Bachelor Thesis

SMW Cloud: A Corpus of Domain-Specific Knowledge Graphs from Semantic MediaWikis

Daniil Dobriy

Date of Birth: 06.04.2000
Student ID: 11776408

Subject Area: Information Business
Studienkennzahl: UJ033561
Supervisor: Axel Polleres
Date of Submission: 16. August 2023

Department of Information Systems & Operations Management, Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RDF excerpt from the author’s Web page</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Selected definitions from the FOAF ontology</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>LOD Cloud, illustration from http://lod-cloud.net</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Worldwide adoption of Wikis (small values and Europe excluded)</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Adoption of Wikis in Europe</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>Topical diversity of Wikis</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Architecture diagram of the search engine crawler</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Venn diagram of collected SMWs and their sources</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>Architecture of the SMW crawler and metrics processor</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>Metadata for “Wien Geschichte Wiki”</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>SMW Cloud with and without semantic-mediawiki.org</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>Prevalent topics across SMW Cloud instances</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Table Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Breakdown of collection and processing losses</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Related work and implemented metrics</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>SMW Cloud summary statistics</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>SMW Cloud and LOD Cloud comparison</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>Examples of SMW domain annotations</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Basic ontology metrics</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Use of the RDF(S)+OWL and DL expressivity of SMW instances</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>OQueRE metrics and scores</td>
<td>32</td>
</tr>
</tbody>
</table>
Abstract

Semantic Wikis have become an increasingly popular means of collaboratively managing Knowledge Graphs. They are powered by platforms such as Semantic MediaWiki and Wikibase, both of which enable MediaWiki to store and publish structured data. While there are many Semantic Wikis currently in use, there has been little effort to collect and analyse their structured data, nor to make it available for the research community. This work seeks to address the gap by systematically collecting structured data from an extensive corpus of Semantic-MediaWiki-powered portals, in the process establishing a novel tool for automated search engine-mediated discovery of such portals, and providing an in-depth analysis of the ontological diversity (and re-use) amongst these wikis using a variety of ontological metrics. It aims to demonstrate that Semantic Wikis are a valuable and extensive part of Linked Open Data and, in fact, may be considered an active “sub-cloud” within the Linked Open Data ecosystem, which can provide valuable insights into the evolution of small and medium-sized domain-specific Knowledge Graphs.
1 Introduction

The Semantic Web is a visionary field that aims to represent and make available highly interconnected human knowledge both in a machine-readable and human-accessible way [7]. The Semantic Web defines standards used to represent knowledge and provides infrastructure to make knowledge accessible. As such, and considering the foundational value of knowledge to modern society, it is an important field of research that amplifies new knowledge gained in other scientific disciplines.

With the advent of Large Language Models (LLMs), unconventional approaches for extracting structured data from collaborative platforms and knowledge hubs are gaining attention among researchers, including in the Semantic Web community [11]. First introduced in 2005, Semantic MediaWiki (SMW) is an extension that extends the MediaWiki platform, the software underlying most Wikis available on the Web, to enable semantic annotations of Wiki pages [34], making them suitable for collaborative management of structured knowledge. It is also a precursor that majorly inspired Wikidata, the central storage for the structured data of Wikimedia projects like Wikipedia. Therefore, the underlying platform, Wikibase, uses select code from SMW for common tasks [51]. Yet, SMW has been available longer and is more broadly used than Wikibase by various projects to manage their structured data: following the approach described in Section 3, 1458 active SMW instances could be discovered, compared to a lower number of 327 Wikibase instances. Furthermore, the two platforms differ insofar that SMW stores its data as part of its textual page content and has a less complicated data model [51]: SMW’s simple subject-predicate-object statement structure known as a semantic fact corresponds straightforwardly to the data model underlying the Semantic Web - the Resource Description Framework (RDF), whereby in SMW, subjects are commonly single Wiki pages, properties (predicates) are defined through the use of special syntax in pages or via templates and forms enabled through additional extensions, and objects can be of different datatypes (e.g. numbers, dates, pages etc.). Therefore, SMW serves as a flexible tool to collaboratively create and maintain domain-specific Knowledge Graphs (i.e. collections of facts) along with their

[1] https://www.semantic-mediawiki.org/
[2] The data model is explained in more detail in Section 2.2.
[4] This concept is treated in more detail in Section 2.5.
own vocabularies (i.e., the schemas underlying the data).

The SMW platform allows to generate full RDF dumps[[5]] of its structured data. Additionally, although semantic facts are stored in a relational database by default, RDF statements can also be optionally (via an additional MediaWiki extension) exported/synced with a triplestore, a database specifically designed for storing RDF data, which in turn would provide an endpoint for querying the data.[[6]] However, in practice, SMW instances rarely publish periodical dumps of their data, nor do they typically make their data available via endpoints that support SPARQL - a query language for querying RDF data.[[7]] This significantly decreases the effective semantic interoperability and accessibility of KGs provided and maintained through SMW. So far, to the best of the author’s knowledge – an in-depth analysis of the RDF data made available through SMW instances on the Web is missing.

The re-use of external URLs is possible in semantic facts in SMW, as well as the import of external RDF vocabularies[[8]] and ontologies[[9]]; yet, semantic linkage to other KGs is not directly incentivised within SMW, or respectively, it is an open question in how far these features are being used, i.e., in how far the KGs provided by SMW instances (a) re-use existing ontologies and (b) create links to related RDF from other authorities.

A commonly cited shortcoming of the Linked Open Data (LOD) infrastructure (i.e., structured data interlinked on the Web)[[10]] is the lack of a single aggregation point.[[11]][[12]]. To this end, the approach proposed herein, SMW Cloud, aims at solving this data accessibility issue by aggregating all publicly available SMWs into a single corpus, addressing the gaps mentioned above by making the following concrete contributions:

- systematically and periodically tracking (for now) 1458 Semantic MediaWiki instances, extracting their page RDF data when technically feasible, and aggregating it to a Linked Data corpus, following a similar approach as the CommonCrawl[[13]] and WebDataCommons[[14]] projects,

5 https://www.semantic-mediawiki.org/wiki/Help:Maintenance_script_dumpRDF.php
6 In principle, this integration also supports adding additional RDF, cf. https://www.semantic-mediawiki.org/wiki/Help:Using_SPARQL_and_RDF_stores but herein the focus lies solely on the RDF data exportable from SMW pages directly.
7 One should note that also there is no “best practice” to detect whether an SMW instance hosts a SPARQL endpoint for querying, as it is not exposed by the SMW API.
8 https://www.semantic-mediawiki.org/wiki/Help:Import_vocabulary
9 https://github.com/TIBHannover/ontology2smw
10 The concept is treated in more detail in Section 2.4
11 https://commoncrawl.org

8
• making this corpus available as an HDT [20] dump (a compressed binary serialization format for RDF), in an accessible, scalable and available, easy to (re-)use and cost-effective manner, following the LOD-a-LOT approach [21] and making calculated metrics for the corpus available in a SPARQL endpoint,
• providing an extensive analysis of the corpus in terms of (a) ontology metrics, following the Neontometrics approach [43] and (b) LOD metrics, following the LODStats approach [15, 16].

As such, the aim is to obtain a comprehensive picture of the current state of structured data stored in SMWs, evaluating the quality and internal structure, thereby tracking the evolution of a significant, previously unexplored part of the LOD ecosystem. It is hypothesised that the domain-specific, small and medium-sized KGs, represented by SMW instances, closely reflect Enterprise Knowledge Graphs (EKGs), for which no publicly available corpus exists. Analysing the corpus, in comparison with the “classic” publicly available collaborative KGs like Wikidata, will therefore gain insights into the possible different parameters to be found in EKGs.

The remainder of this work is structured as follows: Section 2 introduces concepts relevant to this work. Readers may skip portions of this section depending on their familiarity with the Semantic Web. In Section 3, the architecture and the approach to collecting the SMW corpus are described. Section 4 introduces the methods used for corpus analysis. Corpus statistics and results of analyses, including a comparison with similar metrics applied to the “traditional” LOD Cloud and Wikidata, are summarised in Section 5. Section 6 concludes this work with a discussion and an outlook on future work.

2 Background

The following section introduces the basic concepts underlying this work. Its goal is to make the work self-sustained within reasonable limits and to recapitulate those developments in the field of the Semantic Web that gave rise to the current state and challenges of Linked Data and collaborative Knowledge Graphs. Advanced readers familiar with the field may skip this section altogether or pick up at the appropriate level of detail before proceeding to the next sections.
2.1 Semantic Web

As a research area, the Semantic Web "is not primarily driven by certain methods inherent to the field, which distinguishes it from some other areas such as Machine Learning. Rather, it is driven by a shared vision, and as such it borrows from other disciplines as needed" \[30]\). From the beginning, the vision for the Semantic Web lay in an extension of the existing decentralized hypertext Web through a well-defined informational layer that would both be accessible for humans and enable the intelligent software agents to carry out complex tasks for the users by traversing the Web \[7\]. This informational layer is enabled by the RDF (Resource Description Framework) data model, which allows interlinking singular concepts rather than documents, as is the case for the hypertext Web, and also introduces typed links \[28\]. Though the shared vision for the Semantic Web has arguably transformed over time, losing its focus on the intelligent agents and even its characteristic coupling to the Web (Section 2.5), the RDF data model remains indisputably the cornerstone of the field.

2.2 RDF data model

RDF expresses knowledge through the assertion of truthy triples, i.e. subject-predicate-object statements \[12\] \[35\). The model is further characterized by its use of IRIs (Internationalised Resource Identifiers) to uniquely identify concepts used in statements. While IRIs can take any of these three positions in a statement (subject, predicate or object), a typed or a plain literal value can take only the object position and a blank node (which stands for a particular resource or literal not identified by an IRI) can only take subject or object positions in a triple. This arrangement makes it possible to represent data in the form of a directed edge-labelled graph, with subjects and objects being interpreted as nodes and predicates as edges. Recent (most notably, named graphs as part of RDF 1.1 \[13\]) and current developments (e.g., RDF* \[4\]) concern reification (i.e. statement-level annotations; see \[29\] for a more detailed and use case supported treatment of the subject). A currently proposed standard, RDF* \[14\], in particular, would allow referring to the whole statement as the subject or object of another statement.

Because there is no need for ex-ante schema definition in RDF, the data model makes an ad-hoc extension of data straightforward and has the advantage of integrating separate datasets by concatenation of their statements.

\[12\] Further referred to as statements
\[13\] https://www.w3.org/2014/NOTE-rdf11-new-20140225/
\[14\] Also referred to as RDF 1.2, see https://www.w3.org/TR/rdf12-concepts/
RDF data can be queried and manipulated with SPARQL\cite{SPARQL} (SPARQL Protocol and RDF Query Language), a pendant to SQL designed specifically for the RDF data model.

While a number of textual syntaxes exist for representing RDF data, including in convenient and compact human-readable formats, in the following, the Turtle syntax\cite{Turtle} will be used because of its widespread use and the ability to define prefixed names instead of using full IRIs\cite{IRI}. In Turtle, "a" is used as a short form for rdf:type, IRIs are enclosed in "<" and ">", a semicolon ";" is used to indicate that the next statement has the same subject and a comma "," indicates the same subject and predicate.

2.3 Ontologies

The RDF data model allows the creation of increasingly complex descriptions (e.g., descriptions in Figure \ref{fig:example}), which (informally) include not only the so-called A-Box (Assertion Box) statements that concern individuals (e.g., the author of this work represented by the IRI <https://dobriy.org/foaf.rdf#me>), but also T-Box (Terminology Box) statements comprising statements that define classes (e.g., foaf:Person) or properties (e.g., foaf:knows) respectively. This way of distinguishing statements is inspired by DLs (Description Logics)\cite{DL}. In this work, T-Box statements are considered to comprise an ontology, i.e. the set of all statements not describing individuals directly, but rather describing classes and properties that are in turn used to describe individuals and in conjunction with individuals.

The term has, however, no ubiquitously accepted definition and an RDF dataset considered to be an ontology can nevertheless and indeed often does include A-Box statements. Ontologies are commonly defining concepts and relations of a particular limited domain. Such ontologies are referred to as

\item[15] <https://dobriy.org/foaf.rdf>
\item[16] https://www.w3.org/TR/sparql11-overview/
\item[17] See https://www.w3.org/TR/turtle/
\item[18] Turtle allows writing $\texttt{rdfs:label}$ instead of the full IRI of http://www.w3.org/2000/01/rdf-schema#label given the respective prefix \texttt{rdfs} has been defined earlier, which is implied for all prefixes in this work.
lower ontologies, e.g., FOAF (Friend of a Friend\(^\text{19}\)), whose selected definitions are presented in Figure 2. A higher ontology, in turn, describes more general concepts that can be used to model lower ontologies. The standardized nature of RDF, the ability to conveniently join RDF datasets, and the usage of global identifiers promote the reuse of ontologies inside and across their respective domains.

Two broadly reused higher ontologies are RDFS (RDF Schema) and OWL (Web Ontology Language). RDFS provides an ontology for modelling class and property hierarchies through the use of rdfs:subClassOf and rdfs:subPropertyOf properties respectively and allows to impose classes as domains and ranges of given properties through rdfs:domain and rdfs:range.

OWL further extends RDFS by more complex semantics, including establishing equality (owl:sameAs), equivalence (owl:equivalentClass, owl:equivalentProperty) and disjointness (owl:disjointWith, owl:propertyDisjointWith) of properties and classes.\(^\text{11}\) Other well-known ontologies are DCAT (Data Catalog Vocabulary), FIBO (Financial Industry Business Ontology), Schema.org (rich page metadata) etc.

\(^{19}\)http://xmlns.com/foaf/0.1/\(^{20}\)Ibid.

\(^{11}\)http://xmlns.com/foaf/0.1/
2.4 Linked Data and Linked Open Data

With time, various authorities have published numerous RDF datasets that became openly available on the Web. The data published as RDF is commonly referred to as Linked Data or LOD (Linked Open Data) when emphasizing its free and open accessibility. Linked Data follows 4 basic principles:

LD1 Identifying resources through HTTP URI\(^{[21]}\) (Universal Resource Identifiers)

LD2 Making these URIs dereferenceable\(^{[22]}\)

LD3 Dereferencing them to RDF data about a resource

LD4 Linking to related RDF from other authorities

LOD can also be assessed according to the five-star deployment scheme, which includes the following five incremental steps, each adding a star to the total rating\(^{[32]}\):

- **∗** Publish data on the Web in any format (e.g. PDF, JPEG) accompanied by an explicit Open License (expression of rights).
- **∗∗** Publish structured data on the Web in a machine-readable format (e.g. XML).
- **∗∗∗** Publish structured data on the Web in a documented, non-proprietary data format (e.g. CSV, KML).
- **∗∗∗∗** Publish structured data on the Web as RDF (e.g. Turtle, RDFa, JSON-LD, SPARQL)
- **∗∗∗∗∗** In your RDF, have the identifiers be links (URLs) to useful data sources.

The Semantic Web standards have created a foundation for Linked Data where anyone can publish potentially conflicting statements about any resource identified by any particular IRI. By design, the Semantic Web and, consequently, LOD support the AAA principle (Anyone can say Anything about Any topic)\(^{[3]}\).

The manually curated LOD Cloud (illustrated in Figure 3) collects many published datasets that conform to the Linked Data Principles\(^{[38]}\). Studies analysing Linked Data have shown that LOD Cloud datasets have significant issues with availability\(^{[12]}\) (precluding LD2, LD3). Furthermore, it has been found that links between datasets in the LOD Cloud are very sparse on the level of individuals and although ontology reuse is common, many links are broken\(^{[38]}\), pointing to issues with LD4 as well as LD2 and LD3 conformance.

\(^{[21]}\)A subset of IRIs

\(^{[22]}\)When a given URI can be used to fetch information about the resource that the URI represents.
Figure 3: LOD Cloud, illustration from http://lod-cloud.net
2.5 Knowledge Graphs

Besides LOD, which is openly published on the Web, KGs (Knowledge Graphs) represent a related development that similarly had its roots in the Semantic Web. A KG can be defined as "a graph of data intended to accumulate and convey knowledge of the real world, whose nodes represent entities of interest and whose edges represent potentially different relations between these entities" [31]. In contrast to LOD, the first KGs were maintained by large technology companies and have, therefore, been predominantly closed to the public, albeit with notable exceptions. The prominent KGs published online are Wikidata, DBpedia, YAGO and BabelNet [31].

2.6 Wikis

Wikis, stemming from “Wikiwiki” (Hawaiian for “quick”), is another development that significantly affected the collaborative aspect of the Web, allowing their users to collaboratively edit the content of informational pages. They are characterized by 1) a non-linear hypertext structure (pages linking to each other), 2) easy and extensive access, 3) not requiring any special client software and 4) not requiring any additional training for usage [14].

These characteristics make Wikis especially well suited for collaborative Knowledge Management in organizations, where they pose as "antidotes to many barriers in information sharing" [25]. Today, most publicly available Wikis are powered by the open-source MediaWiki software [24]. Evaluating all the MediaWiki-powered portals collected by methods described in Section 3.2, we can attest to their broad geographic adoption (whenever geographic data is available) both worldwide (as illustrated by Figure 4) and in Europe (as illustrated by Figure 5).

By utilizing LLMs to freely classify the topics of known Wikis [24], we can also observe a broad variety of underlying subjects (see Figure 6), especially noting the significant portion of Wikis used in business and industry.

2.7 Semantic MediaWiki

First available in 2005, SMW (Semantic MediaWiki) is likewise an extension for the MediaWiki platform that adds semantic annotations to pages [25]. It

2. https://www.mediawiki.org/wiki/MediaWiki

24 To this end, text extracted from the main page of each Wiki instance is passed in a prompt to GPT-4: "Given the following text from the main page of a Wiki, propose a likely category for this Wiki: [WIKITEXT]."

is also a precursor that majorly inspired Wikidata (and therefore Wikibase) which uses select code from SMW for common tasks [50]. It has been available for a longer time and is more broadly used than Wikibase by various projects to manage their structured data. SMW differs from another related platform, Wikibase, in that it stores data as part of its textual page content and has a less complicated data model [50].

Because of its broad adoption and availability of tools for importing and exporting ontologies, SMW portals are the focus of this work. The data is stored in a relational database by default but can also be reflected in potentially any triple store that accepts SPARQL updates, consequently making it queryable with SPARQL [27] The SPARQL querying is made available with special extensions [28] The platform allows to import external RDF vocabularies [29] and has available dedicated tools for specifically importing ontologies [30].

26[See https://wikiba.se](https://wikiba.se)
30https://github.com/TIBHannover/ontology2smw
MediaWiki platform uses *categories* to classify its articles. While categories are merely tags and, therefore, do not allow typed links, their notation is extended to capture typed links in SMW. The platform thus views properties as "categories for values".

The data model of SMW also fundamentally follows the subject-predicate-object statement structure known as a *semantic fact* in SMW, where subjects are commonly single pages, and objects can be of different datatypes (e.g. numbers, dates, pages). Properties (predicates) are normally defined by typing Wikitext in pages or with templates and forms enabled through additional extensions. The default property datatype at creation is *Page*, but can be changed anytime. Properties with datatype *Reference* can be used to define both value and provenance information.

SMW annotation data can be exported only partially or as an RDF dump of all existing annotations. The category assigned to a regular page is mapped to RDF as the value of rfd:type property of the page. Similarly, when a

As noted in Section 1, the initial contribution of this work lies in establishing a process of discovering and extracting the RDF contents from available Semantic MediaWiki instances. The overall corpus collection approach is illustrated in Figure 9. In the first step, Semantic MediaWiki instances are discovered in a three-fold manner:

3 Methods for collecting the corpus

As noted in Section 1, the initial contribution of this work lies in establishing a process of discovering and extracting the RDF contents from available Semantic MediaWiki instances. The overall corpus collection approach is illustrated in Figure 9. In the first step, Semantic MediaWiki instances are discovered in a three-fold manner:

filtering the *BuiltWith* MediaWiki collection\(^3\) for SMW instances;

- querying *WikiApiary*\(^4\) – a “meta-wiki” collecting information about public MediaWiki instances – for instances that have the SMW extension installed;

- lastly, using search engine APIs to discover SMW instances by specific text excerpts or HTML elements commonly found on SMW-powered websites: e.g., “powered by Semantic MediaWiki” text snippets. This approach allows the discovery of previously unknown instances and is further described in Section 3.1.

3.1 Discovering Wikis with search engines\(^3\)

The field of Web platform discovery, which involves the systematic identification of websites, is a research priority for discovering Linked Open Data (LOD)\(^3\) and accessing the factual extent of the Semantic Web. This subject intersects with Web crawling, an automated process concerned with the traversal and extraction of Web content and search engine scraping.

Investigations in the field\(^18\) have presented scalable algorithms for pattern mining, significantly enhancing the efficiency of media-type focused crawling. Additionally, efforts like MultiCrawler have proposed pipeline architectures for more effective crawling and indexing of the Semantic Web data\(^27\). Other notable tools, such as Apache Any23\(^38\) offer extraction libraries and Web services that transform structured data from HTML and other Web documents to more useful formats. The relevance of the application of such tools is illustrated by services like Portalwatch\(^17\) and WikiApiary\(^39\), which monitor the deployment and usage of specific Open Data and Wiki platforms on the Web. Finally, due to the inherent cost of the platform and dataset discovery, services like LOD Laundromat\(^3\) and LOD Cloud\(^40\) exist to provide an entry point and catalogue linked datasets.

In the case of WikiApiary, the service provides a comprehensive repository that tracks and catalogues Wikis and their respective metadata on the Web. Most notably, WikiApiary also collects Semantic Wikis. Despite its extensive coverage and reliance on bots ("bees") to keep the metadata up-to-date, the catalogue is manually curated through community submissions, which could

\(^3\) https://trends.builtwith.com/websitelist/MediaWiki

\(^4\) https://wikiapiary.com

\(^37\) This section has been accepted to the Posters, Demos and Industry Track of the 22\(^{nd}\) International Semantic Web Conference as a standalone submission\(^12\).

\(^38\) https://any23.apache.org/

\(^39\) https://wikiapiary.com

\(^40\) http://lod-cloud.net
potentially introduce gaps in data collection. The proposed tool aims to enhance and ease Web platform discovery in this area.

Figure 7: Architecture diagram of the search engine crawler [12]

Crawley is an open-source Python-engineered command-line tool designed to streamline the discovery and validation of specific technological platforms. It is currently available together with documentation on GitHub under a CC-BY 4.0 license. Figure 7 illustrates the high-level architecture of the tool. The tool extends various search engine APIs (SERP API, BING API) as a reliable solution to search engine querying. Thus, the search is performed with Google, Bing, Yandex, Yahoo, DuckDuckGo, Baidu and Naver.

The user can initiate a search event, which is defined by a search engine (i.e., Google, Bing, Yandex, Yahoo, DuckDuckGo, Baidu, Naver) and the query itself. The tool then queries the search engines, performing result pagination until all the query results are exhausted and prints the actual number of unique sites, giving the user a heuristic estimation of how prodigious a certain query-search engine combination is, and aggregates the search results in the ./results folder. Although the queries can be formulated freely, we recommend using a subset of markers defined in the paragraph below that have a probability of being indexed by search engines (i.e., text snippets and image annotations, but not code excerpts). A trade-off pattern is observed whereby more general queries lead to more results, but fewer validation hits at the end, and more specific queries lead to fewer results, but a larger proportion of hits, which gives merit to formulating both general and specific queries.

\[\text{https://github.com/semantisch/crawley} \]
\[\text{http://creativecommons.org/licenses/by/4.0/} \]
\[\text{https://github.com/semantisch/crawley/README}\]
The results/platform validation process with Crawley begins with the user identifying text/code snippets commonly found on sites using a particular technology of interest: "Powered by Semantic MediaWiki", "CKAN API", "Socrata API" as well as components of URL commonly used by a specific platform (e.g., .../dataset). We designate these as markers. Having identified possible markers and defined them in the configuration the user can initiate a validation phase, whereby the tool requests HTML contents for the collected search results and then matches them against the markers, returning the total number of validation hits for each platform type and producing a validation report.

Finally, the tool is able to recursively extract further links from validated sites. This is a useful feature which relies on the fact that similar platforms often contain hyperlinks to each other. The extracted links are then treated as search results in the pipeline and can be validated further, whereby previous HTML collection and validation events, as well as results, are cached for efficiency.

In the case of discovering Semantic MediaWikis, a search (without recursive link collection) and validation have been performed with Crawley using the Bing search engine.

A set of custom markers has been identified in association with Semantic Wikis:

```html
<meta name="generator" content="MediaWiki"
<link rel="ExportRDF"
Powered by MediaWiki
```

However, as noted before, only "Powered by MediaWiki" was then used for the queries, as other snippets are not indexed by search engines. Additional queries were therefore devised: "MediaWiki", "Semantic MediaWiki", and "Semantic Wiki".

3.2 Methods for collecting statistics

Combining all three approaches, an extensive list of 1458 SMW instances is collected, for details on the numbers of instances per source, refer to Figure. For each found SMW instance, basic statistics directly available via SMW are retrieved, such as the number of pages, number of users, creation and last modified dates, in order to assess how long the Wikis have been operational and how active they are, and the page list. Next, a crawl of RDF is attempted.
by querying the page list, using the MediaWiki API45. Frequent problems encountered in the process of collecting the corpus, such as non-standard behaviours of MediaWiki and SMW platforms, access restrictions, as well as a number of parsing errors, limit technical feasibility of collecting RDF from each instance. Table \ref{tab:issues} gives an overview of such issues. Apart from the RDF representation, the versioning history is crawled to identify all changes per page for future analysis46. In the last step, the RDF is aggregated47 by Wiki instance to create the corpus. Apart from creating a single HDT file per crawled instance containing all RDF triples, metadata per Wiki KG is added using the VoID2 and DataCube18 vocabularies to include more complex statistics and metrics discussed in detail in Section \ref{sec:metrics} below, in the HDT headers.

As an additional item in this metadata aggregation, Wikis are collected and classified per “topics”, similar to the LOD Cloud topics48. The approach to classify Wikis into “LOD Cloud topics” works by, whenever available, fetching metainformation collected by WikiApiary (manually assigned topics) and BuiltWith (SEO-related keywords), plus the textual information from the respective Wiki’s main page, a sample of page titles and the name of the Wiki. The GPT-4 is then fed with this textual information49 to assign it one of the LOD Cloud topics – this current naive approach serves mainly for illustration, cf. Figure \ref{fig:topics} below.

3.3 Corpus availability

The SMW corpus is available under a permanent URL50 and directly on the open data repository of the institute51. Both separate RDF HDT20 dumps per SMW instance, as well as a single HDT file for the whole aggregated corpus are provided. A SPARQL endpoint, serving the VoID & DataCube metadata in a queryable form, is available at: https://smwcloud-sparql.cluster.ai.wu.ac.at/. The resource including all calculated metrics is provided under the Creative Commons Attribution 4.0 International License52.

\begin{itemize}
\item 45 https://www.mediawiki.org/wiki/API:Query
\item 46 Cf. Section \ref{sec:issues}; It is planned to also extract and analyse the evolution of the RDF KGs per SMW instances as future work.
\item 47 Given the absence of Blank Nodes within instances, skolemization is unnecessary.
\item 48 https://lod-cloud.net/
\item 49 The respective prompt is: “Given the text "[WIKI-NAME+MAINPAGETEXT+PAGETITLES+METAINFO]", tell me the best fitting topic among [LODCloudTopiclist]”.
\item 50 http://purl.org/SMWCloud
\item 51 https://semantic-data.cluster.ai.wu.ac.at/smwcloud/
\item 52 https://creativecommons.org/licenses/by/4.0/
\end{itemize}
Figure 8: Venn diagram of collected SMWs and their sources

Table 1: Breakdown of collection and processing losses

<table>
<thead>
<tr>
<th>SMWs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1458</td>
<td>all active SMW instances</td>
</tr>
<tr>
<td>-108</td>
<td>malformed API response</td>
</tr>
<tr>
<td>-107</td>
<td>API endpoint unavailable</td>
</tr>
<tr>
<td>-55</td>
<td>server-terminated connection</td>
</tr>
<tr>
<td>-31</td>
<td>non-standard encoding scheme</td>
</tr>
<tr>
<td>1157</td>
<td>instances for which the full page list and page RDF could be collected</td>
</tr>
<tr>
<td>-51</td>
<td>XML wrongly declared</td>
</tr>
<tr>
<td>-36</td>
<td>malformed XML / mismatched tags</td>
</tr>
<tr>
<td>-5</td>
<td>non-compliant IRIs</td>
</tr>
<tr>
<td>-36</td>
<td>other processing errors</td>
</tr>
<tr>
<td>1029</td>
<td>SMW instances for which HDTs could be aggregated</td>
</tr>
</tbody>
</table>

Figure 9: Architecture of the SMW crawler and metrics processor

For illustration, the VoID metadata and selected DataCube entries available through an endpoint (and as part of the respective HDT header) are provided for “Wien Geschichte Wiki,” an SMW instance providing historical information about Vienna in Turtle syntax in Figure 10.

4 Methods for analysing the corpus

Due to their topical diversity, data and schemas differ considerably among SMW instances, but it is also hypothesized that the RDF data from SMW instances has fundamentally different characteristics than other Linked Open Data corpora, such as the LOD Cloud datasets or Wikidata.
"Wien Geschichte Wiki" is the historical knowledge platform of the city of Vienna, based on the "Historical Lexicon of Vienna" by Felix Czeike, which brings together expertise from city administration and the public and currently has over 48,000 contributions, 279,000 addresses, and 15,000 images.

Figure 10: Metadata for “Wien Geschichte Wiki”
4.1 Analytical framework

In order to verify these assumptions, a comprehensive characterization of the corpus requires two things: (1) a fundamental understanding of each dataset, and (2) an overview of all available data [9]. Therefore, the analyses are performed both on the single Wiki datasets as well as on the corpus as a whole in terms of commonly used metrics.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic graph metrics</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Basic ontology metrics</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Quality analysis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vocabulary re-use</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dataset interlinkage</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Languages analysis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 2: Related work and implemented metrics

In order to establish a foundation for comparative analysis, related LOD analysis studies are reviewed in Table 2. This allows us to discern and categorize the prevailing analytical themes. The most common analyses within these studies are performed on Basic graph metrics, Basic ontology metrics, and Quality. In addition to the aforementioned themes, other forthcoming analyses encompass Vocabulary re-use, Dataset interlinkage and Language usage.

4.2 Processed metrics

General graph metrics give a comprehensive and comparable characterization of the corpus [15]. Additionally, basic ontology metrics are calculated to assess the used schemata/ontologies of the individual SMW instances in a comparable manner, and evaluate the corpus on the basis of established quality analysis frameworks to gain a better understanding of quality characteristics. Explicitly including ontology metrics and common ontology quality frameworks in the analyses through the implementation of the Neontometrics calculation engine [44], the lack of metric validation for real-world data [43].

Basic ontology metrics can be used as a building block for the calculation of quality frameworks.

is addressed, especially in small KGs: SMW instances can be viewed as a publicly available pendant/proxy for enterprise KGs with their own characteristics.

Table 2 briefly summarizes the various metrics and quality frameworks calculated for the SMW corpus. As for calculating the basic graph and ontology metrics, the Neontometrics OPI (Ontology Programming Interface) is used. Afterwards, these metrics are applied to calculate common quality frameworks: Cohesion Metrics [21], Complexity Metrics [33], Fernandez et al. [22], OQuaRE [13] [12], Gangemi et al. [23], OntoQA [10] and Orme et al. [10]. Please refer to Table 2 for a summary of their respective dimensions.

5 Results and corpus statistics

In this section, a brief overview of the insights into the corpus based on the collected statistics is provided. The datasets causing processing errors as described in Table 1 are excluded, resulting in 1029 datasets that collectively form the corpus and the basis for analyses.

![SMW Cloud with and without](semantic-mediawiki.org)

Figure 11: SMW Cloud with and without semantic-mediawiki.org

5.1 Basic RDF metrics

Table 3 gives a distilled overview of the corpus dimensions. Notably, the absolute numbers reported for SMW Cloud in this work fall short of the statistics for the number of statements reported by the instances themselves,
totalling 1,012,521,773 statements and 206,997 unique properties, calculated by aggregating statistics reported by individual SMWs. At the same time, the SMW Cloud dimensions are comparable to that of LODStats [16], which totals 192,230,648 triples. Wikidata has grown considerably in the last 5 years, from 3b triples in 2018 to more than 17b in 2022, exceeding SMW Cloud in size [19]. Nevertheless, despite its comparatively smaller size in terms of total number of statements, the SMW Cloud exhibits a significantly broader range of unique properties, exceeding both Wikidata and LODStats, as well as suggesting limited vocabulary re-use in SMW Cloud.

For a better overview of the characteristics of individual datasets comprising the corpus, refer to Table 4. There, their parameters are compared to the individual LOD Cloud datasets [16]. Though LOD Cloud datasets are significantly larger on average (2,180,651 triples to 186,813 for SMWs), the majority of LOD datasets are smaller (median 2,486 vs 12,595.6 for SMWs), implying more uniform sizes of SMWs. Another key characteristic of SMWs is a higher number of properties and classes per dataset as well as a higher number of properties per entity, suggesting a more granular and detailed data modelling approach in SMWs and a user-centric, bottom-up nature of ontology creation. The lack of class and property depth is indicative of a flat ontology structure in the SMW instances. This is attributed to the a) user communities with rich domain knowledge and limited expertise in ontology management, b) ad-hoc nature of ontology creation and c) decentralized ontology development in SMWs. Other characteristics regarding high numbers of labelled subjects and large average typed and untyped string lengths for Literals further differentiate user-centric SMWs from LOD datasets.

5.2 Topical analysis

Semantic MediaWikis capture a variety of highly-specialized domain knowledge, as visualized in Figure 11 reusing the LOD Cloud categories[56]. 16% Wikis specialize on publishing/annotating media, 10% are life science Wikis,
Prevalent topics across SMW Cloud instances

<table>
<thead>
<tr>
<th>Metric</th>
<th>SMW Cloud</th>
<th>LOD Cloud [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triples per dataset</td>
<td>186,813</td>
<td>2,180,611</td>
</tr>
<tr>
<td>Resources</td>
<td>18,825</td>
<td>21,821</td>
</tr>
<tr>
<td>Literals</td>
<td>1,140,913</td>
<td>2,902,009,57</td>
</tr>
<tr>
<td>Blanks</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Blanks (subject)</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Blanks (objects)</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Subclasses</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Typed subjects</td>
<td>14,058.63</td>
<td>2,099,790.35</td>
</tr>
<tr>
<td>Labeled subjects</td>
<td>2,241.23</td>
<td>28,862.13</td>
</tr>
<tr>
<td>Properties per entity</td>
<td>6.22</td>
<td>2.26</td>
</tr>
<tr>
<td>String length (typed)</td>
<td>9.32</td>
<td>9.32</td>
</tr>
<tr>
<td>String length (un-typed)</td>
<td>72.43</td>
<td>13.12</td>
</tr>
<tr>
<td>Class hierarchy depth</td>
<td>0.009</td>
<td>0.04</td>
</tr>
<tr>
<td>Property hierarchy depth</td>
<td>0.009</td>
<td>0.00</td>
</tr>
<tr>
<td>Classes</td>
<td>956.02</td>
<td>20.05</td>
</tr>
<tr>
<td>Properties</td>
<td>155.01</td>
<td>88.00</td>
</tr>
</tbody>
</table>

Table 4: SMW Cloud and LOD Cloud comparison

Figure 12: Prevalent topics across SMW Cloud instances
6% geography-oriented, 5% government-related, 4.3% language-related. Still, about half of all Wikis (48%) could not be classified under one of the categories (i.e. summarized under user generated other), hinting at the topic diversity and high degree of specialization of SMWs.

Manual coding of a randomly selected sample of 100 Wikis (as partially represented in Table 5) has shown that the chosen topics represent the Wiki well, overlap, and are similar in meaning (87% similarity) with WikiApiary tags and BuildWith verticals. Therefore, as a result, each Wiki is characterized by 3 independently created tag/domain collections, which promote discoverability and an automatically generated description.

Further, the distribution of specialized domains in the corpus with freely annotated tags is analyzed, see Figure 12. The big components of the hitherto unclassified Wikis are, therefore, gaming with 134 instances in total, technology (115), education and community. The 101 unclassified Wikis indeed can hardly be classified because of the lack of investigated content (see Section 3). While common LOD Cloud topics are well suited for classifying about half of SMW Cloud, other significant topics emerge: SMW Cloud has a rich number of technology, education and community Wikis not prominently featured in LOD Cloud.

<table>
<thead>
<tr>
<th>SMW</th>
<th>LOD Cloud classification</th>
<th>Free classification</th>
<th>Description</th>
<th>Topic (WA)</th>
<th>Topic (BuiltWith)</th>
</tr>
</thead>
<tbody>
<tr>
<td>geschichtewiki .wien.gv.at</td>
<td>history (government, geography)</td>
<td>Vienna, Austria</td>
<td>The Wien Geschichte Wiki is an encyclopedia of historical, geographic, and cultural information related to the city of Vienna and its surrounding regions.</td>
<td>city wiki, history, vienna</td>
<td>Art And Entertainment</td>
</tr>
<tr>
<td>bacid.eu</td>
<td>government</td>
<td>public administration</td>
<td>BACID Wiki contains information about decentralized governance, capacity building, and public administration initiatives in the Danube region.</td>
<td>-</td>
<td>Business And Industrial</td>
</tr>
<tr>
<td>korrekt.org</td>
<td>publications (media, user-generated)</td>
<td>knowledge-based systems</td>
<td>Korrekt.org is a Wiki focused on the research and publications of Professor Markus Kroetzsch, covering topics such as description logic, Semantic Wikis, and knowledge-based systems.</td>
<td>homepage, semantic mediawiki</td>
<td>Science</td>
</tr>
<tr>
<td>www.gardenology.org</td>
<td>life sciences</td>
<td>plants, gardening, encyclopedia</td>
<td>A comprehensive Wiki encyclopedia covering plants and gardening, featuring detailed entries and photographs.</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5: Examples of SMW domain annotations

5.3 Ontological analysis

A number of metrics have been proposed for the analysis of KGs and ontologies. Since a KG comprises both A-Box as well as T-Box statements, both classifications enclosed within parentheses are also produced by the model, serving as alternatives.
metrics for characterizing KGs and ontologies as suitable for analysing KGs are proposed, with notable limitations applying to ontology metrics discussed separately.

Reiz et al. [43] proposes an ontology describing common metrics used to characterize Knowledge Graphs, and also introduces an open-source tool automating the calculation of a broad variety of metrics and quality analyses calculations. The website of the tool also includes a Metric Explorer with metric overviews and descriptions. For SMW Cloud, Table 8 summarizes the basic ontology metrics for SMWs. All quality analyses are calculated based on these basic ontology metrics suggested by the Neontometrics engine (see Table 5).

Ontologically SMWs do contain a large number of class and property assertion axioms, same individual assertions, as well as individual, class and property annotations. Notably, although SMW technically allows the use of RDFS and OWL concepts, only a total of 5 SMWs implement class hierarchies (via rdfs:subClassOf) and no SMW instance implements property hierarchies (via rdfs:subPropertyOf) in practice, while 5 SMW instances use owl:equivalentProperty definitions, some of which seem redundant. A closer analysis of the RDF(S) and OWL vocabulary used in 1029 crawled SMW instances in terms of Description Logics expressivity (testable again through the Neontometrics tool) is illustrated in Table 7: here, the concrete RDF(S)+OWL constructs being used in each DL expressivity class are analysed, which reveals that only a small fraction of RDFS’ and OWL’s statements are being used in SMW instances. Indeed, for instance, neither rdfs:domain and rdfs:range definitions, nor owl:equivalentClass, with one exception, hardly any multi-triple OWL axioms are being used in SMW instances: under-use of complex OWL constructs, not even mentioning OWL2, can therefore be also observed on the SMW ecosystem, in a similar and even more pronounced form than already observed more than 10 years ago for the LOD Cloud [24]. Also, due to the sparse use of subclassing and sub- or equivalent properties, further analysis does not further focus on ontology metrics and quality framework metrics, which emphasize schema depth/inheritance richness [10], see also Footnote 61 in Table 5.

58 http://neontometrics.com/
59 Specifically: wiki.spell-plattform.de, wiki.fablab.is, wiki.attraktor.org, spiele.j-crew.de and dotawiki.de
60 e.g., a triple dcterms:isPartOf owl:equivalentProperty dcterms:isPartOf in pool.publicdomainproject.org
61 Due to the observed lack of hierarchical structure, the number of classes is equivalent with the number of root classes, paths to leaf classes, absolute leaf cardinality and absolute depth, so these metrics are not provided separately.
<table>
<thead>
<tr>
<th>Metric</th>
<th>SMW Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Class assertion axioms</td>
<td>12,782.75</td>
</tr>
<tr>
<td>Object property assertion axioms</td>
<td>21,735.10</td>
</tr>
<tr>
<td>Data property assertion axioms</td>
<td>55,397.72</td>
</tr>
<tr>
<td>Same individuals axioms</td>
<td>346.05</td>
</tr>
<tr>
<td>General annotation axioms</td>
<td>1,759.55</td>
</tr>
<tr>
<td>Annotation assertion axioms</td>
<td>5,065.86</td>
</tr>
<tr>
<td>Data property annotations</td>
<td>6.92</td>
</tr>
<tr>
<td>Class annotations</td>
<td>3.25</td>
</tr>
<tr>
<td>Object property annotations</td>
<td>15.58</td>
</tr>
<tr>
<td>Individual annotations</td>
<td>5,004.62</td>
</tr>
<tr>
<td>Axioms</td>
<td>95,654.59</td>
</tr>
<tr>
<td>Logical axioms</td>
<td>90,308.68</td>
</tr>
<tr>
<td>Classes</td>
<td>195.57</td>
</tr>
<tr>
<td>Classes with individuals</td>
<td>188.06</td>
</tr>
<tr>
<td>Object properties</td>
<td>30.83</td>
</tr>
<tr>
<td>Data properties</td>
<td>48.80</td>
</tr>
<tr>
<td>Individuals</td>
<td>12153.97</td>
</tr>
</tbody>
</table>

Table 6: Basic ontology metrics
Table 7: Use of the RDF(S)+OWL and DL expressivity of SMW instances

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Median</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean number of annotations per class</td>
<td>37,96</td>
<td>0,65</td>
<td>710,16</td>
<td>14,29</td>
<td>1 (excellent)</td>
</tr>
<tr>
<td>Mean number of attributes per class</td>
<td>1,05</td>
<td>0,01</td>
<td>2,67</td>
<td>0,77</td>
<td>1 (excellent)</td>
</tr>
<tr>
<td>Weighted Method Count; Mean number of properties per class</td>
<td>345,37</td>
<td>0,70</td>
<td>55439,4</td>
<td>35,19</td>
<td>5 (unsatisfactory)</td>
</tr>
</tbody>
</table>

Table 8: OQueRE metrics and scores

In the metric processing, all Quality Frameworks indicated in Table 2 are calculated. Although it is not feasible to discuss the evaluation of frameworks in full, the OQueRe framework is demonstrated in Table 8, exemplified by metrics receiving the best score and the worst score, suggesting a more in-depth analysis as the subject of future work capitalizing on the resource established in this work.

6 Conclusion and future work

This work presented and characterized the SMW Cloud corpus, an extensive collection of RDF data collected from Semantic MediaWiki instances. To
promote interoperability and ease of use, the SMW corpus is made available as HDT and the corpus’ metadata is queryable via a SPARQL endpoint, in line with the FAIR data principles [52]. It is planned to update the SMW Cloud regularly and extend it by discovering and crawling RDF from new SMW instances as they appear.

Following the same approach, it is recommended that Semantic MediaWiki developers 1) enable RDF dump generation by default rather than requiring administrators to manually make use of a maintenance script to create a dump (or us to crawl the RDF data per page) 2) when a SPARQL-endpoint is available, make it discoverable through SMW API and 3) consider adopting HDT as a compact format for publishing regular dumps as it is a highly compact format for SMW data (achieving a Data Compression Ratio of 17.5 for SMW Cloud compared to NTriples, more efficiently than for other benchmarks evaluated [36]).

In terms of evaluation and benchmarking as a field of interest of the Semantic Web community [10], SMW Cloud provides a novel and distinct dataset with unique characteristics that introduce variety into the field of LOD sources investigated so far; these unique characteristics have been demonstrated in terms of a variety of common basic graph and ontology metrics, that illustrate significant differences of RDF usage within SMW instances and the rest of the LOD Cloud. It is expected that the SMW Corpus will enable previously unexplored approaches in LOD and EKG research.

Finally, this work also presented a novel approach for web platform discovery, Crawley. The tool could be broadly useful both for standalone web platform discovery as well as for the extension of existing manually curated catalogues.

6.1 Limitations

Statistics calculated by us can not be directly integrated back into individual SMWs, creating a discoverability problem. To this end, it is planned to introduce an SMW extension that will 1) schedule regular RDF dump generation, 2) notify the proposed architecture of the Wiki, and 3) fetch calculated statistics from the SMW Corpus and integrate them into the Wiki.

6.2 Future work

As future work, it is theorized that the SMW corpus can also provide a basis for longitudinal analysis, link analysis [26], etc. This will enable a better understanding of the dynamics and evolution of vocabularies. It is the goal to create profiling tools and resources enabling users to create an assessment
of the data at hand. As noted in Section, Wikibases are the second most widely used Semantic Wiki platform to date. Therefore, crawling efforts and analyses of Wikibase instances following a similar methodology are a prioritised part of future work.

With respect to the new method for platform discovery, the promising areas for future work include 1) parallelizing requests, 2) implementing standalone Search Engine crawling and 3) automatic marker discovery, which could greatly increase the efficiency of the discovery process, positioning Crawley as an increasingly valuable asset for comprehensive web platform discovery. Finally, it is planned to applying the method to discover and monitor more Semantic Web resources, such as public Wikibase instances and SPARQL endpoints.

6.3 Resource Availability Statement

The corpus is hosted through the Institute for Data, Process and Knowledge Management. The institute has already hosted various widely adopted Semantic Web resources for several years now and promotes the sustainability strategy within ongoing community activities such as the “Distributed Knowledge Graphs” COST Action, which as one of its activities aims at aligning and sustaining community services and tools.

1. The aggregated SMW Cloud dataset is made available via the institutional repository.

2. The SMW Cloud corpus containing individual SMW datasets is also made available via the institutional repository.

3. The calculated metrics for the corpus are available via a public SPARQL endpoint.

6.4 Acknowledgements

The author expresses profound gratitude to Bernhard Krabina, Amr Azzam, Martin Beno and Alexandra Hager for their invaluable support and expert advice and gives special acknowledgement to Thomas Seyffertitz for his consultation in the area of research data management as well as Gary Brewer, BuiltWith, for providing an extensive MediaWiki collection.

62 https://cost-dkg.eu/
63 https://semantic-data.cluster.ai.wu.ac.at/smwcloud/
64 https://semantic-data.cluster.ai.wu.ac.at/smwcloud/corpus/
65 https://smwcloud-sparql.cluster.ai.wu.ac.at/
References

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jidau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethel, Jaap Heringa, Peter A. C. ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultz, Thierry Sengstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop, Andrea Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao,
