
Bachelor Thesis

Towards Automated Grading of Jupyter
Notebooks for University Program-
ming Assignments
Fabian Ebner
Date of Birth: 19.04.2001
Student ID: 12024077

Subject Area: Information Business

Studienkennzahl: UJ033561

Supervisor: Prof. Dr. Axel Polleres

Date of Submission: 13. August 2024

Department of Information Systems & Operations Management, Vienna Uni-
versity of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Aus-
tria

Contents
1 Introduction 8

1.1 Methodology for Replication 9

2 Jupyter 11
2.1 Jupyter Sub-projects . 11

2.1.1 Jupyter Notebooks . 11
2.1.2 JupyterLab . 12
2.1.3 JupyterHub . 14

2.2 Educational Applications . 14
2.2.1 Challenges of Using Notebooks in the Classroom 16

3 Grading Jupyter Notebooks 17
3.1 nbgrader . 17

3.1.1 nbgrader for Creating and Grading Assignments 17
3.1.2 Pitfalls of nbgrader . 22

4 Improved Auto-Grading Approach 23
4.1 Requirements . 23
4.2 The Solution . 26

4.2.1 Cell Structure . 26
4.2.2 Testing Code . 29
4.2.3 Assert Types . 32
4.2.4 AND/OR Connection of Tests 33
4.2.5 Hiding the Test Cases 34

4.3 Comparing the Output . 35
4.3.1 Formatting the Output 36

4.4 Best Practice Checklist . 37

5 Conclusion 40
5.1 Future Work . 41

6 Appendix 46
6.1 Appendix A: Example Jupyter Notebook 46
6.2 Appendix B: Output Formatting Function 53
6.3 Appendix C: solutions.py File 59

3

List of Figures
1 JupyterLab displaying a Jupyter Notebook 12
2 The Raw Cell Content of the Notebook 13
3 An Assignment in nbgrader 18
4 The Student Version of an Assignment 19
5 Answer and Test Cells in a Feedback File 21
6 Example Test Output . 32
7 Scroll-able DataFrame Object 37

4

List of Tables
1 Software Versions . 10

5

Listings
1 Testing Code, see cell (6) in Appendix A 28
2 Simplified Code for Comparing Outputs 36

6

Abstract

The use of software to automatically grade programming assign-
ments has been shown to improve the quality of education. While
there are several different tools available, many come with a series of
flaws, which limit the trust instructors can place in them. As a result,
many courses still need teaching staff to manually inspect all commis-
sions. A popular choice for grading notebook-formatted assignments
is nbgrader. The primary objective of this work is to improve the cur-
rent implementation of the software, by overcoming some of the main
challenges. This includes the integration of a solution that allows to
assign points to individual tests. The tests for a task are then executed
conjointly, and the achieved points get automatically assigned to the
total score of the assignment. In addition, functions to improve the
quality of the feedback are presented, together with a synopsis of best
practice techniques for the creation and auto-grading of programming
assignments.

7

1 Introduction
Technologies to automate the grading process of programming assignments
have been researched for decades. Professors at Stanford University pub-
lished papers on the topic as early as 1965. The need to evaluate the code
of many students served as motivation for the development of a software
solution. Back then, ALGOL programs were used to grade the students’ as-
signments written in the same language [9]. Since then, a lot has changed. A
multitude of advancements in both hardware and software have been made,
but the need for auto-graders still remains. Furthermore, the motivation
also stays unchanged: grading code assignments is a tedious task. As man-
ual grading is prone to errors, great advantages can be gained by automating
said process [6]. Recent developments in education expand the need for an ef-
fective auto-grading solution. An increased number of university courses now
require students to write code. Computational thinking , the ability to solve
problems using computer science techniques, is nowadays a requirement for
students in almost all STEM fields [22]. This results in an increasing number
of programming assignments, which all need to be graded by someone, or
something. Computational notebooks offer an attractive way to create such
programming assignments. In the last few years, Jupyter notebooks have
become a popular tool in education. Offering an easy-to-use environment,
they are well-suited to be used in teaching. Especially when it comes to
learning Python, many universities use Jupyter notebooks to create assign-
ments [21]. Using the Jupyter environment in an educational context brings
many benefits. Thanks to their simplicity, they can be used by instructors
to implement modern teaching methods [4]. Additionally, they allow users
to write code in almost all popular programming languages [34]. Notebooks
can also be edited in a web-based application which eliminates the need for
students to install special software. Furthermore, the process of creating and
running code in notebooks is simple [1]. Thus, they can be used in both
introductory and advanced courses. Should the teaching staff decide to use
notebooks as the basis for assignments, they must find a way to create and
grade them. One tool that can achieve this is called nbgrader. The workflow
of the software allows the creation and publishing of assignments. It is also
used to grade the notebooks and to create feedback files for the students [16].
This solution is also employed in the Data Processing 1 (DP1) course at the
Vienna University of Economics and Business. Due to my involvement with
the course as a tutor, I came to notice that it was not possible to completely
auto-grade the assignments. While nbgrader is certainly very useful, it still
has some flaws. This is also supported by other teaching staff, who voice
their complaints via forums like GitHub [25]. The problems include running

8

multiple tests at once and efficiently assigning partial points, in the common
case that a student completes some but not all tests.

The goal of this thesis is to develop and describe an approach to auto-
grading that eliminates those flaws. As previously hinted, this approach will
build upon the nbgrader tool, and will thus be applicable for grading Jupyter
notebooks. To achieve this goal, elements of unit testing get merged with
the existing approach for grading with nbgrader. But solving the previously
discussed problems is not the only objective. The new approach aims to be
both simple and flexible. Due to its simplicity, the testing code can be easily
maintained and modified. The flexibility allows many different tasks to be
graded with the same code blueprint. Another problem with auto-grading
lies within the provided feedback. To be able to include long and complex
outputs in the feedback files, while still keeping the files tidy, I constructed a
specialized function. It processes the output in a way that keeps it minimal
but still enables fast comparisons for either the instructors or the students.
This way, the approach does not only improve the existing auto-grading
techniques but can also assist in cases where manual grading is unavoidable.

I structured the thesis as follows. Chapter 2 provides an introduction to
the Project Jupyter environment, laying a solid foundation for those inter-
ested in implementing this approach. The focus lies on three important sub-
projects of Jupyter, namely Jupyter Notebooks, JupyterLab, and JupyterHub.
This foundation is further enhanced in chapter 3, as the standard process of
creating and grading assignments with nbgrader is explained. Finally, chap-
ter 4 dives into the new and improved approach. The included checklist on
best practices for the new approach can help teaching staff to minimize the
time spent on manual grading.

1.1 Methodology for Replication

The code presented in this thesis was developed and tested in an Anaconda
environment, where all necessary software was installed. I used the graphi-
cal interface called Anaconda Navigator. The official documentation offers a
detailed explanation of how to install and use the software [2]. The instal-
lation of packages and launching of JupyterLab were all conducted through
the Anaconda Navigator. This setup includes Python, JupyterLab, nbgrader,
and various modules and libraries. The auto-grading approach builds upon
the unittest module, which is part of the Python Standard Library [11].
Therefore, the replication of the results heavily relies on the Python ver-
sion. Equally important is the JupyterLab extension nbgrader. The official
documentation of nbgrader provides easy-to-understand instructions on how
to set it up, including steps to install it via Anaconda [31]. These instruc-

9

tions were followed during the creation of this thesis. Although I expect the
proposed solution to work with most nbgrader installations, I will include
the software versions used, to ensure that my results can be replicated. The
following table lists the important software and their corresponding version
numbers used in the creation of this thesis.

Name Version
Anaconda Navigator 2.6.0
Python 3.10.9
JupyterLab 3.6.7
nbgrader 0.9.1
Pandas 1.5.3
IPython 8.10.0

Table 1: Software Versions

10

2 Jupyter
The auto-grading approach for programming assignments will be based on
the software provided by Project Jupyter. It is important to be familiar with
the key parts and main features of this software in order to understand why it
was chosen for this approach. Project Jupyter was created in 2014, out of the
iPython Project. The software and standards it provides are open-source and
can be used together with more than 40 programming languages [33]. Jupyter
is widely used in data science, but also in physics, chemistry, economics, and
education. The more than 10 million Jupyter notebooks available on GitHub
are proof of the widespread use and acceptance of this document type as a way
to create and share computational work and knowledge. One reason for the
notebook’s popularity is its ability to tell a story with code and data. In this
context, the label interactive computing is often associated with the Jupyter
environment, as it enables users to solve tasks with the help of computers
and data [12].

2.1 Jupyter Sub-projects

Project Jupyter is split into various sub-projects, which are used to perform
different tasks. In the following, three sub-projects will be described in detail:
Jupyter Notebooks, JupyterLab, and JupyterHub.

2.1.1 Jupyter Notebooks

In this thesis, the term Jupyter notebook(s) will be used to address the doc-
ument type which is saved with the .ipynb extension and not the web editor
with the same name.

Jupyter Notebooks can be classified as computational notebooks, which
allow the editor to embed and execute code. Easily editable through a web
application, they create an interactive system for beginners and experts to
write and test their code, as results are displayed within the notebook rather
than within a console. If the embedded code is used for plotting data, then
the resulting plot can also be displayed in the notebook. In addition to code,
it is also possible to include text and images in the notebook. Those can
be formatted with markup languages like the Hyper Text Markup Language
(HTML) [8] and Markdown [7], or by using LaTeX [36]. The notebooks
can be easily shared, partly because their internal format is based on the
JavaScript Object Notation (JSON) [14]. The base structure of the notebook
consists of cells, which are either code cells, raw cells, or markup cells [28].

11

Thanks to the different cell types available, it is possible to construct
a document that combines code, images, equations, and text. Using those
elements, a Jupyter notebook can be transformed into an interactive appli-
cation that tells a story. This stems from the fact that the embedded code
can be edited, executed, and documented using text and visualizations [4].

Users have many options when it comes to sharing their notebooks. As
it is possible to view and execute them online, many types of documents
can be found in the form of a Jupyter notebook, including research papers,
blogs, and textbooks. Many online courses and curricula at universities use
notebooks as teaching materials [12].

With this information, conclusions can already be drawn as to why Jupyter
notebooks are a valuable asset for teaching data science courses. An in-depth
analysis of the applications of notebooks in education is provided later in this
chapter.

2.1.2 JupyterLab

JupyterLab is the sub-project focused on interacting with computational
notebooks. According to the official website, JupyterLab is described as
"[...] the latest web-based interactive development environment for notebooks,
code, and data. Its flexible interface allows users to configure and arrange
workflows in data science, scientific computing, computational journalism,
and machine learning. A modular design invites extensions to expand and
enrich functionality." [34]

Figure 1: JupyterLab displaying a Jupyter Notebook

The JupyterLab interface shares some similarities with traditional inte-

12

grated development environments (IDEs), but has additional functionality.
It features text editors and terminals and can be used to view files in mul-
tiple formats like CSV and JSON. Overall, it is a more advanced authoring
application compared to the interface called Jupyter Notebook, which was the
original application for interacting with .ipynb files. A similar version to run
notebooks locally is also available, which is called Jupyter Desktop [29].

JupyterLab offers full support for Jupyter notebooks. Many functions
are available for working with the .ipynb files. Cells can be dragged between
notebooks and code can be collapsed or expanded. Multiple Views can be
created from a single notebook to create dashboard-like applications [32].

Figure 1 displays a notebook opened in JupyterLab. On the top, you can
see a menu bar with multiple options like Edit, Run, and View. The left
sidebar can be used to browse and upload files. Two notebooks, one image,
and one folder labeled "data" are visible. It is also possible to display a
sidebar on the right side of the screen [30]. The Figure also shows what a
notebook can look like. Multiple types of cells are visible. The first cell is a
markdown cell displaying formatted text as well as an image. The other two
cells are code cells, used to implement a simple "hello world" program.

Figure 2: The Raw Cell Content of the Notebook

In Figure 2 the same notebook is visible, but this time the raw content
of the cells is shown. In the first cell, Markdown elements have been used to
create the headline and implement an image.

13

2.1.3 JupyterHub

JupyterHub is the gateway for using Jupyter Notebooks and JupyterLab with
a large group of participants. Employing this application allows corporate or
educational groups to create a customized JupyterLab environment. Users
get access to an individual, pre-configured workspace without the need to
install anything. It also provides a way for the administrator to share data
and documents with the users, for example, instructions or data sets. For
institutes with good hardware, it is possible to run JupyterHub on their
servers. If not enough resources are available, the service can also be hosted
in the cloud. [35].

The application consists of multiple subsystems. An HTTP proxy for-
wards the requests to the hub, which is the heart of the application. The hub
then confirms the user login and creates a single-user server. One hub can
spawn multiple servers so that JupyterHub can be used by more than 100
users. Depending on the number of users, two main distributions are avail-
able [33]. The distribution The Littlest JupyterHub (TLJH) can be used to
give a group of up to 100 users access to Jupyter Notebooks, and requires al-
most no knowledge in system administration [17]. On the other hand, Zero to
JupyterHub with Kubernetes can be deployed by big organizations, to grant
many users access to Jupyter Notebooks. As the name suggests, Kubernetes
are used to run JupyterHub on a cloud [18].

2.2 Educational Applications

Using Project Jupyter in an educational context has many benefits. One of
the reasons why it is used by teaching staff is the ability to provide resources
to the students without the need to install software on their client’s machine.
Whether it is computing resources or lecture materials, the Jupyter environ-
ment allows the students to access both, as JupyterHub can also be used as a
file management system [5]. The Jupyter environment has many characteris-
tics that make it well-suited for educational use. It grants access to multiple
programming languages through a single web interface. Students can easily
switch between languages like Java, C++, and Python. Furthermore, there
are multiple features that help to simplify the process of programming. First
off, users can start to code as soon as they open a Jupyter Notebook. It is
not required to create a project folder with multiple files. Additionally, users
can program in Python without switching from .py files to the terminal. This
stems from the fact that the output, results, and possible error messages are
displayed right under the executed code cell. The possible fields of appli-
cation are another benefit of utilizing Jupyter notebooks in the classroom.

14

They can be used to teach basic programming, as well as complex concepts
in fields like computer and data science [1].

Regarding Jupyter notebooks, there are numerous ways to implement
them in a lecture. A rather underutilized way to use notebooks would be a
linear textbook. Here, the document is more of a reading exercise than an
interactive experience. Workbooks are another use case, which employs more
of the available features by implementing active elements like code cells. This
way, students can modify included code snippets and create new outputs,
which boosts engagement with the lecture’s content. Students might also
use notebooks to take notes to capture the content of a lesson. Additionally,
notebooks are excellent for creating assignments [4].

With the help of extensions, Jupyter Notebooks can easily be turned into
presentation slides. One of the extensions that add this functionality is RISE.
With an additional toolbar, the metadata of cells can be changed to make
them suitable for presentations [3].

This chapter has highlighted numerous features of Jupyter Notebooks.
Based on these features, several benefits of using Jupyter Notebooks for as-
signments have been identified:

1. As notebooks are both the application to execute code, as well as the
documentation of said code and its results, the whole assignment can
be created in one document. This eliminates the need for separate
question-and-answer files. Students download a notebook with instruc-
tions, and hand in the same file after the code cells have been filled in.
The notebooks can be modified with ease, thanks to their modular
structure. If only small changes need to be made, only some cells have
to be modified. This allows to update assignments with minimal effort.

2. The result of the executed code is displayed below the respective cell.
This seems to be especially useful for programming beginners because
they can immediately see the result and troubleshoot potential errors.
In addition, the code can be split up between multiple cells, so it is
easy to solve a more complex problem step-by-step.

3. Due to in-browser editing, students do not have to install any software
for the course. They can access their files from multiple devices, which
enables them to work on devices provided by the university as well as
personal machines.

4. Using Jupyter-compatible software, the assignments can be created,
collected, and graded. Many of those processes can be automated. For
the grading part, the software nbgrader can be used [16].

15

2.2.1 Challenges of Using Notebooks in the Classroom

Employing the Jupyter environment in the classroom comes with a few chal-
lenges. It is important to give a quick overview of the drawbacks and pitfalls
of using the popular software in the classroom.

While there are some technical challenges with the setup of JupyterHub
like managing user permissions, the concerning challenges are those that arise
when students use JupyterLab and Jupyter notebooks. Due to the cell-based
structure, beginner students can have problems with understanding the ex-
ecution flow. As code cells can be executed in a non-linear manner, bugs
can be harder to find. Jumping between different code cells and the possi-
bility to edit and re-run previous cells can confuse inexperienced users, as
working with a non-linear execution flow can result in unexpected outcomes.
Especially if the code is fragmented between multiple cells, the overall logic
can be hard to understand. In that case, an inexperienced user might not
see what cells depend on each other, causing confusion if cells are executed
multiple times in different orders. Another potential issue lies in the differ-
ence between traditional IDEs and JupyterLab. Using Jupyter only, students
might not get prepared to manage other environments and could miss out on
gaining a proper understanding of system states and execution flows [26].

The issue with the execution order of cells goes hand in hand with another
challenging aspect of Jupyter notebooks. As all cells in the notebook share
a hidden state. Variables and functions that have been defined once can
be used across multiple cells. For example, a function defined and executed
in one code cell can be used in all subsequently executed code cells. While
this certainly comes with benefits, it can also be difficult for inexperienced
students to understand. If a variable name gets used twice in different cells,
unexpected results can occur. If a snippet of code results in an error, the
actual source of that error may be located in a completely different cell.
Although there is a number displayed next to each cell to keep track of the
execution order, there is no such tool for checking the state of functions and
variables [15].

An example can be seen in Figure 1. Here, the number on the left side
of the code cells displays the execution order. As shown, the last cell in the
notebook has the number "3" beside it, indicating that it was the third cell
that was executed. Using this information, we can conclude that the cell
with the number "2" was executed previously, so the variable text includes
the string "hello world!". While this is fairly logical, let’s assume another
cell is added, which sets the variable text to the string "hello mars!". Now,
depending on the execution flow, the cell with the print statement will display
a different output.

16

3 Grading Jupyter Notebooks
Manually grading assignments can quickly become a time-consuming task.
A large number of students combined with complex tasks to grade can even
make it an impossible task. One possible solution to assist the teaching
staff is nbgrader [20]. This tool based on Jupyter offers features needed to
grade notebooks. For the Python programming language, there is even some
functionality for auto-grading. Among other things, additional types of cells
like solution and test cells are introduced [19]. Although this thesis is focused
only on nbgrader, it should be noted that there are other methods available
for the task at hand. One example would be Web-CAT, another web-based
software used for testing and grading. This solution is compatible with the
learning management system Canvas [21].

3.1 nbgrader

The tool nbgrader is an extension for Jupyter and can handle both the cre-
ation and grading of assignments. Instructors can create a master copy of
an assignment, complete with tests and solutions, which can be turned into
a student version without the solutions. The nbgrader can be used together
with JupyterHub, in which case it is also possible to facilitate the distribution
and collection of assignments through the tool. [16]. While the combination
of nbgrader and JupyterHub is certainly handy, the functionality for sharing
notebooks can also be outsourced to a learning management system or a
digital learning environment [20].

3.1.1 nbgrader for Creating and Grading Assignments

This sub-chapter extensively references and utilizes information from the
official Nbgrader documentation [31].

The functionality that nbgrader offers can be used with the "formgrader"
extension or with the command line. To run commands in the terminal, the
instructors need to navigate to the correct directory first (in most cases, this
is the source directory). In this example, the focus is on the formgrader.
Here, a new assignment can be created by navigating to the formgrader tab
"Manage Assignments" and clicking on "Add new assignment...". This will
create a new folder in the source directory, where all the necessary files (like
data or scripts) can be placed. Also, the master copy of the assignment
notebook will be located here.

When it comes to creating the actual notebook, most of the tools needed
are available through the "Create assignment" toolbar, as shown in Figure

17

Figure 3: An Assignment in nbgrader

3 on the right-hand side. Through this toolbar, each cell gets a certain type
assigned. All cells with a nbgrader type assigned to them need to have a
unique ID. A random ID is automatically applied (as seen in Figure 3), but
the teaching staff can change those values. Also, certain types of cells can
have points assigned to them. During the auto-grading process, all cells are
executed. The points of those cells that executed without any exceptions are
then added to the total score of the assignment.

When an assignment is created, the first few cells are likely to be instruc-
tions. For this case, "Read-only" cells can be used. Those cells cannot be
edited by the students, and thus are well-suited to display information.

For cells that need manual grading, two versions are available: the "Man-
ually graded answer" and the "Manually graded task" cells. The answer-type
cell is mostly used for non-code answers, like describing a function or written
answers to questions. If a cell has this type assigned to it, the student’s ver-
sion of the assignment will display a placeholder, indicating that an answer
is expected here. When selecting this cell type, the instructors need to select
the number of points that can be achieved in this cell. The cells are graded
by manually specifying the achieved points.

In comparison, the "Manually graded task" cells are used for the descrip-
tion of a task. This is mostly used for tasks where the answer can be spread
across multiple cells. Instead of assigning points to each cell used for the
solution, only the cell with the task description is graded.

Auto-grade cells are the most important type of cell for the auto-grading
approach presented in this thesis. Similarly to the manually graded cells,

18

Figure 4: The Student Version of an Assignment

there are two different types available: "Autograded answer" and "Auto-
graded test" cells. The answer type is used for cells in which the student
writes his answer to a task. No points can be assigned to this cell, but they
have a special feature. The special syntax shown in the second cell in Figure
3 hides the solution in the student’s version of the notebook. Instead, the
student will see a comment like "Your Code here". This can be seen in Figure
4, which displays the student version of the example assignment.

Following the answer cells, the auto-graded test cells are used to test and
grade the student’s answer. Usually, this cell type is used in combination
with assert statements. Contrary to the answer cell type, the grading cells
are worth a certain amount of points that can be specified in the toolbar. If
the cell passes (no errors occur), then the points get counted towards the total
achieved score of the assignment. Otherwise, no points are awarded. This
type of test cell can be seen in Figure 3. The last cell in the notebook uses the
assert_equal() function, which is recommended by the Jupyter Development
Team. In the presented example, the test will complete only if the function
add_numbers(1,2) returns the sum of its parameters. To hide the content
of test cells, the instructors can use a modified version of the syntax shown
in Figure 3. To achieve the desired result of hiding the cell content, the text
"### BEGIN/END HIDDEN TESTS" needs to be inserted into the cell,
which hides all the code lines in between.

The Jupyter Development Team, responsible for the nbgrader extension,

19

says that tasks, where the student is required to write functions, can be auto-
graded more easily. Ideally, all the features and functions should be tested
individually, especially if the solution consists of multiple tasks. Another
goal is to cover all possible edge cases. This is done to ensure that a function
is indeed working as intended. Emphasis should be put on this goal, as it is
essential to ensure that the auto-grading works as intended.

Navigating back to the "Manage Assignments" tab in formgrader allows
the instructor to generate the student version. The resulting notebook will
look different from the master copy and can be previewed using the form-
grader. This generated notebook can be found in the release folder. The
notebook can then be released to the students. Here, multiple options are
available. Nbgrader has a built-in method, that can be used only if the stu-
dent interface is available in the student’s JupyterLab interface. Otherwise,
the file can be uploaded to a Learning Management System (LMS), or dis-
tributed via email. Depending on the choice made to release the assignment,
an appropriate way to collect the submitted assignments is needed. Again,
multiple options are available, like collecting them via the built-in method
or uploading files using the command line.

After the submitted files have been uploaded to nbgrader and are acces-
sible in the formgrader, the grading process can be started. Two options are
available to choose from. Using the formgrader, individual submissions can
be auto-graded one by one. For a class with many members, it is advisable
to use the command line interface though. With the command "nbgrader
autograde ’AssignmentName’ –force" all submissions get graded simultane-
ously. The option –force overwrites the existing grades and notebooks. The
resulting auto-graded notebook(s) can be viewed in the formgrader, or by
navigating to the directory autograded. That is also where the manual grad-
ing happens. This is required for cells that are labeled with the type "Manual
graded answer" or "Manual graded task". Those cells will not get graded
automatically, and thus instructors need to manually grade them. For auto-
graded cells, the scores can be altered. Furthermore, comments can be added
to cells which have been modified by students, to give additional feedback.

Nbgrader also has a feature to generate feedback files. Again, the feature
can be used with formgrader or from the command line. After the process
is started, HTML files will be created that contain the executed notebook
together with the scores achieved and potential comments from the instruc-
tors. An example can be seen in Figure 5. Hidden tests are also visible in
those files. The files are located in their own directory called feedback. Like
the student’s version of the assignment, the feedback files can be distributed
(released) via nbgrader, if the necessary prerequisites are in place. Otherwise,
the files can be downloaded and shared using an LMS or email for example.

20

Figure 5: Answer and Test Cells in a Feedback File

21

3.1.2 Pitfalls of nbgrader

The previous sub-chapter showcases what the nbgrader workflow might look
like. While it is certainly streamlined and more efficient than not using any
software at all for the creation and grading of assignments, it still has its flaws.
Especially when it comes to auto-grading, nbgrader lacks some functionality.
In the previous description of nbgrader’s features it is stated that if an auto-
grade cell fails, no points will be added to a notebook’s total score. Assuming
that the student’s solution passes five out of six assert statements contained
in a cell, nbgrader will grade this cell with zero points. This stems from the
fact that the executed test cell results in an error as soon as one assertion
is not fulfilled. This is a major flaw, which is supported by multiple issues
and discussions found on the official nbgrader GitHub [25]. A possible quick
fix for this problem would be to create multiple test cells. If each cell with
the type "Autograded Test" only contains one assert statement, then it is
possible to assign points to each individual test. While this is helpful for
auto-grading on multiple tests, it is only feasible if the number of tests is low.
Otherwise, the file would get too confusing. On the official GitHub, issues
like #1445 recommend using try-except statements and custom functions to
overcome this problem. Those workarounds can quickly get confusing too,
as maintenance of this code could be a problem as the code grows.

During the research for this thesis, no satisfying solution was found that
could handle running multiple tests, as well as automatically grading the
student’s submission on those tests. While this is the main problem with most
solutions, other issues do exist. Those include a lack of flexibility in regard
to the kind of tasks that can be tested, as well as overly complicated code,
causing difficulty to adapt the test cases to modified tasks. Furthermore,
basic implementations of nbgrader fail to deliver meaningful feedback to the
students.

22

4 Improved Auto-Grading Approach
This chapter presents the developed approach for auto-grading assignments.
The approach builds upon the nbgrader framework and tries to eliminate
some of its flaws.

4.1 Requirements

Before the previously discussed problems can be tackled, the requirements for
a new solution should be stated first. The improved approach to auto-grading
should have the following characteristics:

1. Simplicity: The solution should be simple and minimal. The research
for this thesis showed that the solutions proposed on the nbgrader
GitHub lack simplicity and tend to be overly complex [25]. Especially
when it comes to implementing a partial scoring mechanism, the solu-
tions on GitHub are unsatisfactory, as they often make use of sub-par
techniques like multiple levels of nested try - except blocks.

• Implementation: The improved approach uses an easy-to-read
structure. As the tests are written as class methods, they can
be easily identified. The structure of the test methods is also
simple, due to using a framework specialized for software testing.
The scoring mechanism is connected to the execution of tests and
works automatically.

• Example (see Appendix A): The hidden tests for Task 1 are
visible in cell (6). Due to the structuring of tests as class methods,
existing tests can be found quickly, and new tests can be added
with ease. This helps to keep the assignment tidy, which results in
improved readability of the cell. Having multiple tests requires a
solution to calculate a score from those tests. The achieved points
are calculated as the tests are executed, as each test has a point
value assigned to it. If the test completes, the points get assigned
to the score. This way, instructors can quickly change how many
points a task is worth.

2. Flexibility: The solution should be flexible enough to handle vari-
ous tasks. Instructors should not be restricted by the auto-grading
approach when creating an assignment. Flexibility is a requirement
commonly found in publications regarding auto-grader systems [23].

23

Additionally, the approach should be flexible enough to handle correct
code even when it is very different from the expected code.

• Implementation: The framework used in the approach includes
a broad range of assertion methods, which can be used to create a
vast amount of different tests. Furthermore, additional assertion
methods can be imported or created. This enables the teaching
staff to write tests for numerous different tasks. The quality of
the tests is controlled by the instructors that create them.

• Example (see Appendix A): Task 1 and Task 2 are very differ-
ent in regard to the code and output that has to be tested. The
improved auto-grading approach can handle both. The structure
of the testing code remains the same, only the asserts change.
This can be seen when cell (6) and cell (11) are compared.

3. Scalability: The solution should be able to test complex functions
using multiple tests. This feature has already been identified in the
previous chapter. The ability to run multiple tests in one test cell is
crucial to achieving the desired outcome. Without this feature, the first
and second characteristics cannot be satisfied. In this sense, Scalability
means that the solution has the capacity to support a growing number
of tests for each task. While instructors might start off with only a
few tests, it should be possible to include as many tests as they want,
without sacrificing a great amount of simplicity or flexibility.

• Implementation: This is one of the main features of the new
approach. Multiple tests can be pooled into one test suite, which
then gets executed. The code needed to do so can be included in a
single cell. If the tests have points assigned to them, the achieved
score gets calculated.

• Example (see Appendix A): While there are not many tests
included in the example notebook, adding more would be as sim-
ple as writing a new class method. The test loader automatically
detects the new tests and incorporates them into the test suite.
The class Test_Function in cell (6) could be extended with an
additional method test_floats(), to test how the solution handles
floating point numbers. The new test method would then be ex-
ecuted automatically by the test runner. It is possible to include
a large number of tests while maintaining the simple structure of
the test class.

24

4. Adaptability: The solution should be easy to adapt. If individual
tests cannot be changed easily, this would make maintenance and reuse
of test code complicated. A good approach has the ability for tests to
be added, deleted, or modified with ease.

• Implementation: Due to the modular structure used in the ap-
proach, it is easy to edit the tests. This includes changing the
data used in the tests, adding new tests, and deleting old tests.
The value of the tests, measured in points, can also be changed
with ease.

• Example (see Appendix A): The tests in cell (6) can be mod-
ified with ease. To discard a test case, the code for the class
method has to be deleted. This can be done without worrying
about changes in the behavior of the test runner. Due to the
high readability of the test cases, testing parameters can also be
changed without much effort. For example, if the instructors want
to change the message that students have to return, they only have
to change the string in the test_input_control() function.

5. Utility: The solution should be useful for both the instructor and the
student. This means that the grading approach should not only be
used to calculate points but also to give feedback to the students.

• Implementation: The improved approach provides a detailed
test output, which can help the students to identify their errors.
Furthermore, a custom function can be used to clearly display and
compare the output of the student function with the corresponding
solution. The value generated for the instructors is described in
the previous bullet points.

• Example: The utility provided to the students can be seen in
Figure 6. Here, a clear output is provided to show the results
of the tests. This can be further optimized by including mes-
sages that get printed when a test fails. An example of this can
be seen in cell (6) in Appendix A. Here, the first assert in the
test_input_control() function specifies the parameter msg to re-
turn a string in case the test is not successful.

25

4.2 The Solution

The proposed solution has all of the five presented characteristics. Thus, an
enhancement to the standard approach with nbgrader has been achieved. The
new solution utilizes the functionality of the unittest Python framework. The
documentation of this package is heavily referenced throughout this chapter
[11]. To showcase the improved approach to auto-grading assignments, an
example will be used. To enhance clarity, it is assumed that the reader
has reviewed the assignment provided in the appendix of this thesis (see
Appendix A).

Let’s assume that we are creating a simple task for an "Introduction to
Data Science" class. We want the students to implement a function called
add_numbers(x, y), that takes as input a list x and an integer y. The task
is to return a new list, where each element is obtained by adding y to each
element of x. For example, for x = [1,2,3] and y = 1, the function should
return [2,3,4]. Additionally, if the input values are not a list and an integer,
the function should return the message "Wrong Input".

4.2.1 Cell Structure

In the example assignment created, the first cell is a read-only markdown cell.
This is used to present the task description. Following the first cell, another
read-only cell is used to define example input parameters. In our case this
is a list and an integer, the parameters used by add_number(). Those can
be used by the student to test his or her solution. Unlike the first cell, this
is not a markdown cell but a code cell. The variables or functions defined
there will be usable in the subsequent cells of the notebook. Cell (4) is of
type "Autograded Answer". Here, the student is expected to write his or her
code. As already explained in Chapter 3.1.1, the special syntax seen in this
cell replaces the enclosed code with a predefined text like "# Your answer
here".

Cell (5) is the first cell used for testing. It implements a visible test,
which means that the test code is displayed in the student’s version of the
assignment. Adding visible tests to assignments is highly recommended, as
it provides a way for the students to check their code, and also gain an
understanding of how their code is being graded. In the presented approach,
the visible test is used to test the basics of the function, like the output
type. Additionally, there is an assertion that tests the student’s code using
the previously defined input parameters. For this cell, the type "Autograded
Test" is used, and one point is assigned to it. This means, that if the cell
executes without any errors, the total score of the student’s assignment will

26

be increased by one point. The following two cells (6) and (7) implement
the in this thesis developed method of auto-grading Jupyter notebooks. The
approach allows for a larger number of tests to be executed and graded by
using just two cells. One cell executes all the tests and calculates the achieved
points, while the other cell is used to add the points to the total notebook
score.

27

1 # import the solutions and the packages
2 import unittest , sys
3 %run solutions.py
4

5 # inputs to test the function
6 testlist = [10, 9, 13, 40, 1002, 0, 10]
7 testnum = -1
8

9 # creating the test class //
10 class Test_Function(unittest.TestCase):
11 score = 0 # initialize class -level score
12

13 def setUp(self):
14 # used to initialize points for each test case
15 self.points = 0
16

17 def tearDown(self):
18 # used to add the test’s points to the total score
19 Test_Function.score += self.points
20

21 def test_negatives(self):
22 self.assertCountEqual(
23 add_numbers(testlist , testnum),
24 add_numbers_sol(testlist , testnum)
25)
26 # if the asserts run , the points are assigned
27 self.points = 2
28

29 def test_input_control(self):
30 self.assertEqual(
31 add_numbers(testlist , "word"), "Wrong Input")
32)
33 self.assertEqual(add_numbers (2, 2), "Wrong Input",
34 msg = "Error when checking list input"
35)
36 self.points = 1 # assigning only if both asserts run
37

38 # loading the test suite
39 test_suite = unittest.TestLoader ().loadTestsFromTestCase(

Test_Function)
40

41 # using the text test runner to run the tests
42 unittest.TextTestRunner(verbosity=2, stream=sys.stdout).run(

test_suite)
43

44 score = Test_Function.score
45 print(f"Total Points Achieved in this Task: {score}")

Listing 1: Testing Code, see cell (6) in Appendix A

28

4.2.2 Testing Code

The code used for the testing cell (6) is visible in Listing 1. All line references
in this text are cross-references to this listing. In the following, the individual
code snippets will be explained. After that, an explanation of how the code
works is given.

In line 1, the line magic command %run is used to execute the .py file
containing the solution code for the task (see Appendix C). The .py files
have to be located in the same directory as the notebook. The naming of
the imported solution is a combination of the name of the function needed
for the task together with the suffix "_sol". In our example, we end up
with add_numbers_sol(). It is recommended to stick to one uniform naming
scheme for all solution functions that are included. That way, potential errors
can be avoided. In addition to the solution file, the necessary libraries are
also imported. In our case, we need the unittest and sys packages.

For the creation of the tests, the class Test_Function is used (cf. lines 10
to 36). The class is a subclass of unittest.TestCase. Four methods and one
variable are defined within this class, two of which are tests. The variable
in line 11 is used to keep track of the points that the student achieved.
Important to note is, that only methods that start with the string "test"
are recognized as tests. In those tests, assert statements are used. The
test method starting in line 21, test_negatives(), uses assertCountEqual() to
compare the output of the student’s add_numbers function with the output
of the reference function add_number_sol. This test specifically uses -1 to
check if the student’s function can handle negative integers. Such tests are
necessary to cover all edge cases. In practice, more comprehensive tests
would be needed to thoroughly validate the student’s solution. The amount
of points a test method is worth gets set by the self.points variable in line 27.
In our example, the value of said variable is 2.

The test_input_control() method starting in line 29 uses two standard
assertEqual() statements. The first one tests if the student handles the wrong
input parameters correctly. In detail, instead of a list, a second integer value
is passed to the function. According to the task, this should result in the
error message "Wrong Input". Thus, the assert tests if the function returns
said error message when the input is not valid. Additionally, the optional
msg parameter will be included in the output if the test fails. In our example,
msg contains the string "Error when checking list input". The other assertion
starting in line 33 is very similar to the first one as it checks the second input
parameter. To do so, a list and a string are used as input values. Here, the
variable msg is not defined, but only to keep the presented code short. In
reality, it is advisable to add a descriptive message to each test for better

29

clarity and debugging. This test method is worth one point, as specified in
line 36.

The other two methods, setUp() and tearDown() in lines 13 to 19, are
used to define instructions that are executed before and after each individual
test method, respectively. In our case, they are utilized to implement a
scoring method, using the self.points defined in the individual test cases.
Additionally, the setUp() method can be used to initialize variables that are
used by all tests. This can be seen in example Task 2 (see Appendix A).

After defining the class, a test suite is created using the TestLoader()
function, which aggregates the test into one suite, so they can be executed
as a set. The test suite is then executed using the TextTestRunner(). This
function is one of the main reasons that the unittest package was chosen
over other unit test libraries like pytest. It provides the option to output the
test result using a specific stream. In our case, we use the standard output
stream. Otherwise, if the stream parameter is not specified, the test results
are displayed via the error stream. If the error stream is used, the output
of the test runner would look like an error message, which could confuse the
students. Another benefit of the library is that it can be customized with
ease. For example, alternative packages like nose2 or pytest can be used
to run the unittest test cases. Also, while not necessary for this approach,
a custom test runner could be programmed to further change the output.
After the tests have been run, lines 44 and 45 are used to assign and print
the calculated score.

Now that the code snippets have been explained, the function of the code
during the test execution will be discussed:

1. At first, the setUp() method is executed. This happens before each
individual test method. The function initializes the variable self.points
used to set the value of the test method. The value 0 gets assigned to
the variable.

2. In the next step, the first test is executed. The order of tests is deter-
mined by the built-in ordering of strings. In our example, test_input_control()
will be executed before test_negatives(). Due to alphabetical ordering,
the word input comes before the word negatives. As the test method
uses two assert methods, it will only be completed if both of the as-
sertions pass. In this case, self.points is set to 1. Otherwise, if one
or more asserts fails, the whole test will break and the points variable
will remain at 0. It is of high importance that the points for the test
are always assigned after the assertions. Otherwise, this process does
not work as intended. In the case of an AND/OR connection of tests,

30

the assigning of points works slightly different. This is explained in
Chapter 4.2.4.

3. After each test, the tearDown() function is executed. In our example,
this function is used to add the points from the test to the class-level
score variable. The important detail is that if the test fails, the points
variable will remain at 0. Only if the test passes will the points variable
contain the actual points for the test. This ensures that the score
increases only when the previous test is completed without errors.

This process is repeated for all tests in the test suite. After all tests have
been executed, the score variable will contain the points of all tests that
passed. To add the points to the assignment, a second cell is used, in which
the score variable gets called. Nbgrader recognizes this as a score and adds
the points to the cell. For best practice, the use of a function like min(),
max(), map(), or a combination is recommended. Should the output value
of this second cell exceed the specified maximum points of the cell, an error
occurs and the auto-grading does not work as intended. To prevent this,
min(score, 3), with 3 being the maximum score of this cell, is used in the
example assignment (see Appendix C).

In Figure 6 the text output of the test class is shown. It was generated
by intentionally using wrong code, to showcase how the output looks if the
student made errors. The output always follows the same structure. A
double line is used to separate the output into sections. First, the results
of all the tests are displayed. In the example, the word "FAIL", which is
shown after the name of both tests, indicates that the asserts in both tests
have not passed. Otherwise, if the test succeeded, "ok" is displayed next to
the name of the test. In the case that the test resulted in an exception, the
word "ERROR" is shown. In the second section, we can see that the test
for input control failed, because the student did not use a capital "I" in his
output. Furthermore, the error message "Error when checking list input" is
displayed. This message was given as a parameter in the assert method and
can be customized by the instructor. The third section contains information
about the test with a negative integer. Here we can see that this test failed,
as the first solution contains one 9 while the second solution contains two 9s.
Lastly, there is a section with general information. The time needed to run
the tests, the number of failed tests, and the achieved points are printed out.
This structure allows the instructor to quickly find the output of a test and
also the source of a potential error. The information is conveniently displayed
so that the teaching staff has everything in one place. If necessary, the output
could also be modified to fit the needs of more advanced assignments.

31

Figure 6: Example Test Output

4.2.3 Assert Types

When using the unittest package, various assert methods are available [11].
The standard assertEqual() takes two elements as input and tests if the first
and second elements are equal. If the type of the two input parameters is the
same, then the respective type-specific test is automatically called. Those
are for example assertDictEqual() or assertListEqual(). Similar methods are
available for sets, tuples, sequences, and multi-line strings. The assertCoun-
tEqual() statement found in the test code for the first example task is used
to test if two sequences contain the same element, regardless of their order
(see Listing 1). Also interesting for assignments is the assertAlmostEqual()
method, which tests if the numbers used as input parameters are approx-
imately equal. Here, the optional places input parameter can be used to
specify the number of decimal places to which the two values must be approx-

32

imately equal. This is particularly useful when dealing with floating-point
arithmetic, where small rounding errors can occur. There are also assertions
to check a single input parameter, for example assertTrue().

In general, the package provides many assert methods that can be useful
for testing programming assignments. Also, most of the assertions have an
inverse counterpart, like assertIsInstance() and assertNotIsInstance(). Fur-
thermore, a custom error message can be displayed if the test fails. By
specifying the msg parameter, a meaningful error message can be provided,
which will be printed when the test does not pass. This aids in quickly iden-
tifying and understanding the nature of the failure. More information about
all the possible assert statements can be found in the official documentation
[11].

In the second task of the example assignment provided in Appendix A,
the Python package pandas is used. When a task requires the student to
return a pandas DataFrame or series object, basic assert methods might
not be enough. A function from the pandas.testing module can provide the
necessary functionality. The pandas.testing.assert_frame_equal() function
can be used to compare two DataFrames. Additionally, the function offers
a lot of parameters that can be used to vary the strictness of the test. For
example, specifying check_column_type = False would allow the test to pass
even if the column types differ between the two DataFrames. It is also
possible to compare a pandas series object. This function gets called with
pandas.testing.assert_series_equal() and has similar parameters compared
to the DataFrame test function [24].

4.2.4 AND/OR Connection of Tests

While the individual asserts are certainly useful, instructors might need to
combine them. The proposed auto-grading approach allows for multiple ways
to connect asserts.

A simple "AND" connection of two or more tests is possible by using
multiple assert statements in one test method. This can be seen in the
test_input_control() function in the first example task. When using two or
more asserts, all of them must pass, otherwise the test will fail. This compares
to the logic of an "AND" connection. The self.points variable should only be
specified once, after the last assert in the test method. This way, the points
variable is only changed if all asserts pass. This structure can be seen in
Appendix A.

To create an "OR" connection, many options are available. Two of which
will be explained in detail. For the first one, multiple assertions are used
inside of one test method. To connect the test, try - except blocks are used.

33

Should the assert in the try block fail, then the assert in the except block
is executed. The test method will be a success as long as at least one of
the assert methods passes. Additionally, more than one except clause can be
used, and the exception name can also be specified. In this case, the assert
in the except block gets executed only if the try block results in the specified
exception. More information on the abilities of the try - except blocks can
be found in the official Python documentation [10]. When using this "OR"
method, it is important to remember to assign the points after each assert.
This ensures that the point calculation works as intended.

The second option to create an "OR" connection would be to use two or
more test methods. This works well for creating a connection comparable to
an exclusive or. For example, imagine a task worth one point that requires
the student to return a single object that is either of type list or of type
dictionary. In this case, we can create two test methods, one for each data
type. Then, we can assign one point to both of these tests. Because only one
of the two methods can possibly pass, the maximum score still remains one.

4.2.5 Hiding the Test Cases

In some cases, the teaching staff might want to hide the code used for testing.
The special syntax used to create hidden tests has already been discussed in
Chapter 3. While this technique can be used to hide the test code in the
student’s assignment notebook, the test code would still be visible in the
feedback file. To completely hide the test code from the notebook, it is nec-
essary to contain the code in a separate .py file. Similarly to the solution.py
file containing the solutions to all tasks, a second file is created. This file
(let’s call it testcases.py) should contain all the test classes needed, as well
as the code for the creation of the test suite. Inside the testcases.py file,
it is important to use unique names for all test classes and test suites. To
make the student’s solutions available, the package nbimporter is used. This
allows us to import the .ipynb file and use it as a module [27]. Additionally,
the solution file has to be imported. It is recommended to import the files
with distinctive names, like the student notebook as "studentnb" and the
solution file as "solutions". Should this approach be employed to grade the
assignments, it is no longer necessary to name the solutions with the "_sol"
suffix, as the functions are now called with studentnb.functionName() and
solutions.functionName(). The test classes in the master copy of the assign-
ment notebook can now be removed. Instead, the line magic command %run
testcases.py is used to make all the test suites available. Then, the test suite
can be run by using the .TextTestRunner() function.

34

4.3 Comparing the Output

Even if the tests are hidden, the output of those tests is still displayed after
running them. When the assert methods fail, the differences between the two
compared objects are shown. While this certainly helps to identify errors,
it might be advisable to print the complete output of the student’s function
and the solution, to compare them. The information given through the test
output might not always be sufficient for a good comparison.

As part of this thesis, a function was developed with the goal in mind
of comparing potentially long outputs like lists of lists and DataFrames (see
Appendix B). The function is called comparing_outputs() and takes three
mandatory input parameters: a list of input parameters for the functions that
get compared, the student function, and the solution function. Additionally,
the parameters column and median can be included to filter and enhance
the displayed output. If column is set to an integer, then only the column
with that index is displayed. For example, if the output is a DataFrame,
and column = 0, then only the first column (index = 0) would be displayed.
Alternatively, if the output is a list of lists, only the first element (at index 0)
of each sub-list would be displayed. Additionally, if column is set to the string
"leftMostNumeric", then the leftmost numeric column gets displayed. If
column is set to "uniqueNumeric", the column with the most unique numeric
values gets displayed. Similarly, if median is set to True, the median of the
specified column is displayed. All those features are designed to handle lists
and DataFrames even when all columns are strings, as it can cast strings that
contain numbers to numeric data types. Those features have been included to
show how the function can be modified to handle specific tasks. To implement
said features, sub-functions have been created that find the corresponding
column in the output. At the core, comparing_outputs() tries to capture the
output of both the student function and the solution, and then display the
the result. The output is generated with the data contained in the input list.

35

1 try:
2 for item in InputList:
3 clean_print(f"\nThe student ’s solution using {item}")
4 try:
5 student_output = student_function(item)
6 print(student_output)
7 except Exception as e:
8 print("Custom Error Msg")
9

10 clean_print(f"\nOur solution using {item}")
11 try:
12 solution_output = solution(item)
13 print(solution_output)
14 except Exception as e:
15 print("Custom Error Msg")
16 except Exception as e:
17 print(f"An error occurred during comparison: {str(e)}")

Listing 2: Simplified Code for Comparing Outputs

Listing 2 shows a simplified version of the code snippet responsible for
printing the output (see Appendix B for the complete code. Using a for
loop nested inside a try-except block, the function iterates over each item
in the input list. Inside yet another try-except block, the current item is
then used as an input parameter for the student’s function. The result gets
assigned to a variable which then gets printed. The same thing happens for
the instructor’s solution function. Thanks to the elaborate error catching,
the displaying of exceptions in the notebooks can be avoided. Instead, a
message like "An error occurred during comparison" gets printed.

4.3.1 Formatting the Output

To display the result, the sub-function clean_print() is used (see Appendix
B, line 100 - 182). The main feature of this function is that it can handle
long outputs. To do so, it tests if the length of the result exceeds a predefined
value. In that case, the clean_print() function uses HTML and CSS to format
the output. For DataFrames, the pandas DataFrame.to_html() converts the
DataFrame into an HTML representation. Then, with the help of the IPyhton
package, the HTML representation is displayed. By employing CSS code, the
DataFrame can be displayed with a scroll bar. This way, no matter how long
the DataFrame is, it will always occupy the same amount of space in the
notebooks. More information about the IPython package can be found in
the official documentation [37].

An almost identical approach is used for the list of lists. Using a for loop,
the list is iterated and an ordered list HTML representation is created. With

36

Figure 7: Scroll-able DataFrame Object

the same package, that list can then also be displayed with a scroll bar.
Figure 7 shows an example output. As you can see, the DataFrame is

displayed in its standard layout, but with the addition of a scroll bar. The
code of the function should be either in a separate .py file or together with
the solutions in the solution.py file. To use the function, it is recommended
to call it after the test class has been run. For example, it could be called
after the last line in Listing 1. The function could also be called inside an if
clause, that tests if the achieved score is smaller than the maximum score.
In that case, the output gets printed only if the student has some errors in
his or her code.

4.4 Best Practice Checklist

Using the present techniques to enable auto-grading can greatly reduce the
time spent on manual grading. Although the developed system eliminates
flaws of previous implementations, there are still other points that should be
considered. To ensure that the improved auto-grading approach is correctly
implemented, the following checklist has been created. The list includes best
practices and techniques, which should be employed to ensure that the auto
grading system works as intended.

1. Assigning Points After the Assert Method: To ensure that the
testing approach works as intended, it is important to always assign

37

the points after the assert statements. This can be confusing when
multiple "OR" connected asserts are used inside of one test method.
In that case, it is not enough to assign the points once in the test
method, as it is necessary to follow slightly different guidelines which
are described in detail in Chapter 4.2.4.

2. Covering All Edge Cases: If the teaching staff intends to minimize
manual grading, it is essential to address all potential edge cases in the
test suite. While this will likely result in a large number of tests, it
is the only option to properly validate the student’s solution. In the
literature, the term full path coverage is used in this context [13]. This
concept includes creating tests that exercise every possible execution
path within the code. This way, the instructors can trust that the
testing code correctly checks the student’s solutions.

3. Making Use of All Asserts: It is advised to research all the different
assert methods available. Many tests can be efficiently created using
specialized asserts. Instructors should try to vary the asserts used,
instead of always using assertEqual(). For example, the pandas package
provides specialized asserts to test DataFrames and series objects [24].

4. Structuring Asserts: To avoid confusion, it is recommended to al-
ways compare the student’s function to the instructor’s solution. This
means, that the first element in the assert is the student’s function (or
its result), and the second element is the solution. This is important
due to the fact that the terms first and second or left and right are
used in the test output to address the compared objects. An example
can be seen in Figure 6. Here, the results are addressed as First and
Second. If the instructors followed this best practice, they can safely
assume that First references the student’s solution.

5. Providing both Visible and Hidden Tests: Each task should pro-
vide at least one visible test. This ensures that the students can test
their code. Also, it helps them to understand the criteria used to eval-
uate their solution.

6. Designing Tests to Work Independently: As already discussed,
the order of execution regarding the test methods is subject to an in-
ternal sorting mechanism. Thus, the order might not be predictable.
Even if the order is predictable, it is still advised that all test methods
should work independently of each other. This way, tests can be freely
added and deleted. If one test needs variables or functions created in
another test, problems can arise when the order of execution is changed.

38

7. Utilizing Feedback Messages: Almost all assert methods that have
been described in 4.2.3 offer the option to print out a custom message
if the assert fails. This can be a powerful tool to provide feedback to
the student. Statements like "Your solution failed, did you try [...]?" or
"Your code does not work as intended, are you sure you implemented
[...]?" can help the student to quickly identify the mistake. This can
be a great addition to the standard output of the test class. Utilizing
this feature is especially useful when the instructors already know what
kind of errors are likely to happen. The ability to provide meaningful
feedback is frequently named when it comes to an effective auto-grading
system [23].

8. Assigning Points: The score in cells that are used to assign points to
the notebook should be called with a special function like min(score,
max_points) or max(score, 0). Otherwise, errors can occur when the
score accidentally has a value lower than zero or higher than the max-
imum score.

9. Synchronized Modification: The assignment consists of multiple
parts. The task description, task solution, and the corresponding test-
ing code are all connected. To ensure that changes do not corrupt the
assignment, it is essential that whenever one part of the assignment
changes, all other parts are simultaneously changed. This practice helps
to maintain consistency throughout the assignment.

10. Implementing Version Control: When multiple people are working
on the same assignment, it is advisable to implement a version control
system. While this can be a little bit challenging in Jupyter, there are
multiple extensions and third-party software available that provide the
necessary functionality [15].

11. Smart Naming: Through the assignment and all supporting files, the
names of files and functions should be consistent. For example, all
test methods should be named after the case that they are covering.
Another example would be the names of the solution functions. It
is recommended to use a standardized prefix or suffix for those. In
general, the teaching staff should stick to one naming convention.

12. Comparing and Formatting Outputs: To keep the feedback files
tidy, the instructors should avoid plainly printing out the entire output
of a function. Instead, a custom function should be used, that enables
quick comparison while also limiting the length of the displayed output.
A function that can be used for this is shown in Chapter 4.3.

39

5 Conclusion
Through the development of a new and improved approach to auto-grading
Jupyter notebooks, this thesis aimed to improve the reliability, functionality,
and efficiency of the evaluation process. Flaws of the existing implementa-
tions of nbgrader have been identified by researching dedicated forums and
through hands-on experience with the tool. Supported by published litera-
ture on the topic, a comprehensive list was created of ideal characteristics
that any effective approach in this field should possess.

A new approach was developed, with the list of characteristics in mind.
The solution builds upon the nbgrader extension and combines it with tech-
niques from unit testing. Individual tests are created as methods of a test
class. Each test method is worth a certain number of points. Supporting
methods in the test class, which are run before and after each test, are used
to calculate the achieved score. While all of this happens in one cell in the
notebook, a second cell is used to add the points to the total score of the
notebook.

The proposed solution brings advantages in all five identified character-
istics. The structure allows for easy maintenance of the testing code, and
tests can be added, removed, and modified with ease. Due to the usage of
the unittest library, the created tests can also be run with a variety of test
runners. Additionally, the library comes with a great number of assert meth-
ods, allowing the creation of tests for complex tasks. Those tasks can be
validated with any number of tests, without the need to use more than two
cells. Even if some of the tests fail, all of them are executed and the correct
number of points is added to the notebook. The already thorough output
of the test cells can be further customized, resulting in meaningful feedback
for the students. In addition, a function has been created for displaying and
comparing the outputs of the student’s functions and the corresponding so-
lution. Complex outputs are presented clearly by utilizing HTML to format
the data. The new representation can be displayed in the .ipynb documents
and in the feedback files.

In conclusion, the goal of improving auto-grading was accomplished. The
added features can be used to add value for both the instructors and the
students. Teaching staff can benefit from the increased reliability and flexi-
bility of the approach. For the students, decreased time between handing in
an assignment and receiving feedback, combined with an enhanced quality
of feedback could result in a better learning experience.

40

5.1 Future Work

In future work, developing a method to grade cells containing text answers
would be interesting. During the coding process of this thesis, multiple ideas
emerged on how this could be accomplished. A simple approach could include
keyword testing. The text in the cell is tested through the comparison with
a list of words that the ideal answer would contain.

In a more advanced idea, large language models could be used to analyze
the text answer. This might be a more versatile solution that could be used
to grade more complex answers. On the other hand, instructors must find a
way to justify the approach. If an AI is responsible for the grade, the model
and the decision process must be comprehensible. This could turn out to be
the biggest challenge with this approach.

41

References
[1] Abdulmalek Al-Gahmi, Yong Zhang, and Hugo Valle. Jupyter in the

Classroom: An Experience Report. In Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education, pages 425–431,
Providence RI USA, February 2022. ACM.

[2] Inc. Anaconda. Anaconda navigator - anaconda documenta-
tion. https://docs.anaconda.com/navigator/, 2024. (Accessed on
06/26/2024).

[3] DamiÃ¡n Avila. Usage - rise 5.7.2.dev2.
https://rise.readthedocs.io/en/latest/usage.html, 2019. (Accessed
on 08/05/2024).

[4] Lorena A. Barba, Laurie J. Barker, David S. Blank, Jed Brown, Allen
Downey, Tyler George, Lindsey J. Heagy, Kyle Mandli, Jason K. Moore,
David Lippert, Kyle E. Niemeyer, Ruth Watkins, Rachel S. West, Emily
Wickes, Carol Willing, and Michael Zingale. Teaching and Learning with
Jupyter. jupyter4edu.github.io, 2019. [Cited 27.04.2024].

[5] Jeff Brown. Using jupyterhub in the classroom : Setup and lessons
learned. International Journal of Software Engineering & Applications,
9:1–8, 2018.

[6] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. On
automated grading of programming assignments in an academic institu-
tion. Computers Education, 41(2):121–131, 2003.

[7] Matt Cone. Markdown guide. https://www.markdownguide.org/, 2024.
(Accessed on 08/01/2024).

[8] World Wide Web ConsortiumJ. W3c html. https://www.w3.org/html/,
2017. (Accessed on 08/05/2024).

[9] George E. Forsythe and Niklaus Wirth. Automatic grading programs.
Commun. ACM, 8(5):275 – 278, may 1965.

[10] Python Software Foundation. 3.12.4 documentation.
https://docs.python.org/3/, 2024. (Accessed on 06/24/2024).

[11] Python Software Foundation. unittest - unit test-
ing framework - python 3.12.4 documentation.
https://docs.python.org/3/library/unittest.html, 2024. (Accessed
on 06/20/2024).

42

[12] Brian E. Granger and Fernando Pérez. Jupyter: Thinking and story-
telling with code and data. Computing in Science Engineering, 23(2):7
– 14, 2021.

[13] Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen
Bartos, Jay Shah, Danielle Yucht, and Thu D. Nguyen. Providing mean-
ingful feedback for autograding of programming assignments. In Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science
Education, SIGCSE ’18, pages 278 – 283, New York, NY, USA, 2018.
Association for Computing Machinery.

[14] ECMA International. Ecma-404 - the json data inter-
change syntax. https://ecma-international.org/publications-and-
standards/standards/ecma-404/. (Accessed on 08/05/2024).

[15] Jeremiah W. Johnson. Benefits and Pitfalls of Jupyter Notebooks in the
Classroom. In Proceedings of the 21st Annual Conference on Information
Technology Education, pages 32–37, Virtual Event USA, October 2020.
ACM.

[16] Project Jupyter, Douglas Blank, David Bourgin, Alexander Brown,
Matthias Bussonnier, Jonathan Frederic, Brian Granger, Thomas Grif-
fiths, Jessica Hamrick, Kyle Kelley, M Pacer, Logan Page, Fernando
Pérez, Benjamin Ragan-Kelley, Jordan Suchow, and Carol Willing.
nbgrader: A tool for creating and grading assignments in the jupyter
notebook. Journal of Open Source Education, 2(16):32, 2019.

[17] JupyterHub. The littlest jupyterhub.
https://github.com/jupyterhub/the-littlest-jupyterhub, 2024. (Ac-
cessed on 08/05/2024).

[18] JupyterHub. Zero to jupyterhub with kubernetes.
https://github.com/jupyterhub/zero-to-jupyterhub-k8s, 2024. (Ac-
cessed on 08/05/2024).

[19] Nik Klever. Jupyter notebook, jupyterhub and nbgrader. Becoming
Greener-Digitalization in My Work; The Publication Series of LAB Uni-
versity of Applied Sciences, pages 37–43, 2020.

[20] Derek Land. AUTOMATIC GRADING IN ENGINEERING CLASSES.
The 10th International Conference on Physics Teaching in Engineering
Education PTEE 2019, 2019.

43

[21] Hamza Manzoor, Amit Naik, Clifford A. Shaffer, Chris North, and
Stephen H. Edwards. Auto-Grading Jupyter Notebooks. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education,
pages 1139–1144, Portland OR USA, February 2020. ACM.

[22] Giuseppe Mecca, Daniele Santoro, Nicola Sileno, et al. Diogene-ct: tools
and methodologies for teaching and learning coding. International Jour-
nal of Educational Technology in Higher Education, 18(12), 2021.

[23] Fatema Nafa, Lakshmidevi Sreeramareddy, Sriharsha Mallapuram, and
Paul Moulema. Improving educational outcomes: Developing and as-
sessing grading system (prograder) for programming courses. In Hirohiko
Mori and Yumi Asahi, editors, Human Interface and the Management of
Information, pages 322–342, Cham, 2023. Springer Nature Switzerland.

[24] The pandas development team. pandas documentation - pandas 2.2.2
documentation. https://pandas.pydata.org/docs/index.html, 2024. (Ac-
cessed on 06/24/2024).

[25] Project Jupyter Development Team. nbgrader.
https://github.com/jupyter/nbgrader. (Accessed on 2024-06-19).

[26] Jonathan Reades. Teaching on jupyter. REGION The Journal of ERSA,
7(1):21–34, March 2020.

[27] Gregor Sturm. grst/nbimporter: Import ipython notebooks as modules.
https://github.com/grst/nbimporter, 2021. (Accessed on 06/24/2024).

[28] Jupyter Development Team. The jupyter notebook -
jupyter notebook 7.2.0b1 documentation. https://jupyter-
notebook.readthedocs.io/en/latest/notebook.html, 2015. (Accessed on
04/27/2024).

[29] Jupyter Development Team. Jupyterlab documentation - jupyter-
lab 4.2.0 documentation. https://jupyterlab.readthedocs.io/en/latest/,
2024. (Accessed on 05/22/2024).

[30] Jupyter Development Team. The jupyter-
lab interface - jupyterlab 4.2.0 documentation.
https://jupyterlab.readthedocs.io/en/latest/user/interface.html, 2024.
(Accessed on 05/22/2024).

[31] Jupyter Development Team. nbgrader - nbgrader 0.9.2 documenta-
tion. https://nbgrader.readthedocs.io/en/stable/, 2024. (Accessed on
06/19/2024).

44

[32] Jupyter Development Team. Notebooks - jupyterlab 4.3.0a0 documenta-
tion. https://jupyterlab.readthedocs.io/en/latest/user/notebook.html,
2024. (Accessed on 06/14/2024).

[33] Jupyter Development Team. Project jupyter | about us.
https://jupyter.org/about, 2024. (Accessed on 05/22/2024).

[34] Jupyter Development Team. Project jupyter | home.
https://jupyter.org/, 2024. (Accessed on 04/27/2024).

[35] Jupyter Development Team. Project jupyter | jupyterhub.
https://jupyter.org/hub, 2024. (Accessed on 05/22/2024).

[36] LaTeX Project Team. Latex - a document preparation system.
https://www.latex-project.org/, 2024. (Accessed on 08/01/2024).

[37] The IPython Development Team. Ipython documentation - ipython
8.25.0 documentation. https://ipython.readthedocs.io/en/stable/, 2024.
(Accessed on 06/24/2024).

45

6 Appendix

6.1 Appendix A: Example Jupyter Notebook

The following pages contain the example notebook referenced in this thesis.
The .ipynb file was converted to a LaTeX document.

46

notebook1_source

August 13, 2024

1 Task 1:

Create a function that takes as input a list X and an int Y. It should return a list, where each
element Z[i] results from X[i] + Y. If the input is not a list and an int, then return the msg: “Wrong
input”.

(This is a “Read-only” cell)

[3]: exampleList = [1,2,3,4,5]

exampleNum = 5

#(This is a "Read-only" cell)

[4]: def add_numbers(liste, x):

BEGIN SOLUTION
if type(liste) != list:

return "Wrong Input"

if type(x) != int:

return "Wrong Input"

output_list = []

for i in range(0, len(liste)):

output_list.append(liste[i] + x)

return output_list

END SOLUTION

#(This is a "Autograded Answer" cell)

[5]: # this is a visble test, it uses the by nbgrader recommended nose.tool package
if the tests complete, this cell result in no output
from nose.tools import assert_equal

here we test the output type
assert_equal(type(add_numbers(exampleList, exampleNum)), list)

47

here we test the result using the example inputs
assert_equal(add_numbers(exampleList, exampleNum), [6,7,8,9,10])

#(This is a "Read-only" cell)

[6]: ### BEGIN HIDDEN TESTS

import the solutions and the packages
%run solutions.py

import unittest

import sys

inputs to test the function
testlist = [10, 9, 13, 40, 1002, 0, 10]

testnum = -1

cretaing the test class
class Test_Function(unittest.TestCase):

score = 0 # initialize class-level score

this method is executed before each individual test, and is used to�
,!initialize points and files

def setUp(self):

used to initialize points for each test case
self.points = 0

this method is executed after each individual test, and is used to assign�
,!the points

def tearDown(self):

here we assign the points to the total score
if the previous test resulted in an error, the points variable is�

,!still 0
Test_Function.score += self.points

def test_negatives(self):

self.assertCountEqual(

add_numbers(testlist, testnum),

add_numbers_sol(testlist, testnum)

)

if the asserts runs, the points are assigned
self.points = 2

def test_input_control(self):

self.assertEqual(

add_numbers(testlist, "word"), "Wrong Input")

48

self.assertEqual(add_numbers(2, 2), "Wrong Input",

msg = "Error when checking list input")

self.points = 1 # assigning only if both asserts run

here the tests cases are added to a suite
test_suite = unittest.TestLoader().loadTestsFromTestCase(Test_Function)

using the text test runner to run the tests
unittest.TextTestRunner(verbosity=2, stream=sys.stdout).run(test_suite)

#score gets assigned and printed
score = Test_Function.score

print(f"Total Points Achieved in this Task: {score}")

END HIDDEN TESTS

#(This is a "Autograded test" cell worth 0 points)

test_input_control (__main__.Test_Function) ... ok

test_negatives (__main__.Test_Function) ... ok

--

Ran 2 tests in 0.004s

OK

Total Points Achieved in this Task: 3

[7]: # In this code cell, we simply output the score that was computed in the cell�
,!above

this way, nbgrader will assign the score as the points achieved in this test�
,!cell

BEGIN HIDDEN TEST
min(score, 3)

END HIDDEN TEST

#(This is a "Autograded test" cell worth 3 points)

[7]: 3

2 Task 2:

Create a function that takes as input a CSV file. Your function should sort the CSV according to
the leftmost numeric column. The values should be in descending order. Return a pandas df.

(This is a “Read-only” cell)

49

[9]: def sort_df(x):

BEGIN SOLUTION
import pandas as pd

df = pd.read_csv(x)

numeric_columns = df.select_dtypes(include = "number").columns

leftmost_numeric_column = numeric_columns[0]

sorted_df = df.sort_values(by=leftmost_numeric_column, ascending = False)

return(sorted_df)

END SOLUTION

#(This is a "Autograded answer" cell)

[10]: # this is a visble test, it uses the by nbgrader recommended nose.tool package
if the tests complete, this cell result in no output
from nose.tools import assert_equal

import pandas as pd

here we specify a filePath
filePath = "data/TestFile1.csv"

then we test if the output of the function is a DataFrame Object
assert_equal(type(sort_df(filePath)), pd.DataFrame)

#(This is a "Read-only" cell)

[11]: ### BEGIN HIDDEN TESTS

import the solutions and the packages
%run solutions.py

import unittest

import sys

from pandas.testing import assert_frame_equal

creating the test class
class Test_Function(unittest.TestCase):

score = 0 # initialize class-level score

this method is executed before each test
def setUp(self):

self.points = 0 # we initiate the points variable for the test

50

#additionally, we add the test files here
self.testfile = "data/Testfile1.csv"

self.hiddenfile = "data/Testfile2.csv"

self.studentfile = "data/Testfile3.csv"

this method is executed after each individual test
and is used to assign the points
def tearDown(self):

here we assign the points to the total score
if the previous test resulted in an error...
...the points variable is still 0
Test_Function.score += self.points

def test_basic_function_test(self): #using the test file

computing the expected result with the solution in the .py file
expected_result = sort_df_sol(self.testfile)

computing the students result
result = sort_df(self.testfile)

comparing the results with pandas assert_frame_equal
assert_frame_equal(result, expected_result)

the points are only assigned if the assert completes
self.points = 2

def test_basic_function_hidden(self): #using the hidden file

expected_result = sort_df_sol(self.hiddenfile)

result = sort_df(self.hiddenfile)

assert_frame_equal(result, expected_result)

self.points = 1

def test_basic_function_student(self): #using the student file

expected_result = sort_df_sol(self.studentfile)

result = sort_df(self.studentfile)

assert_frame_equal(result, expected_result)

self.points = 2

here the tests cases are added to a suite
test_suite = unittest.TestLoader().loadTestsFromTestCase(Test_Function)

using the text runner to run the tests
unittest.TextTestRunner(verbosity=2, stream=sys.stdout).run(test_suite)

score gets assigned and printed
score = Test_Function.score

51

print(f"Total Points Achieved in this Task: {score}")

END HIDDEN TESTS
#(This is a "Autograded test" cell worth 0 points)

test_basic_function_hidden (__main__.Test_Function) ... ok

test_basic_function_student (__main__.Test_Function) ... ok

test_basic_function_test (__main__.Test_Function) ... ok

--

Ran 3 tests in 0.039s

OK

Total Points Achieved in this Task: 5

[12]: #In this code cell, we simply return the score that was computed in the cell�
,!above

#this way, nbgrader will assign the score as the points achieved in this test�
,!cell

BEGIN HIDDEN TEST
min(score, 5)

END HIDDEN TEST

#(This is a "Autograded test" cell worth 5 points)

[12]: 5

52

6.2 Appendix B: Output Formatting Function

1 import pandas as pd
2 from IPython.display import display , HTML
3

4 MAXROWS = 1000 #t his variable is used to limit the number of
rows in the output

5

6 # this helper function is used to find the median
7 def findMedian(output):
8

9 output = findLeftMostNumeric(output)
10 if isinstance(output , pd.DataFrame):
11 return output.median ().values [0]
12 elif isinstance(output , list):
13 return pd.Series(output).median ()
14

15 # this helper function is used to find the left most numeric
column

16 def findLeftMostNumeric(output):
17

18 # this varible is used to track if the output is of type
list

19 wasList = False
20

21 # if list , convert to DataFrame
22 if isinstance(output , list):
23 wasList = True
24 output = pd.DataFrame(output)
25

26 # casting the output to numeric if possible
27 # with errors = "ignore", fields that cannot be cast to

numeric remain the same
28 output = output.apply(pd.to_numeric , errors = "ignore")
29

30 # the follwoing for loop is used to find the column
31 column_numeric_index = None
32 for index , col in enumerate(output.columns):
33 if pd.api.types.is_numeric_dtype(output[col]):
34 column_numeric_index = index
35 break
36

37 # if a column is found , the output is set to the found
column

38 if column_numeric_index is not None:
39 output = output.iloc[:, [column_numeric_index]]
40 else:
41 return "No numeric column in df!"
42

53

43 # if the output was a list , then it is turned back into a
list

44 if wasList:
45 output = output.values.tolist ()
46

47 return output
48

49 # this helper function is used to find the column with the
most unique numeric values

50 def findUniqueNumeric(output):
51

52 # used to track if the output was a list
53 wasList = False
54

55 # if list , convert to DataFrame
56 if isinstance(output , list):
57 wasList = True
58 output = pd.DataFrame(output)
59

60 # trying to cast the output to numeric
61 output = output.apply(pd.to_numeric , errors = "ignore")
62

63 # selecting the numeric columns
64 numeric_columns = output.select_dtypes(include =["number"

]).columns
65

66 max_unique_count = 0
67 target_column = None
68

69 # this for loop is used to find the actual column
70 for column in numeric_columns:
71 unique_count = output[column]. nunique ()
72 if unique_count > max_unique_count:
73 max_unique_count = unique_count
74 target_column = column
75

76 # if the column is not found , a string is returned
77 if target_column is None:
78 return "No numeric column in df!"
79

80 # output is changed to the selected column
81 output = output.loc[:, [target_column]]
82

83 # if it was a list , the output is turned back into a list
84 if wasList:
85 output = output.values.tolist ()
86

87 return output
88

54

89

90

91 # here the compare function is created
92 # it can be called by inputing a list of input values (

usually CSVs) and two functions that use the input file
93

94 # Additionally , the parameters column and median can be
specified

95 # with column , the output can be changed to a certain column ,
either a int or a keyword string like "leftMostNumeric"

96 # with median = True , the median of said column gets
displayed

97 def comparing_output(InputList , student_function , solution ,
column=None , median=False):

98

99 # this function is used to display the output
100 def clean_print(output , column=None):
101

102 # this part is for df
103 if isinstance(output , pd.DataFrame):
104

105 # here , we test if column is specfifed , and if so
, we get the correct column

106 if column is not None and isinstance(column , int)
:

107 output = output.iloc[:, [column]]
108 elif column == "leftMostNumeric":
109 output = findLeftMostNumeric(output)
110 # the helper functions return strings if no

column is found
111 # this way , if the returned value is a string

, we return it again
112 # so it gets displayed
113 if isinstance(output , str):
114 return output
115 elif column == "uniqueNumeric":
116 output = findUniqueNumeric(output)
117 if isinstance(output , str):
118 return output
119

120 # here we handle long outputs
121 if len(output) > 10:
122 # df is turned into a HTML representation ,

with the maxrows set to the pre defined value
123 html_df = output.to_html(max_rows = MAXROWS ,

notebook = True , table_id = "table")
124

125 # CSS is used to make the output scrollable
126 display(HTML("""<style >

55

127 #table {max -height: 250px;
overflow -y: scroll; display: inline -block; }

128 </style >"""))
129 display(HTML(html_df))
130

131 # if the df is not long , and no column is
specified , just display the normal df

132 else:
133 display(output)
134

135 # here , the same thing happens for lists
136 elif isinstance(output , list):
137

138 # here the column varible is tested again
139 # as the helper function can handle lists and df ,

the implementation
140 # is very similar to the the df section
141 if column is not None and isinstance(column , int)

:
142 # if column is an int , we use list

comprehension to find the column
143 output = [item[column] for item in output]
144 elif column == "leftMostNumeric":
145 output = findLeftMostNumeric(output)
146 if isinstance(output , str):
147 return output
148 elif column == "uniqueNumeric":
149 output = findUniqueNumeric(output)
150 if isinstance(output , str):
151 return output
152

153 # here we handle long lists
154 if len(output) > 10:
155

156 # the list is iterated , and a string is
created that represents the list as HTLM

157 # This is done by adding the tags to the
items in the list

158 # Also , if the list is longer than MAXROWS ,
the for loop breaks

159 rowCount = 0
160 html_list = ""
161 for item in output:
162 rowCount += 1
163 html_list += f"{item}"
164 if rowCount == MAXROWS:
165 break
166 html_list += " "
167

56

168 # now we can display the list
169 display(HTML(html_list))
170

171 # here we use CSS again to make the list
scrollable

172 display(HTML("""<style >
173 ol { max -height: 200px;

overflow -y: auto; display: inline -block; }
174 </style >"""))
175

176 # if list is short and no column was specified ,
than we just print the list

177 else:
178 print(output)
179

180 # if the output is not a list or df , we print the
output

181 else:
182 print(output)
183

184 #here we start the comparison
185 #if a column is specified , we print which column is used

in the comparison
186 text = ""
187 if column is not None:
188 text = f" on column {column}"
189 print(f"\n----Comparing our output with the students

output{text}----")
190

191

192 # the try -except blocks are used to catch errors with
comparing or with using the input files on the functions

193 try:
194

195 # in this for loop , the input list is iterated
196 for item in InputList:
197

198 # first we dsiplay the student ’s result
199 print(f"\nThe students ’ solution using {item}")
200

201 # if a median is specified , we print it
202 if median:
203 print(f"The median of {column} = {findMedian(

student_function(item))}")
204

205 # here we try to use the student function with
the current element of inputList , and then display the
result

206 try:

57

207 student_output = student_function(item)
208 clean_print(student_output , column)
209 except Exception as e:
210 print(f"An error occurred while using ’{

student_function.__name__}’ with input ’{item}’: {str(e)}"
)

211

212 # same thing happens for the solutino function
213 print(f"\nOur solution using {item}")
214

215 if median:
216 print(f"The median of {column} = {findMedian(

solution(item))}")
217

218 try:
219 solution_output = solution(item)
220 clean_print(solution_output , column)
221 except Exception as e:
222 print(f"An error occurred while using ’{

solution.__name__}’ with input ’{item}’ : {str(e)}")
223

224 except Exception as e:
225 print(f"An error occurred during comparison: {str(e)}

")
226

227 # example usage:
228 # comparing_output ([" data/file1.csv", "data/file1.csv"],

student_function , solution_function , column ="
leftMostNumeric", median=True)

58

6.3 Appendix C: solutions.py File

1 def add_numbers_sol(liste , x):
2

3 if type(liste) != list:
4 return "Wrong Input"
5

6 if type(x) != int:
7 return "Wrong Input"
8

9 output_list = []
10

11 for i in range(0, len(liste)):
12 output_list.append(liste[i] + x)
13

14 return output_list
15

16 def sort_df_sol(x):
17 import pandas as pd
18

19 df = pd.read_csv(x)
20

21 numeric_columns = df.select_dtypes(include=’number ’).
columns

22 leftmost_numeric_column = numeric_columns [0]
23

24 sorted_df = df.sort_values(by=leftmost_numeric_column ,
ascending = False)

25

26 return(sorted_df)

59

