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Abstract

The Open City Data Pipeline is a project initiated by Siemens AG in Vienna.

Its goal is to collect data on cities from several publicly available sources

and integrate them into a single data storage. In order to make this data

easily accessible, extensible and machine-processable the data is stored in an

RDF database. The data structure follows an extensible city data ontology

which was created specifically for this data pipeline. A key challenge of the

pipeline is missing information. Machine learning techniques can be applied

to find latent structure in the data and infer missing information from actual

observations. Principal Component Analysis is used in this work to reduce

the number of dimensions. Three wide-spread regression methods are then

applied to predict missing values. Standard prediction error measures are

used to determine the accuracy of the algorithms. The results suggest that

Principal Component Regression is a suitable method to fill in missing values

and improve the usefulness of the Open City Data Pipeline to stakeholders

such as governments, citizens and infrastructure providers.

http://wu.ac.at/
https://ai.wu.ac.at/~polleres/
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Chapter 1

Introduction

Cities are becoming an increasingly important anthroposphere for a growing number of

people. Urbanization increased from under 30% in 1950 to 54% percent in 2014. This

means that half of the entire population is now living in cities and this trend will continue

in the future [56]. A variety of entities, for example governments, citizens and companies

such as infrastructure providers, need to understand the status and performance of cities

to act accordingly. Data in general and Open Data in particular can support decision

making by providing greater insights into the operations of cities [45].

Numerous cities around the world have recognized this and it is one of the reasons for

cities to publish Open Data (see for example [2], [3]). However, there are other reasons

as well, e.g., transparency and legal requirements. While local Open Data initiatives

often provide exhaustive and detailed data on a single city, comparing different cities is

a tedious task. It requires the integration of data from different sources which is chal-

lenging due to several reasons, e.g. different data formats, measurement methodologies,

time granularities, units and so on.

The Open City Data Pipeline is a project initiated by Siemens AG in Vienna. The

pipeline is ”[...] a system for gathering city performance indicators published as Open

Data in order to ease the compilation of studies and reports” [43, p. 1]. Its goal is to

collect data on cities from several different sources and integrate them into a single open

data storage for others to use. The data covers heterogeneous areas like demography,

economic aspects, culture, social and environmental aspects. To simplify usage and

processing of the data by third parties, we are republishing the data as RDF Data (see

Section 2.1.2). Adherence to the Linked Data principles set up by Tim Berners-Lee (see

Section 2.1.1) should further facilitate the usage of the collected data.

1



Chapter 1. Introduction 2

Besides data integration difficulties there is another problem with the collected data:

missing values. Missing data is a problem in a lot of domains and data on cities is no

exception. Even large data collection efforts such as the Urban Audit data collections

by Eurostat [40] cannot circumvent a certain ratio of missing values in their data sets.

The issue is also exacerbated by combining and integrating data from different sources

dealing with disjoint indicators for different cities.

The main goal of the pipeline is to gain a better understanding of cities in order to anal-

yses shortcomings and support decision making. Imputing (i.e., predicting) the missing

values based on the observed values (i.e. developing a prediction model) is therefore

desirable for improving the scope and quality of the decision making. The usefulness of

the model should be growing with its completeness. The two main objectives which need

to be considered when predicting missing values are the amount of possible predictions

(how many of the missing values can be predicted?) and the accuracy of the predictions.

The best case scenario for the prediction effort would be an accurate prediction of all

missing values in the collected data. The present thesis aims to provide methods and

results on the prediction of missing values in this environment. It covers the data col-

lection and integration architecture used to obtain the data, all steps which need to be

taken before a prediction can be made (i.e. data export, preprocessing, cleansing, feature

and observation selection), two approaches to prediction and the achieved results.

The remainder of the thesis is structured as follows:

In chapter 2 we review the technologies and concepts used in the course of this work.

First, we give a quick introduction into Linked Open Data and its associated standards

like RDF and SPARQL. Second, we briefly review data mining and introduce three

common regression methods (k-nearest neighbour, linear regression, and decision trees)

using some example data.

Chapter 3 answers the questions ”Where does the data come from? How was it col-

lected?”; it gives more insights into the context of the work by describing the Open

City Data Pipeline in more detail. We describe the general architecture, the individual

components and their relations and we present the data sources. Furthermore some

information on the city data ontology is given.

Chapter 4 answers the question ”How does the dataset look like?”. It describes the

integrated dataset which is subsequently used in Chapter 5. We delineate the process

of extracting the data from the database and getting it into a suitable form for further

analysis (i.e. preprocessing) and we give some additional information on the dataset

characteristics.
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Chapter 5 answers the question ”How can missing values be predicted?”. It describes

different approaches to the problem of approximating missing values in the dataset. Prin-

cipal Component Analysis (PCA) as a method of dimensionality reduction is introduced

and integrated into a prediction methodology using Principal Component Regression

(PCR). We present the results of the different approaches and we compare them.

Chapter 6 sums the work up, links it to ongoing related work and gives some hints to

possible future work to further improve the Open City Data Pipeline in general and the

prediction performance of missing values in particular.



Chapter 2

Preliminaries

In this chapter we introduce some general concepts which are used in the subsequent

chapters of the work. We discuss the Linked Data principles, we explain what Linked

Open Data is and why we are using it in the Open City Data Pipeline. We present RDF

as a way of describing real word resources. The associated query language SPARQL is

quickly introduced as well. We are also going to introduce some other city indicator

frameworks from which our own city data ontology was partly derived. After a general

introduction to Data Mining, we present three common regression methods to predict

missing values: k-nearest neighbour, linear regression and decision trees. Finally, we

describe Principal Component Analysis (PCA) as a tool for dimensionality reduction.

2.1 Linked Open Data

Data in general can support decision making by providing greater insights into the

matter at hand. Data is called Open Data if it has three main properties [42]:

• Availability and Access

The data has to be easily available in a conveniently accessible format.

• Reuse and Redistribution

The usage terms have to allow for reuse and redistribution including integration

with other data.

• Universal Participation

The data has to be available to everyone regardless of person, organization and

application.

4
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The Open Definition project defines knowledge as open ”[...] if anyone is free to access,

use, modify, and share it — subject, at most, to measures that preserve provenance and

openness” [51]. In the Open City Data Pipeline we focus on collecting ”Open Data”.

Linked Data denotes a set of best practices for publishing structured data on the Web.

The main advantage of structured data over unstructured data is that it is readily

machine readable and therefore automatically processable [5] .

Due to its limited restrictions on usage, Open Data is a natural candidate for publica-

tion as Linked Open Data. A continuously increasing number of interlinked datasets is

published as Linked Open Data (LOD) on the web [47].

There are multiple reasons to use Linked Data in the Open City Data Pipeline. First,

some of the data which is collected and integrated is already published in the form of

Linked Data (e.g. data from DBpedia [4]) which enables easier integration because less

data transformation effort is needed.

Second, we are republishing the collected and integrated data as RDF Data for easy

access and reuse by third parties who are also interested in the domain of cities. The

data can be processed by machines instead of humans. The Open City Data Pipeline is

therefore a consumer as well as a publisher of Linked Open Data.

Third, the Linked Data approach offers the advantage of easy extensibility in the future.

Possible extensions in addition to adding more data on city level, could include other

spatial levels such as districts or countries as well. The semantic connection of these

spatial levels (i.e. their hierarchical order) is represented in our ontology and could be

exploited in complex queries, e.g. by adding geospatial query support [28].

2.1.1 Linked Data Principles

The following Linked Data principles were suggested by Tim Berners-Lee in 2006 with

the goal of sharing structured data globally [7].

• Use URIs (Uniform Resource Identifier) as names for things

• Use HTTP URIs for easier lookup

• Use standards like RDF (Resource Description Framework) and SPARQL (SPARQL

Protocol and RDF Query Language) to provide useful information to users

• Link to other URIs to foster discovery of additional information [7]
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Along with these principles Tim Berners-Lee also introduced a 5 star rating system

where a dataset receives 5 stars if the data is made available using open standards and

if there are links to other people’s data [7]. The exact criteria for the number of stars

are listed below. The criteria are cumulative, i.e., a dataset has to fulfill all criteria to

be considered a 5 star dataset.

• 1 Star

Data is available on the web with an open license regardless of the data format.

• 2 Stars

Data is available in a machine-readable format.

• 3 Stars

Data is available in a non-proprietary format (e.g. comma-separated value file

instead of Excel file).

• 4 Stars

Data uses W3C open standards such as RDF and SPARQL to identify resources.

• 5 Stars

Data uses links to other datasets to provide context.

Data from the Open City Data Pipeline is made available using open standards and

also links to other data sources. Furthermore it takes advantage of externally estab-

lished vocabularies while also introducing an ontology which aims at integrating these

vocabularies (see Section 3.3).

For example, in conformance with the Linked Data principles, HTTP URIs from dbpe-

dia.org are used to identify cities in the pipeline, e.g.

http://dbpedia.org/resource/Vienna for Vienna. DBpedia in turn contains much

more links from cities to other resources such as images, persons, organizations and so

on. The usage of DBpedia URIs enables users to not only access the data made available

directly in the pipeline (which is in general limited to numerical data), but also to obtain

additional information and links by following the URI. Data collected from other sources

than DBpedia are always mapped to these city URIs to further facilitate the discovery

of more information on the cities.

2.1.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) provides a way to describe all kinds of

resources such as real word objects, documents on the Web and also abstract concepts

http://dbpedia.org/resource/Vienna
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like a city. In 2004, RDF became a W3C recommendation [33]. RDF 1.1 became a W3C

recommendation in 2014 [34]. Information in RDF is represented in the form of a triple.

Each triple is comprised of a subject, a predicate and an object. Figure 2.1 shows a

simple RDF statement in form of a triple defining a city.

Figure 2.1: Example RDF Triple

URIs are used to identify entities at each position of a triple. In the example the URI

http://dbpedia.org/resource/Vienna is in the subject position. This is a URI from

DBpedia identifying Vienna, the capital of Austria, which is described by this RDF

statement. The prefixed name rdf:type is in the predicate position. The part before

the colon is the prefix, the part after the colon is the resource name. A prefix re-

solves to a specified IRI which needs to be explicitly defined. The prefixed name in the

example resolves to the IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

This property is used to describe that something is an instance of a class. The class

http://citydata.wu.ac.at/City follows in the object position. The triple says that

Vienna is an instance of the class City. Typically more than one triple is necessary to

sufficiently describe a resource. Multiple triples are combined in an RDF graph.

Several serialization formats for RDF exist (e.g. N-Triples, RDFa, RDF/XML). They

are all suitable to express RDF statements but differ in their format. We use Turtle

(Terse RDF Triple Language) [6] in the Open City Data Pipeline.

Turtle is an easy-to-read, human-friendly concrete syntax for RDF used for textual

representations of RDF graphs. Subject, predicate and object are simply separated by

a whitespace. Triples are terminated with a period symbol. Relative and absolute IRIs

are enclosed in < and >.

Listing 2.1 describes the triple presented in Figure 2.1 as well as a German and an

English label for the city using the Turtle serialization.
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1 @prefix wu: <http :// citydata.wu.ac.at/> .

2 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .

3

4 <http :// dbpedia.org/resource/Vienna > a wu:City ;

5 rdfs:label "Vienna"@en ;

6 rdfs:label "Wien"@de .

Listing 2.1: RDF Triples in Turtle serialization (example.rdf)

In this example the namespace prefix labels wu: and rdfs: are defined in the first

two lines. Prefix labels are defined once at the beginning of an RDF document and

can then be used to form prefixed names in triples which leads to a more compact

data representation and also improves legibility by keeping the notation short. Prefixed

names consist of a prefix label (e.g. wu), a separating colon and a local part (e.g.

City). Together these three elements resolve to a IRI, in this case wu:City resolves to

http://citydata.wu.ac.at/City.

Multiple predicate-object pairs with the same subject can be repeated in Turtle sepa-

rated by a semicolon. In the example the subject for all three triples is

http://dbpedia.org/resource/Vienna, therefore they are separated with a semicolon.

This abbreviated form also - like prefixes - leads to a more compact data representation.

The second and third triple in Listing 2.1 have W3C’s rdfs:label in the predicate

position which is used to define human-readable names. Literals with languages tags as

suffixes (@en for English and @de for German) are used in the object position of these

triples. Literals are values of a certain type, e.g. strings, numbers or dates. In our

example strings are used to assign human-readable names to the city of Vienna. Besides

URIs and literals there are also blank nodes in RDF. In general, subjects or objects can

be represented using blank nodes which are unnamed or anonymous nodes in an RDF

graph without a URI which could identify them [34].

RDF Schema (RDFS)

The prefix rdfs: is used in Listing 2.1. RDF Schema (RDFS) is an extension to RDF

adding semantic elements to the framework. RDFS enables the creation of ontologies

which is not feasible with RDF alone. An ”[...] ontology typically contains a hierarchy

of concepts within a domain and describes each concept’s crucial properties through an

attribute-value mechanism.” [15, p. 64]
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RDF Schema was initially published in 1998 and is now a W3C recommendation [10].

It provides a set of classes and properties which are essential to model the relations and

constraints between resources. Class names are starting with an uppercase letter by

convention, whereas properties are starting with a lowercase letter.

Some of the most important RDFS classes are:

• rdfs:Resource: everything described in RDF is a resource.

• rdfs:Class: defines a resource as a class for other resources, e.g. wu:City in

Listing 2.1.

• rdfs:Literal: literals (e.g. strings, numbers) are instances of this class.

• rdf:Property: the class of properties.

RDFS properties describe the relation between a subject resource and an object resource.

They are instances of the class rdf:Property. Some of the most important RDFS

properties which are also used in the Open City Data Pipeline are:

• rdfs:domain: a resource having a given property must be an instance of the class

referenced.

• rdfs:range: defines that the values of a given property are instances of the class

referenced. We use this in the Open City Data Pipeline to define the possible

values of indicators.

• rdfs:subPropertyOf: used to define hierarchical relations between properties.

We use this in the Open City Data Pipeline to map data source specific indicators

to general indicators modelled in the city data ontology (see Section 3.3).

• rdfs:subClassOf: used to define hierarchical relations between classes.

Web Ontology Language (OWL)

Although RDFS extends the expressibility of RDF and enables the creation of ontologies

including hierarchical relations it is still limited in its usefulness, especially in complex

domains. It is not possible to express more sophisticated relations with RDFS, e.g.

cardinality, disjointness or equality.

The Web Ontology Language (OWL) introduced in 2002 does support these missing

features. It has become a W3C recommendation in 2004 [37]. The languages and
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standards in the Linked Data area are constantly evolving and developing, so in 2012

an extension to OWL, OWL 2, also became a W3C recommendation [59].

OWL is suitable to craft complex, sophisticated ontologies. It is not a single language

but a family of formal ontology languages recommended by W3C. Due to the varying

requirements of ontologies, three different languages were created: OWL Lite, OWL

DL and OWL Full. These are smaller subsets enabling ontology creators to pick the

complexity level which suits them best [37].

Some OWL properties used in the Open City Data Pipeline are the following:

• owl:DatatypeProperty: used to express relations between instances of classes

and RDF literals or XML schema datatypes.

• owl:ObjectProperty: used to express relations between instances of two classes

• owl:sameAs: used to express the similarity between two instances, e.g. DBpedia

uses this property to map redirected URIs to their respective correct URIs.

2.1.3 SPARQL Protocol and RDF Query Language

SPARQL (recursive acronym for SPARQL Protocol and RDF Query Language) is a

graph-matching query language for RDF. It enables querying as well as manipulating

RDF graph content. Filtering, ordering and powerful built-in functions make SPARQL

a rich tool in efficiently handling RDF data [52].

SPARQL has four query forms for different purposes: SELECT, CONSTRUCT, ASK and

DESCRIBE:

• SELECT

Returns raw values - comparable to an SQL SELECT statement.

• CONSTRUCT

Returns an RDF graph which is defined using triple templates

• ASK

Returns a boolean value indicating whether the given pattern matches

• DESCRIBE

Returns a description of the resources matching the given pattern

A simple SPARQL SELECT query is given in Listing 2.2. The query selects the labels

of instances of the class wu:City from example.rdf (see Listing 2.1).
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1 PREFIX wu: <http :// citydata.wu.ac.at/>

2 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf -schema#>

3

4 SELECT ?label

5 FROM <example.rdf >

6 WHERE {

7 ?city wu:City ;

8 rdfs:label ?label .

9 }

Listing 2.2: A simple SPARQL query

The SELECT part of the query defines which variables of the result set should be returned.

Variables are indicated by a ? or $ prefix. In this case only the variable ?label is

returned. The WHERE part of the query contains the graph pattern which is going to be

matched against the data graph defined in the file example.rdf.

Multiple triple patterns can be specified in the WHERE clause. If they have the same

subject they can be separated with a semicolon just like in the Turtle RDF serialization.

Prefixes can be used in SPARQL as well. Prefixed names follow the syntax prefix:name

and can then be used in the SPARQL query. In the example the prefixes wu: and rdfs:

are used to shorten the query and to make it more legible. The pattern provided in the

example is very simple. It contains only two triple patterns and the variables ?city and

?label. The bindings for the variable ?label will be returned.

Our query looks for the labels for resources which are an instance of the class wu:City.

The two results will be Vienna and Wien.

2.2 City Indicator Frameworks

An ontology was created specifically for the Open City Data Pipeline describing key

concepts of the city domain such as spatial contexts (countries, cities, ...), indicator

categories, indicators etc. This City Data Ontology (described in Section 3.3) is derived

from other, already existing city indicator frameworks, which we briefly describe here.

2.2.1 Urban Audit

The Urban Audit data collections conducted by the national statistical institutes, the

Directorate-General for Regional and Urban Policy (DG REGIO) and Eurostat are try-

ing to assess the quality of life in European cities. The effort started in 1998 with a pilot
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phase. In September 2000 it was decided that the Urban Audit is useful and should be

continued in the future. Currently, data collection takes place every three years with an

annual data collection planned for a smaller number of indicators [40].

Urban Audit aims at providing an extensive look at the cities under investigation because

its a policy tool to the European Commission and other authorities of the European

Union (data is available for the EU nations, Norway, Switzerland and Turkey). ”The

projects’ ultimate goal is to contribute towards the improvement of the quality of urban

life” [17]. It is one of the most important data sources for the Open City Data Pipeline

(see Section 3.2).

At the city level, the Urban Audit contains around 250 indicators. In the initial pilot

phase there were over 500 but this number was significantly reduced. The collected

indicators were divided into the following categories:

• Demography

• Social Aspects

• Economic Aspects

• Civic involvement

• Training and Education

• Environment

• Travel and Transport

• Information Society

• Culture and Recreation

• Perception Indicators

These categories are mostly the same as the indicator categories used in the Open City

Data Pipeline (see Section 3.3). Urban Audit further divides each of the categories into

subcategories, e.g. Demography is divided into Population, Nationality and Household

Structure. The Perception Indicators are collected in opinion polls among a representa-

tive random sample of inhabitants of the cities.

The survey is conducted every three years (the last survey was in November 2012)

whereas the other data is now available via the regular Eurostat website

(http://ec.europa.eu/eurostat). The Urban Audit datasets all have identifiers starting

with urb_ and can be obtained from the regular online database of Eurostat.

All data is provided on a voluntary basis only which leads to varying data availability

and missing values in the collected datasets. The present work aims at addressing this

problem.
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2.2.2 Global City Indicators Facility (GCIF)

The Global City Indicators Facility (GCIF) uses a standardized methodology to provide

a set of city indicators with the aim of global comparability of city performance and

knowledge sharing. GCIF is a program of the Global Cities Institute at the University

of Toronto [19].

The indicators are organized around 20 ”themes” which are divided into two categories:

city services and quality of life [20]. Currently the following themes are used:

City Services

• Education

• Finance

• Recreation

• Governance

• Energy

• Transportation

• Wastewater

• Fire and Emergency Response

• Health

• Safety

• Solid Waste

• Urban Planning

• Water

Quality of Life

• Civic Engagement

• Economy

• Shelter

• Culture

• Environment

• Social Equity

• Technology

Overall there are 115 indicators collected. The data is made available online via a

relational database. However, only cities which become members and report their own

data are gaining access to the database. Thus, the Open City Data Pipeline does

currently not collect data from GCIF because it is not Open Data.

GCIF also made a standardization effort resulting in the ISO 37120 (International Or-

ganization for Standardization) standard for city services and quality of life in cities

which was published in May 2014. The standard includes a set of indicators as well as

a methodology to measure these indicators [13].
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2.2.3 Carbon Disclosure Project (CDP)

The Carbon Disclosure Project (CDP) is an organization based in the UK aiming at

using ”[...] the power of measurement and information disclosure to improve the man-

agement of environmental risk” [12]. CDP runs several projects regarding environmental

governance. The primary focus lies in the disclosure of emission related data. One of

these projects is CDP cities, which was introduced in 2011. In this project, CDP has

collected data on more than 200 cities worldwide. CDP cities offers a reporting plat-

form for city governments using an online questionnaire. The questionnaire covers the

following climate-related areas:

• Emissions

• Governance

• Climate risks and adaptation to them

• Opportunities

• Strategy

Whereas Urban Audit and GCIF aim to measure the general quality of life in cities,

CDP focuses on environmental data (e.g. greenhouse gas emissions, energy sources).

Urban Audit and GCIF are therefore more broad efforts to collect city data, e.g. on

Demography, Social, Economic as well as Environmental aspects.

2.3 Data Mining

The objective of the Open City Data Pipeline is to support studies and reports by

providing rich data on cities. The more data can be published the better. More people

and organizations can benefit from the data in the Open City Data Pipeline if more data

is provided and the data covers the city or indicator they are interested in. Unfortunately

there are currently many missing values in our dataset.

Missing values are a prevalent problem across a wide variety of domains. Some of

the possible reasons are faulty equipment, incorrect measurements, missing fields in

data from forms or the data was simply not collected or available. Missing values are

important for several reasons: Obviously there are less patterns and relations to be

extracted from less data. The conclusions which can be drawn are therefore less strong

and the decisions based on the data are less reliable.
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For the Open City Data Pipeline the large missing ratio is partly due to incomplete data

published by the data sources. Another reason is that combining data from different

sources which publish data on disjoint cities and indicators (i.e. there are no overlapping

rows or columns in the datasets) exacerbates the ratio of missing values.

Figure 2.2: Growing number of missing values when integrating multiple datasets
(mockup data)

Figure 2.2 illustrates this problem (simplified). In this example, there are no overlapping

cities or indicators, therefore no data integration can be performed. Instead the data sets

are concatenated and merged together. Each dataset has zero missing values considered

separately. However, once you join them together half the combined dataset is empty

which equals a missing ratio of 50%.

The obvious solution to the problem of missing values is getting additional data by

collecting it. This is, in principle, the best option because data quality is (usually)

high [1]. However, getting additional data is in our case not feasible because there

are no resources to manually collect these vast amounts of data on thousands of cities.

Getting data from individual city sites was also out of the scope of this work due to the

high resource demand of such an effort. Only data covering multiple cities from large

organizations and communities (e.g. Eurostat, Wikipedia) is currently integrated. An

extensive search for these datasets was conducted and the sources found were integrated

(see Section 3.2).

Since collecting additional data is not a feasible alternative in this context, some form

of prediction (i.e. imputation of missing values) is required. The missing values need

to be inferred from the existing data as accurately as possible which can be done with

Data Mining.
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”Data mining is the analysis of (often large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable

and useful to the data owner” [21, p. 6]. It is an inter-disciplinary field which combines

elements of statistics, database technology, machine learning and artificial intelligence.

The unsuspected relationships discovered in the observed values are utilized to predict

unobserved values.

2.3.1 Data Mining Models

Data mining aims at revealing unsuspected relationships in the data. There are empirical

dependencies between indicators in the data. Data mining techniques are used to build

an explicit model of these dependencies [48, Chapter 1.2.1].

Data Mining Models can be descriptive or predictive. Descriptive models summarize the

data in a new and (hopefully) better way. Predictive models on the other hand allow

inferring new information. An example of a descriptive data mining technique is Clus-

tering. Clustering methods try to find homogeneous groupings of a set of observations

by forming clusters of observations which are similar to each other [54].

Regression and classification models are examples for predictive data mining techniques

aiming at predicting a value. If the value to be predicted is continuous or quantitative

this is called a regression problem. Classification on the other hand involves predicting a

non-numerical (or categorical) value [27]. The output of a regression model is therefore

always a quantitative value whereas the output of a classification model is always a

categorical value.

In the course of this work we are only concerned with predicting numeric values. There-

fore, we are dealing with a regression problem. In general, in regression there are one

or more variables used for the prediction (i.e. the input variables) and one variable to

be predicted (i.e. the output variable). In the case of the Open City Data Pipeline the

variables are indicators. Variables used for the prediction are called predictors here

(other names are independent variables, regressors, explanatory variables), variables to

be predicted are called target here (other names are dependent variable, criterion vari-

able, response variable). The input of a regression model are therefore the predictors

and the output of the model is a value for the target. A model describes how this

transformation from inputs to output is achieved.

Observations for which both predictors and target variable are known are used for con-

structing a model. This model allows predicting the values of the target variable for
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observations for which only the predictors are known. The new information which is

inferred is therefore the previously missing target value [21].

Regression models can be of different forms: they can consist of a search algorithm

to find similar observations, they can consist of a tree which splits up the data into

homogeneous subsets or they can consist of a simple linear formula describing which

indicators need to be combined how to predict another indicator. Independent of the

specifics of the model, it always describes how to combine the predictors to get to a

value for the target variable.

2.3.2 Regression methods

In this section three regression methods are introduced: k-nearest neighbour, linear

regression and decision trees. To illustrate the regression methods we are going to use

the example data on German cities in Table 2.1. This data was extracted from the

pipeline’s database, its original data source is Eurostat.

Price Area Unemployment Household
City for taxi of living rate income

Augsburg 8.30 38.9 9.6 18500
Berlin 10.00 37.9 16.7 17400
Bochum 7.30 38.4 10.1 19100
Bonn 7.90 43.3 5.6 21300
Bremen 9.50 41.9 11.8 17500
Cologne 8.24 40.2 9.2 19700
Dortmund 9.00 38.6 11.6 18500
Dresden 8.10 30.9 13.1 16900
Erfurt 9.10 35.2 15.7 17100
Essen 6.04 39.0 8.5 20200
Hamburg 10.50 40.2 9.9 19400
Nuremberg 13.00 40.7 11.2 19400
Frankfurt 12.00 38.5 7.6 ?

Table 2.1: Example data

There are 13 observations of four indicators: price for taxi, average area of living, un-

employment rate and median household income. The three indicators price for taxi,

average area of living and unemployment rate are the predictors. Whereas for the sake

of illustration we assume that the median household income is the target. The household

income of Frankfurt is missing. It is now demonstrated how this missing value can be

predicted using different regression methods.
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K-Nearest Neighbour regression

K-nearest neighbour algorithms (KNN) are one of the most wide-spread data mining

techniques applied in a variety of domains. ”The algorithm is simple, easily understand-

able and reasonably scalable[...]” [60, p. 9]. KNN can be used in variants for clustering

and classification as well as regression.

The first step of the algorithm is to figure out which observations are the closest (or

nearest) to our target observation (in our case Frankfurt). To measure closeness we

can use one of several so called distance metrics. There are multiple distance metrics

available. One of the most commonly used is the Euclidean distance. The formula

for the Euclidean distance of two observations x and y having N indicators is given in

Equation 2.1.

D =

√√√√ N∑
i=1

(xi − yi)2 (2.1)

A major drawback of calculating the distance directly from the raw data is that indicators

with very high absolute values will far outweigh other predictors (in our example area of

living would outweigh the other two predictors). Since all predictors should be of equal

importance the data should be normalized. A value X is normalized to a value between

0 and 1 with the formula

XN =
X −Min

Max−Min
(2.2)

where Min is the minimal value of the indicator and Max is the maximum value of

the indicator. The normalized data from Table 2.1 with the Euclidean distances to the

target observation is shown in Table 2.2.

The column k rank shows the rank of the observations based on their distance to the

target observation Frankfurt. The lower k rank is, the smaller is the distance of the

observation to the target. Assume that we choose k = 3, i.e. we are looking at the three

nearest neighbours. Based on the indicators in our example data, the three nearest

neighbours of Frankfurt (i.e. the three observations with the lowest distance value to

the target) in our example would be Hamburg, Nuremberg and Dortmund. The median

household incomes in these cities are AC 19400, AC 19400 and AC 18500 respectively (see

Table 2.1).

The final step of the algorithm is to use the values of the found k nearest neighbours to

calculate a prediction for the target. The easiest implementation is to calculate the mean
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Price Area Unemployment Euclidean k
City for Taxi of living rate Distance rank

Augsburg 0.325 0.645 0.360 0.562 4
Berlin 0.569 0.565 1.000 0.870 10
Bochum 0.181 0.605 0.405 0.712 7
Bonn 0.267 1.000 0.000 0.728 8
Bremen 0.497 0.887 0.559 0.589 6
Cologne 0.316 0.750 0.324 0.576 5
Dortmund 0.425 0.621 0.541 0.562 3
Dresden 0.296 0.000 0.676 0.967 12
Erfurt 0.440 0.347 0.910 0.881 11
Essen 0.000 0.653 0.261 0.861 9
Hamburg 0.641 0.750 0.387 0.329 1
Nuremberg 1.000 0.790 0.505 0.397 2
Frankfurt 0.856 0.613 0.180

Table 2.2: Example data normalized

of the k values which leads to an estimated median household income in Frankfurt of

AC 19100. There are also more fine-grained variants of the algorithm which are considering

the distance of the neighbours by weighing the values with their respective distance to

the target.

KNN algorithms can also be applied to classification problems. Here the selected k

nearest neighbours decide with a ”majority vote” on the predicted class of the target. For

example, if the target in our example would be categorical and Hamburg and Nuremberg

would belong to category A and Dortmund to category B, then Frankfurt would be

assigned category A according to the majority vote (2 for A, 1 for B).

In Chapter 5 of the present work we use the function knnImputation() of the R package

DMwR, which fills in missing values by applying KNN regression. ”For each case with

any NA value it will search for its k most similar cases and use the values of these cases

to fill in the unknowns.” [55] The string ”NA” stands for a missing value in R. The

function does not simply use the mean of the target values of the nearest neighbours.

Instead, it obtains an average of their values weighted by the distance to the target case

to fill in the missing values.

Linear Regression

Generally in linear regression analysis the objective is to find a linear relationship be-

tween a target (see Section 2.3.1) and one (simple linear regression) or more than one

(multiple linear regression) predictors [53]. The following formulas show simple linear
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regression (2.3) and multiple linear regression (2.4) where Y is the target, X1 . . . Xp are

predictors, β0 is the Y-intercept, β1 . . . βp are regression coefficients, and p is the number

of predictors.

Y ≈ β0 + β1 ×X (2.3)

Y ≈ β0 + (β1 ×X1) + (β2 ×X2) + . . .+ (βp ×Xp) (2.4)

The linear relationship can be expressed as a so-called regression line going through

the data points. The line will seldomly fit perfectly therefore the goal is to minimize

the cumulated distance between the line and all data points which results in the best

fitting model. There are a several ways of measuring this closeness. The most common

approach is called ordinary least squares (OLS). The model is built such that the sum-

of-squares of differences of predicted (y′) and observed (y) values is minimized:

minimize
∑

(y − y′)2 (2.5)

Despite its simplicity linear regression often yields surprisingly accurate results: ”Though

it may seem somewhat dull compared to some of the more modern statistical learning

approaches [...], linear regression is still a useful and widely used statistical learning

method.” [27, p. 59]

As one of the most basic techniques in statistics, linear regression is natively supported

by the programming language R. It is part of the stats package which contains a wide

range of functions for statistical calculations and also includes the function lm() for

fitting linear models. It takes a data set and a specification of predictors and a target

as input and produces a linear model as output.

Applied to our example data in Table 2.1 the lm() function produces the following linear

relationship where X1 is the value for the indicator ”Price for taxi”, X2 is the value for

the indicator ”Area of living ” and X3 is the value for the indicator ”Unemployment

rate”. The observations with values for the target indicator (Household income) are

used to build the model, i.e. all observations except Frankfurt.

Y ≈ 18445.34408 + (25.05874×X1) + (97.85549×X2) + (−334.94201×X3) (2.6)
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The values X1, X2 and X3 can now simply be replaced with their respective values of

Frankfurt (12.00, 38.5, 7.6) and the equation can be solved to find the prediction for the

Household income in Frankfurt:

18445.34408 + (25.05874× 12.00) + (97.85549× 38.5) + (−334.94201× 7.6) = AC19967.93

(2.7)

Decision Trees

Tree-based methods involve segmenting the data into multiple smaller regions. Each

segmentation is based on splitting rules (i.e. a test on a predictor) which define how

to process further. The predictor which provides the most information gain is tested at

the root node of the tree. The result of the test defines which branch to follow to the

next segmentation. Once the final segmentation is done one can take a metric of all the

target values of observations which fall in the segment (e.g. mean, median) to fill in the

missing target value.

Consider the example data in Table 2.1. Decision trees are built top-down starting from

a root node and the process involves partitioning the data into subsets which contain

homogenous observations (i.e. observations with similar values). Various metrics for

homogeneity are available. We are going to use standard deviation in our example. The

formula for sample standard deviation is

s =

√∑
(χ− µ)2

n
(2.8)

where χ is the observed value, µ is the sample mean and n is the number of observations.

The standard deviation of the household income is 1295.18 (calculated with the first 12

observations, i.e. without Frankfurt).

The decision on which indicator is at the root node is based on the decrease in standard

deviation after the dataset is split on this indicator. For example we are splitting the

dataset on the indicator ”Unemployment Rate”. The algorithm is explained more easily

if the predictors are categorical variables. (The algorithm works the same in principle for

continuous variables.) Therefore, for simplicity, we are converting the numerical values

to three categories: high, medium, low. The observations are therefore categorized as

follows:
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Price Area Unemployment Household
City for taxi of living rate income

Augsburg medium medium low 18500
Berlin high low high 17400
Bochum low low medium 19100
Bonn low high low 21300
Bremen high high high 17500
Cologne medium high low 19700
Dortmund medium medium medium 18500
Dresden low low high 16900
Erfurt medium low high 17100
Essen low medium low 20200
Hamburg high medium medium 19400
Nuremberg high high medium 19400
Frankfurt high medium low ?

Table 2.3: Example data with categorized indicators

The dataset is split into the following three tables based on the unemployment rate

category.

Unemployment Category Household
City rate Unemployment rate income

Berlin 16.7 high 17400
Bremen 11.8 high 17500
Dresden 13.1 high 16900
Erfurt 15.7 high 17100

Table 2.4: Subset with high Unemployment Rate

Unemployment Category Household
City rate Unemployment rate income

Bochum 10.1 medium 19100
Dortmund 11.6 medium 18500
Hamburg 9.9 medium 19400
Nuremberg 11.2 medium 19400

Table 2.5: Subset with medium Unemployment Rate
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Unemployment Category Household
City rate Unemployment rate income

Augsburg 9.6 low 18500
Bonn 5.6 low 21300
Cologne 9.2 low 19700
Essen 8.5 low 20200

Table 2.6: Subset with low Unemployment Rate

The standard deviation of the Household income for the Table 2.4 is 238.48, for the

Table 2.5 is 367.42 and for the Table 2.6 it is 1005.92. The mean standard deviation of

the entire sample is therefore 537.28. The standard deviation reduction achieved with

this split is 757.91, i.e. the difference between the standard deviation before the split

(1295.18) and after the split (537.28).

This procedure is repeated for every predictor to find out which split provides the great-

est standard deviation reduction. The predictor with the highest standard deviation

reduction will be at the root node of the tree. For our example dataset this is the Un-

employment Rate. The dataset is split according to the categories ”high”, ”medium”

and ”low”. The steps described above are now repeated on the three subsets to find the

best possible split (providing the largest standard deviation reduction) for each subset.

Figure 2.3 shows the final decision tree. The unemployment rate is at the root node

because splitting the data on it provides the greatest standard deviation reduction. Due

to the limited number of observations in our example data the tree is very small. Real

world decision trees (especially for larger dataset like ours, see Chapter 4) have far more

nodes and segments.

Frankfurt has a low unemployment rate and (in the subset of cities with low unemploy-

ment rate) a high price for a taxi. This puts Frankfurt in the same subset as Augsburg

(Household income AC 18500) and Cologne (Household income AC 19700). The average

of these two values is AC 19100 which is the prediction for the missing household income

of Frankfurt.

Decision trees can be applied for classification and regression [27, chapter 8]. There

are many different advanced variants of decision trees, e.g. CART (classification and

regression trees), ID3 and C4.5 [44].

In the present work we use the so called random forest algorithm. Unlike in the example

above, where we only built one tree, the idea is to build many decision trees from the

same data set using random predictor selection to create trees with variation which
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Figure 2.3: Decision Tree

together ”vote” to arrive at a more accurate value. This way the predictive performance

can be significantly increased.

We use the function randomForest() of the R package randomForest [36], which im-

plements Breiman’s random forest algorithm. The algorithm is described in detail in [9].

Trees are built by providing the function with a formula of the target and the predictor

variables.

2.3.3 Prediction accuracy

We have seen three regression methods which build different models: KNN defines a

similarity metric and searches the dataset for similar observations to come up with a

prediction for a missing value. In linear regression we are creating a formula which

describes how the predictor variables need to be combined to arrive at a prediction for

the target variable. Finally tree-based methods aim at building a model in the form of

a decision tree which builds subsets of the data based on splitting rules.

One of the most important properties of these models is the prediction accuracy. The

error denotes the absolute difference between the predicted value and the actual value.
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”Average error produced by a model is encapsulated in the mean squared error (MSE)

or its square root, the root mean squared error (RMSE).” [58, p. 187] The formula for

the root mean squared error is given in Equation 2.9 where yt is the observed value of

prediction t, y′t is the predicted value and n is the number of predictions.

RMSE =

√∑n
t=1(yt − y′t)2

n
(2.9)

The main advantage of RMSE is that it is easily comprehensible because it has the same

scale as the predicted variable, i.e. a RMSE of 500 for the indicator household income

means that the average error of the model is AC 500.

One disadvantage is that its not suitable for comparisons among indicators with different

scales. Furthermore the RMSE does not contain any information on the range of possible

values. It is only helpful in combination with information on the dataset. For this

reason in this work the RMSE is normalized by dividing it by the range of the indicator

y (i.e. the maximum value ymax minus the minimal value ymin) resulting in the model

performance metric RMSE%. RMSE% is the metric used for evaluating all models built

in this work. The formula is shown in Equation 2.10. An overview of other evaluation

metrics is given in [21, chapter 7].

RMSE% = (
RMSE

ymax − ymin
)× 100 (2.10)

Consider the data given in Table 2.7 as an illustration. It shows error metrics for the

three predictions explained above assuming that the value for the average household

income in Frankfurt, which was missing in Table 2.1, is actually AC 19500.

Method Observed Prediction Error MSE RMSE RMSE%

knn (k=3) 19500 19100.00 400.00 160000.00 400.00 9.1
linear regression 19500 19967.93 -467.93 218958.48 467.93 10.6
decision tree 19500 19100.00 400.00 160000.00 400.00 9.1

Table 2.7: Error metrics for predictions on example data

RMSE has the same scale as the predicted indicator, i.e. Euro for household income. The

error of the value predicted by the knn algorithm is AC 400. This is helpful information

in a setting where all indicators are expressed in Euro. However we are dealing with

a large number of different indicators measured on different scales therefore the RMSE
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needs to be normalized to be helpful for comparisons among indicators with different

scales (see column RMSE% in Table 2.7).

The lowest RMSE% is scored by both knn and decision tree with 9.1%. This observation

implies that linear regression should not be used to predict missing values of the indicator

median household income in this particular dataset. Throughout this work the three

regression methods presented are always applied to all indicators and the best performing

method is picked for that specific indicator. This leads to better prediction accuracy

overall (see Section 5.1.3 and Section 5.2.3).

2.3.4 Overfitting

Focusing solely on error metrics like RMSE can lead to a serious problem in data mining

called overfitting. While a model able to predict values with a very low error is better

at describing the available dataset, at a certain point it is questionable whether this

actually means that the model can generally be considered ”better”, i.e. whether it is

describing the underlying relationships in the greater population from which the data

stems or whether it is merely adjusting to the specific data at hand.

If ”[...] any of the same data that have been used for selecting a model [...] are then also

used again for performance evaluation, then the evaluation will be optimistically biased.”

[21, p. 139] In this case, the model is too close to the available data. It is not applicable

for new, unseen data and therefore not capturing the unsuspected relationships we are

interested in. It exclusively describes the available data but not the underlying structure

and relations.

To avoid this phenomenon the data is split into two complementary subsets: a training

set and a test set. The goal is to build a model which generalizes well to an independent

dataset. This independent dataset is the test set.

The values for the target are known in both the training set and the test set. However,

only the training set is used to build the model. This model is subsequently applied

to predict the values in the test set. For KNN this means that the nearest neighbours

are searched for in the training set. The target values of these nearest neighbours are

then used to predict the target values in the test set (which are known - otherwise there

could be no error metric calculated). Likewise, the formula in linear regression and the

decision tree in tree-based regression are built with just the training set and subsequently

applied to predict the target values in the test set.

This procedure is also referred to as cross-validation. Error metrics like RMSE are

calculated for both the training and the test set. If a given method performs very well
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on the training set but has a large RMSE on the test set, the model is overfitting the

data. The optimal solution would be a low RMSE for both the training and the test set

[27, chapter 2.2].

2.3.5 Principal Component Analysis

PCA is a statistical technique for finding patterns in data of high dimension [49]. ”The

central idea of principal component analysis (PCA) is to reduce the dimensionality of

a data set consisting of a large number of interrelated variables, while retaining as

much as possible of the variation present in the data set” [30, p. 1]. The indicators

in our dataset (i.e. dimensions) are in parts strongly correlated. Therefore, our high-

dimensional dataset is highly suitable for PCA.

PCA reduces the number of dimensions without much loss of information. The new

dimensions, called Principal Components (PCs) are uncorrelated (as opposed to the

original indicators of our dataset, which are partly highly correlated). PCs are repre-

sented by Eigenvectors and Eigenvalues. The Eigenvector defines the direction of the

PC in the high-dimensional space. The Eigenvalue is a number describing how much

variance there is in the data in that direction. PCs are ordered decreasingly by their

Eigenvalue. The Eigenvector with the highest Eigenvalue is called ”the Principal Com-

ponent” [49]. The first PC captures the largest part of the variance in all of the original

indicators, i.e., it contributes most to explaining the original data from which the PCs

were calculated.

PCA is a form of matrix decomposition. [48] gives an excellent general introduction into

matrix decompositions. It suggests four interpretations of matrix decompositions:

• Factor interpretation

There are hidden or underlying factors and the original data is a mix of these

factors. The matrix decomposition uncovers these hidden underlying factors which

have more direct significance.

• Geometric interpretation

The rows of the original data can be viewed as coordinates in a multi-dimensional

space. The matrix decomposition describes the same data with a new set of coor-

dinates in a mult-dimensional space with less dimensions.

• Component interpretation

There are different processes that contribute to the values in the original dataset.

Each value represents a blend of multiple components. The matrix decompositions

separates these components stemming from different processes.
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• Graph interpretation

The columns and rows can be viewed as nodes in a bipartite graph and the values

in the original dataset represent the weight of the connection between them. A

bipartite graphs is a graph in which the nodes are divided into two classes and

every edge passes from one node class to the other. The matrix decomposition

transforms this graph in a tripartite graph (i.e., three classes) with the row nodes,

the column nodes and nodes acting as waystations. The book gives the following

example to illustrate this: ”[...] suppose we have a dataset whose rows are people,

and whose columns are famous works of art. The people are asked to indicate,

say on a scale of 1 to 10, how much they like any of the works of art with which

they are familiar. In the graphical view, these entries become weights on edges

linking people to works of art. After the decomposition, these direct links between

people and works of art become indirect links passing through waystations. These

waystations may correspond to different groupings of taste in art” [48, p. 34].

”Each of the interpretations is simply a way of looking at exactly the same decomposi-

tion.” [48, p. 34] The factor interpretation seems to be the most natural interpretation

for our dataset. Underlying factors of our indicators could be the size of the city, the

economic strength, the cultural affinity etc. Of course there are too many indicators in

our dataset to be able to reduce them to such broad factors.

Since the calculation requires a complete dataset without missing values, some form of

imputation is needed before the PCA can be performed. One option is to fill the missing

values with the column mean (i.e. the average value of the indicator) but there are more

advanced methods, e.g. the regularized iterative PCA algorithm (also known as the

expectation-maximization PCA, EM-PCA, see [46]). The implementation details are

discussed in [32]. The EM-PCA algorithm is an advanced statistical method which con-

siders the standard deviation, variance and mean from the observed values for an initial

imputation and then performs PCA repeatedly on the imputed dataset until conver-

gence (i.e. until there is no more significant improvement). ”The iterative PCA method

improves the prediction of the missing values compared to the mean imputation.” [32,

p. 87] Note that this imputation is aiming at keeping the properties of the indicators in

the dataset such as standard deviation and variance intact. The goal is an imputation

without distortion of the data to enable performing a PCA on the completed dataset.
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Open City Data Pipeline

In this chapter we describe the Open City Data Pipeline in more detail.

The pipeline is ”[...] a system for gathering city performance indicators published as

Open Data in order to ease the compilation of studies and reports” [43, p. 1]. Data from

various sources (see Section 3.2) is collected (see Section 3.1.1), integrated (see Section

3.1.2) and republished as Open Data using an ontology specifically created for the Open

City Data Pipeline (see Section 3.3). A Web Interface enables easy access to the data

(see Section 3.1.4).

3.1 Architecture & Components

In this section, we outline the architecture of the Open City Data Pipeline. We describe

the individual components and their relations.

The pipeline comprises the following components:

• Data collection (see Section 3.1.1)

• Data transformation & integration (see Section 3.1.2)

• Database (see Section 3.1.3)

• Web interface (see Section 3.1.4)

Figure 3.1 depicts the architecture of the Open City Data Pipeline. Data collection

needs to be done first. It provides the raw data for the data transformation and inte-

gration component. Once the data is properly transformed and conformant with the

29
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city data ontology, it can be loaded into the database. The web interface sits on top

of the architecture. There is a bidirectional communication scheme between the web

interface and the database: SPARQL queries resulting from user interaction are sent to

the database which performs the query and gets back the result to the interface. The

web interface presents the query results to the user.

Figure 3.1: Architecture of Open City Data Pipeline

Prediction of missing values is done in R. The data needs to be exported from the

database and preprocessed to convert it into a format suitable for R. After these pre-

processing and cleansing steps (described in 4.2) the regression models are built and

the missing values are predicted. The predicted values are then imported back to the

database. This part of the architecture is currently implemented separately from the

other components. The integration of this prediction component (i.e. automated data

export, regression and data import) is the next step in the development of the Open

City Data Pipeline.

3.1.1 Data Collection

Data collection is concerned with getting the data from the various sources onto the

machine on which the Open City Data Pipeline is set up. In general this can be done
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via APIs (application programming interfaces) or by directly downloading data files

provided by the source.

Getting data via APIs is advantageous because the internal representation of the data

is no concern, i.e. an internal change in the way data is organized by the source should

not affect your ability to get the data in the same format as before via the API. In

practice however there is the disadvantage of poor performance compared to a direct

download (e.g. when using the SPARQL end-point of http://dbpedia.org/), especially

when collecting larger amounts of data.

Data collection in the Open City Data Pipeline is currently performed with various

scripts. In general data can be crawled repeatedly over time to look for new data pub-

lications. However this process is not (yet) automated in the Open City Data Pipeline.

3.1.2 Data Transformation & Integration

Data collected from a foreign source is typically not in the format required by your

application. The Open City Data Pipeline includes a triple store (i.e. a database for

RDF data, see Section 3.1.3). The data in this database follows a specifically created,

extensible city data ontology (see Section 3.3). All collected data is transformed to be

conformant with this ontology.

This transformation and integration step is done with numerous bash and python scripts

which take as an input the data collected in its raw format from the data source and

which generate data conformant with the City Data Model ontology as output. This

data is subsequently added to the database.

The ontology requires each city to be identified by a unique URI. The Open City Data

Pipeline uses DBpedia HTTP URLs of the cities as identifiers. Data coming from other

sources than DBpedia is therefore always mapped to such URLs. This ensures consis-

tency and prevents the occurrence of multiple identifiers for the same city. Furthermore,

it fosters the discovery of additional information on the cities by following the DBpedia

URL.

3.1.3 Database (Apache Jena TDB)

The database used is an Apache Jena Triple Store (TDB). It stores all collected data

as well as the city data ontology. The Web Interface (see Section 3.1.4) accesses this

database to answer user queries. Jena is a ”[...] free and open source Java framework for
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building Semantic Web and Linked Data applications” [50]. Apache Jena also includes

an out-of-the-box SPARQL endpoint (called Fuseki) for serving RDF data over HTTP.

Apache Jena TDB is capable of storing data in the structure of a graph. ”The heart of

the Semantic Web recommendations is the RDF Graph as a universal data structure.”

[11, p. 1] The database for the Open City Data Pipeline is structured in multiple graphs:

The default graph contains the city data ontology. Additionally, every data source (see

Section 3.2) has its own named RDF graph storing the data coming from that particular

source.

3.1.4 Web Interface

The web interface enables easy access to the data stored in the database. It provides

the user with a simple form by which the user can select one or more cities, one or

more indicators and also the time period the user is interested in. The desired answer

format can also be specified by choosing between HTML and XML. Figure 3.2 shows a

screenshot of this simple web interface.

We are currently working on integrating the predicted values into the Web Interface

as well. Once the form is filled out and submitted a SPARQL query is built from the

user input and sent to the database. The result data is collected and presented to the

user in the selected format. For example a user could request the median age and the

total population of Vienna, Austria in 2008. Figure 3.3 shows the result of this query in

HTML (on the left) and XML (on the right).

3.2 Data Sources

A common level for general comparisons among spatial units available in international

statistics are countries. Therefore there are a lot of integrated datasets containing data

on numerous countries. Data on cities on the other hand is more likely to be available

individually, i.e. each city publishes its data on its own platform and therefore in its

own structure, format and style (see for example [2], [3]).

Looking for data on (possibly hundreds or thousands of) individual city data sources

and integrating them was not feasible within this work. Another approach is to search

for large organizations (e.g. United Nations) or large communities (e.g. Wikipedia and

the related effort to extract structured information from Wikipedia called DBpedia [4])

capable of collecting and integrating city data. A search for such datasets was conducted
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Figure 3.2: Screenshot of web interface input form

and resulted in the following data sources, which were used as data sources for the Open

City Data Pipeline:

• Eurostat (Urban Audit data, available at http://epp.eurostat.ec.europa.eu/)

• Wikipedia (DBpedia data, available at http://dbpedia.org/)

• United Nations (available at http://data.un.org/)

• Open Data Europe (available at http://open-data.europa.eu/)

• Worldbank (available at http://worldbank.org/)

http://epp.eurostat.ec.europa.eu/
http://dbpedia.org/
http://data.un.org/
http://open-data.europa.eu/
http://worldbank.org/
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Figure 3.3: Screenshot of query result in web interface

The Urban Audit data collections organized by Eurostat are trying to assess the quality

of life in European cities. As this is an extensive effort in the context of city data in

general, it is described in 2.2 in more detail.

The United Nations Statistics Division (UNSD) offers data on a wide range of topics

(e.g. education, environment, health, technology, tourism etc.). The focus of the UN

is on country level data but there are some data sets on cities available (for example

demographic data and data on housing units). These were collected and integrated into

the Open City Data Pipeline.

DBpedia, initially released in 2007, is an effort to extract structured information from

Wikipedia and publish it as Linked Data [4]. On cities, DBpedia provides various basic

indicators such as demographic or geospatial information (e.g. population, latitute/-

longitude, elevation etc.). The Open City Data Pipeline extracts only numerical values

from DBpedia. Other data types such as links to other resources (e.g. persons who are

born in a city) and textual information (e.g. descriptions) are not collected.

Open Data Europe provides a point of access to a growing range of data from institutions

of the European Union (EU) which is free to use for commercial and non-commercial

purposes. Data from publishers such as Eurostat, the European Banking Authority or

the European Environment Agency is available.

The Worldbank provides free and open access to economical data on countries around

the globe. Unfortunately it does not provide data on a lower spatial level (e.g. for

cities). However, data on countries is currently extracted and can be used for possible

extensions of the pipeline in the future.

Due to the large number of cities on earth some formal limitation on which cities to

include and which not to include had to be in introduced. The United Nations provide
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a list of capital cities and cities of 100.000 or more inhabitants which was used to define

this limitation [57, Table 8].

3.3 City Data Ontology

The city data ontology is an RDF data model created specifically for the Open City

Data Pipeline describing key concepts of the city domain. Some key concepts of our

ontology are cities, indicator categories, indicators and city data contexts. The City

Data Ontology is an RDF graph describing all of these concepts and their relationships

using RDF, RDFS and OWL (see Section 2.1.2).

3.3.1 Cities

Cities are the items of interest for the Open City Data Pipeline. In conformance with the

Linked Data Principles set up by Tim Berners-Lee, URIs of a well-established external

data provider are used as identifiers for cities: DBpedia URIs [7].

Indicator data collected from all data sources is mapped to these URIs so people can

discover more information on the cities by following the connection to DBpedia and

considering additional information, which is available there, as well.

There are numerous possible definitions of the concept of a city. Eurostat for example

defines three different spatial units for investigating cities (from smallest to largest):

• The Sub-City District

• The Core City

• The Larger Urban Zone [40, p. 9]

For the Open City Data Pipeline the concept of the Core City is of interest because it

corresponds to the administrative definition and is generally adapted most frequently

(i.e. it is most comparable to data from other sources although a perfect match over

multiple data sources is unlikely because there are different city definitions and varying

structures of local government).
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3.3.2 Indicators

Indicators in the context of this work are defined as metrics on different aspects of

cities. Every indicator belongs to a specific indicator category. The ontology defines the

following eight indicator categories:

• Culture and Recreation

• Demography

• Economic Aspects

• Environment

• Geography

• Social Aspects

• Training and Education

• Travel and Transport

These indicator categories are derived from the categories defined by the Urban Audit

data collection conducted by Eurostat [40]. All indicators were assigned to an indicator

category manually. A list of indicators used for predicting missing values in Chapter 5

can be found in Appendix A. Note that this list does not contain all indicators defined

in the ontology (due to removal of indicators during preprocessing and cleansing).

Listing 3.1 shows the definition of the indicator category demography in the ontology. It

has the URI http://citydata.wu.ac.at/Demography and is simply defined as an Open

City Data Pipeline category as well as a skos:Concept. In addition, it is given an English

and German label. SKOS stands for Simple Knowledge Organization System. It is a

data model providing common vocabulary for representation of taxonomies, classification

schemes, thesauri etc. ”A SKOS concept can be viewed as an idea or notion; a unit of

thought.” [38]

1 @prefix : <http :// citydata.wu.ac.at/> .

2 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .

3 @prefix skos: <http :// www.w3.org /2004/02/ skos/core#> .

4

5 :Demography

6 rdfs:label "Demography "@en ;

7 rdfs:label "Demographie "@de ;

8 a :Category , skos:Concept .

Listing 3.1: Indicator category definition in City Data Model Ontology

The ontology contains descriptions (rdfs:comment) and labels (rdfs:label) for each

indicator in English as well as in German. Listing 3.2 shows two indicator definitions

for population and unemployment rate.
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1 @prefix : <http :// citydata.wu.ac.at/> .

2 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf -schema#> .

3 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

4 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .

5 @prefix dbpedia -owl: <http :// dbpedia.org/ontology/> .

6

7 :population a owl:DatatypeProperty , rdfs:Property , :Indicator ;

8 :unit "persons" ;

9 rdfs:comment "Population total"@en ;

10 rdfs:comment "Bev ö lkerung gesamt"@de ;

11 rdfs:label "Population"@en ;

12 rdfs:label "Bev ö lkerung"@de ;

13 rdfs:domain :CityDataContext ;

14 rdfs:range xsd:integer ;

15 :category :Demography .

16

17 urbanaudit:population_on_the_1st_of_january_total

18 rdfs:subPropertyOf :population .

19

20 dbpedia -owl:populationTotal

21 rdfs:subPropertyOf :population .

22

23 :unemployment_rate a owl:DatatypeProperty , rdfs:Property , :Indicator ;

24 :unit "%" ;

25 rdfs:comment "Unemployment Rate"@en ;

26 rdfs:comment "Arbeitslosenrate"@de ;

27 rdfs:label "Unemployment Rate"@en ;

28 rdfs:label "Arbeitslosenrate"@de ;

29 rdfs:domain :CityDataContext ;

30 rdfs:range xsd:decimal ;

31 :category :EconomicAspects .

32

33 urbanaudit:unemployment_rate

34 rdfs:subPropertyOf :unemployment_rate .

35

36 <http :// dbpedia.org/property/unemployment >

37 rdfs:subPropertyOf :unemployment_rate .

Listing 3.2: Indicator definitions in City Data Model Ontology

Like cities and indicator categories, indicators are assigned a URI as well , in this case

http://citydata.wu.ac.at/population and

http://citydata.wu.ac.at/unemployment_rate. Furthermore indicators also have

associated units (e.g. persons, EUR). This is important because it enables integration

of data with different scales measuring the same phenomenon (e.g. temperature in
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degrees Celsius and Fahrenheit), which is (partly) addressed in previous work [8]. The

indicator population has persons as unit and the unemployment rate has a percentage

as unit.

The range of possible values each indicator can have is defined using rdfs:range followed

by an XML data type. The range of the unemployment rate is xsd:decimal whereas the

population is always a whole number, therefore the data type is xsd:integer. These

data types can be helpful for detecting outliers and other errors in the data and are

therefore essential for ensuring data quality.

Duplicate data source specific indicators are mapped to a unifying city data ontology

indicator. This is a crucial data integration principle of the Open City Data Pipeline.

For example Listing 3.2 maps the indicators

urbanaudit:population_on_the_1st_of_january_total (Data source: Eurostat) and

dbpedia-owl:populationTotal (Data source: DBpedia) to the general Open City

Data Pipeline indicator http://citydata.wu.ac.at/population. The Open City Data

Pipeline in its current implementation does not use any information on the data sources

to determine the trustworthiness of a specific data point (i.e. there is no ranking saying

that data coming from source A should always be trusted over data coming from source

B). However such an extension can be done in the future because the provenance of

every data point is stored in a City Data Context.

3.3.3 City Data Context

The central class of the ontology is the City Data Context. A City Data Context is a

concept introduced for this particular domain. It can be viewed as a container holding

valid indicator-value pairs from a specific data source for a specific city at a specific time

(typically a year). It is therefore the link between a spatial context (i.e. the city), a time

context, a data source and the indicators. City Data Contexts also store information on

the provenance of data (i.e. the origin of a specific value).

Listing 3.3 shows (an excerpt of) a Turtle representation of a City Data Context for

data from Eurostat on Vienna in 2011.
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1 @prefix : <http :// citydata.wu.ac.at/> .

2 @prefix urbanaudit: <http :// www.urbanaudit.org/> .

3 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema#> .

4

5 [ a :CityDataContext ;

6 :dateValidity "2011 -12 -31 T12 :00:00Z"^^xsd:dateTime ;

7 :periodValidity :annual ;

8 :source <http ://epp.eurostat.ec.europa.eu/> ;

9 :spatialContext <http :// dbpedia.org/resource/Vienna > ;

10 urbanaudit:population_on_the_1st_of_january_total 1714142 ;

11 urbanaudit:unemployment_rate 7.4 ;

12 ] .

Listing 3.3: A City Data Context

City Data Contexts are represented with a blank node (denoted with [ ] in Turtle)

because City Data Contexts do not need to be identifiable individually. They are merely

a container for the actual data we are interested in.

All the triples in Listing 3.3 have the same blank node in the subject position, therefore

they are separated using semicolons. The blank node is an instance of the class

http://citydata.wu.ac.at/CityDataContext. The point of time for which the infor-

mation is valid is defined with :dateValidity using a string of type xsd:dateTime. This

datatype - which is itself a IRI - is preceded by ^^. In our example the :dateValidity

is December 31st 2011. We use the last day of the year if no more fine-grained time

validity is provided by the data source.

The :periodValidity describes the expected duration of validity of the data. Typically

this is annual but there are other possible values defined in the ontology like quarterly

or monthly. The data source is stored as a URI to the publishers website. A triple

with :spatialContext in the predicate position defines the city which the City Data

Context describes (note that this is a DBpedia URI). Figure 3.4 depicts the (simplified)

structure of a City Data Context.

In addition to the general information describing the properties of the specific City Data

Context like the city, time, data source and expected duration of validity there are also

the indicator value pairs. These contain the values of the indicators for this specific city

at this specific time. In the example - which only contains an excerpt - there are two

indicators with their corresponding values:

urbanaudit:population_on_the_1st_of_january_total and

urbanaudit:unemployment_rate. These data source specific indicators will be mapped
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Figure 3.4: Structure of City Data Context (based on [41])

to the general Open City Data Pipeline indicators

http://citydata.wu.ac.at/population and

http://citydata.wu.ac.at/unemployment_rate as defined in the city data ontology

(see Listing 3.2).
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The Dataset

In this chapter we describe the dataset which we use in Chapter 5 in more detail. The

dataset used for predictions contains only a subset of all data stored in the TDB. We

obtain this subset by querying the TDB and performing multiple preprocessing steps

to cleanse the data before any kind of analysis is performed. These steps are necessary

because otherwise there would be too many values missing for any reasonable prediction.

We describe how the data export is done and what preprocessing steps are performed

on the exported data. Finally we give some details on the dataset characteristics with

particular focus on missing values.

4.1 Data export

Our Apache Jena TDB [50] can easily be queried with arbitrary SPARQL queries using

the command line tool tdbquery, which is included in the Apache Jena framework.

Listing 4.1 shows the query obtaining all available City Data Contexts (i.e. all indicator

value pairs where the indicator has been explicitly modeled as an :Indicator) from the

year 2004. The result set contains the city, the indicator and the value for the specified

year for every indicator.

41
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1 SELECT DISTINCT ?city ?indicator ?value

2 WHERE {

3 GRAPH ?G {

4 [] :spatialContext ?city ;

5 ?ind ?value ;

6 :dateValidity ?Date .

7 ?city a :City .

8 }

9 ?ind rdfs:subPropertyOf ?indicator .

10 ?indicator a :Indicator .

11 FILTER (STR(year(?Date)) = "2004")

12 }

13 ORDER BY ?indicator ?city

Listing 4.1: SPARQL query obtaining all City Data Contexts of one year

Where multiple sources exist for the same indicator the individual indicators are mapped

to a general indicator (superindicator). This is done with rdfs:subPropertyOf in Line

9 of Listing 4.1. For simplicity of querying all indicators are always subproperties of

themselves. The additional triples to specify this reflexivity are added automatically by

the import script. A query sent to the Open City Data Pipeline database should return

all the available information regardless of the source (i.e. all the subproperties of the

general indicator, see Section 3.3).

General information on the indicator structure and hierarchy (i.e. the city data ontology)

is stored in the default graph of the database. Therefore, it is located directly in the

WHERE clause of the query. The City Data Contexts on the other hand are stored in

a separate graph named after the data source. Therefore the part of the query pattern

which is matching City Data Contexts is within a GRAPH ?G { } construct because all

the City Data Contexts are stored in named graphs.

We are using a SPARQL filter to limit our result set to the parts we are interested in. In

the example, the year part (extracted with the function year()) of the variable ?Date

has to be 2004. Finally, the results are ordered by the indicator and subsequently by

the city.

We are using the command line tool tdbquery to send queries to the Triple Database

(TDB) (see Listing 4.2). The tool allows for exporting data in the common comma

separated value format (CSV) which can be directly used by most data analysis tools

such as R or SPSS.
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1 tdbquery --loc=tdb -db1 --query query.rq --results CSV > 2004. csv

Listing 4.2: Exporting data with tdbquery

This command line statement uses three parameters:

• loc: location of the Apache Jena Triple Database.

• query: location of file containing the SPARQL query to execute.

• results: specifying the result format, in this case CSV.

The result of the query in 4.1 is a table with the columns city, indicator and value stored

in a CSV file called 2004.csv.

4.2 Preprocessing

We conduct several preprocessing steps in order to bring our data in a format suitable

for further analysis. The required steps to achieve this are described in this Section.

Year Source City Indicator Value

2009 Eurostat Hamburg 1 person households 485500
2009 Eurostat Vienna 1 person households 396000
2009 Eurostat Paris 1 person households 594434
2009 Eurostat Hamburg Population 1774224
2009 DBpedia Vienna Population 1686271
2009 Eurostat Vienna Population 1688271
2009 Eurostat Vienna Cars 663926
2009 Eurostat Paris Cars 532877

Table 4.1: Exported data (mockup data)

Table 4.1 shows some mockup data which we are going to use to illustrate the prepro-

cessing steps.

4.2.1 Duplicates

We are using the programming language R in the following Chapter and R expects the

data to be in tabular form with rows and columns. Tables are sets and can therefore not
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contain duplicates. We want our cities as rows, our indicators as columns and one (or

no) value for each of the table cells. However, there are duplicate values in our data, i.e.

more than one indicator value is available for a specific city-year combination. These

duplicates are present because there are overlapping indicators from different sources.

For example, population data is available from Eurostat as well as from DBbpedia.

In its current implementation, the Open City Data Pipeline does not use any information

on the data sources to determine the trustworthiness of a specific data point. In such a

case the value coming from the most trustworthy source would be taken while the other

values would be deleted. Instead, duplicate values are replaced with their arithmetic

mean, i.e. all available information is considered. The replacement with the arithmetic

mean is a good solution if there are no outliers in the data. An outlier would seriously

distort the value (i.e. the calculated mean). In order to avoid this, outlier detection can

be applied, which is out of the scope of this work but subject to future work (see Section

6.2).

For example, in the mockup data in Table 4.1 there is one duplicate for Vienna for the

indicator population. The two original values 1686271 (from DBpedia) and 1688271

(from Eurostat) are therefore replaced by their mean 1687271.

4.2.2 Transposition

The data needs to be transposed into a data table which has cities as rows and indicators

as columns. The SPARQL query which performs the data export from TDB (see Section

4.1) results in a list format. A short awk script performs this transposition (see Listing

4.3).
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1 awk -F\; ’

2 NR >1 {

3 # get indicators

4 if(!($1 in indicators)) { indicator [++ types] = $1 }; indicators[$1]++

5

6 # get cities

7 if(!($2 in cities)) { city [++ num] = $2 }; cities[$2]++

8

9 # create map with coordinates indicator/city containing the value

10 map[$1 ,$2] = $3

11 }

12 END {

13 # print first line (headers: city , indicator1 , indicator2 , ...)

14 printf "%s;" ,"city";

15 for(ind=1; ind <= types; ind ++) {

16 printf "%s%s", sep , indicator[ind];

17 sep = ";"

18 }

19 print "";

20

21 # for every city , print city name and corresponding values

22 for(cit=1; cit <=num; cit ++) {

23 # print city name

24 printf "%s", city[cit]

25 for(val =1; val <= types; val ++) {

26 # print values for indicators

27 printf "%s%s", sep , map[indicator[val], city[cit ]];

28 }

29 print ""

30 }

31 }’

Listing 4.3: Transposing data from list format to table format

Transposing the mockup data in Table 4.1 would result in Table 4.2. The cities are now

the rows and the indicators are the columns. Furthermore, the duplicate was already

replaced by calculating the mean of all duplicate values.

4.2.3 Data cleansing

As a general heuristic, columns and rows with too few values are omitted from the

analysis. The threshold chosen here is 10% of possible values. This cleanses the data
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City Year 1 person households Population Cars

Hamburg 2009 485500 1774224
Vienna 2009 396000 1687271 663926
Paris 2009 594434 532877

Table 4.2: Result of export query - transposed (mockup data)

from columns and rows carrying very little information which enables a better prediction

performance.

The operation of trimming a table so that only the rows of interest remain is called

Selection in relational algebra. All other rows are removed from the table. Rows are

city/year-combinations in our dataset. Listing 4.4 shows an R script for deleting all rows

with less values than specified as a threshold (10% in this case) from a list of dataframes

called datasets. The list of dataframes corresponds to the list of the datasets from the

different years, each containing the data from one year. A dataframe is a datatype in R

corresponding to a table. All rows (i.e. city-year combinations) where less than 10% of

all values are known are deleted from the dataframes. Keep in mind that the datasets

still contain all columns at this time (regardless of the sparsity in them) and the 10%

threshold is calculated from all these columns, not from the 146 columns which remain

after the next preprocessing step.

1 threshold <- 0.1

2 datasets <- lapply(datasets , function(df) {

3 rows <- apply(df, 1, function(x) sum(!is.na(x)))

4 df[rows > (ncol(df) * threshold), ]

5 })

Listing 4.4: Deleting rows (selection) with a value count below a threshold from a list

of dataframes in R

The operation of trimming a table so that only the columns of interest remain is called

Projection. All other columns are removed from the table. Columns are indicators in

our dataset. Listing 4.5 does the same for columns as the code above for rows. All

columns (i.e. indicators) where less than 10% of all values are known are deleted from

the dataframes.
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1 threshold <- 0.1

2 datasets <- lapply(datasets , function(df) {

3 cols <- apply(df, 2, function(x) sum(!is.na(x)))

4 return(df[, cols > (nrow(df) * threshold)])

5 })

Listing 4.5: Deleting columns (projection) with a value count below a threshold from

a list of dataframes in R

The sparsely populated columns which are deleted with the code above are often indi-

cators which are available at only one data source, e.g. data from DBpedia concerning

weather phenomenon like temperatures, precipitation, snow days. These indicators could

still be helpful for predicting some of the other, non-weather indicators. However, the

present thesis focuses on an extensive approach which is able to predict many miss-

ing values with satisfactory accuracy. Further research on isolated indicators and their

correlations is subject to future work.

4.3 Dataset characteristics

Table 4.3 shows the distribution of available and missing values across the years2004-

2011. For the analysis conducted in Chapter 5 we are considering all the data from these

years. The rationale behind this is that every city at every year is a valid configuration

of all indicators and therefore contains valuable information.

For the remainder of this thesis we use an integrated dataset with data from the years

2004 to 2011. The export query shown in Listing 4.1 is therefore repeated for every year

between 2004 and 2011. The resulting datasets are then cleansed as described above

and afterwards merged together to create a single, large dataset.
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table filled missing percent

year cities indicators cells values values missing

2004 629 146 91834 45317 46517 50.65

2005 387 146 56502 26642 29860 52.85

2006 406 146 59276 28251 31025 52.34

2007 395 146 57670 26952 30718 53.27

2008 579 146 84534 47898 36636 43.34

2009 559 146 81614 43871 37743 46.25

2010 861 146 125706 70084 55622 44.25

2011 864 146 126144 82307 43837 34.75

all 1064 146 683280 371322 311958 45.66

Table 4.3: Distribution of values across years

The Open City Data Pipeline’s database contains data ranging from the years 1970

to 2014. However, the amount of data varies from year to year and most of the data

concerns the years after 2000. Furthermore the indicators covered are not the same for

all of these 45 years. The years 2004 to 2011 were chosen because the datasets from

these years contain a lot of data (relatively) from the same indicators.

The final dataset (containing data of 8 years) has 4680 rows (translating to city-year

combinations) and 146 columns (translating to indicators). This results in 683280 table

cells and possible values. 371322 of these table cells are filled with values, 311958 are

empty.

4.3.1 Cities

There is a total of 1064 distinct cities (4680 city-year combinations equal to rows) in

the dataset. There is an average of 79.34 data points per city-year combination (out of

146 columns, equals 54.34%). Figure 4.1 shows a histogram of the distribution of values

per row. It shows how the values (and therefore also the missing values) are distributed

over the cities. For instance, 224 city-year combinations have more than 140 values (out

of 146 possible values).
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# values (i.e., indicators) per city−year combination (out of 146)
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Figure 4.1: Histogram of distribution of values per row

Three quarters of the rows (3486 or 74.49%) have more than 50 values and 1462 (or

31.24%) have more than 100 values out of 146 possible.

4.3.2 Indicators

There is a total of 146 indicators in the dataset (see Appendix A). There is an average

of 2543.30 data points per indicator (out of 4680 rows). Figure 4.2 shows - in the form

of a histogram - that there are no indicators with less than 500 values because this is an

already cleansed dataset after preprocessing was performed (see Section 4.2).

For instance, 18 indicators have between 1001 and 1500 values (out of 4680 possible

values). Most indicators have between 1001 and 3500 data points. Population indicators

are at the high end of the scale since they are the most prevalent and most easily

obtainable data points.
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# values (i.e., city−year combinations) per indicator (out of 4680)
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Figure 4.2: Histogram of distribution of values per indicator

Table 4.4 shows the distribution of values across indicator categories. There is a total of

7 indicator categories. Geographical information was not used in the dataset, although

there could be some potential for future work, e.g. by calculating the physical vicinity

of cities using latitude, longitude and altitude and using this distance in the prediction

model (see Section 6.2).

values per

category indicators indicators % values indicator values %

Culture and Recreation 9 6.16 18365 2041 4.95

Demography 61 41.78 194380 3187 52.35

Economic Aspects 22 15.07 48070 2185 12.95

Environment 10 6.85 18750 1875 5.05

Social Aspects 26 17.81 54499 2096 14.68

Training and Education 8 5.48 16819 2102 4.53

Travel and Transport 10 6.85 20439 2044 5.50

Total 146 100.00 371322 2543 100.00

Table 4.4: Distribution of values across indicator categories
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If there were an even distribution of indicators across indicator categories each category

would contain 14.29 indicators. However, the distribution in the dataset is not even.

There are more demographic indicators than indicators of other categories and in ad-

dition these demographic indicators contain more values per indicator. This is due to

the fact that this information is easier to obtain and in many cases already available

to the authorities without additional effort because detailed demographic information

is regularly collected in censuses. 52% of all values contain demographic information,

followed by social (15%) and economic (13%) indicators.

4.3.3 Missing Values

The dataset has 683280 table cells and 371322 actual values. Therefore in the entire

dataset 45.66% of values are missing even after cleansing which makes working with this

dataset challenging.

Table 4.3 indicates the missing ratio per year. Between 53% (2007) and 35% (2011) of

the values are missing.

Early on in our work we tested the assumption that the ratio of missing values (called

missingness) in our dataset is dependent on the size of the city. The underlying idea

being that bigger cities are more likely to provide more data than smaller ones. A

strong correlation between the missingness and one feature in the data would constitute

data Missing not at random (MNAR). ”When data are MNAR there is presumably some

model that lies behind missingness.” [24, p. 4] Many data mining techniques are based on

the assumption that the missingness in the data is not MNAR. However, the correlation

coefficient between the number of missing values per city and the population of the

city was found to be around 9% for the dataset (Pearson product-moment correlation

coefficient). This observation means that the initial assumption was wrong because

missingness cannot be explained with the size of the city.
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Predicting Missing Values

Two approaches to finding predictions for missing values are presented in this chapter.

For both of these approaches we will describe the necessary steps which need to be taken

to predict the missing values. Finally we will present the results achieved and we will

compare them.

5.1 Approach 1 - Building complete subsets

In the first approach we try to build models which directly use available indicators as

predictors to predict a target indicator. In order to do that we are using the correlation

matrix of the data to find indicators which are suitable as predictors for a specific target

indicator.

Subsequently, we build a complete subset from our data, i.e. we first perform a projection

on our data table (keeping only the predictors and the target as columns) and afterwards

we perform a selection on our data table (keeping only rows without missing values).

We split our complete subset into training and test set and train our model on the

training set. The prediction accuracy is evaluated by applying the trained models to

our test set and investigating the average error using our prediction accuracy metric

RMSE% (see Section 2.3.3).

5.1.1 Overview

In this section we list the necessary steps to build the regression models and make the

predictions. These steps are subsequently described in more detail. Steps 2-7 need to

be performed for every column (indicator) of the dataset that needs to be predicted:

52
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1. Calculate the correlation matrix of the dataset.

2. Search for indicators with either a strong positive or a strong negative correlation

with the target indicator.

3. Create a subset with the target indicator plus the indicators with the highest

absolute correlation coefficients (the predictors).

4. Delete all rows with missing values. The subset is now a complete dataset without

missing values.

5. Split the dataset into a training set and a test set.

6. Train the model using the training set.

7. Apply the model to the test set and compare the predicted values with the observed

values.

5.1.2 Prediction

The steps presented below are repeated for every column in the dataset. Listing 5.1

shows the for loop in R to iterate over all columns in the dataset (referenced by the

variable data). The variable target contains the column name of the current iteration.

1 for(target in colnames(data)) {

2 # CODE

3 }

Listing 5.1: Looping over all columns in R

Correlation coefficients

The first step of the approach is to calculate the correlation matrix. In order to be able

to apply the regression methods presented in Section 2.3.2 a complete subset needs to be

built. Due to the large ratio of missing values (see Section 4.3.3) not all of the indicators

can be used to build the predictive models because there is not a single observation

which has no missing values for any indicator.

A random selection of indicators would be possible but there is a metric which helps

determining whether a specific indicator is suitable for predicting another indicator: the

correlation coefficient. ”A correlation coefficient reflects the strength or degree of linear
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association between variables or the extent to which the two variables behave alike or

vary together.” [53, p. 37]

Equation 5.1 gives the formula for the Pearson’s product-moment sample coefficient

between two indicators X and Y where x are values of the indicator X, y are values of

the indicator Y , k is the number of observations and x̄ and ȳ are the sample means of

X and Y .

rxy =

k∑
i=1

(xi − x̄)(yi − ȳ)√
k∑

i=1
(xi − x̄)2

k∑
i=1

(yi − ȳ)2

(5.1)

Finding and selecting those indicators with a high absolute correlation coefficient (i.e. a

highly positive or a highly negative coefficient) with the target indicator gives a set of

indicators which can be used as predictors in a regression model. A helpful structure in

this endeavour is the correlation matrix.

Correlation matrix

A correlation matrix of indicators X1, . . . , Xn is a symmetric n × n matrix (where n is

the number of indicators) whose i, j entry is r(Xi, Xj). The entries of the matrix are

the correlation coefficients (see Equation 5.1) indicating how strong the correlation is

between the two corresponding indicators. The matrix shows, in a condensed form, how

each indicator correlates with all other indicators.

Listing 5.2 shows how this correlation matrix is calculated in R.

1 data <- read.csv ("/ path/to/data.csv")

2 corrmatrix <- cor(scale(data), use=" pairwise.complete.obs")

Listing 5.2: Calculating the correlation matrix in R

R allows calculating the correlation matrix with Pearson’s product-moment coefficient

using the built-in cor() function despite the dataset having missing values. With

pairwise.complete.obs the correlation between each pair of indicators is computed

using all complete pairs of observations on those indicators. The data is normalized

using the scale() function, which centers the data by subtracting the column mean

and scales the data by dividing the (centered) columns by their standard deviations.
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Building subset

The regression methods we are using (see Section 2.3.2) need a complete dataset (i.e.,

without missing values) as input. Listing 5.3 shows the R code for building a complete

subset which can be used for the prediction. We are interested only in the correlation

coefficients of the target column. These are stored in the vector correlations. To get

the indicators which are of interest we sort the vector correlations by the absolute

correlation coefficient in decreasing order. We use the absolute correlation coefficient

because both indicators with highly positive correlations and indicators with highly

negative correlations are useful as predictors for the target.

1 correlations <- as.numeric(corrmatrix[target ,])

2 correlations <- sort(abs(correlations), decreasing = TRUE)

3 # 1 target and 4 predictors = 5

4 highest <- head(correlations , 5)

5

6 columns <- c(names(highest))

7 subset <- data[,columns]

8 subset <- subset[complete.cases(subset) ,]

Listing 5.3: Building the subset for the prediction in R

We use the function head() to select the 5 correlation coefficients with the highest

values. The number 5 corresponds to the number of predictors (in this case 4) plus 1

target. These are stored in the variable highest. Figure 5.1 illustrates this procedure

on a small correlation matrix with n = 10, with indicator X4 being the target indicator.

In this example the indicators X1, X6, X7 and X9 have the highest absolute correlation

with the target indicator X4, therefore these are picked as predictors and need to be in

the subset which is built subsequently.
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Figure 5.1: Finding indicators for building the subset of predictors and target (see
Listing 5.3)

A subset with just these 5 indicators (i.e. 4 predictors and 1 target indicator) is built

and referenced by the variable subset (see line 6 in 5.3). Only the observations with

a value for the predictors as well as the target indicator can be used for building the

model. The other observations are omitted with the function complete.cases(). This

step significantly reduces the number of rows in the subset due to the high ratio of

missing values in the data.

Split data into training set and test set

Now that the subset with the target and the predictors is built, the data needs to be

split into a training set and a test set (see Section 2.3.4). Listing 5.4 shows the R code

to achieve that. The ratio is 50:50 in this example, i.e. the training set and test set

have an equal number of observations (or a difference of maximum 1 if the total number

of observations is uneven). We use the function sample() to get a random sample of

half the observations. Finally we build the training set by only keeping those sample

observations and we build the test set by deleting these sample observations and keeping

the rest.

1 sample_size <- floor (0.5 * nrow(subset))

2 sample <- sample(seq_len(nrow(subset)), size = sample_size)

3 trainingset <- subset[sample , ]

4 testset <- subset[-sample , ]

Listing 5.4: Splitting data into a training set and a test set in R
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We are now applying the three regression methods presented in 2.3.2. Half of the data

(i.e. the training set) is used to build the model. We use the model to predict the

target indicator in the other half (i.e. the test set). We are calculating the standardized

root mean squared error (RMSE%, see Section 2.3.3) to evaluate the performance of the

regression models on each of the 146 indicators in the dataset.

K-Nearest Neighbour regression

Listing 5.5 shows the code for applying the KNN regression algorithm (see Section 2.3.2)

to impute the target column in the test set using the data in the training set, i.e. the

nearest neighbours are searched for only in the training set.

1 library(DMwR)

2 testset[,target] <- NA

3 prediction <- knnImputation(data=testset , k=9, scale=F, meth=" weighAvg",

distData=trainingset)

Listing 5.5: Applying KNN in R (first approach)

In this case we are using the 9 nearest neighbours. The decision to select k = 9 is based

on experiments. Figure 5.2 shows the RMSE% for k = 2 to k = 19 and different values

for the number of predictors.

We load the necessary package DMwR in line 1 [55]. We delete the values in the

target column of the test set in line 2 because they are going to be imputed by the

knnImputation() function. We use the method weighAvg, which means the weighted

average of the neighbours’ values will be inserted for the missing values (see Section

2.3.2).
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Figure 5.2: Approach 1: finding the best value for k

The lowest RMSE% for each number of predictors is marked with a diamond. With the

exception of 2 predictors where k = 15 yields the lowest RMSE% the optimal value for k

is between 5 and 9. We chose k = 9 because it yields an RMSE% close to the minimum

for all configurations.

Linear Regression

Listing 5.6 shows the code for applying linear regression (see Section 2.3.2) on the train-

ing set to build the model. The built model is stored in the variable model. We are

applying the predict() function on the test set to predict the target column using the

predictor columns as specified in the model.

1 model <- lm(formula , data=trainingset)

2 prediction <- predict(model , newdata=testset)

Listing 5.6: Applying linear regression in R
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Decision Trees

The syntax for applying the random forest algorithm in R (see Section 2.3.2) as shown

in Listing 5.7 is very similar to linear regression. It requires the package randomForest

to be loaded. Again the model is built using the training set and afterwards applied to

predict the target column in the test set.

1 library(randomForest)

2 model <- randomForest(formula , data=trainingset)

3 prediction <- predict(model , newdata=testset)

Listing 5.7: Applying random forest algorithm in R

5.1.3 Results

There are two main properties to evaluate our approaches for predicting missing values.

First, it is important to build models which are able to predict many (preferably all)

missing values in our dataset. The number of possible predictions is a key metric for

determining the usefulness of the approach.

Second, the prediction accuracy of the models is essential. The Open City Data Pipeline

can only be useful for its purpose of serving as a data source for the compilation of studies

and reports if it provides high-quality, accurate data and predictions.

Number of possible predictions

The number of predictors used to build the regression models is the key property in-

fluencing the number of possible predictions. The more predictors are used the fewer

predictions can be made, because the model can only predict the missing values for those

city-year combinations where the values for all the predictors are known.

We are building the regression models using a complete subset with the predictors and

the target as columns. This subset contains city-year combinations where the values for

the predictors and the value for the target are known, i.e., the model inputs (the pre-

dictors) as well as the model output (the target) need to be known. For the predictions,

only the model inputs (i.e., the predictors) need to be known. The number of possible

predictions is therefore the number of city-year combinations for which all the predic-

tors are known but the target is unknown. There are (on average) very few city-year

combinations having values for all the predictors and no value for the target. Raising
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the number of predictors will lower the number of city-year combinations having values

for all the predictors, therefore: The more predictors are used the fewer predictions can

be made.

Possible Possible
Predictors predictions (mean) predictions (total)

2 188.10 27463
3 129.68 18934
4 102.56 14974
5 86.65 12651
6 72.34 10562
7 58.75 8578
8 44.88 6553
9 40.86 5965
10 37.95 5541

Table 5.1: Evaluation of possible predictions with Approach 1

Table 5.1 shows how many predictions are possible with the models using different

numbers of predictors. This number corresponds to the city-year combinations which

have values for all predictors but are missing a value for the target indicator.

Even with very simple models using just two predictors one can only predict 188 values

on average per indicator (i.e. circa 27500 values in total). This corresponds to only

8.8% of all missing values in our dataset. Note that, for a subset with 10 predictors,

even though the mean number of possible predictions per indicator is circa 38, there

are 75 indicators (out of 146) for which not a single predictions can be made. This

phenomenon can be explained with the structure of the dataset: for example, there are

numerous population category and population proportion indicators (see Appendix A).

These population indicators are not only highly correlated (i.e. they are selected as

predictors for each other), but they also occur together. For most cities, either all (or

at least many) or none (or at least few) of these indicators are available, which limits

the number of possible predictions.

In total there are 311958 missing values in our dataset. Even with models using just

two predictors we are only able to predict 8.8% (27463) of all missing values. Section

5.2 presents an approach which aims at overcoming this shortcoming.
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Prediction accuracy

The three regression methods (K-Nearest Neighbour, Linear Regression and Random

Forest Decision Trees, see Section 2.3.2) were applied to predict the values of all 146

columns in the test set. Please note that the prediction accuracy is dependent on the

random observation selection used for splitting the data into a training set and a test set

and will therefore vary for every time the code is run. However results can be replicated

by setting a seed in R with the built-in function set.seed() as shown in Listing 5.8.

Once a seed is set, random sampling is always going to choose the same sample, i.e. the

training set and the test set will always be the same.

1 set.seed (100)

Listing 5.8: Setting a seed in R for replicability

The performance of the regression models were evaluated for 2 to 10 predictors. Figure

5.3 shows the results. All three regression methods have a mean RMSE% between 3.500%

and 4.500%. The k-nearest neighbour algorithm appears to work best on average for

this dataset. When using 7 predictors this algorithm yields an average RMSE% of 3.562

(see Table 5.2).

To get a better feeling of what these values for RMSE% actually mean, here are two

examples: an RMSE% of 3.5 means that predictions for the unemployment rate are off

by 1.4% on average, for the average household income the error corresponds to AC 2235.
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Figure 5.3: Approach 1: RMSE% of test set for different number of predictors

There is no significant improvement of the RMSE% achieved by any of the three re-

gression methods by increasing the number of predictors. However, as we are essentially

building 438 different models (146 × 3, i.e. every indicator with every regression method)

it is natural that some target indicators are better predicted by one regression method

and some by another.

Overall the best result can be achieved by picking the best performing regression method

for every indicator. This way the missing values of every indicator are predicted by the

method performing best on this specific indicator. The black line in Figure 5.3 shows that

by doing that the overall result can be improved consistently over any single regression

method used. With this methodology the average RMSE% can be reduced significantly.

For 7 predictors the average RMSE% is 2.322 which is an improvement of 35% over the

best performing single regression method KNN.

Table 5.2 shows the numbers depicted in Figure 5.3.

5.2 Approach 2 - Principal Component Regression

In the second approach, instead of directly using indicators as predictors we first perform

a Principal Component Analysis (PCA) to reduce the number of dimensions of the

dataset and use the remaining compressed dimensions (so called Principal Components)
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Predictors knn random forest linear regression best

2 3.847 4.308 4.386 3.317
3 4.029 4.228 4.307 2.994
4 3.945 4.315 4.410 2.858
5 4.068 4.464 4.630 2.807
6 3.641 4.195 4.423 2.505
7 3.562 4.265 4.268 2.322
8 3.842 4.388 4.334 2.455
9 3.896 4.353 4.528 2.342
10 3.834 4.327 4.401 2.240

Table 5.2: Approach 1: RMSE% of test set for different number of predictors

as predictors instead. This procedure is called Principal Component Regression (PCR)

[30].

We make use of the correlation matrix again to elicit the Principal Components (PCs)

which are suitable predictors for a specific indicator. Once the predictors are found we

build a subset with just the predictors (i.e. PCs) and the target (i.e. an indicator) as

columns and use this subset to train our models. As in Approach 1 we are evaluating

the accuracy of the predictions with the error metric RMSE%.

5.2.1 Overview

In this section we first briefly list the necessary steps for this approach. Subsequently we

describe how these steps are done in R in more detail. Steps 2-10 need to be performed

for every indicator of the dataset that needs to be predicted (see loop in 5.1.2):

1. Impute the missing values using the regularized iterative PCA algorithm [46]. This

completed dataset (i.e., without missing values) is an intermediate step in order

to be able to perform the Principal Component Analysis (PCA).

2. Remove the target indicator from the dataset. This step is important because

otherwise the PCs would include the target information which needs to be avoided

in the context of PCR.

3. Perform PCA on the completed dataset. This results in a set of Principal Com-

ponents as columns instead of the indicators.

4. Append the target indicator to the Principal Components (PCs) as additional

column. The columns of the dataset are now the PCs and the target indicator.

5. Calculate the correlation matrix of this dataset.
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6. Create a subset with the target indicator plus the PCs with the highest absolute

correlation coefficients.

7. Select only the rows which have a value for the target indicator. Only these rows

are relevant for building the model.

8. Split the dataset into a training set and a test set.

9. Train the model (KNN, linear regression and random forest) using the training set

with the PCs as predictors.

10. Apply the model to the test set and compare the predicted values with the observed

values.

5.2.2 Prediction

The central element of this approach is the Principal Component Analysis (PCA, see

Section 2.3.5). ”PCA is a useful statistical technique that has found application in fields

such as face recognition and image compression, and is a common technique for finding

patterns in data of high dimension.” [49, p. 1]

The calculation of PCA is performed with the R package FactoMineR [26]. Since the

calculation requires a complete dataset without missing values some form of imputation

is needed before the PCA can be performed. A ”[...] shortcoming of standard approaches

to PCA is that it is not obvious how to deal properly with missing data.” [46, p. 2]

The authors of the FactoMineR package have also created another package for handling

missing values in PCA called missMDA. The missMDA package contains an imputation

function implementing the regularized iterative PCA algorithm which ”[C]an be used as

a preliminary step before performing a PCA on an [sic] completed dataset.” [25]

Listing 5.9 shows the code for importing the missMDA package, reading in data and

imputing missing values with the regularized iterative PCA algorithm using the first

ten Principal Components and three random initializations. After running the code

the variable imputed refers to the imputed dataset which is now complete (i.e. has no

missing values) and therefore suitable as input for the PCA.

1 library(missMDA)

2 data <- read.csv ("/ path/to/data.csv")

3 imputed <- imputePCA(data , ncp=10, nb.init=3, scale=TRUE)

Listing 5.9: Imputing data with the regularized iterative PCA algorithm in R
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Now that the missing values are imputed we can perform the actual PCA on our dataset.

Listing 5.10 shows the code for loading the FactoMineR package and performing the

PCA. The target column is deleted from the dataset before performing the PCA (see

line 3). Otherwise the information which needs to be predicted would be included in

the resulting Principal Components which are subsequently used as predictors in the

model. This can lead to overfitting (see Section 2.3.4). Before the target column is

deleted the information is stored in a variable target because we need the information

later to calculate the error metric. In order to get meaningful results the data is scaled

to have a comparable range of values.

1 library(FactoMineR)

2 target <- imputed[target]

3 imputed[target] <- NULL

4 result <- PCA(imputed , scale.unit=TRUE , ncp =85)

Listing 5.10: Performing PCA in R

The first 85 PCs are kept in the result in Listing 5.10. Typically the first few PCs

capture the majority of the variance in the data [30]. The variance of a PC corresponds

to its significance in explaining the values in the original dataset. We want to keep those

PCs which have at least some significance in explaining the original values. All PCs

explaining more than 0.0075% of the variance in the data were kept. This resulted in

the first 85 PCs. In our dataset the first 10 PCs capture 96%, the first 85 PCs capture

99.86% of the entire variance in the data. Figure 5.4 shows the percentage of variance

explained by the first 50 PCs.
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Figure 5.4: Variance explained by first 50 Principal Components

The first Principal Component explains more than half of the entire variance in our

dataset. This translates to a high importance of this PC when it comes to predicting the

individual indicators. However it does not mean that the other PCs with lower variance

should be neglected in the regression. When choosing the predictors for building a

regression model the relations between the target and all the PCs should be examined

because it is always possible that a PC with a small variance is very important for

explaining a specific indicator in the dataset [29].

It is difficult to interpret the exact meaning of a Principal Component in a high-

dimensional space like ours (it is sometimes possible for lower-dimensional data, see

[30, Chapter 4]). However we do have highly correlated indicators in our dataset which

are generally suitable for dimensionality reduction, e.g. Deaths female and Deaths male,

1-person households and Proportion 1-person households, Unemployed Persons and Un-

employment Rate etc.

The new columns of the dataset are the 85 principal components (PCs). These are

a condensed representation of the original indicators which are going to be used as

predictors now. This is the key difference between this approach and the approach

presented in 5.1. Figure 5.5 illustrates the dimensionality reduction achieved by the

PCA. The columns of the dataset are now the PCs and the target instead of the indicators

and the target. The Principal Components are the new predictors.
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Figure 5.5: Dimensionality reduction with PCA

Building subset

Listing 5.11 shows the R code for building a subset which can be used for the prediction.

The target column which was deleted from the dataset before performing the PCA is

now appended again to the PCs with the R function cbind(). To find out which PCs are

correlated with the target column and therefore suitable as predictors, the correlation

matrix is calculated (see Section 5.1.2).
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We are interested only in the correlation coefficients of the target column. These are

stored in the vector correlations. To get the PCs of interest (highly positive correlation

or highly negative correlations are of interest) we sort the vector correlations by the

absolute correlation coefficient in decreasing order.

We use the function head() to (in this example) select the 7 correlation coefficients with

the highest values. (The value 7 is just chosen in this example, in fact we experimented

with different numbers of predictors, see Section 5.2.3.) These 7 values translate to

the target (which has the highest possible correlation coefficient of 1 with itself) and 6

predictors. A subset with just these 7 columns is built and stored in the variable subset.

Only the observations with a value for the target are used for building the model. The

other observations are omitted with the function complete.cases().

1 data <- cbind(result , target)

2

3 corrmatrix <- cor(data)

4 correlations <- as.numeric(corrmatrix[target ,])

5 correlations <- sort(abs(correlations), decreasing = TRUE)

6 highest <- head(correlations , 7)

7

8 columns <- c(names(highest))

9 subset <- data[,columns]

10 subset <- subset[complete.cases(subset) ,]

Listing 5.11: Building the subset for the prediction in R

Split data into training set and test set

Now that the subset with the target and predictors is built the data needs to be split

into a training set and a test set (see Section 2.3.4). The corresponding R code is the

same as for the first approach and shown in Listing 5.4.

Once the training set and test are built the three regression methods presented in 2.3.2

can be applied.

K-Nearest Neighbour regression

Listing 5.1.2 shows the R code for applying the KNN regression algorithm in R (see

Section 2.3.2) to impute the target column in the test set using the data in the training

set, i.e. the nearest neighbours are searched for only in the training set. For the second
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approach, we chose a value of k = 6. Extensive experiments with the dataset have shown

that a value of 6 for k yields the lowest RMSE%.

Linear Regression

We use R’s built-in function lm() to apply linear regression on the training set to build

the model. Listing 5.6 shows the necessary R code for building the model and using it

for predicting the values of the target indicator in the test set (see Section 5.1.2).

Decision Trees

Finally our last regression method is the random forest algorithm. Listing 5.7 shows the

R code to apply the algorithm to grow the tree and use it for predictions on the test set.

5.2.3 Results

Figure 5.6 shows the RMSE% for different numbers of predictors. On average over all

indicators the K-Nearest Neighbour regression method works best in our dataset. For

56 predictors the average RMSE% of KNN is 3.455. There is no more improvement

achieved by adding more predictors. The Random forest algorithm works also very well

for lower number of predictors but starts yielding worse results for 12 predictors or more.

Remember from 5.4 that only the first PCs provide significant contributions to explaining

the total variance in the data. For a larger number of predictors the algorithm needs to

adjust the weight of the PCs with lower prediction usefulness. KNN seems to be very

well suited for this situation. Linear regression works best with around 60 predictors

(RMSE% 3.497) but the results are also getting worse for higher numbers of predictors.
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Figure 5.6: Approach 2: RMSE% of test set for different number of predictors

As stated above the overall results can be improved by selecting the best performing

regression method for every indicator (see Section 5.1.3). The black line in Figure 5.6

shows the average RMSE% if for every indicator the regression method with the lowest

error is selected. With this selection the results can be improved consistently over

any single regression method. Table 5.3 shows the RMSE% values between 50 and 80

predictors.

The data shows that when selecting the best performing regression method per indicator

the results can be further improved by adding more and more predictors. An RMSE% of

2.953 is achieved with 60 predictors, with 80 predictors the number goes down to 2.937

(-0.016 or -0.0008 per added predictor). The performance improvement gets smaller

and smaller for every added predictor. This result is consistent with the decreasing

contribution of every PC to explaining the variance in the data (see Figure 5.4).

A closer look at the results for the model with 80 predictors shows that the average

RMSE% scored with KNN is 3.471, with random forest 4.161 and with linear regres-

sion 3.799. As mentioned above choosing the best method per indicator yields a lower

RMSE% of 2.937. On average, KNN is performing best over all indicators. However

linear regression is the best method for 88 indicators (60% of all indicators), KNN for 51

indicators (35%) and random forest (although far worse on average) is the best method

for 7 indicators (5%). This result implies that linear regression works very well for a
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Predictors knn random forest linear regression best

50 3.468 4.096 3.521 3.010
52 3.459 4.100 3.505 2.991
54 3.461 4.098 3.500 2.985
56 3.455 4.109 3.500 2.967
58 3.455 4.109 3.496 2.963
60 3.456 4.109 3.497 2.953
62 3.455 4.136 3.515 2.965
64 3.455 4.132 3.536 2.962
66 3.460 4.120 3.560 2.969
68 3.460 4.142 3.570 2.953
70 3.456 4.136 3.613 2.950
72 3.460 4.129 3.627 2.953
74 3.463 4.149 3.666 2.939
76 3.463 4.138 3.703 2.945
78 3.467 4.141 3.753 2.940
80 3.471 4.161 3.799 2.937

Table 5.3: Approach 2: RMSE% of test set for different number of predictors

lot of indicators but can also be very inaccurate for other indicators. Therefore it is the

best method for most indicators but on average the RMSE% scored with KNN is lower.

Of the 10 indicators with the lowest RMSE% 7 are population categories (e.g. population

female, population aged 15-19 male etc.). Interestingly, all of these 7 population category

indicators are best predicted with linear regression. The other 3 indicators (median

household income, proportion lone pensioner households and tourist bed places) are all

best predicted with KNN. The RMSE% of all of these 10 indicators is below 0.400.

Table 5.4 shows these 10 indicators and their RMSE (same scale as indicator) and the

normalized RMSE (RMSE%). The abbreviation linreg stands for linear regression and

rforest stands for random forest.

Table 5.5 shows the 10 indicators with the highest RMSE% using the best regression

method per indicator. These are the indicators where the differences between the pre-

dictions of the best performing regression method and the actual observed values are

the greatest (based on the range of values of the indicator). The RMSE% for these

indicators is between 6.738 and 8.268.

On average there are 1679.2 values available for each of the 10 indicators with the

highest RMSE% (i.e. the training set used to build the models has on average 839.6

values because half of the available values are used for the training set and the other half

for the evaluation with the test set). For the indicators with the lowest RMSE% there

are on average 3026 values available. This observation indicates that the prediction

results are actually getting better the more data is available to build the regression
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Best regression
Indicator Method RMSE RMSE%

Median household income KNN 2434.69 0.100
Population 20 24 female linreg 1705.74 0.135
Population 20 24 male linreg 2329.62 0.174
Proportion lone pensioner households KNN 27.78 0.195
Population female linreg 22431.86 0.216
Population 35 44 female linreg 2113.30 0.302
Population 15 19 male linreg 1817.94 0.322
Population linreg 81158.19 0.353
Population 25 34 female linreg 3428.61 0.371
Tourist Bed Places KNN 50422.36 0.390

Table 5.4: Approach 2: 10 indicators with lowest RMSE%

Best regression
Indicator Method RMSE RMSE%

Proportion living in owned dwellings KNN 6.95 8.268
Commute duration KNN 3.28 8.206
Days with high NO2 concentrations KNN 5.14 8.151
Price public transport KNN 9.80 8.080
Proportion living in houses KNN 6.87 8.048
Proportion living in apartments KNN 6.60 7.561
Average area of living KNN 2.95 7.536
Infant mortality rate per 1000 live births rforest 2.07 7.522
Avg household size KNN 0.11 7.010
Average NO2 concentration KNN 5.29 6.738

Table 5.5: Approach 2: 10 indicators with highest RMSE%

models. There is also a positive outlook from this: the more data on existing indicators

is collected in the future in the Open City Data Pipeline, the better the predictions of

the missing values are going to get.

Comparison to Approach 1

As already mentioned there are two main properties to evaluate our approaches for pre-

dicting missing values: The number of possible predictions and the prediction accuracy.

We have seen in 5.1.3 that Approach 1 is very limited with regard to the number of

possible predictions. Depending on the number of predictors, between 5000 and 27000

values can be predicted in total. In Approach 2 we are imputing our dataset and we

are building condensed new columns called Principal Components. This leads to a

completed dataset which can be used to predict all the missing values (i.e. 311958
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in total). Based on the first essential property of evaluation, the number of possible

predictions, Approach 2 is highly preferable to Approach 1.

Prediction accuracy is the second important property for the evaluation. Using 7 pre-

dictors in Approach 1 the RMSE% is 2.322 on average. Approach 2 yields an average

RMSE% of 2.937 for 80 predictors. Judged on the prediction accuracy alone Approach

1 is more valuable. However, considering both evaluation properties (i.e. number of

possible predictions and prediction accuracy) Approach 2 should be preferred due to its

ability to predict all the missing values.



Chapter 6

Conclusions, Future Work and

Related Work

This chapter comprises a few concluding words summarizing this work and also sugges-

tions for future work on improvements of the Open City Data Pipeline.

6.1 Conclusion

We presented two different approaches to predicting missing values in the context of

an Open City Data Pipeline. The architecture from which the data stems has been

introduced and the individual architecture components have been described. A subset

from all the collected data has been built and used as input for building regression

models.

In the first approach to predicting missing values we use the indicators directly as pre-

dictors in our regression models. This approach delivers an average prediction accuracy

(measured with RMSE%) between 2.0 and 3.5. An RMSE% of 3.5 means that the differ-

ence between actual values and predictions is on average 3.5% of the range of values (the

maximum value minus minimal value of an indicator), e.g. for our dataset an RMSE%

of 3.5 means that predictions for the unemployment rate are off by 1.4% on average,

for the average household income the error corresponds to AC 2235. Considering the

complex dataset and the high ratio of missing values this error metric is quite satisfying.

However we have seen that this approach is very limited in its ability to predict many

missing values. Even when building very simple models with few predictors we are only

able to predict 8.8% of all missing values, because the model requires existing indicators

as input and these indicators do have a lot of missing values.

74
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The second approach uses Principal Components (PCs) as predictors instead of using

indicators directly from our dataset. Using the functions of the R packages FactoMineR

and missMDA ([26], [25]), we perform a Principal Component Analysis on our dataset

resulting in new, condensed columns (the PCs). These columns are then used to build

our regression models (Principal Component Regression, PCR).

When using models with 80 predictors and picking the best performing regression

method we achieved a RMSE% of 2.937 with the second approach. The prediction

accuracy is therefore slightly worse compared to the first approach where we used the

indicators directly as predictors. However the results are still useful, since this approach

does not only deliver satisfying prediction accuracy, but is additionally also able to pre-

dict all missing values in our dataset. Therefore the results suggest that the second

approach should be preferred over the first approach for predicting missing values in the

Open City Data Pipeline.

By providing the predicted values along with the transparent publication of confidence

(by publishing the expected error metric), the Open City Data Pipeline becomes more

useful for third party users of city data because there is more data available which

eases the compilation of studies and reports. These studies and reports are essential in

supporting all kinds of city stakeholders such as governments, citizens or infrastructure

providers in their decision making process.

6.2 Future Work and Related Work

The Open City Data Pipeline could be improved in numerous ways. Figure 3.1 shows the

architecture of the pipeline. We are currently working on the import from the regression

back to the database (i.e. adding predicted values to the database). It is important

to also report the confidence in the predicted value (i.e. the expected error margin) to

provide transparency to third parties which can then decide for themselves whether they

want to trust the specific predicted value or not.

However, every existing component of the architecture has potential for improvement.

For example, there could be more data sources accessed and integrated which would

lead to a richer dataset. Currently only data published by large organizations and

communities is integrated. However, different types of rather unstructured data could

also be evaluated and integrated. For this we need new technologies and approaches,

e.g. to automatically find related data tables in a large set of tables [14].

Another area where additional work can be done is outlier detection. Due to the hetero-

geneous data sources it is obvious that some of the imported values in the pipeline could
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be incorrect. In a simple preliminary investigation we defined a corridor of accepted

values by calculating the following thresholds where sd is the standard deviation of the

indicator:

Median± 3× sd (6.1)

Using this simple thresholds too many values would have been identified as outliers,

hence is not suitable for our dataset. However, there are other, more sophisticated

outlier detection methodologies which could be applied in future work to achieve better

results [22].

Data quality could be improved in the future by applying outlier detection algorithms.

A recent work on outlier detection in Linked Data is [18] which also uses data from

DBpedia to test the approach. Prediction in the Open City Data Pipeline at the moment

is working on exported CSV data from the triple store. There are also methods for

working directly on RDF data using Tensor Factorization [39].

In future work on the prediction component one could also look at more advanced Data

Mining algorithms such as Support Vector Machines or Neural Networks [60]. Some

preliminary work with Singular Value Decomposition (SVD) as method for predicting

the missing values did not yield satisfactory prediction results, therefore we moved on

to Principal Component Analysis (PCA) in combination with three regression methods

(KNN, linear regression, random forests). Generally, with this approach, there are a lot

of configuration options, which have to be further investigated to improve the results,

e.g., the threshold for the amount of missing data in the preprocessing phase, the number

of principal components retained in the dataset, the number of predictors etc.

The concept of distance and vicinity is essential in many regression methods. Currently

we are only looking at vicinity based on social, economic, demographic indicators etc.

However there is also the possibility to use the spatial vicinity in the real world for pre-

dictions, testing the assumption that cities which are physically close are also similar in

socio-economic areas. The necessary geospatial information (coordinates and elevation)

is already collected and available.
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Appendix A

List of indicators

This table contains a list of all the indicators in the dataset described in Chapter 4

including the unit and the category of each indicator.

Indicator Unit Category

Number of available beds per 1000 residents no Culture and Recreation

Number of bed-places in tourist

accomodation establishments

no Culture and Recreation

Number of cinema seats no Culture and Recreation

Number of cinema seats per 1000 residents no Culture and Recreation

Number of museum visitors per year persons Culture and Recreation

Number of public libraries no Culture and Recreation

Number of theatres no Culture and Recreation

Number of tourist overnight stays per year

per resident

no Culture and Recreation

Total nights spent in tourist accomodation

establishments

no Culture and Recreation

1-person households total no Demography

Average size of households (number of

persons)

persons Demography
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Indicator Unit Category

EU Foreigners as a proportion of the total

population

% Demography

EU Foreigners total persons Demography

Households with children aged 0-17 total no Demography

Households with lone-pensioners above

retirement age

no Demography

Lone parent private households with

children aged 0-17 total

no Demography

Median Population Age years Demography

Nationals as a proportion of the total

population

% Demography

Nationals total persons Demography

Non-EU Foreigners as a proportion of

population

% Demography

Non-EU Foreigners total persons Demography

Number of Women per 100 Men no Demography

Number of Women per 100 Men aged 75

years and over

no Demography

Old Age Dependency Ratio (Population

aged 65+ to population aged 20-64)

% Demography

Population aged 0-4 female persons Demography

Population aged 0-4 male persons Demography

Population aged 0-4 total persons Demography

Population aged 15-19 female persons Demography

Population aged 15-19 male persons Demography

Population aged 15-19 total persons Demography

Population aged 20-24 female persons Demography

Population aged 20-24 male persons Demography

Population aged 20-24 total persons Demography

Population aged 25-34 female persons Demography

Population aged 25-34 male persons Demography

Population aged 25-34 total persons Demography

Population aged 35-44 female persons Demography

Population aged 35-44 male persons Demography
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Indicator Unit Category

Population aged 35-44 total persons Demography

Population aged 45-54 female persons Demography

Population aged 45-54 male persons Demography

Population aged 45-54 total persons Demography

Population aged 55-64 female persons Demography

Population aged 55-64 male persons Demography

Population aged 55-64 total persons Demography

Population aged 65-74 female persons Demography

Population aged 65-74 male persons Demography

Population aged 65-74 total persons Demography

Population aged 75 and over female persons Demography

Population aged 75 and over male persons Demography

Population aged 75 and over total persons Demography

Population change over 1 year % Demography

Population female total persons Demography

Population living in private households

(excluding institutional households)

persons Demography

Population male total persons Demography

Population total persons Demography

Private households (excluding institutional

households)

no Demography

Proportion of 1-person households % Demography

Proportion of households that are

lone-parent households

% Demography

Proportion of households that are

lone-pensioner households

% Demography

Proportion of households with children aged

0-17

% Demography

Proportion of total population aged 0-4 % Demography

Proportion of total population aged 15-19 % Demography

Proportion of total population aged 20-24 % Demography

Proportion of total population aged 25-34 % Demography

Proportion of total population aged 35-44 % Demography
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Indicator Unit Category

Proportion of total population aged 45-54 % Demography

Proportion of total population aged 55-64 % Demography

Proportion of total population aged 65-74 % Demography

Proportion of total population aged 75 and

over

% Demography

Activity Rate (Proportion of economically

active people)

% Economic Aspects

Activity Rate male (Proportion of

economically active female people)

% Economic Aspects

Activity Rate male (Proportion of

economically active male people)

% Economic Aspects

Average disposable annual household

income

EUR Economic Aspects

Economically Active Population female persons Economic Aspects

Economically Active Population male persons Economic Aspects

Economically Active Population total persons Economic Aspects

Employment divided by Jobs % Economic Aspects

Employment Jobs in agriculture and fishery

(NACE Rev. 2: A)

no Economic Aspects

Employment Jobs in construction (NACE

Rev. 2: F)

no Economic Aspects

Employment Jobs in mining manufacturing

energy (NACE Rev. 2: B-E)

no Economic Aspects

Median disposable annual household income EUR Economic Aspects

Number of companies no Economic Aspects

Number of unemployed persons female persons Economic Aspects

Number of unemployed persons male persons Economic Aspects

Number of unemployed persons total persons Economic Aspects

Proportion of employment in agriculture

and fishery

% Economic Aspects

Proportion of employment in construction

(NACE Rev. 2: F)

% Economic Aspects

Proportion of employment in industries

(NACE Rev.1.1 C-E)

% Economic Aspects
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Indicator Unit Category

Unemployment Rate % Economic Aspects

Unemployment rate female % Economic Aspects

Unemployment rate male % Economic Aspects

Accumulated ozone concentration microgram per

m3

Environment

Annual average concentration of Nitrogen

dioxide (NO2) in microgram per cubic meter

microgram per

m3

Environment

Annual average concentration of Particulate

Matter (PM10) in microgram per cubic

meter

microgram per

m3

Environment

Number of days with Nitrogen dioxide

(NO2) concentrations exceeding 200

micrograms per cubic meter

days Environment

Number of days with Ozone (O3)

concentrations exceeding 120 micrograms

per cubic meter

days Environment

Number of days with Particulate Matter

(PM10) concentrations exceeding 50

micrograms per cubic meter

days Environment

Percentage of the urban waste water load

(in population equivalents) treated

according to the applicable standard

% Environment

Price of a cubic meter (m3) of domestic

water

EUR Environment

Share of population connected to sewerage

treatment system

% Environment

Total use of water in cubic meter (m3) cubic meter Environment

Average annual rent for housing per square

meter (m2)

EUR Social Aspects

Average area of living accomodation (in

square meters per person)

m2 Social Aspects
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Indicator Unit Category

Crude birth rate per 1000 inhabitants persons/1000

inhabitants

Social Aspects

Crude death rate per 1000 inhabitants persons/1000

inhabitants

Social Aspects

Households in private rented housing no Social Aspects

Households in social housing no Social Aspects

Households owning their own dwelling no Social Aspects

Infant mortality rate (per 1000 live births) persons/1000

live births

Social Aspects

Infant mortality rate (per year) % Social Aspects

Number of apartments no Social Aspects

Number of conventional dwellings no Social Aspects

Number of deaths per year under 65 due to

diseases of the circularoty or respiratory

systems

no Social Aspects

Number of households living in apartments no Social Aspects

Number of households living in houses no Social Aspects

Number of houses no Social Aspects

Number of live births per year no Social Aspects

Number of murders and violent deaths no Social Aspects

Proportion of households living in

apartments

% Social Aspects

Proportion of households living in houses % Social Aspects

Proportion of households living in owned

dwellings

% Social Aspects

Total deaths per year no Social Aspects

Total deaths per year female no Social Aspects

Total deaths per year male no Social Aspects

Total deaths under 65 per year no Social Aspects

Total deaths under 65 per year female no Social Aspects

Total deaths under 65 per year male no Social Aspects

Number of children aged 0-4 in day care

(public and private) per 1000 children aged

0-4

persons/1000

persons

Training and Education
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Indicator Unit Category

Number of children aged 0-4 in day care or

school

persons Training and Education

Persons aged 25-64 with ISCED level 0 1 or

2 as the highest level of education

persons Training and Education

Persons aged 25-64 with ISCED level 3 or 4

as the highest level of education

persons Training and Education

Proportion of working age population

qualified at ISCED level 5 or 6

% Training and Education

Students in higher education (ISCED level

5-6) female

persons Training and Education

Students in higher education (ISCED level

5-6) male

persons Training and Education

Students in higher education (ISCED level

5-6) total

persons Training and Education

Average length of journey to work by

private car in km

km Travel and Transport

Cost of a combined monthly ticket (all

modes of public transport for 5-10 km in the

central zone)

EUR Travel and Transport

Cost of a taxi ride of 5km to the center at

day time

EUR Travel and Transport

Length of bicycle network (dedicated cycle

paths and lanes)

km Travel and Transport

Number of deaths in road accidents no Travel and Transport

Number of private cars registered no Travel and Transport

Number of registered cars per 1000

population

no Travel and Transport

People commuting into the city persons Travel and Transport

People commuting out of the city persons Travel and Transport

People killed in road accidents per 10000

population

persons/10000

persons

Travel and Transport
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