
Bachelor Thesis

Open Ranking Algorithms for De-
centralized Social Media
Felix Rötzer

Date of Birth: 28.04.1999

Student ID: H11934985

Subject Area: Information Business

Studienkennzahl: 11934985

Supervisor: Univ. Prof. Dr. Axel Polleres

Department of Information Systems & Operations Management, Vienna Uni-

versity of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Aus-

tria

Contents

1 Introduction 4

2 Purpose 5

3 Research question 5

4 Methodology 5

5 Background 7

5.1 Recommender systems . 7
5.1.1 Collaborative Filtering 8
5.1.2 Content-Based Filtering 9
5.1.3 Hybrid Approach . 11

5.2 Decentralized Protocols . 12
5.2.1 About ActivityPub . 13
5.2.2 How to interact with ActivityPub? 13
5.2.3 The AT-Protocol . 15

6 Conventional Ranking Approaches: Example Twitter 16

6.1 What ranking approaches does Twitter o�er? 17
6.2 What data is necessary for the recommendation pipeline? . . . 20
6.3 What metrics can the data be divided into? 21

6.3.1 Engagement . 23
6.3.2 Recency . 24
6.3.3 Filtering . 25

6.4 What does the recommendation pipeline look like? 27

7 Mastodon for Ranking Algorithms 29

7.1 Tech Stack . 30
7.1.1 Hardware and Infrastructure 30
7.1.2 Software . 30

7.2 Algorithmic Implementations: Enabling Personalized Social
Media Feeds . 32
7.2.1 N-Degree Feed Algorithm 33
7.2.2 Engagement Algorithm with Time Decay Factor 36

8 Related Work 41

9 Limitations and Future Work 42

2

10 Conclusion 44

3

Abstract

In recent years, social media has shaped public discourse, raising

major concerns about data-misuse of centralized platforms like Face-

book or Twitter to improve their ranking algorithms for pro�t maxi-

mization. Mastodon, a new decentralized social media platform, has

shown to be a leading alternative to people who value their privacy

and support the decentralization of power. However, the advantages

come with the cost of decreased capability to recommend �tting con-

tent. In this paper, we are going to evaluate the ranking techniques

used from social media platforms, by analyzing the open-source Twit-

ter algorithm to extract meaningful insights that can be useful for

implementation in decentralized protocols. The results will be directly

implemented in an associated Mastodon server for WU campus.

4

5

1 Introduction

As social media becomes increasingly central to public discourse, the power
dynamics of ranking algorithms in centralized platforms � such as Twitter
(now X) � have raised signi�cant concerns. These concerns include polar-
ization through algorithmically driven echo chambers [3] and the erosion of
user privacy through misuse of personal data [11]. These large institutions
generally create ranking algorithms that focus on generating the most pro�t
and maximizing screen time of their users [28].

In contrast to these big institutions, decentralized online social networks
(DOSNs), like Mastodon [17] or Bluesky [5] are not owned or managed by
a single organization, but through a distributed network of servers that are
managed by various users. This structure makes them more robust and se-
cure, by eliminating a single point of failure [14]. These platforms mostly rely
on open standards or protocols, with Mastodon, for instance, utilizing Ac-
tivityPub - a decentralized protocol that allows for federated communication
between di�erent platforms [34]. Bluesky, another prominent example, which
was founded by Jack Dorsey, the former CEO and co-founder of Twitter, has
developed its own protocol, called the AT protocol [4]. Since Elon Musk�s
takeover of Twitter, Mastodon has gained signi�cant traction, with many
users migrating from Twitter to the decentralized platform [1]. Mastodon
uses a chronological post order rather than a ranking algorithm. However,
this approach presents challenges, particularly regarding content discovery
and user engagement, which impact the platform�s broader adoption. This
thesis seeks to examine the potential for an open and possibly community-
driven ranking algorithm in decentralized social media as an alternative to
traditional centralized models. By exploring the principles underlying rank-
ing algorithms on centralized platforms such as Twitter, it also investigates
the feasibility of creating a simple, adaptable ranking algorithm on Mastodon
that incorporates these principles while ensuring transparency, user privacy,
and potential community governance.

5

2 Purpose

The main objective of this study is to identify the key variables and prior-
ities in ranking algorithms used by centralized institutions like Twitter and
demonstrate how these insights can be used to improve user experience in
decentralized social media platforms like Mastodon. By analysing these rank-
ing mechanisms, this study aims to provide valuable insights that contribute
to the existing body of literature.

With the implementation of a new Mastodon server for the WU Wien
campus, this study will also explore the technical dynamics of building and
maintaining a decentralized social media server. Moreover, the study aims
to implement various open ranking algorithms by modifying the Mastodon
source code. This infrastructure will provide a foundation for future research,
enabling user studies to analyze engagement and preferences in decentralized
environments compared to centralized platforms.

Lastly, this research aspires to raise awareness of decentralized platforms
as viable alternatives to traditional social media platforms, demonstrating
how improved open ranking algorithms can enhance their potential for broader
adoption.

3 Research question

The central question guiding this research is: �How do ranking algorithms
on centralized platforms like X work in detail, and how can selected as-
pects be leveraged to enhance user experience on decentralized platforms
like Mastodon while preserving the inherent advantages of decentralized ar-
chitectures? �

4 Methodology

The research question will be addressed through a combination of literature
analysis and exploratory investigation. To establish a baseline understand-
ing of ranking algorithms, we will �rst conduct a comprehensive literature
review to identify general ranking methodologies in various domains. This
foundational exploration will include recommender systems (RSs) and search
engines to establish a broader understanding of ranking techniques and their
applications. Additionally, we will examine key algorithms used in RSs and
search engines.

6

Furthermore, we will conduct an extensive source code analysis, integrat-
ing the insights gathered from the literature review to identify key metrics
and priorities that ranking algorithms can be divided into. This analysis will
help us understand how centralized platforms adjust their algorithms. For
this purpose, the open-source ranking algorithm from X (formerly Twitter)
will be a primary reference [30].

A review of academic and industry literature will be used to outline the
principles and mechanisms of DOSNs, emphasizing how their architecture
in�uences the challenges these protocols face. Speci�cally, we will exam-
ine di�erent protocols such as ActivityPub, WebSub and the AT Protocol
in detail. Building on these insights, the study will investigate how rank-
ing approaches used in conventional ranking algorithms might improve the
design of ranking systems for decentralized social media platforms such as
Mastodon.

Additionally, the study will involve the implementation of a customMastodon
server for the WU Wien campus, serving as a preliminary framework for ex-
ploring and experimenting with alternative ranking mechanisms. This im-
plementation will be carried out on a Linux-based virtual machine (VM)
designed for testing purposes, hosting the Mastodon server and provide a
scalable environment. The implementation process, including server integra-
tion and the development of various ranking algorithms, will be comprehen-
sively documented in a GitHub repository. Through this documentation, we
aim to provide valuable insights into the development and experimentation
of decentralized ranking systems in a real-world context.

7

5 Background

To develop an understanding of social media ranking algorithms, this sec-
tion provides the necessary background by introducing the concept of rec-
ommender systems (RSs). To achieve this, we will de�ne RSs, brie�y outline
their history and provide di�erent information �ltering techniques of RSs.

This will be followed by an introduction into decentralized protocols, such
as the ActivityPub and the AT-Protocol. These protocols are utilized by
DOSNs such as Mastodon or Bluesky to establish the required architecture
for platforms, to function on a decentralized basis.

This solid grasp of basic ranking concepts, along with thorough under-
standing of the underlying technology powering decentralized social media
platforms, will provide the essential groundwork for advancing the objectives
of this thesis going forward.

5.1 Recommender systems

In this thesis, we de�ne a recommender system as a "functional software
system that applies at least one implementation to make recommendations"
[19]. In 1979, Elaine Rich developed one of the earliest RSs known as Grundy.
It was a simple book recommendation algorithm that primarily relied on the
approach of stereotyping [19].

With the mainstream adoption of social media and the immense amount
of available data, RSs became fundamental in today�s society. However,
their applications go far beyond just social media, encompassing domains
such as book recommendations, e-learning, music and movies as highlighted
from Roy in 2022 [27].

Recommender systems employ di�erent approaches, but their �ltering
methods can broadly be categorized into content-based �ltering, collaborative
�ltering and hybrid �ltering techniques [19]. As visualized in Figure 1, the
approaches can be further subdivided. However, an in-depth discussion of
all subcategories falls beyond the scope of this thesis.

8

Collaborative FilteringContent-Based Hybrid approach

Recommender System

Model-Based ApproachMemory-Based Approach

Item-BasedUser-Based

Figure 1: Overview Recommender Systems. Adapted from Roy (2022) [27]

5.1.1 Collaborative Filtering

Collaborative �ltering (CF) is one of the most widely used methods in social
media algorithms today. The term traces back to Goldberg�s Tapestry sys-
tem from 1992 [10]. However, the de�nition of CF as it is understood today
was introduced later, in 1994, through the research contributions of Resnick
with the GroupLens system. This system computed the similarity between
readers of Usenet newsgroups based on their ratings of di�erent articles [24].

The core idea behind CF is to generate recommendations based on the
ratings of other users with similar interests. A user's interests are determined
based on based on historical rating data for various items. In this context,
users with similar preferences are re�ered to as neighbors [19]. After iden-
tifying similar users, a subclass of nearest neighbors is selected to generate
well-�tting recommendations using a regression model [19].

One of the primary advantages of CF is that it does not require prior
knowledge of item features to generate recommendations. This makes it par-
ticularly useful for discovering new interests by suggesting previously unseen
items [27]. As illustrated in Figure 1, CF can be broadly categorized into
model-based and memory-based techniques [2].

Model-based CF relies on pre-trained models to predict user preferences.
These models are trained on the CF principles, speci�cally focusing on user
similarity. In contrast, memory-based methods generate recommendations
in real-time by directly analyzing relationships between users and items.
However, memory-based approaches have certain drawbacks, such reduced

9

e�ciency when handling large datasets and potential scalability challenges
due to the high computational demands [2].

Figure 2 provides a visualization of the collaborative �ltering work�ow.
It depicts how data is forwarded through the recommender to the web page,
where the user interacts with the recommended content. The content is being
rated from the user, which creates a user rating pro�le re�ecting the pref-
erences of the user. These ratings are then compared against the pro�les of
similar users, and the ratings of highly similar users are leveraged to generate
new content recommendations for the web page.

Data

User

Web
Page

User
Rating
Profile

Recommender
(Similarity)

interaction

rating

Similar Users

Similar Users
Ratings

similarity

Figure 2: Work�ow Collaborative Filtering. Inspired by Roy (2022) [27]

5.1.2 Content-Based Filtering

Content-based �ltering (CBF) is a recommendation technique that relies
solely on a user�s item rating history. Unlike collaborative �ltering, which
evaluates correlations between di�erent users, CBF focuses on the correlation
between a user�s preferences and the characteristics of individual items [19].
Therefore, obtaining detailed information about various features of items is

10

essential. However, this requirement can be a limitation when data availabil-
ity is scarce [27].

For instance, in the case of a music streaming platform, the features of
the underlying song might include the artist, genre, or release year. When
a user positively interacts with a particular song, the associated features are
aggregated to construct a user pro�le that re�ects their feature preferences.
This pro�le is then used to compare against the features of other songs to
generate recommendations. Since this technique prioritizes items that share
strong similarities with previously liked content, CBF usually ignores di�er-
ent content that the user eventually might like, but has not yet interacted
with.

One of the earliest implementations of CBF was Letizia, developed by
Lieberman in 1995. The system had the goal of assisting the user in web
browsing by recommending interesting items based on the users browsing
history [19]. Lieberman's approach used the web history to form the user's
pro�le, represented as a list of weighted keywords including all the words
found on the previously visited web pages. This weighted keyword list was
then used to compute the relevance of alternative webpages, with the most
promising ones being suggested based on the presence and frequency of these
speci�c terms [19].

Figure 3 highlights the work�ow of the content-based �ltering approach.
It shows how the user interacts with the web page and rates the content.
Based on the user ratings, a user rating pro�le is generated. This user rating
pro�le is then used to compare for similarity with the new incoming content
data. The most relevant content is then recommended and displayed on the
web page.

11

Data

User

Web
Page

User
Rating
Profile

Recommender
(Similarity)

interaction

rating
similarity

Figure 3: Work�ow Content Based Filtering. Inspired by Roy (2022) [27]

5.1.3 Hybrid Approach

A hybrid �ltering approach combines collaborative �ltering (CF) and content-
based �ltering (CBF) to address the limitations of each method when applied
independently [19]. Extensive reseach indicates that hybrid systems consis-
tenly outperform standalone CF or CBF techniques [27]. In modern recom-
mender systems, integrating multiple approaches within ranking algorithms
is considered the state of the art. By leveraging the complementary strengths
of CF and CBF, hybrid models enhancfe recommendation accuracy and ef-
fectiveness, making them a preferred choice in many real-world applications.

12

5.2 Decentralized Protocols

Decentralized Open Social Networks (DOSNs) operate on a foundation of in-
novative protocols that enable a seamless decentralized server-architecture,
eliminating dependency on any central authority. In this model, users con-
nect to a single server, however, the connected server can communicate with
all the other servers connected to the protocol, ensuring seamless interoper-
ability across the decentralized ecosystem [37].

Several protocols facilitate DOSNs, including OStatus, Diaspora, Matrix,
Nostr, Bluesky's AT or the ActivityPub. This research focuses on analyz-
ing three protocols: ActivityPub [34], WebSub [33], and the AT-protocol
[4]. However, a detailed technical examination will be conducted only on
the ActivityPub protocol. The reason for this choice is that Mastodon, the
platform we will use for further investigation in later chapters, is based on
this protocol.

Figure 4 provides a simpli�ed visual representation of a decentralized
server architecture. The three interconnected nodes in the middle represent
servers, while the surrounding elements connected via dashed lines depict
user devices interacting within the network.

Figure 4: Representation of a decentralized protocol architecture

13

5.2.1 About ActivityPub

ActivityPub is a decentralized social networking protocol that provides so-
cial media platforms the necessary infrastructure to operate a decentralized
social network. ActivityPub was pubished in 2018 by the World Wide Web
Consortium (W3C) [35]. Due to its open and decentralized nature, it is acces-
sible to anyone interested in building upon the protocol. Mastodon, currently
represents the biggest and most popular project using the ActivityPub [36],
followed by projects like PeerTube. Mastodon was founded by the German
software engineer Eugen Rochko in 2016 as a decentralized alternative to
mainstream social media platforms.

The protocol o�ers a client-to-server Application Programming Interface
(API), that can execute a variety of di�erent actions. These activities include
creating, updating, deleting or following to name a few. Besides that it
also includes a federated server to server API for delivering content between
di�erent servers. This means, in general, we can distinguish between the
server-to-server layer made up of all interconnected servers, and the social
network layer, formed by the relationships between users of a given instance
[37]. The client-to-server API is re�ered to as the "Social API", whereas
the server-to-server API is re�ered to as the "Federation Protocol" [34]. The
social media platform Mastodon is only using the server-to-server federation
protocol [32]. From the open infrastructure of the ActivityPub protocol it
follows that di�erent servers can communicate with each other. For example,
it is possible for a user from Mastodon, to follow another user from PeerTube
and vice versa as it is visualized in Figure 5.

5.2.2 How to interact with ActivityPub?

Both types, the client-to-server and the server-to-server API, are using the
HTTP methods GET and POST for server communication [34]. The client-
to-server GET request queries the latest messages in the network stream of
the underlying server, whereas the POST request can be used to send mes-
sages to the world. Under "messages to the world" we understand creating,
liking, deleting and other typical social network functionalities, in this con-
text. On the other hand, the server-to-server requests are used on a federated
level, such as the POST request is used to send someone a message [34].

14

Figure 5: Interaction with the ActivityPub Protocol, Source: https://www.
w3.org/TR/activitypub

The requests, both GET and POST, use ActivityStreams for its vocabu-
lary in the ActivityPub protocol. ActivityStreams is a model for represent-
ing potential activities, meaning di�erent kinds of actions used in the DOSN
(e.g. like, create or delete content). These HTTP requests are formatted in
a JSON-based syntax and contain all necessary information to successfully
execute the request [32].

Figure 6: Example of a JSON document for a POST request, Source: https:
//www.w3.org/TR/activitypub

In Figure 6 we can see an example of a JSON document for a POST
request on a server-to-server level. In this sample we see a number of di�erent
parameters, namely "context", "type", "id", "to", "actor" and "object".
Each of the parameters is required to form a useful request to the server.
The POST request is sent to the server and acts as an instruction that the
server then acts upon. In our case the "type" parameter speci�es the action,

15

which is a "Like". The "object" variable speci�es the underlying post that
should be liked and the "actor" parameter tells the server who is the user
that the like is executed by.

5.2.3 The AT-Protocol

The AT protocol is another decentralized federated protocol, which was in-
vented for Bluesky, which is a new Twitter-style social network [12]. De-
veloped by previous Twitter founders, including Jack Dorsey, this protocol
embraces a decentralized nature and is designed to support multiple apps
and the same user identity, social graph and user data storage servers can be
shared between all its applications [12]. Since Elon Musk took over Twitter
and implemented changes, many of the platform's users have been migrat-
ing to Bluesky. As of late 2024, Bluesky has surpassed 20 million registered
users, with its user base steadily growing [8].

One major reason why Bluesky decided to invent their own protocol in-
stead of building upon the ActivityPub protocol, was account portability
[6]. Account portability in this context means that a user can use di�erent
servers and platforms inside the AT-protocol with the same account. This
can prevent sudden bans, server shutdowns, and policy disagreements [6].

16

6 Conventional Ranking Approaches: Example

Twitter

Traditional social media platforms such as Twitter or Facebook have lever-
aged algorithmic post-ordering mechanisms for a long time. Usually, these
ranking algorithms lack in transparency and remain closed-source [15]. In
2023, Twitter made parts of its recommendation system and source code
public, making it a valuable candidate for understanding the algorithm's
functionality at a high level [30]. It should also be mentioned that Twitter's
algorithm takes a particularly extreme and capitalistic approach in regards
to engagement maximization. This includes limiting content �ltering mech-
anisms, which can promote polarizing and divisive content [18]. The reason
for this is that sensationalist content can trigger emotional reactions, which
often lead to a strong psychological urge for users to share their feelings with
others through engagement [25].

In this section of the thesis, we aim to explore the structure and function-
ality of Twitter's algorithm, with a particular focus on the data it uses and the
processes involved in its pipeline. Speci�cally, we will examine the mechanics
behind Twitters's algorithmically driven "For you" timeline and compare it
to the "Following" timeline. This analysis will provide valuable insights into
the potential for implementing open ranking algorithms within Mastodon,
which will be explored in the next chapter. Given that Mastodon's default
post ordering follows a stricly reverse chronological order, understanding al-
ternative ranking mechanisms will o�er a foundation for optimizing content
discovery and user engagement.

17

6.1 What ranking approaches does Twitter o�er?

In general, Twitter o�ers two di�erent timelines with distinct ranking ap-
proaches. The algorithmically driven "For you" timeline serves as a globally
curated timeline and, in contrast, acts as an alternative to Mastodon's de-
fault local timeline. Additionally, Twitter also features a "Following" time-
line, which presents posts exclusively from accounts a user follows, ranked
in strict reverse-chronological order. This provides a simpler and less cu-
rated experience compared to the algorithm-driven "For you" timeline [31].
Therefore, the "Following" timeline can be compared to Mastodon's default
timeline, which also ranks the content in reverse-chronological order. Since
a policy change by Twitter on March 17, 2016, the "For you" timeline has
been serving as the platform's default option [31]. This means that users ac-
tively have to switch to the "Following" timeline if they prefer it. This policy
change caused almost all of the Twitter users to exclusively interact with the
"For you" timeline, signi�cantly increasing engagement on the platform [21].

Understanding the design and operation of these timelines o�ers valuable
insights for how decentralized platforms could adopt lightweight algorithmic
solutions to enhance user engagement without compromising the principles
of openness and user autonomy.

18

Figure 7: Examples of "For you" and "Following" timelines for a new Twitter
account, Source: https://www.twitter.com

In Figure 7 we can see a visual comparison of the two timelines o�ered
by Twitter. The algorithmically curated "For you" timeline is shown on the
left, while the "Following" timeline appears on the right. To highlight the
observable di�erences between these timelines, we created a dummy account
named 'wu_testing_acc'. Moreover, we chose to follow only three pro�les
- 'Alexander Van der Bellen', 'Stadt Wien' and 'Armin Wolf' - in order
to simplify the setup, making it easier to isolate and analyze the distinct
behaviours of each timeline.

We can observe that in the "Following" timeline, only posts from the

19

followed accounts are displayed - speci�cally from 'Alexander Van der Bellen'
and 'Stadt Wien'. These posts are clearly ranked in reverse-chronological
order: the most recent post appeared 25 minutes ago, followed by another
published �ve hours earlier.

In contrast, the "For you" timeline for the same account does not feature
posts from the followed pro�les among the top results. Instead, it presents
posts in a mixed chronological order, with no clear prioritization of recency
or user-follow relationships.

Moreover, it is evident that the top results in the "For you" timeline tend
to prioritize highly polarizing content. Notably, among the top results, two
posts feature Alex Jones, a well-known American conspiracy theorist, while
the other two posts display content related to the Austrian political party
"FPÖ", which is generally associated with right-wing ideologies. While the
observation aligns with broader patterns of polarization prioritization seen
in Twitter's algorithm, it represents a single example and should not be used
to draw generalized conclusions.

20

6.2 What data is necessary for the recommendation

pipeline?

In order for the algorithm to function e�ectively, Twitter must have the
necessary data available before initiating the recommendation pipeline. The
data is represented in the form of di�erent knowledge graphs (KGs), which
can be divided into three primary components, which are visualized in Figure
8 [30].

The social graph represents the network of relationships between users,
capturing all following connections. The tweet engagement graph focuses on
user interactions with content - such as likes, retweets, replies and impressions
- providing insights into how users engage with the platform. Finally, the
user data graph stores detailed information about individual users, including
their account details. Together, these knowledge graphs enable Twitter to
gain a comprehensive understanding of the activity on the platform, which is
essential for optimizing content recommendations and identifying the most
relevant tweets [30].

Engagement Graph

User Data

Social Graph

Recommendation
Pipeline

Figure 8: Categories of knowledge graphs powering Twitter's recommen-
dation system, Source: https://www.blog.x.com/engineering/en_us/

topics/open-source/2023/twitter-recommendation-algorithm

21

6.3 What metrics can the data be divided into?

Each type of data and its associated factors in�uece the ranking process in
unique ways and carry a distinct weight in the ranking algorithm, signi�-
canlty in�uencing whether or not a post gains exposure.

Figure 9: Function within Twitter's source code that determines the weight-
ing of ranking parameters, Source: https://www.github.com/twitter/

the-algorithm

Figure 9 highlights one of the most critical components of Twitter's open-
source algorithm: the RankingParams function. While the RankingParams
function plays a pivotal role in determining a Tweet's relevance based on
speci�c engagement metrics, it is important to note that this represents only

22

one aspect of the overall ranking process. The RankingParams score serves
more as a Tweet-speci�c metric rather than the determinant of a Tweet's
position in a user's feed. This function encapsulates various engagement
metrics or factors, some of them assigned a speci�c weight, which partially
determine how content is ranked on the platform. The scores of di�erent
metrics are aggregated together by calculating a sum to get a combined score.
The features in the �gure that are associated with a weight are processed
through a linear conversion function ('ThriftLinearFeatureRankingParams'),
which generates a score based on whether the value is high or low. Twitter
does not provide the exact conversion values inside their source-code. This
score is then multiplied with the associated weight, meaning that a weighted
sum is calculated. In contrast, the features without an associated weight are
simply added on whether the parameter is true or false, as they do not require
weighting. To provide some more understanding of the function parameters
shown in Figure 9, we listed some of the most important engagement metrics
below, along with their explanation. While di�erent weights are provided

� favCountParams: obtains the number of likes for a given post.

� retweetCountParams: obtains the number of retweets for a given post.

� replyCountParams: obtains the number of comments for a given post.

� ageDecayParams: obtains the recency of a post.

� urlParams: checks if URLs are included in a post.

� tweetHasImageUrlBoost: checks if the post includes an image.

� langEnglishTweetBoost: checks if the post in composed in English lan-
guage.

As shown in Figure 9 above, the di�erent parameters vary signi�cantly
in both their function and impact on ranking. To better understand these
di�erences, we have categorized them into distinct groups based on their
characteristics.

Figure 10 below illustrates this categorization, dividing the metrics into
two key parts: dynamic vs. static. Dynamic metrics, such as recency and
engagement evolve over-time. In contrast, static metrics, such as �ltering
criteria, remain �xed and are determined by prede�ned rules. The �gure
also highlights which parameters from Twitter's 'RankingParams' function
fall into each of these categories, providing a clearer comparison. This classi-
�cation helps us to better understand how various factors in�uence ranking

23

and how similar mechanisms could be adapted for decentralized platforms
like Mastodon.

StaticDynamic

Ranking Metrics

RecencyEngagement Filtering

Parameters

favCountParams

replyCountParams

retweetCountParams

Parameters
ageDecayParams

Parameters

tweetHasImageBoots

langEnglishTweetBoost

offensiveBoost

Figure 10: Classi�cation of di�erent ranking metrics.

6.3.1 Engagement

Di�erent types of engagement are often the �rst category that comes to
most people's minds when considering ranking algorithms, as they directly
measure how users interact with content. As illustrated in Figure 10, engage-
ment can come in many forms. Likes, comments, and retweets are among
the most basic and widely used engagement metrics, o�ering users a quick
and simple way to express approval. In Twitter's 'RankingParams' function,
these are among others represented by the parameters 'favCountParams', 're-
plyCountParams', and 'retweetCountParams'. However, more sophisticated
engagement metrics provide deeper insights into user engagement. For in-
stance, these could include whether the person bookmarks or downloads a
post, or how long they spent watching a given piece of content.

24

Figure 11: Twitter source-code function for the like factor, Source:
https://github.com/twitter/the-algorithm/blob/main/home-mixer/

server/src/main/scala/com/twitter/home_mixer/product/scored_

tweets/param/ScoredTweetsParam.scala

In Figure 11, we can see a function that gives a score based on the number
of likes. Twitter applies a default score of 1 for each like and sets an upper
bound of 100, meaning that all posts with 100 likes or more have the value
of 100 for this parameter. Up to 100 likes there is a linear increase in this
parameter. By introducing an upper bound for the like-based parameter,
Twitter ensures that posts with relatively few likes still retain the potenial
to surface in users' feeds. This choice also prevents the parameter from
disproportionally dominating the ranking and allows other parameters to
contribute to the visibility of a Tweet. In chapter 7, we ensure that our own
algorithmic implementations account for this principle by similarly limiting
the in�uence of high values.

6.3.2 Recency

Recency is a critical factor in ranking algorithms, especially in dynamic en-
vironments like social media platforms, as it can signi�cantly impact user
engagement. As mentioned above, the 'ageDecayParams' parameter shown
in Figure 10 is the primary component in determining the in�uence of re-
cency in Twitter's timeline ranking algorithm [30]. This parameter applies a
time-based decay over time, meaning that a post's relevance diminishes the
longer it has been published.

25

Figure 12: Twitter source-code function for the age decay factor,
Source: https://github.com/twitter/the-algorithm/blob/main/src/

thrift/com/twitter/search/common/ranking/ranking.thrift

In Figure 12 we see a function from Twitter's source-code for calculating
the score of the age decay. The function uses a decay rate of 0.003 and a decay
half-life of 360 minutes. The source-code does not show the exact formula to
calculate the score with these parameters. However, the half-life parameter
clearly indicates a non-linear decay given that the score of a Tweet halves
every 360 minutes. Moreover, it includes the parameter that sets a minimal
age decay score. This prevents old posts from getting completely irrelevant.
We will use a similar approach in our own algorithmic implementations later
in this paper.

An example where recency is the sole factor is reverse chronological post-
ordering. This method is the default mechanism on Mastodon's local timeline
[17], as well as on Twitter's "Following" page [30]. In this approach, posts
are displayed strictly in the order they were published, with the most recent
content appearing �rst [12].

6.3.3 Filtering

Filtering is an inherent property of a post - �xed and automatically applied
based on prede�ned criteria that depend on the type of content. Due to
the category's static nature, it represents a clear contrast to the other two
categories, engagement and recency, which are dynamic factors that can be
subject to change over time. Filtering for content types is a broad con-
cept with numerous possible speci�cations that can vary signi�cantly across
di�erent social media platforms and regions, depending on distinct content
policies, user behaviour, and organizational objectives. In the case of Twit-
ter's algorithm, we can certainly notice a variety of �lters, as illustrated in
Figure 10.

For instance, the 'tweetHasImageUrlBoost' parameter evaluates whether
a post includes an image URL and adjusts its ranking accordingly. Similarly,

26

language-based �lters such as the 'langEnglishTweetBoost' and 'unknown-
LanguageBoost' parameter modify a post's weight depending on whether it
is written in English or an unrecognized language. In addition to the lan-
guage of the post, the location of the user who published it can also serve
as a ranking metric. Additionaly, parameters like 'o�ensiveBoost' - which
accounts for potentially harmful content - and 'multipleHashtagsOrTrend-
Boost' - which considers the number of hashtags - demostrate the diverse
and nuanced �ltering mechanisms integrated into ranking algorithms.

27

6.4 What does the recommendation pipeline look like?

In Figure 13 below, we can see a simpli�ed model of Twitter's recommen-
dation pipeline. Within the codebase of Twitter's algorithm, this section is
referred to as the 'HomeMixer', which is responsible for delivering the most
relevant Tweets to a user's "For you" timeline [30]. As such, it represents
the most critical component for understanding the dynamics of ranking al-
gorithms in the context of our research question.

As illustrated in the �gure, this process can be structured into three main
stages - namely canditate sourcing, ranking and �nally applying heuristics
and �lters - through which every candidate must pass before appearing in a
user's feed. Every day, approximately 500 million posts are made on Twit-
ter, forming a vast pool of candidate Tweets that enter the recommendation
pipeline [31]. The Mixing stage, shown on the right side of the �gure, is a
�nal step where ads are integrated into the timeline. Since this process is
not relevant to our research focus, we do not discuss it in detail.

Figure 13: Recommendation pipeline of the Twitter algorithm, Source:
https://www.blog.x.com/engineering/en_us/topics/open-source/

2023/twitter-recommendation-algorithm

Candidate Sourcing is the process through which Twitter's algorithm
gathers the most promising posts for a given user before applying any rank-
ing. For each committed request, this process selects a pool of 1,500 Tweets
[31]. This selection can be further categorized into two distinct parts: in-
network sources, which consist of content from accounts the user follows,
and out-of-network sources, which include Tweets from accounts outside

28

the user's direct follow connections. Each of the two categories contributes
roughly 50 % to the �nal pool [31].

The in-network sources are selected using the so-called 'RealGraph', a
model designed to predict the chance of interaction between two users [31].
This approach is deeply rooted in collaborative �ltering principles, which
also highlight the similarity between users, as previously mentioned in the
background section about recommender systems.

On the other hand, the out-of-network sources presents a more complex
challenge given that is requires identi�cation of relevant content from users
with whom there is no direct follow connection. Therefore, Twitter uses two
approaches for addressing this: the 'Social Graph' and 'Embedding Spaces'.
The Social Graph approach tries to estimate relevant content based on the
analysis of engagement patterns among a user's network, focusing on inter-
actions with followed accounts. This method also has a strong connection
to the recommender systems approach of collaborative �ltering, as it relies
on the engagement of similar users - where similarity is assumed based on
one user following another. On the other hand, the approach of Embedding
Spaces generates numerical representations of users interests and Tweets.
Therefore, Twitter implemented a tool called 'SimClusters', which clusters
related types of content. 'Embedding Spaces' is therefore very closely related
to content-based �ltering, as it computes the similarity between items. As
we can see, Candidate Sourcing employs a hybrid approach to recommender
systems, combining both collaborative-�ltering and content-based �ltering
techniques. This aligns with established knowledge that hybrid models are
among the most e�ective strategies for personalized recommendations [27].

After the �rst selection process with 'Candidate Sourcing', the 1500 candi-
dates are then being ranked to serve the most relevant Tweets �rst. Ranking
is mostly done with what Twitter calls the 'Heavy Ranker', which is a large,
neural network-based algorithm with 48 million parameters [31]. The neural
network is constantly trained on user interactions and leverages engagement
metrics - such as those outlined in the previous chapter - to optimize for
positive engagement.

'Heuristics and Filtering' represent the �nal stage of the recommendation
pipeline, which helps to adjust the output of the 'Heavy Ranker'. Examples
include �lters that remove Tweets from blocked users, �lters that assure
consecutive Tweets are not from a single author or �lters that assure the
in-network and out-of-network Tweets are fairly balanced.

29

7 Mastodon for Ranking Algorithms

This section provides insights into the technology and functionality of the de-
centralized social platform Mastodon. Therefore, we will provide comprehen-
sive documentation about the process of integrating a new Mastodon server,
along with the various implementation possibilities for its setup and con�g-
uration. Additionally, we will use insights from our analysis of conventional
algorithmic approaches, such as Twitter's, to make informed assumptions
about useful con�gurations for the Mastodon server. Using these assump-
tions, we will develop and test various ranking algorithms for the platforms,
which will be publicly available through a dedicated GitHub repository.

Furthermore, we aim to provide the necessary documentation to enable
other instance owners and creators to implement open ranking algorithms on
their own servers, fostering greater transparency and customization within
decentrlaized social media.

30

7.1 Tech Stack

In the following paragraphs, we describe in detail which hardware setup was
used for the implementation of the Mastodon server, and what the server
environment looked like as well as the software that was necessary to suc-
cessfully integrate the server. Throughout this process, we closely followed
the o�cial Mastodon documentation to ensure a reliable and properly con-
�gured deployment [17].

7.1.1 Hardware and Infrastructure

Given the fact that a Mastodon server should always run and thus be con-
nected to the internet, it was necessary to provide a �tting server infrastruc-
ture. In our case, we were provided a dedicated server container from Vienna
University of Business and Economics just for the testing purposes of this
research project.

The container is con�gured with 128GB of storage, 16GB of RAM and a
4-core CPU, providing the necessary computational resources for our needs.
It should be noted that if greater scalability and adoption on WU campus is
required, these resources would need to be expanded. However, for testing
purposes, this con�guration is su�cient. The server was accessible via SSH
login exclusively from the university's internal network, which included ac-
cess through the WU-Wi� network, the WU-Lan, and the WU-VPN service,
which ensured a secure and controlled environment.

Additionally, to meet Mastodon's system requirements, the server runs
Ubuntu 24.04 LTS, a long-term support release that ensures compatibility
with the Mastodon software stack. Ubuntu is a Linux-based operating system
known for its stability, security and strong community support. A dedicated
web domain on which the Mastodon server could publicly be accessed was also
necessary. Therefore, the university provided the domain 'social.ai.wu.ac.at',
which is part of the o�cial domain structure of WU Vienna. To manage
incoming web tra�c e�ciently, an Nginx instance was set up as a reverse
proxy. The domain was con�gured to point to the correct PORT of our Nginx
instance running on our server container, ensuring proper request handling
and secure access.

7.1.2 Software

After setting up the server environment correctly and ensuring that both
the hardware and domain were properly con�gured, the next step was to in-
stall the necessary software on our virtual machine (VM). Firstly, we had to

31

prepare the system environment. Therefore, we con�gured two system repos-
itories, while also creating a dedicated Mastodon user and installing neces-
sary software packages. The system repositories were con�gured for Node.js
and PostgreSQL. The Mastodon user inside the environment was created as a
repository to conduct the actual Mastodon installation. A detailed list of the
required system packages can be found in the �gure below. Among these,
Redis holds particular signi�cance [23]. With its in-memory data storage,
Redis is essential for our algorithmic implemenations and code explanations.
This is because our algorithms retrieve posts from its short-term memory to
construct the correct feed, and allow an e�cient feed generation process.

apt update
apt install -y \

imagemagick ffmpeg libvips-tools libpq-dev libxml2-dev

libxslt1-dev file git-core g++ libprotobuf-dev

protobuf-compiler pkg-config gcc autoconf bison

build-essential libssl-dev libyaml-dev libreadline6-dev

zlib1g-dev libncurses5-dev libffi-dev libgdbm-dev nginx

nodejs redis-server redis-tools postgresql

postgresql-contrib certbot python3-certbot-nginx

libidn11-dev libicu-dev libjemalloc-dev

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The next crucial part after preparing the system environment was to cre-
ate a PostgreSQL database, which stores our instance's essential data. Lastly,
we installed the latest version of Mastodon through their o�cial Github
repository inside the Mastodon user we created, to ensure all Mastodon-
related �les and processes were isolated from the rest of the system [17].

32

7.2 Algorithmic Implementations: Enabling Personal-

ized Social Media Feeds

In this section, we explore the algorithmic implementations designed to pro-
vide personalized social media feeds within decentralized platforms. As part
of this project, we created an open-source GitHub repository that enables
other Mastodon instance owners to integrate these algorithms within their
own servers. To achieve this, modi�cations were made to the Mastodon
source-code, ensuring seamless integration of the algorithms into the plat-
form's content delivery pipeline. Identifying the exact sections of the code
that required modi�cation proved to be a challenge, given that the Mastodon
codebase consists of hundreds of �les and an extensive number of lines of code.
However, various algorithms have been developed, allowing server adminis-
trators to select the approach that �ts their community's needs.

The GitHub repository is named 'Mastodon Algorithms', which can be
found in the references [26]. The repository also includes implementation op-
tions that might not be pratical to use, however, we added them to showcase
a variety of examples. This includes changing the default home timeline to
show all the server posts, which can be found in the 'default_local' direc-
tory. Also, we implemented a method that o�ers a home timeline that is
strictly ranked based on the number of likes of the underlying posts, which is
also highly unpratical. This method can be found in the 'favourite_simple'
directory.

However, for practial reasons, we selected two primary algorithms, which
we will showcase in detail in this section. The two approaches are the 'N-
Degree Feed Algorithm' and the 'Engagement Algorithm with Time Decay
Factor'. The corresponding implementations can be found in the project's
GitHub repository under the directories 'second-degree' and 'mixed_algo',
respectively. The code snippets provided to analyze the logic behind the
algorithm are written in Python, a language chosen for its readability and
widespead use, ensuring accessibility to a broad audience. However, the
actual implementation and source code modi�cations within Mastodon are
carried out in Ruby, given that the Mastodon source-code is mainly done
in Ruby. As mentioned, the actual Ruby implementations can be found in
GitHub and can be modi�ed if needed [26]. Furthermore, since the various
components of the codebase are highly interdependent, it was more practical
to explain the algorithms using Python rather than representing exact snip-
pets from the actual Ruby implementation. Understanding the algorithm
solely from a Ruby section from the actual code would require extensive
background knowledge of the entire Mastodon code.

33

7.2.1 N-Degree Feed Algorithm

The N-Degree Feed Algorithm enables users to view posts from their direct
connections (�rst degree) and extended networks (up to degree N of seper-
ation). This approach fosters content discovery without overwhelming users
with distant and less relevant posts. By default, the algorithm is set to two
degrees, striking a balance between computational performance and content
diversity. However, server administrators can adjust the degree parameter to
suit their platform's requirements.

In the code snippet presented below, we can observe the underlying logic
and step-by-step execution of the algorithm, illustrating its functionality and
key processes.

1 def get_n_degree_feed(user_id, posts, following_matrix,

limit=10, degree=2):↪→

2

3 all_ids = {user_id}

4 current_degree_ids = {user_id}

5

6 for _ in range(degree):

7 next_degree_ids = set()

8 for uid in current_degree_ids:

9 next_degree_ids.update(following_matrix.get(uid,

[]))↪→

10 next_degree_ids -= all_ids

11 all_ids.update(next_degree_ids)

12 current_degree_ids = next_degree_ids

13

14 feed = [post for post in posts if post["user_id"] in

all_ids]↪→

15

16 feed = sorted(feed, key=lambda x: x["timestamp"],

reverse=True)[:limit]↪→

17

18 return feed

The function 'get_n_degree_feed' requires several key parameters to
generate a personalized feed based on a user's social connections, which can
be found in line 1. The parameter 'user_id' is an integer that represents
the unique identi�er of the user for whom the feed is generated. The 'posts'

34

parameter is a list of dictionaries, where each dictionary represents a post
containing attributes such as 'id', 'user_id', 'content' and 'timestamp'. The
'following_matrix' is a dictionary that maps each user's ID to a list of user
IDs they follow, allowing the algorithm to traverse social connections up to a
speci�ed degree. The 'limit' parameter is an integer that restricts the num-
ber of posts returned in the �nal feed, with a default value of 10 in our case.
Finally, the 'degree' parameter is an integer that determines the number of
connection layers included in the feed, with a default value of 2 to limit
computational e�ort.

Firstly, we initialize 'all_ids' and 'current_degree_ids', which can be
observed in lines 3 and 4. At the beginning, they both only contain the
user id parameter value. In line 6, we start to iterate through the number
of degrees that was speci�ed in the parameters. Each iteration is initialized
with a set called 'next_degree_ids' that will be used to obtain the user ids
of the current iteration. Then, we loop through each of the user ids and use
the following matrix to observe the followed users of each user id, adding it
to the next_degree_ids. In line 10, we remove the user ids from 'all_ids'
from 'next_degree_ids' to make sure that all duplicates are removed. The
'all_ids' variable is �nally updated in each iteration, to make sure we found
all the user ids. Using a list comprehension, we can �nally get all the posts
from the user ids we observed in the previous step. Finally, we sort the posts
by reverse chronological post ordering, which we can inspect in line 16.

To implement this algorithm into the Mastodon source-code, major changes
were made inside a Ruby �le named 'home_feed.rb'. Apart from this �le, no
other adaptations were necessary. In speci�c, we changed the 'from_redis'
function, renamed it to 'get_second_degree_feed' and made the required
changes.

1 def from_redis(limit, max_id, since_id, min_id)
2 max_id = '+inf' if max_id.blank?

3 if min_id.blank?

4 since_id = '-inf' if since_id.blank?

5 unhydrated = redis.zrevrangebyscore(key, "(#{max_id}",

"(#{since_id}", limit: [0, limit], with_scores:

true).map { |id| id.first.to_i }

↪→

↪→

6 else

7 unhydrated = redis.zrangebyscore(key, "(#{min_id}",

"(#{max_id}", limit: [0, limit], with_scores: true).map

{ |id| id.first.to_i }

↪→

↪→

8 end

35

9

10 Status.where(id: unhydrated)

11 end

In the code from above, we can see how the data from Redis is sorted by
its score inside the 'from_redis' function. In the general case, this score is
just based on the age of the Redis entry. Basically, the 'unhydrated' variable
stores the ids in chronological order and then the 'Status' function is called
from a di�erent section of the code, to retrieve the underlying posts of the ids
we observed. We included this section to highlight the di�erence in syntax
between the actual Mastodon code and a more general algorithmic represen-
tation, as well as to showcase a section of the actual Mastodon source-code.
However, the explanatory value of this speci�c snippet is relatively low, as it
represents only a small part of the entire logic. For further exploration, visit
the Mastodon source-code [17], as well as the code adaptions on our GitHub
[26].

36

7.2.2 Engagement Algorithm with Time Decay Factor

To create a more realistic simulation of modern social media platforms like
Twitter, we developed a more sophisticated algorithm that blends the local
reverse chronological ordering with algorithmic ranking. The design of this
algorithm is inspired by the insights we got in the previous chapter about
Twitter's 'For you' timeline. We aimed to design the algorithm in a way that
approximately one-third of the content is ranked based on global algorith-
mic scoring, while the remaining two-thirds follow the default chronological
timeline of Mastodon displaying posts from followed users. As discussed in
previous chapters, Twitter, by contrast, balances its feed with an equal split
between global and local content. This balance seeks to maintain the rele-
vance and engagement bene�ts of algorithmic curation, while still having a
strong focus on a person's following network. It is important to emphasize
that this implementation re�ects just one possible con�guration of the algo-
rithm, which can be adapted or extended to suit di�erent objectives. With
the help of the code snippet below, we will provide a detailed explanation of
the algorithm that was implemented in the Mastodon source-code.

1 import math
2 from datetime import datetime, timedelta

3

4 def get_algorithmic_feed(global_posts, local_feed):

5

6 decay_rate = 3600 * 24 * 10

7 current_time_unix = int(datetime.now().timestamp())

8

9 algo_feed = []

10 for post in global_posts:

11 post_id = post["id"]

12 likes = post["likes"]

13 created_at_unix = int(post["created_at"].timestamp())

14 time_diff = current_time_unix - created_at_unix

15

16 time_decay_factor = math.exp(-time_diff / decay_rate)

17 like_factor = math.sqrt(max(likes, 1))

18

19 combined_score = like_factor * time_decay_factor

20

21 algo_feed.append({

22 "post_id": post_id,

37

23 "combined_score": combined_score

24 })

25

26 algo_feed.sort(key=lambda x: x["combined_score"],

reverse=True)↪→

27

28 return algo_feed

As a �rst step, we needed to import the necessary packages, in our case
this was the 'math' package and the 'datetime' package. The function for
this algorithm only required us to include two parameters. The �rst argu-
ment is 'global_posts', which is expected to be a dictionary containing keys
such as 'id', 'likes', and 'created_at' of all the posts from the global time-
line. The second argument is 'local_feed', which contains all the posts from
Mastodon's default local timeline. On line 6, the 'decay_rate' is de�ned as
the number of seconds in ten days. This value is determines how quickly a
post's score decays over time and can be adapted accordingly, to give the age
a stronger or weaker weight in comparison to the number of likes. Longer
periods result in slower decay. Then, we set the 'current_time_unix' to the
current time in seconds since unix epoch, to later be able to calculate the
age in seconds since the post was created. The next step was to initialize
the 'algo_feed' list, before starting the iteration over all the posts using a for
loop on line 10. For each iteration we calculated a 'combined_score', based
on the like count and the age of a post.

The recency was factored in with the 'time_decay_factor', observable in
line 16, which gradually declines with an increase in the age. The variable
is incorporated in a non-linear manner. In particular, the factor decreases
exponentially over time. This implies that more recent posts receive a pro-
portionally higher 'time_decay_factor' rating. The non-linear approach for
the recency factor is inspired by the insights from chapter 6 about the Twitter
algorithm. Other work such as the contributions from Filipovic also suggests
a non-linear approach [9].

The engagement was factored in with the 'like_factor' variable, that in-
creases with the amount of likes. This variable is also incorporated in a
non-linear manner. Speci�cally, likes are included using a root function,
such that the marginal contribution of each additional like decreases as the
total number of likes increases. This approach ensures that Tweets with fewer
likes are not disproportionally excluded from the ranking, allowing for a more
balanced consideration of engagement. The approach is inspired by the in-
sights from the Twitter algorithm in chapter 6. In the Twitter algorithm a

38

hard upper bound is applied to the like factor. While we adapt this idea by
using a root function instead of a �xed cap, both methods have the purpose
of limiting the dominance of highly liked content. Also, the 'like_factor' was
given a lower bound of 1, to make sure posts with 0 likes are also factored
into the feed calculation. To �nally get the algorithmic timeline, we just
added all the results to the 'algo_feed' list and sorted the list based on the
'combined_score' in descending order.

It is important to emphasize

Figure 14: Sample Timeline of the Engagement Algorithm with Decay Factor,
Source: https://social.ai.wu.ac.at/home

In Figure 14, we can observe an example of a timeline that utilizes the
Engagement Algorithm with Decay Factor. Since engagement, measured in
likes, is combined with an age-based decay factor, the posts are not strictly

39

sorted by age. This is clearly visible in the example, given that the post 'Test'
is ranked above 'Test 2', eventhough it was posted 6 hours ago compared to
3 minutes ago. The speci�c scores used for ordering these two posts, which
are derived from the algorithm presented above, are shown in Figure 15
below. The �gure shows output from the Rails console inside our server
environment. The 'Test' post has received two likes, as indicated by the
'favourites' parameter, whereas the 'Test 2' post has zero likes. On the other
hand, 'Test 2' is higher in the 'created_at' parameter, indicating a later unix
time. Finally, the 'combined_score' parameter shows 1.375 for the 'Test'
post in comparison to 0.998 for the 'Test 2' post and is therefore ranked �rst.

40

Figure 15: Score Outputs for Engagement Algorithm

41

8 Related Work

The research on the technical architecture of ranking algorithms in central-
ized social media platforms has historically been relatively limited due to the
closed-source nature of most platforms. The recent open-sourcing of Twit-
ter�s algorithm [30] has led to more research in the �eld, however much of the
recent work has focused more on the social and ethical implications of Twit-
ter�s algorithm such as the promotion of low-credibility content [7] or the po-
larizing architecture the platform has [18]. Despite that, signi�cant work has
been done in related domains such as recommender systems, which social me-
dia ranking algorithms are partly based upon. One research paper that stand
out in providing an overview of the state of research on recommender systems
(RS) is 'A systematic review and research perspective on recommender sys-
tems' [27]. Research on decentralized social media, has seen a strong push
since Mastodon was founded back in 2016. Most of the research that has
been conducted focused on their architecture [38] and what challenges this
form of social media usually comes with [22]. Even though there have been
a reasonable number of contributions, studies exploring how open ranking
algorithms could increase performance and reach of decentralized platforms
have not yet been carried out yet. However, there have been some e�orts
on constructing alternative content-ranking algorithms to mitigate some of
the problematic in�uential mechanisms centralized platforms come with [13],
which could potentially bene�t decentralized social media platforms. This
thesis builds on the foundations of previous research, by investigating the po-
tential of open ranking algorithms for platforms like Mastodon by analyzing
common ranking methods used on centralized platforms.

42

9 Limitations and Future Work

The server-based algorithm design may not be the optimal solution for all
users, as some individuals might prefer more personalized, user-speci�c rank-
ing implementations tailored to their unique preferences. Moreover, the ap-
proaches developed in this paper can only be applied by instance owners,
limiting accessibility for individual users. These aspects represent key limi-
tations of the approach presented in this paper.

Building on the algorithmic implementations and insights presented in
this thesis, future work could explore the development of community-driven
and user-based algorithmic approaches. This could, for example, be achieved
relatively simply through pro�le metadata, which each user can specify in the
frontend of their pro�le section in Mastodon. The text �elds for the pro�le
metadata could be used to provide algorithmic instructions or re�ect individ-
ual preferences for personalizing the timeline, tailoring the content to each
user's unique interests and interactions. To make the implementation user-
friendly, it would make sense to o�er a selection of prede�ned instructions,
each representing di�erent ranking approaches, such as 'strict chronological',
'algorithmic', which users can enter and customize, allowing them to quickly
choose their preferred timeline. To implement this, the data within the pro-
�le metadata would need to be fetched from each user and integrated into
the ranking logic of Mastodon's codebase.

Such an approach would also enable scalable quantitative analysis of algo-
rithmic preferences of users in future research, as the metadata entered by all
users could be analyzed to identify patterns and trends in user preferences.
This would provide valuable insights into the e�ectiveness of custom ranking
algorithms, fostering continuous re�nement and optimization based on real-
world user preferences. Building upon the implementations from this thesis,
the extension of algorithms to provide greater �exibility in customization
would be an important area for future work.

In the following list we summarized the most promising topics for future
work based on limitations of this paper:

� Integration of personalized algorithmic customization through pro�le
metadata: Implementing pro�le metadata that allows users to input
preferences or select ranking approaches to personalize their timeline.

� Analysis of user preferences to re�ne and optimize ranking approaches:
Collecting and analyzing metadata from users to identify common pref-
erences and enhance ranking algorithms accordingly.

� Expansion of algorithm selection options: O�ering a broader range of

43

ranking approaches that can be easily customized by users.

� Scalable and community-driven algortihmic solutions: Exploring alter-
native ways to integrate community feedback and preferences, promot-
ing collective decision-making in ranking methods.

� Testing and validating custom ranking models on larger datasets: Con-
ducting empirical research to test e�ectiveness of custom ranking algo-
rithms on a large Mastodon instance.

44

10 Conclusion

In this paper, we have demonstrated how open ranking algorithms can be use-
ful for decentralized social media platforms, speci�cally through our imple-
mentation and analysis within the Mastodon ecosystem. The openness of de-
centralized protocols, particularly ActivityPub - the foundation of Mastodon
- made it an ideal platform for this research, providing the �exibility and
transparency needed to implement and evaluate these ranking algorithms ef-
fectively. By analyzing the source-code of the Twitter algorithm, we gained
insights into how ranking mechanisms in major social media platforms gen-
erally work and explored possible ways to customize them. The Twitter
algorithm reveals a complex ranking pipeline, where metrics are divided into
multiple layers such as recency, engagement, and other contextual factors.
This stands in stark contrast to Mastodon's default reverse chronological
feed, which prioritizes content based solely on recency. The developed al-
gorithms, implemented through direct modi�cations in the Mastodon source
code, provide instance owners with a straightforward plugin solution to tailor
content ranking, allowing for easy customization and integration. This study
highlights how such implementations could pave the way for more personal-
ized algorithmic experiences on the Mastodon platform, while still keeping
the principles of user data privacy, decentralization, and transparency that
de�ne the ecosystem. This work represents a pratical step toward making
platforms like Mastodon more accessible and appealing to mainstream users.

45

References

[1] R. R. Abbing and R. W. Gehl. Shifting your research from X to
Mastodon? Here�s what you need to know. Patterns, 5(1):100914, 2024.
DOI: 10.1016/j.patter.2023.100914.

[2] H. Al-bashiri, M. Abdulhak, A. Romli, and F. Hujainah. Collabora-
tive Filtering Recommender System: Overview and Challenges. Journal
of Computational and Theoretical Nanoscience, 23(9):9045�9049, 2017.
DOI: 10.1166/asl.2017.10020.

[3] R. A. Arguedas, C. Robertson, R. Fletcher, and R. Nielsen. Echo cham-
bers, �lter bubbles, and polarization: a literature review. Research re-
port, Reuters Institute for the study of journalism, University of Oxford,
2022. DOI: 10.60625/risj-etxj-7k60.

[4] Bluesky. Source code for the AT-protocol, 2022. GitHub Repository,
URL: https://github.com/bluesky-social/atproto, Accessed Jan
30, 2025.

[5] Bluesky. Bluesky Homepage, 2024. URL: https://www.bsky.social,
Accessed on Feb 23, 2024.

[6] Bluesky. AT protocol, 2025. URL: https://atproto.com, Accessed
Feb 27, 2025.

[7] G. Corsi. Evaluating Twitter�s algorithmic ampli�cation of low-
credibility: an observational study. EPJ Data Science, 13(18), 2024.
DOI: 10.1140/epjds/s13688-024-00456-3.

[8] D. Di Placido. The X (Twitter) Exodus To Bluesky, Explained, 2024.
Forbes, URL: https://www.forbes.com/sites/danidiplacido/

2024/11/19/the-x-twitter-exodus-to-bluesky-explained, Ac-
cessed Mar 8, 2025.

[9] M. Filipovic, B. Mitrevski, D. Antognini, E. Glaude, D. Faltings, and
C. Musat. Modeling Online Behavior in Recommender Systems: The Im-
portance of Temporal Context, 2021. DOI: 10.48550/arXiv.2009.08978.

[10] D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using Collaborative
Filtering to Weave an Information Tapestry. Commun. ACM, 35(12):61�
70, 1992. DOI: 10.1145/138859.138867.

46

[11] W. Hong and J. Y. Thong. Internet Privacy Concerns: An Inte-
grated Conceptualization and Four Empirical Studies. MIS Quarterly,
37(1):275�298, 2013. DOI: 10.25300/MISQ/2013/37.1.12.

[12] M. Kleppmann, P. Frazee, J. Gold, J. Graber, D. Holmgren, J. Johnson,
B. Newbold, and J. Volpert. Bluesky and the AT Protocol: Usable
Decentralized Social Media. In Proceedings of the ACM Conext-2024

Workshop on the Decentralization of the Internet, CoNEXT 2024, pages
1�7. ACM, 2024. DOI: 10.1145/3694809.3700740.

[13] T. Koree. Good Social Media: Constructing an Alternative Content-
Ranking Algorithm for Social Network Sites, 2023. Bachelor Thesis,
URL: http://essay.utwente.nl/94370, Accessed Mar 21, 2025.

[14] D. Laseur. What is decentralized social media? Pros and Cons,
2022. Flatline Agency, URL: https://www.flatlineagency.com/

blog/what-is-decentralized-social-media, Accessed on Nov 23,
2024.

[15] Paddy Leerssen. The Soap Box as a Black Box: Regulating Trans-
parency in Social Media Recommender Systems. European Journal of

Law and Technology, 11(2), 2020. DOI: 10.2139/ssrn.3544009.

[16] M. Masnick. Protocols, Not Platforms: A Technological Approach to
Free Speech. Research report, URL: https://perma.cc/MBR2-BDNE,
accessed dec 2, 2024, Knight First Amendment Institute, Columbia Uni-
versity, 2019.

[17] Mastodon. Mastodon homepage, 2024. URL: https://www.

joinmastodon.org, Accessed on Feb 23, 2024.

[18] S. Milli, M. Caroll, S. Pandey, Y. Wang, and A. Dragan. Twitter�s
Algorithm: Amplifying Anger, Animosity, and A�ective Polarization.
ArXiv, 2023. DOI: 10.48550/arXiv.2305.16941.

[19] M. Montaner, B. Lopez, and P. Esteva. A Taxonomy of Recommender
Agents on the Internet. Arti�cial Intelligence Review, 19(4):285�330,
2003. DOI: 10.1023/A:1022850703159.

[20] A. Narayanan. Understanding Social Media Recommendation Algo-
rithms. Research report, URL: https://perma.cc/F3NP-FEQX, ac-
cessed jan 15, 2025, Knight First Amendment Institute, Columbia Uni-
versity, 2023.

47

[21] S. Perez. Twitter says few users have opted
out of its new, algorithmic timeline, 2016.
TechCrunch, URL: https://techcrunch.com/2016/03/18/

twitter-says-few-users-have-opted-out-of-its-new-algorith\

mic-timeline, Accessed Feb 5, 2025.

[22] A. Raman, S. Joglekar, E. D. Cristofaro, N. Sastry, and G. Tyson. Chal-
lenges in the Decentralised Web: The Mastodon Case. In Proceedings

of the Internet Measurement, IMC 2019, pages 217�229. Association for
Computing Machinery, 2019. DOI: 10.1145/3355369.3355572.

[23] Redis. Redis Homepage, 2025. URL: https://redis.io, Accessed Mar
03, 2025.

[24] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-
plens: An Open Architecture for Collaborative Filtering of Netnews.
In Proceedings of the 1994 ACM Conference on Computer Supported

Cooperative Work, pages 175�186, 1994. DOI: 10.1145/192844.192905.

[25] B. Rimé. Emotion Elicits the Social Sharing of Emotion: Theory
and Empirical Review. Emotion Review, 1(1):60�85, 2009. DOI:
10.1177/1754073908097189.

[26] F. Roetzer. Mastodon Algorithms, 2025. GitHub Repository,
URL: https://github.com/felixroetzer/mastodon_algorithms,
Accessed Feb 24, 2025.

[27] D. Roy and M. Dutta. A systematic review and research perspective
on recommender systems. Journal of Big Data, 9(59), 2022. DOI:
10.1186/s40537-022-00592-5.

[28] M. Ruwe. The di�erence between centralized social media platforms and
upcoming decentralized social media platforms: a comparative study,
2023. Bachelor Thesis, URL: https://essay.utwente.nl/95357, Ac-
cessed Dec 30, 2024.

[29] G. Shani, A. Meisles, Y. Gleyzer, L. Rokach, and D. Ben-Shimon.
A Stereotypes-Based Hybrid Recommender System for Media Items.
In Intelligent Techniques for Web Personalization and Recommender

Systems in E-Commerce - Papers from the 2007 AAAI Joint Workshop,

Technical Report, pages 76�83, 2007. URL: https://aaai.org/papers/
ws07-08-009-a-stereotypes-based-hybrid-recommender-system\

-for-media-items, Accessed Jan 12, 2025.

48

[30] Twitter. Source code for Twitter�s recommendation algorithm,
2023. GitHub Repository, URL: https://github.com/twitter/

the-algorithm, Accessed Jan 21, 2025.

[31] Twitter. Twitter's Recommendation Algorithm, 2023. URL:
https://blog.x.com/engineering/en_us/topics/open-source/

2023/twitter-recommendation-algorithm, Accessed Jan 4, 2025.

[32] W3C. Activity streams: A format for representing activities, 2017.
URL: https://www.w3.org/TR/activitystreams-core, Accessed Jan
12, 2025.

[33] W3C. Websub: A protocol for real-time noti�cations on the web, 2017.
URL: https://www.w3.org/TR/websub, Accessed Jan 12, 2025.

[34] W3C. ActivityPub: A protocol for decentralized social networking, 2018.
URL: https://www.w3.org/TR/activitypub, Accessed Jan 7, 2025.

[35] World Wide Web Consortium, 2024. URL: https://www.w3.org, Ac-
cessed Dec 12, 2024.

[36] Z. Zhang, J. Zhao, G. Wang, S. Johnston, G. Chalhoub, T. Ross,
D. Liu, C. Tinsman, R. Zhao, M. Van Kleek, and N. Shadbolt. Trouble
in Paradise? Understanding Mastodon Admin's Motivations, Experi-
ences, and Challenges Running Decentralised Social Media. Proceed-

ings of the ACM on Human Computer Interaction, 8:1�24, 2024. DOI:
10.1145/3687059.

[37] M. Zignani, S. Gaito, and G. P. Rossi. Follow the "Mastodon": Struc-
tures and Evolution of a Decentralized Online Social Network. Proceed-
ings of the International AAAI Conference on Web and Social Media,
12(1):541�550, 2018. DOI: 10.1609/icwsm.v12i1.14988.

[38] M. Zignani, C. Quadri, S. Gaito, H. Cheri�, and G. P. Rossi. The
Footprints of a "Mastodon": How a Decentralized Architecture In�u-
ences Online Social Relationships. In IEEE International Conference on

Communications Workshops, pages 472�477, 2019. DOI: 10.1109/INF-
COMW.2019.8845221.

49

	Introduction
	Purpose
	Research question
	Methodology
	Background
	Recommender systems
	Collaborative Filtering
	Content-Based Filtering
	Hybrid Approach

	Decentralized Protocols
	About ActivityPub
	How to interact with ActivityPub?
	The AT-Protocol

	Conventional Ranking Approaches: Example Twitter
	What ranking approaches does Twitter offer?
	What data is necessary for the recommendation pipeline?
	What metrics can the data be divided into?
	Engagement
	Recency
	Filtering

	What does the recommendation pipeline look like?

	Mastodon for Ranking Algorithms
	Tech Stack
	Hardware and Infrastructure
	Software

	Algorithmic Implementations: Enabling Personalized Social Media Feeds
	N-Degree Feed Algorithm
	Engagement Algorithm with Time Decay Factor

	Related Work
	Limitations and Future Work
	Conclusion

