates, and behavioral differences introduced by the explicit hierarchical
structure compared to a monolithic agent approach.
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3.2 Experiment Setup

The empirical evaluation compared a hierarchical agentic architecture with a baseline
system, both operating within the OSWorld task environments. The experimental
setup utilized a distributed configuration. The OSWorld virtual machine environ-
ment, where tasks were executed, ran on a local laptop. To ensure that each trial
concluded within a reasonable timeframe, a maximum limit of 15 interaction steps
was imposed on each task attempt. If an agent failed to complete its objective within
this limit, the run was terminated and recorded as a failure.

Large Language Models (LLMs) used:
e Hierarchical architecture:

— The planner component utilized OpenAI’s Gpt-4o0 model, accessed via its
external API.

— The worker component employed the UI-TARS-7B-DPO model. This in-
stance was hosted and executed on a separate dedicated server, with its

specific setup detailed in Appendix [7.3]
e Baseline system:

— This system utilized the UI-TARS-7B-DPO model operating as a single
agent. This instance was also hosted and executed on the same dedicated

server, configured as described in Appendix

To ensure the meaningfulness of the results and account for potential variability, each
of the 10 selected tasks was executed three times for each system (the hierarchical
architecture and the baseline). The findings from these multiple runs were then used
for the comparative analysis within this study.

It is important to note that the scope of the quantitative and qualitative analysis
detailed in the Results chapter is strictly defined by this experimental setup. These
experiments were designed to compare the two architectures using the specified model
versions, which were representative of the state of the art when the study was initiated.
Further preliminary experiments using newer model versions are discussed later in the
Discussion chapter to provide context on the rapid evolution of the field.

3.2.1 Task Selection

The tasks for the empirical evaluation were selected from the OSWorld benchmark.
This benchmark provides realistic Ubuntu virtual machine environments and a diverse
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set of tasks designed to emulate real-world computer usage, often involving multiple
applications and OS-level interactions. [26]

This evaluation was conducted on a selected subset comprising 10 distinct tasks,
all chosen from the Chrome domain. This focus was deliberate: the Chrome do-
main offers a rich and highly complex environment, providing a rigorous testbed for
agent performance due to its diverse Ul elements, dynamic content, and multi-step
processes. Furthermore, selecting tasks exclusively from Chrome allowed for an eval-
uation across a clear spectrum of easy, medium, and hard difficulty levels within a
consistent application context. This approach facilitates a nuanced assessment of
how each architecture scales to increasing task complexity without the confounding
variable of switching between different application environments.

Importantly, all tasks in the selected pool were chosen such that a feasible and well-
defined evaluator function existed, enabling reliable and automated assessment of
task success.

The task difficulty was ranked as follows: easy tasks typically involved direct manipu-
lation of Chrome’s built-in settings or straightforward, single-action interactions with
minimal steps and specific, verifiable outcomes. Medium tasks required a sequence
of steps, such as navigating a website, searching, applying filters, or filling forms,
resulting in a specific URL or page state reflecting the applied criteria. Hard tasks
demanded a higher level of reasoning and more complex interactions, potentially in-
volving deep navigation, information extraction and synthesis from various parts of
a page, or interacting with less structured interfaces and more open-ended goals. A
detailed list of the selected tasks can be found in Appendix [7.2]

3.3 Evaluation Metrics

To evaluate the performance of the hierarchical manager-worker system relative to the
baseline and address the research questions, this study employed both quantitative
and qualitative evaluation metrics.

3.3.1 Quantitative Metric

The primary quantitative metric for evaluating task completion effectiveness and
comparing the two systems was the Task Success Rate (T'SR). Success for each task
attempt was determined strictly based on the execution-based evaluation mecha-
nism inherent to the OSWorld benchmark. OSWorld provides task-specific validation
scripts that programmatically verify if the final state of the virtual machine envi-
ronment meets the required success criteria for that task [26]. A task attempt was
deemed successful only if these conditions were met upon termination of the agent’s
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execution. The TSR for each system was calculated as the percentage of the 10
selected tasks that were successfully completed according to these criteria.

3.3.2 Qualitative Analysis

To provide deeper insights into the operational behavior, common strategies, and
failure modes of each system, a qualitative analysis was performed. This analysis
involved a manual review of the interaction logs generated during task execution for
both the hierarchical and baseline systems. These logs include the sequence of actions
performed by the system, the intermediate instructions generated by the planner, and
screenshots depicting the GUI state.

For unsuccessful task attempts, failures were categorized based on their root cause
using a framework adapted from the error analysis categories presented for the Agent
S2 framework by Agashe et al. (2025) [3]. This involved classifying errors into the
following types:

e Planning: errors originating from flawed high-level strategy or incorrect decom-
position of the task. For the hierarchical system, this could be poor instructions
from the manager, for the baseline, an illogical path chosen.

e Grounding: failure to correctly map an instruction or intention to the correct
UI element on the screen (e.g. clicking the wrong button, unable to find an
element).

e Interaction: errors occurring during the physical execution of an action, even
if planning and grounding were correct (e.g. mistyping text, incorrect mouse
drag).

e Navigation: difficulties specifically related to navigating the Ul structure, such
as improper scrolling or getting lost in menus/dialogs.

e Infeasible: cases where task completion is prevented by factors outside the
agent’s core logic, such as inherent limitations, tool errors, or benchmark envi-
ronment issues.

Successful executions were also reviewed qualitatively to identify and compare the
strategies employed by the hierarchical system versus the baseline end-to-end agent.
This comparative analysis aimed to illuminate the practical advantages and disad-
vantages of the manager-worker approach.
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4 Results

This section presents the findings from the comparative evaluation of the baseline
system and the hierarchical planner-worker system on a selected subset of 10 tasks
from the Chrome domain of the OSWorld benchmark. Each task was executed three
times by each system, resulting in 30 attempts per system. The results are presented
first through quantitative analysis of Task Success Rates (TSR), followed by a detailed
qualitative analysis of the systems’ operational behaviors, common strategies, and
failure modes derived from interaction logs.

Both systems used pyautogui for action execution and screenshot-based observation.
Performance was primarily measured by Task Success Rate (T'SR), determined by OS-
World’s execution-based validation scripts. Qualitative analysis of interaction logs,
including agent thoughts, planner instructions (for the hierarchical system), and ac-
tion sequences, was performed to understand the operational characteristics and root
causes of successes and failures.

4.1 Quantitative Performance Analysis

This section presents the quantitative findings from the comparative evaluation of
the baseline system and the hierarchical planner-worker system. Quantitative per-
formance was primarily assessed using the Task Success Rate (TSR), determined by
OSWorld’s execution-based validation scripts.

4.1.1 Overall Task Success Rates (TSR)

Figure [3| presents the average TSR across all three runs of the 10 tasks for each system
in the OSWorld benchmark.
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Figure 3: Overall average score comparison across systems

e The baseline system achieved 5 successful completions, resulting in an overall
TSR of 16.7%.

e The hierarchical system achieved 7 successful completions, resulting in an overall
TSR of 23.3%.

The hierarchical system demonstrated a moderately higher overall TSR by 6.6 per-
centage points compared to the baseline system.

4.1.2 Task Success Rates by Task Difficulty

The 10 selected tasks were categorized into easy (5 tasks), medium (3 tasks), and hard
(2 tasks) difficulty levels. The performance of each system across these categories is
detailed in Figure [4]

The hierarchical system achieved a notably higher TSR on easy tasks (46.7%) com-
pared to the baseline system (20.0%). Neither system was successful in completing
any of the medium difficulty tasks across any of the runs. The baseline system
demonstrated some success on hard tasks (33.3%), while the hierarchical system did
not succeed on any hard tasks.
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Success Rate Comparison: Baseline System vs. Hierarchical Manager-Worker System
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Figure 4: Success rate comparison: baseline System vs. hierarchical manager-worker
system
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4.1.3 Consistency of Task Success

Analysis of individual task success across the three runs reveals variations in consis-
tency:

e Task 9656a811 (enable safety feature - easy): the baseline system was highly
consistent, succeeding in 3/3 runs. The hierarchical system succeeded in 1/3
runs for this task.

e Task bbbedcOd (set bing search - easy): the hierarchical system was highly
consistent, succeeding in 3/3 runs. The baseline system failed in all 3 runs.

e Task 6766f2b8 (install extension - hard): The baseline system succeeded in 2/3
runs. The hierarchical system failed in all 3 runs.

e Other successes for the hierarchical system on easy tasks were single instances
(1/3 runs) for ’enable DNT’ (030eeff7), 'new bookmarks folder’ (2ad9387a), and
'save bookmark’ (7a5a7856).

e All medium difficulty tasks (1704f00f - car rental, 6¢4c23al - flights, cabb3bae
- spider-man toys) and one Hard task (121ba48f - Dota 2 DLC) were failed by
both systems in all 3 runs

4.2 Qualitative Analysis

Beyond the quantitative Task Success Rates, a detailed qualitative analysis was per-
formed on the complete set of interaction logs from all 60 experimental runs. This
analysis aimed to provide deeper insights into the operational behaviors, common
strategies, error patterns, and specific failure modes exhibited by each system when
attempting the GUI automation tasks. The review involved a manual review of the
recorded agent thoughts, action sequences, planner-generated instructions and plans
(for the hierarchical system), and inferred UT states.

Failures were categorized based on their primary root cause according to the frame-
work established in the methodology, which includes planning, grounding, interaction,
navigation, and infeasible. Following a detailed review and classification, it was deter-
mined that all primary failure causes within this study’s dataset could be attributed
to planning, interaction, or navigation errors. Consequently, while ’grounding’ and
‘infeasible’ remained part of the analytical framework as potential failure types, no
instances were ultimately assigned to these two categories in the presented results,
failures that might initially seem like grounding or infeasibility were found to have
more dominant root causes within the other three categories upon closer inspection
of the agent’s decision-making process or task constraints.
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4.2.1 Comparative Failure Mode Analysis

The distribution of primary failure causes across the observed categories for unsuc-
cessful task attempts provides insights into the distinct vulnerabilities of each system.
Figure [5] presents a summary of these failure distributions.

Baseline System Hierarchical Manager-Worker System

Categories
BN Success N Interaction
Planning WM Navigation

Figure 5: Task outcome distribution by system

Planning Failures

Planning failures encompassed issues in the agent’s high-level strategy, logical se-
quencing of actions, understanding of task requirements, or premature termination.

Baseline system: planning failures were often severe and fundamental.

e A notable pattern was catastrophic context loss. In these cases, the agent’s
internal "thought’ process switched to Chinese, and it pursued entirely unrelated
goals.

e The baseline system frequently demonstrated an incomplete or flawed internal
procedure for specific sub-tasks.

e Premature DONE calls were common across various tasks, indicating a flawed
assessment of task completion.
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Hierarchical system: planning failures manifested differently, often related to the
manager’s strategic decisions or its interaction with the worker.

e The planner sometimes generated flawed high-level strategies or introduced
detrimental steps.

e Ineffective re-planning was a common issue.

e The planner also made incorrect assumptions about the UI state or worker
actions, leading to inefficient and confusing instruction sequences.

e Ambiguity in planner instructions sometimes contributed to failure.

Comparison: baseline planning failures often represented a fundamental lack of
a coherent strategy or catastrophic context loss. Hierarchical planning failures were
more about suboptimal high-level decisions, poor adaptation by the planner to worker
struggles, or miscommunications/misassumptions within the manager-worker dynamic.

Interaction Failures

Interaction failures refer to instances where the agent, having a seemingly reasonable
plan or intention for an element, failed in the mechanical execution of an action or in
handling dynamic UI behaviors.

Baseline system: interaction failures were a significant impediment.
e The agent consistently struggled with pop-ups that lead to loops.
e Executed actions that navigated away from the task.

e Difficulties were observed in reliably typing into, clearing, or selecting from
dropdowns associated with web form fields.

e The agent often got stuck in repetitive click loops if an element did not respond
as expected.

Hierarchical system: The worker component exhibited similar interaction struggles,
even under the guidance of the planner.

e When the planner directed the worker to a page with a pop-up, the worker often
failed to handle it effectively, getting stuck in click loops.

e A primary bottleneck for the hierarchical system was the worker’s difficulty in
reliably executing instructions on specific web Ul elements. This was evident
in all medium tasks where, despite planner instructions to type in fields, select
from dropdowns, or click sort buttons, the worker frequently failed these low-
level interactions, leading to planner re-planning loops.
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Comparison: both systems were highly susceptible to interaction failures with pop-
ups. The hierarchical system’s failures highlighted that even with a correct high-level
plan and specific low-level instructions, the worker (UI-TARS) still faced significant
challenges in reliably interacting with many dynamic web UI elements. The baseline’s
interaction failures often compounded its planning/navigation issues more directly.

Navigation Failures

Navigation failures involved the agent getting lost, taking illogical paths between Ul
states, or being unable to effectively use Ul structures like menus or scroll functions
to reach necessary elements.

Baseline system: navigation was a frequent failure point.

e The agent often got lost within website structures or even within Chrome’s
settings .

e Following an error or unexpected Ul state, the agent’s navigation often became
chaotic, attempting to restart the browser or interacting with OS-level elements.

Hierarchical system: While the planner often provided a logical navigation sequence,
failures still occurred.

e Worker navigation errors: the worker sometimes failed to correctly execute a
navigation instruction or lost its context within a planned sequence.

e Planner-Induced navigation issues: In some cases, the planner’s flawed re-
planning led to confused navigation.

Comparison: The baseline system exhibited more frequent and severe macro-level
navigation collapses. The hierarchical system’s navigation failures were often more
about the worker failing to accurately follow a specific planned navigation step or the
planner getting stuck in a re-planning loop related to navigation when the worker was
confused.

4.2.2 Analysis of Operational Strategies
Baseline System Strategies

The baseline UI-TARS system generally operated in a reactive, step-by-step manner.

e Successful strategies: on tasks where its internal model aligned well with a
straightforward UI flow, such as ’enable safety feature’ (3/3 successes) and ’in-
stall extension’ (2/3 successes), it could be quite direct and efficient. For "install

30



extension,’ it demonstrated two different valid initial navigation strategies across
successful runs, indicating some flexibility.

e Characteristic failure strategies: when faced with ambiguity, complex Uls, or
unexpected elements (especially pop-ups), its strategy often devolved into:

— Repetitive action loops: persistently clicking unresponsive elements or re-
typing into fields.

— Chaotic recovery attempts: if stuck, it might try seemingly random actions,
like going to the OS desktop, opening new tabs, or re-typing entire task
queries into inappropriate places.

— Premature task abandonment: frequently calling DONE without complet-
ing the task or after only a few erroneous steps.

— A lack of a discernible long-term plan was evident.

The hierarchical system’s strategies were characterized by the interplay between the

GPT-40 planner and the UI-TARS worker.
e Impact of planner-generated instructions:

— Task decomposition: the planner generally provided logical, multi-step
decompositions. For settings-based easy tasks like these plans were often
precise and led to success when the worker executed them faithfully.

— Clarity and actionability: instructions were typically simple natural lan-
guage commands. However, their effectiveness was contingent on the
worker’s ability to execute them. Some instructions were occasionally
ambiguous or based on incorrect assumptions about the UI state by the
planner.

— Problematic plan segments: instances of flawed planning included the in-
jection of irrelevant goals or inefficient strategies occured.

e Worker (UI-TARS) execution patterns under hierarchical guidance:

— Following discrete instructions: in successful runs, the worker demon-
strated it could accurately follow the sequence of low-level instructions
from the planner, especially within the more predictable Chrome settings
UL

— Struggles despite specific instructions: a key observation was the worker’s
repeated difficulty with dynamic web UI elements even when the planner’s
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instruction for that specific element was clear. This was a major cause of
failure in all Medium tasks.

— Execution errors: the worker sometimes failed to execute all parts of a
given instruction or made navigational errors while attempting to follow a
plan segment.

Effectiveness of the re-planning mechanism:

— Adaptive attempts: the planner frequently re-planned when sub-tasks were
not completed as expected. This demonstrated an attempt at adaptive
behavior. In one instance (’save bookmark’), a series of different re-planned
strategies eventually led to success.

— Ineffective loops: more commonly, re-planning was ineffective, especially
if the root cause was a persistent worker interaction/grounding failure or
if the planner itself was confused about the state. The planner often re-
issued similar instructions or slight variations that didn’t address the core
problem, leading to extended failure loops.

The operational differences between the two systems can be comprehensively charac-
terized by the following key aspects, which highlight distinctions in planning strategy,
error handling, efficiency, and constraint management.

Planning approach: the hierarchical system exhibited a more structured, proac-
tive planning approach due to the manager’s decomposition, while the baseline
was largely reactive.

Resilience to errors: the baseline system had minimal error recovery. The hi-
erarchical system attempted recovery via re-planning; this was sometimes suc-
cessful for simpler errors or by eventually stumbling upon a working strategy
but often failed to resolve persistent worker execution issues or deeper planner
misconceptions.

Efficiency: when the baseline succeeded (e.g., 'install extension’), its path could
be very direct. Hierarchical successes sometimes involved more steps due to
the planner’s verbosity or re-planning detours (’save bookmark’). However, for
some settings tasks, the planner’s direct multi-step plan was more efficient than
the baseline’s fumbling.

Handling of task constraints: The hierarchical planner was sometimes better
at explicitly encoding all task constraints (e.g., selecting 'bookmarks bar’ in
its plan for ’save bookmark’), though the worker didn’t always execute these
perfectly. The baseline often missed such specific constraints in its internal
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planning.

4.2.3 Impact of Task Complexity on Qualitative Behavior

The operational behaviors and failure types manifested differently across task com-
plexities:

e Fasy tasks:

— The hierarchical system generally showed an advantage, achieving a 46.7%
TSR versus the baseline’s 20.0%. Successes for the hierarchical system
often resulted from the planner providing a correct sequence for navigating
Chrome’s native UI, which the worker could follow. However, planner
errors or worker execution/navigation errors still led to failures.

— The baseline system was only consistently successful on ’enable safety fea-
ture.” On other easy tasks, it struggled with incomplete internal procedures
or suffered catastrophic planning failures.

e Medium tasks:

— Both systems failed all 9 attempts each (0% TSR). This was a critical area
of shared difficulty.

— Baseline failures were typically characterized by an inability to handle web
pop-ups, leading to navigation collapse, getting stuck in extended WAIT
states, or chaotic and illogical action sequences.

— Hierarchical failures also involved pop-up issues. However, a dominant pat-
tern was the worker’s inability to reliably interact with web form elements
or specific web page controls, even when the planner provided targeted
instructions. This often led to the planner getting stuck in re-planning
loops, trying to reissue instructions the worker could not execute.

e Hard tasks:

— The baseline system showed capability here, succeeding on ’install exten-
sion’ in 2/6 attempts (33.3% TSR). Its direct, although sometimes variable,
approach proved effective when its internal model aligned with the UI flow
for this complex task.

— The hierarchical system failed all 6 attempts on hard tasks (0% TSR).

— For ’install extension,’ failures were often due to planner confusion regard-
ing the ’developer mode’ state, which led to the worker incorrectly toggling
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the switch multiple times, or other subtle errors despite the worker some-
times performing the core file navigation steps correctly. The coordination
overhead seemed detrimental.
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5 Discussion

This chapter interprets the findings presented in the results section, placing them
within the context of the initial research question and the broader field of LLM-
powered GUI automation. We will discuss the implications of the observed perfor-
mance differences between the hierarchical and baseline systems, analyze the domi-
nant failure modes in relation to existing literature, acknowledge the limitations of
this study, and propose directions for future research.

5.1 Interpretation of Key Findings

The central research question asked whether a hierarchical manager-worker architec-
ture could improve task automation performance and influence operational behavior
compared to a single-agent baseline. Our results provide a nuanced answer: while
the hierarchical system achieved a higher overall Task Success Rate (T'SR) (23.3% vs.
16.7%), its effectiveness was highly dependent on task complexity and type.

The overall 6.6% improvement in TSR suggests that introducing a dedicated high-
level planner (GPT-40) can offer tangible benefits. This was most evident in easy
tasks, where the hierarchical system significantly outperformed the baseline (46.7% vs.
20.0%). This aligns with the premise that explicit task decomposition, as proposed in
agentic frameworks like Agent S2 [3], can effectively guide agents through structured,
multi-step processes where the Ul is relatively predictable. The planner’s ability to
generate a logical sequence provided a clear roadmap that the UI-TARS worker could,
in these simpler cases, execute more reliably than the baseline UI-TARS operating
end-to-end, which sometimes exhibited catastrophic planning failures or lacked the
specific procedural knowledge.

Counterintuitively, the baseline system outperformed the hierarchical system on hard
tasks (33.3% vs. 0%), driven entirely by its partial success on ’install extension’.
This suggests that for certain complex tasks, the overhead, potential for planner
misinterpretation, or the rigidity of the initial plan in the hierarchical system might
hinder performance. The baseline system, while generally less reliable, occasionally
demonstrated a more direct, albeit potentially less 'reasoned,” path to success, pos-
sibly leveraging implicit knowledge learned during its pre-training [18]. This finding
implies that a hierarchical structure is not universally superior and can introduce its
own set of challenges, particularly when planner-worker coordination or planner state
understanding becomes critical.

The complete failure (0% TSR) of both systems on medium tasks is perhaps the
most notable finding. It strongly indicates that low-level interaction and grounding,
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particularly within dynamic web environments, remains a fundamental bottleneck, as
highlighted by multiple researchers [17, 31l [18]. Even when the hierarchical system’s
planner provided arguably correct, high-level instructions, the UI-TARS worker con-
sistently failed to execute these actions reliably. This underscores a critical point:
sophisticated planning is rendered ineffective if the execution module cannot reliably
interact with the target Ul elements. This suggests that improvements in native agent
capabilities are paramount, regardless of the overarching architectural design.

Qualitatively, the hierarchical system demonstrated a more structured, albeit some-
times flawed, approach. Its failures were often due to ineffective re-planning or worker
execution issues, rather than the catastrophic context loss seen in the baseline. This
indicates that the manager-worker structure does influence behavior, promoting a
more decomposable and potentially more interpretable, though not necessarily more
successful process. The re-planning mechanism, while intended to add adaptiveness,
often devolved into loops when faced with persistent worker failures, highlighting the
need for better feedback and error-handling mechanisms between components.

5.2 Connection to Existing Work

This study provides a direct, albeit limited, comparison. While the agentic (hierarchi-
cal) approach showed a slight overall edge, its struggles, particularly on medium /hard
tasks, reinforce the idea that the performance of such systems is deeply intertwined
with the capabilities of their constituent native components (the worker) [3]. It sup-
ports the notion that modularity offers benefits in planning [24], but doesn’t inherently
solve core perception and interaction challenges [1§].

While our planner (GPT-40) could often generate logical plans, its 'open-loop’ na-
ture (planning many steps ahead, with only periodic checks) proved brittle. This
echoes the need for more adaptive planning cycles, perhaps closer to the ReAct frame-
work [28], or the proactive hierarchical planning seen in Agent S2 [3], where plans
can be adjusted more dynamically based on real-time feedback.

Our results illustrate the persistence of interaction and grounding failures, especially
on web GUISs, a challenge noted across numerous studies [17, [3I]. The medium task
failures strongly suggest that even with a powerful VLM like UI-TARS, reliably click-
ing, typing, and selecting elements on dynamic web pages remains a significant hurdle.
This reinforces the importance of research into robust visual grounding.

The overall low TSRs for both systems (below 25%) align with the initial OSWorld
findings [26], confirming that navigating real-world operating systems and applica-
tions remains a formidable challenge for current Al agents, far exceeding performance
on more constrained or web-only benchmarks.
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5.3 Contextualizing Results with Evolving Agent Capabilities

To place the primary findings of this thesis in the context of the rapidly evolving
field of GUI agents, a single, exploratory test run was conducted. This initial test
re-evaluated the two architectures on the same 10-task set, but with the worker and
baseline agent updated to the more capable UI-TARS-1.5-7B [1I]. This newer version
represents a leap from the foundational model, incorporating advanced reasoning and
planning capabilities that lead to state-of-the-art performance. It must be emphasized
that the following observations are drawn from this single run and are therefore
anecdotal, serving only to suggest potential trends rather than establish conclusive
results.

The outcome of this single run was indicative and suggested a potential performance
inversion. In this run, the new baseline using UI-TARS-1.5-7B as a single end-to-end
agent achieved an overall Task Success Rate of 40%, successfully completing three
easy tasks and one hard task. In contrast, the hierarchical system, in this instance,
saw its performance stagnate to a 20% TSR, managing only two easy tasks.

This observed performance is an interesting, though anecdotal, finding. It raises the
possibility that as a specialized 'worker’ agent becomes more proficient, the high-
level instructions from a generalist 'manager’ could introduce what might be termed
"architectural friction’ or ’coordination overhead’. In this specific run, the planner’s
instructions appeared to conflict with the worker’s more refined execution strategy,
and the simpler approach of the standalone agent seemed superior.

In summary, while drawn from a single exploratory run and thus highly preliminary,
these observations lend tentative support to the hypothesis that for many standard
GUI tasks, the rapid evolution of specialized, end-to-end models is making them a
more efficient solution. The role for hierarchical systems may be shifting towards
exceptionally complex problems that lie beyond the scope of even these improved
native agents, a direction that requires much more extensive testing to verify.

5.4 Limitations

It is important to acknowledge the limitations of this study, which temper the gener-
alizability of its findings:

e Limited task scope: the evaluation used only 10 tasks, all within the Chrome
domain. Performance could differ significantly across other applications and a
wider range of task types available in OSWorld.

e Small number of runs: executing each task only three times per system provides
indicative results but lacks statistical robustness. The observed variability in
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success (e.g., 1/3 vs. 3/3 successes on the same task) suggests that more runs
are needed for definitive conclusions.

Maximum step constraint: all experimental runs were terminated after a max-
imum of 15 steps. This constraint, while common in agent benchmarking for
tractability, may have influenced the outcome. It could have prematurely ended
solution paths that were correct but required more than 15 actions to complete.
Consequently, this study does not evaluate the agents’ performance or reasoning
abilities on longer-horizon tasks, and the reported success rates might not be
representative of scenarios that demand more extensive interaction.

Model versioning and technological snapshot: the main study’s quantitative
results are based on UI-TARS-7B-DPO. As demonstrated in the preliminary
exploratory run discussed in Section 5.3, newer agent versions like UI-TARS-1.5-
7B possess significantly different, and in some cases superior, capabilities. This
makes the primary findings of this thesis a technological snapshot, valid for the
specific component versions tested at a particular point in time. The conclusions
about the hierarchical system’s advantages, therefore, cannot be generalized to
newer or future agent generations without extensive further testing.

Prompt engineering: the performance of both systems, especially the planner,
is sensitive to prompt design, which was not a focus of systematic variation in
this study.

Fixed re-planning strategy: the periodic re-planning might not be optimal,
event-triggered or confidence-based re-planning could be more effective.

Qualitative analysis subjectivity: while structured, the categorization of failures
involves a degree of subjective interpretation.

5.5 Future Research Directions

Based on the findings of this study, its limitations, and the current research landscape,
we propose two primary and interconnected directions for future research:

Enhancing native agent interaction and robustness: this direction focuses on strength-
ening the core capabilities of the low-level worker agent, addressing the critical execu-
tion bottleneck observed in the medium difficulty tasks where both systems failed. Fu-
ture work must prioritize improving the model’s ability to reliably interact with com-
plex and dynamic Ul elements. This involves developing more robust visual grounding
and interaction techniques, creating larger and more diverse training datasets focused
on interaction traces, and designing specialized modules or strategies for handling
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common failure points like pop-up dismissal or intricate form filling. Successfully ad-
vancing the capabilities of these native GUI models is a prerequisite for overcoming
the fundamental execution challenges that currently limit all higher-level architectural
designs.

Advancing hierarchical architectures for complex reasoning and recovery: building on
this study and existing work like Agent S2 [3], this direction aims to improve the intel-
ligence and resilience of the overall agentic framework. This includes exploring more
adaptive planning and recovery mechanisms that move beyond the rigid re-planning
used here. A key aspect is enhancing planner-worker communication, enabling richer
feedback so the planner can better understand why an instruction failed.

Furthermore, the provocative result of our exploratory test, where a newer monolithic
agent outperformed the hierarchical, calls for a deeper investigation of the long-term
value of such architectures. Future work must conduct larger-scale studies that di-
rectly address the limitations of this thesis by expanding beyond a small task subset
and, crucially, removing the restrictive 15-step horizon to properly evaluate long-
horizon reasoning. A systematic evaluation is required to discover the limit at which
hierarchical decomposition offers a definitive and enduring advantage over increas-
ingly capable monolithic agents.
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6 Conclusion

This thesis demonstrated that a hierarchical manager-worker architecture can of-
fer a modest improvement in overall GUI automation performance compared to a
single-agent baseline, primarily by imposing a logical structure on simpler, multi-step
tasks. However, it also revealed that this architectural advantage is fragile and easily
negated by fundamental limitations in low-level Ul interaction, particularly within
dynamic web environments where both systems failed. Our findings underscore that
achieving robust GUI automation requires a dual focus on high-level planning and
core interaction capabilities. The optimal balance between these elements is a mov-
ing target, especially as the rapid evolution of single, end-to-end models continually
redefines the trade-offs between architectural complexity and performance. The path
forward, therefore, lies not merely in stacking components, but in co-designing syn-
ergistic systems where strategic foresight and adaptive, reliable execution are tightly
integrated.
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7 Appendix

7.1

Github Repository

All source code, implementation scripts, and related materials developed for this
thesis are publicly available in a GitHub repository. The repository can be accessed
at the following URL:

https://github.com/Fredibau/agenticLlmFrameworksForAutomatingGuiTasks

7.2

Taskset

Easy Tasks

ID: bbbedc0d-f964-439¢-97b6-bdb9747de3f4
Description: Can you make Bing the main search thingy when I look stuff up
on the internet?

ID: 030eeft7-b492-4218-b312-701ec99eelcc
Description: Can you enable the 'Do Not Track’ feature in Chrome to enhance
my online privacy?

ID: 2ad9387a-65d8-4e33-ad5b-7580065a27ca
Description: Can you make a new folder for me on the bookmarks bar in my
internet browser? Let’s call it "Favorites.’

ID: 7aba7856-f1b6-42a4-ade9-1ca81calf263
Description: Can you save this webpage I’'m looking at to bookmarks bar so
I can come back to it later?

ID: 9656a811-9b5b-4ddf-99¢7-5117bcef0626
Description: I want Chrome to warn me whenever I visit a potentially harmful
or unsafe website. Can you enable this safety feature?

Medium Tasks

ID: 1704f00£f-79¢e6-43a7-961b-cedd3724d5fd
Description: Find a large car with lowest price from next Monday to next
Friday in Zurich.

ID: 6c4c23al-42a4-43cc-9db1-2{86F3738cc
Description: Find flights from Seattle to New York on 5th next month and
only show those that can be purchased with miles.
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e ID: cabb3bae-ccch-41bd-9f5d-0f3a9fecd825
Description: Browse spider-man toys for kids and sort by lowest price.

Hard Tasks

e ID: 121ba48f-9e17-48ce-9bc6-adtbl7a7ebba
Description: Find Dota 2 game and add all DLC to cart.

e ID: 6766f2b8-8a72-417f-a9eb-56fcaa735837
Description: Could you help me install the unpacked extension at /home-
/user/Desktop/ in Chrome?

7.3 UI-TARS-7B Server Setup

This section details the setup procedure for hosting the UI-TARS-7B model on a
self-configured server, which was the method utilized for this thesis. This option
provides greater control over the deployment environment, whether using a cloud
virtual machine or a local machine.

Hardware Configuration For the 7B model, an RTX 6000 Ada or a GPU with
similar capabilities is recommended to ensure sufficient performance for inference.

Environment Setup A CUDA-enabled environment is required. While any ap-
propriately configured CUDA environment should suffice, the setup used in this work
was modeled after the following RunPod environment:

e RunPod PyTorch 2.4.0 Environment (Example):
— Image: runpod/pytorch:2.4.0-py3.11-cudal2.4.1-devel-ubuntu22.04
— Includes:
x CUDA 12.4.1
x PyTorch 2.4.0
* Python 3.11

Setup Steps The following steps outline the process for setting up the server:

1. Install Hugging Face CLI tools:
Install the huggingface_hub package, which is used to download the model.

pip install -U huggingface_hub
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2. Download the 7B model:
Use the Hugging Face CLI to download the ByteDance-Seed/UI-TARS-7B-DP0
model. Replace /path/to/your/model with the desired local directory on your
server.

huggingface-cli download ByteDance-Seed/UI-TARS-7B-DP0 --
local-dir /path/to/your/model

3. Create the preprocessor_config. json file:
Create or modify this configuration file within the model directory specified
above (/path/to/your/model). The content should be as follows:

cat > /path/to/your/model/preprocessor_config.json << ’EQL’

{
"do_convert_rgb": true,
"do_normalize": true,
"do_rescale": true,
"do_resize": true,
"image_mean": [
0.48145466,
0.4578275,
0.40821073
1,
"image_processor_type": "Qwen2VLImageProcessor",
"image_std": [
0.26862954,
0.26130258,
0.27577711
s
"max_pixels": 2116800,
"merge_size": 2,
"min_pixels": 3136,
"patch_size": 14,
"processor_class": "Qwen2VLProcessor",
"resample": 3,
"rescale_factor": 0.00392156862745098,
"size": {
"shortest_edge": 1080,
"longest_edge": 1920
Iy
"temporal_patch_size":
}
EOL
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Note: The ‘cat ... EOL¢ lines are a shell command to create the JSON file. The
content between *“ and ¢ is the JSON itself.

4. Install v1lm:
Install the v11lm library (version 0.6.6 was used in this work) for efficient infer-
ence.

pip install v1llm==0.6.6

5. Start the server:
Run the vllm OpenAl-compatible API server. Ensure the -model argument
points to your model directory. A port (e.g., 4000) must also be specified.

python -m vllm.entrypoints.openai.api_server \
--served-model -name ui-tars \
--model /path/to/your/model \
--trust-remote-code \
--port 4000 \
--limit -mm-per -prompt image=5

Upon successful execution of the final step, an API server will be active, allowing
interaction with the UI-TARS-7B model for inference tasks.
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