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Abstract

The goal of knowledge graph completion is to predict new infor-
mation within a knowledge graph. Researchers increase their focus
on knowledge graph embedding methods for the completion process
and neglect traditional knowledge completion methods. Despite that,
there is no direct comparison of the historical performance differences
between embedding methods and traditional knowledge graph com-
pletion methods in literature. This includes the not researched extent
of performance increase that the embedding method can potentially
provide. To address this problem, we use a systematic literature re-
view to study the performance of these two groups. We are interested
in a historical performance comparison that indicates whether there
is a difference between them. The analyses of our performance data
results shows a better performance for none embedding methods than
embedding methods. The results indicate that knowledge graph em-
bedding methods provide no performance advantage and do not justify
the greater extent of research investment in current literature.

Keywords: Knowledge graph, link prediction, triple classification, en-
tity classification, entity resolution, embedding, completion.
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1 Introduction
Everybody gets in contact with some knowledge graph applications in their
daily modern lives. Big tech companies like Google or Amazon adopt these
technologies and revolutionize the technological landscape. These companies
build their own knowledge graphs through existing knowledge repositories
[46, 12]. The data structure within a knowledge graph is a triple and looks
like (Christoph Waltz, bornIn, Vienna) [22].

Over the past few years, research tends to focus on the generation or pre-
diction of knowledge within a knowledge graph without the input of new
external information. This process is knowledge graph completion, as its
purpose is to get closer to a completion of a knowledge graph [80]. In-
knowledge graph tasks predict new knowledge through prior existing ones,
like (Christoph Waltz, ageIs, 66) leads to the prediction of (Christoph Waltz,
bornIn, 1956) [59]. The knowledge graph completion process can be carrie
out by embedding methods or none embedding methods.

Despite the continuously increasing amount of work in the research direc-
tion of knowledge graphs, the performance difference between embedding
and none embedding methods represents a gap in the literature. This leads
to a missing historic comparison that shows the performance disparity over
time.

In this thesis, we aim to give a visual representation of the historic per-
formance difference between embedding and none embedding methods. Our
hypothesis is that embedding methods possess a slight performance advan-
tage at the current stage, but not enough to explain the sole focus and switch
to embedding methods in research.

The paper structures into the following sections: in Section 1, we present
our acknowledgements. Section 2 presents an introduction to our topic and
includes our research question and research method. Section 3 contains
the background for knowledge graphs, in-knowledge graph tasks, traditional
knowledge graph completion, and knowledge graph embedding. In Section 4,
we introduce the related work for the systematic literature review. Section
5 is about the approach we took to visualize and compare our results. In
Section 6, we present the results of our study. Section 7 discusses our results
and future studies. In the last section, we summarize the most important
findings into a conclusion.
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1.1 Research question
This thesis contributes to the literature on knowledge graphs by studying
the performance difference between knowledge graph embedding methods
and methods that do not use embedding. In particular, we study whether
there is a difference in performance for in-knowledge graph tasks between
embedding methods and none embedding methods. The research questions
in this thesis are:

Q1: Is there a difference in performance between embedding and

none embedding methods for in-knowledge graph tasks?

Q2: If there is one, to what extent does the performance differ

between embedding and none embedding in-knowledge graph tasks,

and is it justifying the additional investment that knowledge graph

embedding entails?

1.2 Research method
We study the research questions from above with a systematic literature
review. As a guideline, we use the PRISMA or preferred reporting items, for
systematic reviews and meta-analyses [42]. This research method enables us
to determine, select, and link the present literature for knowledge graphs and
knowledge graph completion. The process of a systematic literature review
includes many steps. These steps are to identify, structure, and formulate
the research questions. Then create the outline and scope for the search
strategy, inclusion and exclusion criteria, and selection strategy. To conduct
a systematic search of the literature with our selection of databases. Then
we further reduce the number of articles. The next step is to filter the
selection of papers according to the inclusion and exclusion criteria. Then
assess the remaining full-text articles and include or exclude them from the
qualitative synthesis. The last step is that we extract the relevant data from
the remaining literature, like knowledge graph completion performance data
and background information.
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2 Background
This section presents background on Knowledge Graphs (KG), In-Knowledge
Graphs (In-KG) tasks, Knowledge Graph Completion (KGC), Knowledge
Graph Embedding (KGE) methods, and None Knowledge Graph Embedding
(NKGE) methods.

2.1 Knowledge graph
The origin of KGs, or its synonym, knowledge base, dates back to the late
1960s with the development of expert systems [12, 27, 22]. KGs purpose
is to collect real-world data and knowledge into a large-scale network and
structure human knowledge as a multiple relational graph [38, 48, 11, 68].
In the 1980s, Tim Berners-Lee et al. suggested the Semantic Web. The
Semantic Web is about the integration of relations between concepts [18,
27, 1]. Stokman and Vries proposed the modern knowledge graph in 1988
[27]. In 2012, Google’s search engine use of KG technology made it popular
[18, 27]. The current literature on KGs focuses on research in these three
categories: knowledge graph representation, knowledge graph construction,
and knowledge graph applications [12]. Big tech companies such as Google,
Facebook, Amazon, etc. adopt KGs to build their own and utilize them in
their business operations, such as search engines [46, 12].

7



Figure 1: This is the structure of a graph. It consists of many nodes with
edges as connections. A node is an entity, and the edge is the relationship
between two entities. A graph contains many sub-graphs. A sub-graph
within describes only part of the graph.

The Figure 1 represents an example of a KG structure. New applications
for such KGs increase the adaption rate of companies. They solve real-world
problems like semantic parsing, search engines, entity disambiguation, infor-
mation extraction, or question answering [49, 84, 38, 39]. These applications
are natural language processing tasks (NLP) and support the enhancement
of AI applications [37, 67, 79, 7]. One use case for KGs is a modern search
engine (e.g., Google or Bing). These search engines or other technologies like
machine learning utilize the structure to improve search accuracy [46, 17].
This increases adoption and importance for companies and institutes [17].
The massive amount of linked data leads to a higher popularity of the tech-
nology [87]. User interest graphs are real-life applications of KGs. The basic
information is from knowledge repositories, and they contain information
about publicly known figures, e.g., actors, companies, and politicians [46].

The Google Knowledge Graph uses data from knowledge repositories like
Freebase. Those repositories are also KGs, but are publicly available. This
leads to KGs being built from other KGs [46]. These public repositories con-
tain millions of entities and relations. The most popular in the literature
are Freebase, DBpedia, YAGO, WordNet, NELL [86, 19, 65, 83]. Metaweb
released the knowledge repository Freebase in 2007, and in 2010, Google
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bought it. It has around 3 billion facts and 50 million entities [18]. DB-
pedia, a community project by the Leipzig University and Free University
of Berlin research team, released in 2007 as OpenLink software [18]. Yet
another great ontology (YAGO) published by the Max Planck Institute in
2007, has 5 million facts about individuals, organizations, and locations [18].
As there are many different knowledge bases, there need to be classifications
for each variant.

KGs classifies into several categories, in this paper we focus on 3 main varia-
tions containing sub-categories. The first classification is the visualization of
information. The content displays either as textual, visual, or multi-modal.
The next class is the domain scope. It splits between two sub-categories of
general KG and a domain KG. The last one is about the timeliness of infor-
mation. The supply of new information can either be static or dynamic. A
static KG includes no new outside information, whereas a dynamic one con-
stantly receives new outside input [12, 27]. This information, has the form
of a triple, and we describe this structure of information storage in the next
paragraph [13].

Figure 2: An example of a triple with the entities Vienna and Austria and
the relation between them, capitalOf.

Triples The structure of knowledge graphs is a heterogeneous information
network and consists of a set of triples [13, 17, 19, 18]. With Figure 1 we
present a KG consisting of triples and a sub-graph. KGs are directed graphs
[14, 85, 7]. Triples storage structured human knowledge [80]. Another name
for triple is fact. A knowledge graph represents a fact through a subject and
an object. The connection between them is called a predicate or relation
[19, 65, 27]. This leads to (subject, predicate, object) [48, 68, 59]. The
Figure 2 presents the triple (Vienna, capitalOf, Austria). Vienna is the
subject with capitalOf as predicate and Austria as the object [50, 44, 38].
The descriptions or terms of a triple differ in the literature. One variation
describes the subject as head entity or h, the relation or predicate between
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those entities as r, and the object as tail entity or t [16, 44]. These triples
stating a fact as (h, r, t) and posses the same structure as (subject, predicate,
object) [50, 84, 26, 71]. This means that an entity can either be a real-world
object or an abstract concept with the relation between them [27]. The other
common variant is with the name nodes for both subject and object and edge
for relation. This structure of triples enables efficient representation of data
in KGs. [65, 62, 21]. The relations of triples split into four classes with
1-to-1 relation, 1-to-N, N-to-1, and N-to-N [22]. In the next paragraph, we
elaborate the difference between Resource description framework and labeled
property graph.

Figure 3: These two graphs represent a labelled property graph on the left
and a resource description framework on the other side.

Resource description framework and labeled property graph Re-
source description framework (RDF) and labelled property graph (LPG) are
information structures of KGs. In Figure 3 we present a visual comparison
between the LPG graph and a RDF graph. The RDF methods use triples to
store and represent knowledge [18, 58]. In our case, we present the relations
of Christoph Waltz in a potential sub-graph as a RDF graph. A triple based
on the RDF has the same structure as the triples above (subject, predicate,
object) and supports semantics [18, 53, 51, 52]. RDF is one of the semantic
web standards since 1999 [27]. Property graphs include properties or at-
tributes of entities and relations. In our example, we have a :Person with the
name = Christoph Waltz and the profession = actor. The :Person is the en-
tity with the properties of name and profession. Another name for a property
graph is an attribute graph. Entities in LPG have semantic descriptions, and
relations possess types like since = 06.07.1964 [27]. In the next paragraph,
we explain the construction of KGs.

The heterogeneous data construction of such sets of triples is a knowledge
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graph or knowledge base [50, 51]. As a dynamic KG includes external data,
a static KG can only create new knowledge with a knowledge graph com-
pletion process utilizing the already existing triples [12, 63, 68]. The graph
structure of KG contains information as triples. Relational reasoning utilizes
existing triples to construct new potential relations between entities and cre-
ate new triples within the KG. Different terms for relational reasoning are
entity prediction, relational prediction, or knowledge graph completion [63].
Technologies like knowledge graph reasoning applications enhance the struc-
ture of these graphs. These applications use the existing entities to relation
structure to predict new triples [63]. KGs increase in usage in modern situ-
ations. They are practical and essential, but have problems that can hinder
their efficiency, like the high need for computing power, data sparseness, in-
creasing size, and limited data storage space [4, 66, 73, 47]. The next section
contains information about the knowledge graph completion process.

Figure 4: Knowledge graph completion has two categories of sub-tasks. The
first is knowledge graph enrichment. This task adds triples to the knowledge
graph. The second is cleaning, and it deletes false triples.

2.2 Knowledge graph completion
Knowledge graphs store millions of entities but still contain incomplete and
incorrect facts [52, 22, 48, 68]. As the Figure 4 shows, the KGC process
either enriches a KG or cleans it with certain in-KG tasks. To reduce these
issues and improve the quality of KGs the KGC process predicts new triples to
complete a KG [51, 62, 73, 48]. The prediction process needs the prior existing
triples to find new ones [16]. The completion of a triple either predicts the
head entity (?, r, t), relation (h, ?, t) or tail entity (h, r, ?) [22, 47, 37].
A scoring method is frequently used in the literature for KGC [24, 7]. It
measures the plausibility of missing triple entities or relations and supports
the completion process [71, 47]. Currently, the literature focuses on the KGC
of static KGs [52, 73]. It is too costly and labor-intensive to manually add
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valid triples [80, 28]. This leads to the need for amortization like in-KG tasks
[80, 14]. The next paragraph focuses on the different evaluation protocols for
KGC.

Evaluation protocol To test and evaluate the performance of in-KG tasks
on data-sets, the literature uses evaluation metrics for experiments. The main
metrics are mean rank (MR), mean reciprocal rank (MMR), and HITS@K [1].
These metrics rank test triples to evaluate performance [16]. The evaluation
uses a score function to rank triples [70]. MR is the most basic and describes
average rank of these ranked test triples [1]. A lower score indicates better
results [70]. MMR has fewer outliers than MR, and the scores are between
0 and 1. Results closer to 1 signify better performance [1]. The HITS@K
has different settings, with the most common as HITS@10 [1]. HTIS@K
measures the proportion of the test triples that are positive and rank in the
k [70, 31]. The k can be a number, with the most common as 10 [70]. The
standard evaluation protocol for classification tasks like EC or TC is mean
average precision (MAP) [71, 70]. Other metrics are adjusted mean rank
(AMR), receiver operating characteristic curve (AUC-ROC), and area under
the precision-recall curve (AUC-PR) [1]. But AUC-ROC and AUC-PR need
complete KGs and are hence not useful for in-KG tasks [1]. To improve
upon the performance of the raw version, the literature filters valid triples
and excludes corrupted ones [59]. This leads to the options of raw and filter
version [16]. The literature uses filter more often as it has better performance
[1]. In the upcoming subsection, we talk about the individual In-KG tasks
and the way they contribute to the KGC process.

2.3 In-knowledge graph tasks
In-KG tasks are part of the entity and relation embedding scope, with the
goal to complete and refine the KG [65, 59]. In other words, the tasks predict
missing relations or entities [17, 82]. These In-KG tasks either complete a
KG or refine them [79]. These tasks are link prediction, triple classification,
entity classification, entity resolution, and entity prediction [65, 27, 68]. The
tasks to reduce the incompleteness of KGs are link prediction and entity
prediction [80]. The remaining tasks of triple classification refine a KG [28].
Link prediction is the first task we describe, and it is the most popular In-KG
task in literature [5].
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Figure 5: The link prediction task has the goal to predict the missing relation
(?) between Vienna and Austria through a scoring method.

Link prediction The purpose of link prediction is to predict missing re-
lations between two entities [68, 80, 5]. The entities to predict are either a
missing head entity or a tail entity within a incomplete triple [9, 15, 6, 26].
This task adds additional information to the KG and increases completion
and refinement [65]. The link prediction process uses a ranking or scoring
system to predict the two entities with a matching relation [65]. The scoring
methods return a list of ranked candidates based on their score [9, 59]. The
process extracts incomplete triples within the KG. In our example (Figure 5)
the triple is (Vienna, ?, Austria) with the relation between the entities miss-
ing. The scoring function or algorithm of link prediction trains through a KG
[61]. It creates a list with a ranking of possible entities matching a relation.
This leads to a prediction of a link between two entities [65, 63]. Another
name for link prediction in the literature is relation prediction [29]. Link
prediction of missing relation leads to the completion of the KG. The next
in-KG task checks the correctness of these new triples.

Figure 6: Triple classification or fact prediction calculates the correctness of
a triple and classifies them as either True or False.

Triple classification Triple classification is another in-KG task. Triple
classification classifies a triple as true or false [9, 66, 11, 68]. The literature
considers this as a binary task as it is either true or false [85, 61]. A synonym
for a true triple in the literature is golden triple [85]. The previous task
predicts through a scoring method the missing relation as “capitalOf“. The
new triple is (Vienna, capitalOf, Austria) as Figure 6 above [85]. Now, triple
classification calculates for every triple a score. The higher the score of a
triple, the greater the chance that the fact is true and states the plausibility
of triple [65, 27]. Triple classification’s goal is to gather the correctness of
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unseen triples. This means it checks if the relation “capitalOf“ between the
subject “Vienna“ and object “Austria“ is correct [4]. Triple classification or
fact prediction checks if a triple is true and the next task classifies missing
objects [63].

Figure 7: Entity classification predicts missing semantics for entities. For
example, the results classify Vienna as city.

Entity classification The classification of entities puts entities into se-
mantic classes, for example a person [65, 78]. Entity classification predicts
matching labels of entities (Figure 7) [17, 8, 70, 43]. The in-KG task entity
resolution checks if two different entities mean the same.

Figure 8: Entity resolution removes duplicate nodes. This cleaning task
deletes entities with the same reference. In our example, the KG has the
entities “Vienna“ and “Wien“, which refer both to the same city.

Entity resolution Entity resolution is a verifying process for two entities.
It checks if nodes are referring to the same object or not (Figure 8) [65, 55,
23, 40]. This resolves the duplicate problem of nodes [65]. The last task of
in-KGs is entity prediction.

Entity prediction The goal of link predictions is to find the missing re-
lations between entities in the knowledge graphs. Entity prediction aims
to locate missing relations. Entity prediction searches for incomplete triples.
Triples only exist with one relation and one entity. Similar to link prediction,
the missing entity will be found with the support of a scoring system. This
scoring method scores the most probable missing entities [29]. The KGC
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uses these in-KG tasks. We split the KGC process into two variations. We
describe one of them in the next part of the thesis.

2.4 Traditional knowledge graph completion
The traditional knowledge graph completion methods or none embedding
methods are based on rule reasoning, probabilistic graph model, and graph
calculation [12]. Graph calculation methods are mostly multi-hop whereas
KGE are single-hop [33, 54, 35]. We present each of them in turn, with rule
reasoning as the first method.

Rule reasoning With this method, new knowledge within a KG derives
through statistical feature or rule reasoning (RR) and enables the KGC pro-
cess. RR extracts and establishes these rules automatically through the use
of semantics, or includes rules manually [10]. Rule-based reasoning extracts
new knowledge through rules. The completion process uses this knowledge.
Through semantics and deduction. RR can categorize nodes through this set
of rules. It reason through rules to deduce new triples. Through these rules,
RR can deduce that the entity Vienna and the entity Linz are the same cate-
gory. The accuracy of RR depends on accurate rules and comprehensiveness.
An advantage is that these rules are understandable and logical for humans
and can be gathered automatically [41]. To generate these rules, the RR
methods often use Markov logic network [20]. But Ii has many deficiencies
like a need to complete rules to function, but these rules are hard to gain.
The accuracy and completion in practice is not efficient and needs high com-
putation power [79]. Chen et al., 2020 write that as KGs keep increasing in
size the NKGE methods are no longer serviceable. RR methods are Deep-
Path, OWL2RL, and KGRL [12]. The probabilistic graph model, the second
traditional KGC method, solves some shortcomings of rule reasoning.

Rule Reasoning
Traditional knowledge graph completion

OWL2RL [12]
KGRL [12]
ProPPR [69]
DeepPath [57]

Table 1: This is a list of rule reasoning completion methods. They are none
embedding and solve the completion process with a set of rules.
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Probabilistic graph model The probabilistic graph model (PGM) uti-
lizes graphs that show probabilistic relations. Through this relation, it uses
probability modal to deal with uncertainty. The advantages are flexible topo-
logical structure, understandable, and clear semantics. It allows relational
semantic interpretability. The Markov logic network and Bayesian network
are mostly used for KGC within a PGM [64]. This model needs lower com-
putational power than graph reasoning, but has a complex algorithm and
is difficult to do with large-scale multi-relation KGs [12]. The last NKGE
method we present is graph calculation.

Graph calculation Graph calculation (GC) or path ranking algorithm
calculates with nodes and edges and uses the graph structure of KGs. GC
utilizes the statistical characteristics of edges and nodes, outgoing degree and
incoming degree of nodes, and the adjacent matrix to predict new relations
and entities [64]. The literature calls this paths [88]. These paths rank the
distance of the nearest path to for IN-KG tasks [69]. The learning phase
includes feature extraction, feature calculation, and construction classifier
[64]. Random walk is one method for feature extraction [64]. Methods of
GC for KGC are Path Ranking Algorithm (PRA), Coupled Path Ranking
Algorithm (CPRA), and several others with PRA as first method from 2013
[18, 60]. Reinforcement learning improves upon the random walk method
and the including path solving or reasoning problem with Markov decision
process (MDP) [32, 33, 60]. MDP uses a reward function to calculate the path
and is sensitive to these rewards [31]. Methods that utilize this are Deep-
Path, MINVERVA and M-WALK [64, 33, 36]. Based on the literature, KGE
improves upon the NKGE methods [12]. As path GC use random walk, the
methods deal with noise, randomness and uncertainy [60]. Another problem
is the inefficiency of computation as most GC methods needs to path through
the whole graph [60]. In the next subsection we describe the different KGE
methods, categorize them and list their advantages and disadvantages.
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Graph Calculation
Traditional knowledge graph completion

PRA [60]
MINVERVA [54]
M-Walk [32]
ADRL [64]
Neural LP [41]
DRUM [10]
MultiHopKG [36]
NTP-� [54]

Table 2: Graph calculation or path ranking methods calculate the distance
of paths to support the completion of a knowledge graph.

2.5 Knowledge Graph Embedding
The main aim of KGE is to hold the original graph structure in-tact while
mapping a graph into low-dimensional vectors [19, 21, 73, 11]. This now
embedded triple can also include the semantics from its original form [80].
Representation learning is the other definition that the literature uses for this
category [55, 24]. The main focus of KGE in the literature is about triples
and their textual information [17]. This solution of embedding triples for
current knowledge graph problems enables a more efficient for storing and
computation of data [4, 48, 16, 80]. This means that KGE utilizes vectors
for the embedding to gain more efficiency with the computing processes [76].
Graph embedding, originally designed in the early 2000 to reduce the dimen-
sionality of non-relational data [4]. Graph embedding sets individual nodes
into low-dimensional space and compares the closeness of each node [4, 76].
Different embedding methods use different inputs besides triples.

There are different inputs and outputs for each graph embedding method.
One input can be a triple from a KG, and an output of the embedded triple
into a vector space. As literature states, node embedding as an output set-
ting is the most researched. The output produces a representation of the
input graph in the form of a low dimensional vector. Depending on the out-
put granularity, node embedding, edge embedding, hybrid embedding, and
whole-graph embedding are different graph embedding outputs [4]. Node
embedding embeds similar nodes like Vienna and Linz, whereas whole-graph
embedding the whole graph [4].
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Knowledge graph embedding models need training before they can be used.
There are two existing assumptions for the training. Either the open world
assumption or the closed world assumption. The open world assumption
states that there are only true facts within a knowledge graph and not ob-
served facts are either missing or false [24]. The closed world assumption
states that all not included facts are false [65]. We and many articles split
the KGE methods into three main categories [36, 80, 14]. These are trans-
lation, semantic matching, and network representation learning [83, 18, 21].
The first model we cover is the translation.

Figure 9: TransE embeds a triple into a low dimensional vector space. “h“
and “t“ are the entities and r is the relation of triple. It uses the distance
between h and t for calculations to achieve in-KG tasks.

Translation model Translation based methods focus on semantic infor-
mation of triples [17]. The most popular methods are TransE, TransH,
TransR, and TransD [15, 56, 58]. The first and original translation based
method is TransE [14]. The Figure 9 visualizes the embedding of a triple
through the TransE method [65, 58]. TransE embeds relations as distance
between head entity and tail entity and performs the best with 1-to-1 rela-
tions but struggles with more complex ones [9, 83, 26, 71]. Other translation
models like TransH try to overcome this weakness and gain better results with
1-to-N, N-to-1, or N-to-N relations [71, 51, 56, 62]. TransH embeds relations
through hyperplane and TransR matrix embedding [83, 26, 71]. The Table 3
contains all translation based methods of our literature that we include in
the bachelor thesis.
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Translation-based
Knowledge graph embedding

TransE [65]
TransH [44]
TransR [9]
RotatE [82]
SE [19]
TorusE [15]
HAKE [80]
DualE [8]

Table 3: The translation-based embedding methods utilize the distance be-
tween embedded entities for the scoring of plausibility. This table present a
list of common translation based methods.

Translation models focus on the search of valid triples based on a score
function and try to minimize the loss function [59]. It scores the plausi-
bility by calculating the distance between the embedded entities [65, 27].
Translation-based models mostly use the distance of the embedded triples to
either score or compare similarity to check the plausibility of triples [27]. It
utilizes the relations between entities and the structure of the KG to predict
unseen facts. Translation models need a complex training for the algorithm
and are more difficult than NKGE methods, but allows for simple, under-
standable results [12, 56]. To improve upon the strength of this method,
semantic matching models include the semantic aspect into the embedding
process.
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Figure 10: RESCAL is a semantic matching model that compares head and
tail entities semantics to calculate a score and to process in-KG tasks. The
final output fr(h, t) present the score of a triple.

Semantic matching model The semantic matching model or bilinear
models uses the semantic factor to compare similar entities and relations to
predict new facts [12, 15, 27, 51]. These methods include the semantics on
their score functions [80]. As Figure 10 shows the interaction of head entities
and tail entities through RESCAL. RESCAL compares semantic pairs and
semantics of entities through a scoring system and outputs a score of fact
fr(h, t) [12, 65]. RESCAL uses relational-type constraints to improve in-KG
tasks like link prediction. Relational type-constraints describe the logic of
relations by removing either the head or tail entity [83]. Within the Table 4
is the collection of semantic matching models.
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Semantic Matching
Knowledge graph embedding

RESCAL [66]
DistMult [1]
HolE [83]
ANALOGY [61]
SME [22]
BILINEAR [47]
TuckER [3]

Table 4: This list of semantic matching methods compare embedded triples
semantics to calculate a score. The scoring supports the knowledge graph
completion.

One problem of these type of model is the none efficient scaling with
bigger KGs [14]. Methods for KGC within semantic matching model are
SME, DistMult, HolE, RESCAL, and ANALOGY [22, 47, 48, 68]. The last
KGC method is network representation learning.

Figure 11: Network structure diagram embeds triples into tensor instead
of vectors to perform a scoring function. The structure is comparable to a
neural network.

Network representation learning Network representation learning (NRL)
uses information of a KG to gain a high accuracy in predicting missing in-
formation for the KGC process [12]. The structure of layers is similar to
a neural network [15, 14]. This information includes the characteristics of
graph network structure, nodes, and relations. The Figure 11 visualizes this

21



a structure. This category also includes scoring methods and functions [59].
The models embed the entities and the relations to tensors as input [59].
In comparison to the previous categories, the network representation models
scale better as they use multiple layers for their calculations [59]. Another
advantage is the high number of possible parameters that improve the ex-
pressiveness of the models [14]. In the recent literature, the focus increases
for these models [80]. However, it struggles with too many different relation
and overloads the data in training [14]. Models for network representation
learning are DeepWalk, Node2vec, GCN and Line [12, 6, 8]. We put all base-
line network representation learning models within Table 5. The next section
summarizes our related work.

Network Representation Learning
Knowledge graph embedding

DeepWalk [5]
LINE [12]
Node2vec [6]
ConvE [11]
GCN [48]
ConvKB [59]

Table 5: Network representation learning methods embed into tensors and
are similar to neural networks.
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3 Related work
The related work section for this systematic literature review refers to pa-
pers that focus on reviewing different aspects of in-KG tasks and knowledge
completion methods.

Knowledge graph completion: A review Although there is extensive
work on knowledge graph completion in the literature, there are few papers
that compare these different methods and list their strength and weaknesses.
This paper focuses on existing methods and divides them into traditional
knowledge graph completion and deep learning-based knowledge graph com-
pletion [12]. Our approach is similar, as we divide the methods into KGE
and NKGE. However, the paper is not comparing the performance between
these methods. This means our papers list the KGC methods in an identical
way, but we explore further and compare the historic performance difference
between KGE and NKGE.

A survey on knowledge graphs: representation, acquisition, and

applications The paper fixates on four main points. These are KGE,
KGC, KG learning, and use cases. The goal is to summarize the current
methodologies and applications of KGs [27]. Like in our thesis as we review
the current methodologies of in-KG tasks and KGC methods.

A comprehensive survey of graph embedding: problems, tech-

niques, and applications This literature review of graph embedding con-
tains the basic concept of graph embedding, explains the subsequent prob-
lems and categorizes each embedding method. Similar to our work, there
is also a comparison between the graph embedding methods and a list of
advantages and disadvantages [4]. But, we also include the NKGE meth-
ods and the in-KG tasks and compare them through their individual historic
performances.

ADRL: attention-based deep reinforcement learning framework for

knowledge graph reasoning The scientific article compares their KGC
method, a NKGE method, to other methods including both of KGE and
NKGE. It is the only article from our initial inclusion without the expansion
strategy that includes the traditional knowledge graph completion methods.
The IN-KG tasks for their tests include LP and TC, the criterion of hits@10
[63].
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Bringin light into the dark: A large-scale evaluation of knowledge

graph embedding models under a unified framework The paper
takes a similar approach like our work. But instead of comparing the NGKE
methods to KGE it focuses on the different categories of only KGE. The
article gives deep insight into each of the different variants and allows for a
structured and understandable performance comparison [1].
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4 Research Methodology
We use a systematic literature review in this thesis to solve the research
questions. A set of limitations and a scope enables the best possible research
process for answering the scientific questions. The scope and limitations re-
duce the selection of literature to 87 different scientific papers to represent
the current status of knowledge graphs and knowledge graph embedding. We
include 46 of these 87 papers for the performance evaluation.

4.1 Search strategy
In this subsection, we represent our search strategy for our systematic liter-
ature review. This includes the construction of our search string, our search
strategy and the expansion of our search strategy.

Search terms

Method (“knowledge graph“) OR

(“embedding“) OR

AND

In-KG tasks ((“link prediction“) OR

(“triple classification“) OR

(“entity classification“) OR

(“entity resolution“)) OR

Refinement (“completion“)

Table 6: We build a search string through the combination of two search
terms. Like a method with knowledge graph and refinement with completion
to create the search string knowledge graph completion. The search string
supports our research and improves the probability of finding matching lit-
erature.

Table 6 shows the search terms and search strings for our research pro-
cess. The keywords are knowledge graph, link prediction, triple classification,
entity classification, entity resolution, embedding, and completion. These are
the initial search terms for our systematic literature review to find the best
matching literature to answer our research questions. We combine the search
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terms of either one of method with one search term of in-KG tasks or refine-
ment to build the best possible search string. The structure of one possible
search string of method + In-KG tasks/Refinement looks like knowledge
graph (method) completion (refinement). The next paragraph explains the
structure of our search strategy.

Target databases Scopus
Google Scholar

Conferences AAAI Conference on Artificial Intelligence (AAAI)
and Knowledge Management (CIKM)
The Web Conference (WWW)

Journals Knowledge-Based Systems
Journal of Web Semantics
IEEE Access

Expansion strategy
Conference Conference on Empirical Methods

in Natural Language Processing (EMNLP)
International Joint Conference on
Artificial Intelligence (IJCAI)
Conference on Neural Information
Processing Systems (NeurIPS)

Table 7: Summary of the search string defines our selection of databases and
conferences or journals. Literature we use in this bachelor thesis derives from
these databases, conferences, and journals.

The summary of the search strategy is in Table 7. The search strategy
includes the main databases for the search process, the target conferences
and the target journals. The two databases are Scopus.com and Google
Scholar. The conferences and journals with the most articles after the search
process are the targets in our strategy. The target conferences are AAAI
Conference on Artificial Intelligence (AAAI), International Conference on
Information and Knowledge Management (CIKM), and The Web Confer-
ence (WWW). And the 3 target journals of this systematic literature review
are Knowledge-Based Systems, IEEE Access and Journal of Web Semantics.
390 articles from the search process are from the Google Scholar database.
The additional 26 articles come from Scopus. This leads to a total amount of
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416 articles collected with the support of our search strategies in our initial
search process. To accommodate a lack of data for traditional knowledge
graph methods we initiate an expansion search.

Expansion search strategy The amount of data for a performance com-
parison over time between KGE and NGKE method through our initial search
strategy is not enough. Therefore, we use an expansion to our search strategy
and include an additional 51 papers to enable a performance comparison. For
this expansion strategy, we use the Google Scholar database. We combine
our search string (knowledge graph & completion) with all NKGE methods
from our research. An example for a search string from our expansion search
is (knowledge graph completion PRA). We add the conferences with Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),
International Joint Conference on Artificial Intelligence (IJCAI), and Con-
ference on Neural Information Processing Systems (NeurIPS) as these are the
conference/journal with the most papers within our collection of literature.
The new total amount of papers after the second search process is 440 the
number of conferences and journals is 9. In the study selection, we explain
our inclusion and exclusion criteria.

4.2 Study selection
The study selection includes the criteria of inclusion and exclusion, the ex-
planation for our preliminary and post selection approach and the expansion
to our study selection.
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Inclusion criteria IC-1: Terms fulfill the search string
IC-2: Academic journal and conference papers
IC-3: Papers written in English
IC-4: Amount of citations at least 30
IC-5: Paper part of the selected journal or
conference

Exclusion criteria EC-1: Paper in PowerPoint format
for titles and abstract EC-2: Paper not focusing on knowledge graphs
for full text EC-3: Paper contents not relevant

Table 8: Summary of the selection strategy presents our preliminary criteria
for our inclusion of literature. We list 5 inclusion and 3 exclusion criteria.

In the research phase we limit the scope and the number of literature as
our selection strategy as shown in Table 8. The selection method has inclu-
sion criteria and exclusion criteria. The preliminary phase of inclusion and
exclusion support initial selection of papers before the full-text assessment.
The preliminary inclusion criteria consist of matching the keywords or search
string as inclusion criterion 1. The articles have to be part of an academic
journal or needs to be a conference paper in the second inclusion criterion.
The paper needs to have English as publishing language as the third crite-
rion. The fourth criterion is that the minimum amount of citations for the
selection of literature is 30 or more. The last inclusion criterion is that the
paper is part of the 3 journals or 3 conferences mentioned above. The exclu-
sion criteria split into two parts. The first part is for titles and abstract and
the second part is after the full text research. The first exclusion is for papers
with the structure of a PowerPoint presentation. The second for titles and
the abstract, not focusing on the research topic of knowledge graphs. The
full text exclusion criterion EC-3 is about the contents of the paper are not
relevant to answer the research question.

The scope limits the literature by the usage of keywords and papers pub-
lished by conference and journal papers. Another limitation is the number
of citations of a scientific paper. The selection excludes paper with below
30 citations. The literature for this systematic literature review derives from
the databases Scopus and Google Scholar. The reviewed scientific papers
categorize into pre-included papers and pre-excluded papers. This strict lim-
itation of the scope leads to the inclusion of 88 papers from the initial total
416 papers. The reduction of papers brings the amount of articles to a re-
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maining 21.1 % of scientific research paper as main resource of knowledge for
the construction of this paper. Within the full-text post exclusion criteria,
the assessment of 88 papers leads to the exclusion of 26 paper and a total
of 62 for the qualitative synthesis. The post excluded papers are either not
focusing on in-KG tasks or the contents are not matching the purpose of this
research paper. The next paragraph explains the expansion for our selection
strategy.

Inclusion criteria IC-1: Terms fulfill the expansion search string
IC-2: Academic journal and conference papers
IC-3: Papers written in English
IC-4: Amount of citations at least 20
IC-5: Paper part of the target journals or conference

Exclusion criteria EC-1: Paper in PowerPoint format
EC-2: Paper not focusing on knowledge graphs
EC-3: Paper not focusing on in-KG tasks
EC-4: Paper not including NKGE methods
EC-5: Paper not including performance data of
NKGE methods

Table 9: With the summary of the expansion selection strategy, we define
criteria for the additional literature.

Expansion strategy in the selection phase The additional papers need
to meet our requirements. We summarize these in Table 9. From the selection
of 51 papers, we pre-select 28 through our scope of target conferences or
journals. We include the next biggest conference or journal as a target,
which is EMNLP, IJCAI, and NeurIPS. These 28 articles are either part
of an already selected journal/conference or are from the EMNLP, IJCAI,
and NeurIPS conferences. 3 are from the journal IEEE Access, 1 is from
Knowledge-Based Systems, and 3 papers are from the conference AAAI. The
remaining 21 are from the conferences of EMNLP with 14, 5 are from IJCAI,
and the last 2 are from NeurIPS. 15 of these 21 additional papers are from our
initial search. The other 7 derive from the expansion search process. The
post exclusion removes 3 articles from the additional expansion selection.
These 3 do not meet our post exclusion criteria of Table 9. They do not
include matching content or performance data of in-KG tasks. The remaining
25 papers are part of the post inclusion. This leads to a total amount of 87
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articles for this bachelor thesis and 46 from the 87 papers for the performance
evaluation. And a total amount of 353 papers in the exclusion.

4.3 Data extraction
We collect performance data of In-knowledge graph tasks from our selection
of papers and transfer them into tables to visualize and analyse our collec-
tion of data. The performance tables structure includes the digital object
identifier (DOI) of each articles as a primary key. The x-axis is the publish-
ing date of each data set and enables sorting through dates to research the
performance difference over time. The y-axis represents the performance of
each method. Every data point derives of either a KGE or NKGE. We guar-
antee this affiliation with a boolean. We specify if the data in the literature
utilizes variance in the data sets to present the results. Furthermore, we add
additional information for each entry that includes the specific in-KG task,
the KGC method and the data-sets.

We enable a comparison between each task and KGE against NKGE with the
visualization of performance data. This allows for a structured visual data
table. This table shows the extent of difference between KGE and NKGE.
The data-sets or databases for the comparison of data between literature are
from WordNet or from Freebase [13, 26]. The limited subsets of these two
are WN11, WN18 and WN18RR. Freebase has FB13, FB15k and FB15k-237
as subsets. The remaining databases the literature mainly uses are YAGO3,
YAGO37, Wiki13k, NELL-995, DBP15k, Wikidata, WK31-15k and WK31-
120k [13, 71, 56, 21]. For the comparison of our data we only use the subsets
of WN18, Wn18RR, FB15K, and FB15K-237 due to not enough data from
the literature of other data sets. As criterion for the performance, we select
the hits@10 and Mean Rank for link prediction and MAP for triple classifi-
cation. For the data collection, we insert the data into an Excel table. We
then import the Excel table into python. We analyse the data and create
plots through pandas. In the next paragraph, we discuss the challenges and
limitations of these processes.

Challenges and limitations The biggest challenge we have to overcome is
the scarcity of performance data for NKGE methods. As we mention above,
the amount of papers that include NKGE methods into their performance
comparison of in-KG tasks in our initial search process is 1. This leads to
the necessity of the expansion strategy to compensate the lower amount of
NKGE data and to guarantee a fair comparison between those two categories.
However, even through the expansion strategy, the amount of data entries of
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KGE to NKGE is still 8/1. This means that we have to limit the comparison
of in-KG tasks to only LP and TC. The biggest limitation of this bachelor
thesis is the exclusion of NKGE methods in KGE papers. And the hardest
challenge to overcame is to enable fair and valid comparison of both categories
with the unequal amount of data available. Within the results section, we
present our findings and the performance of both KGC main categories.

4.4 Outline and scope
The first chapter starts with the introduction. It explains the problem and
our hypothesis. In the subsections 1.1 and 1.2 we introduce the research
questions and the research method. In Chapter 2 we focus on the back-
ground. The section contains information about KGs, KGC, In-KG tasks,
NKGE and KGE. Section 3 is about related work and papers that present a
similar approach to our work. In chapter 4, the research methodology, we list
the steps we take to get to our results with the subsections search strategy,
study selection, data extraction, and outline and scope. Within section 5
we present the results and findings of the systematic literature review. The
results section includes the study characteristics and the performance com-
parison. Chapter 6 contains the discussion section. We include the scientific
research trends for KGC, our interpretation of findings, address the limita-
tions and strengths of our research method, answer our research questions
and discuss future research. The next section is the conclusion. We summa-
rize our relevant and significant findings. The reference chapter is the last
section and lists the cited materials in the thesis.

We limit the thesis scope in our initial research phase by considering only 3
conferences and 3 journals (Figure 12). The 3 selected conferences are AAAI,
International Conference on Information and Knowledge Management, and
The Web Conference. The 3 journals to scope the selection of articles are
Knowledge-Based Systems and Journal of Web Semantics. Through the ex-
pansion strategy we include the conferences EMNLP, IJCAI, and NeurIPS .
The next section presents our results of our performance evaluation.
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Figure 12: The flow diagram presents our processes and the amount of lit-
erature we collect for each step within our literature research. Our initial
search includes Google Scholar with 390 papers and Scopus with 26. The
expansion strategy adds 24 articles from Google Scholar. From 440 papers,
87 are in our qualitative synthesis. From the remaining papers, we use 46
for the performance evaluation. The remaining 41 articles within our quali-
tative synthesis selection do not possess the correct selection of data for the
performance comparison.
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5 Results
In the results section, we present our findings of the performance comparison
of the knowledge graph completion categories. We collect the data of papers
that match all our inclusion criteria. These papers are from the journals of
Knowledge-Based Systems, IEEE access, and the conferences of AAAI, Inter-
national Conference on Information and Knowledge Management, EMNLP,
IJCAI, and NeurIPS. The collection of papers from the The Web Conference
and the Journal of Web Semantics do not possess performance data for our
performance evaluation. This section includes the study characteristics, find-
ings, and our scientific questions. First, we explain the study characteristics
of the papers in the next paragraph.

Figure 13: The statistics summary of our paper selection includes four figures.
The first one shows the amount of papers with NKGE methods data. The
second, the distribution of in-KG tasks. The third the number of paper
publications for each year. And the last figure, the amount of papers that
present their performance data with variance.

5.1 Study characteristics
In the study characteristics, we discuss relevant information about paper
details for the data extraction. The total amount of papers we use to compare
the performance is 46. As visible in Table 10, 18 of these papers are from
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the conference AAAI, 9 from EMNLP, 1 from International Conference on
Information and Knowledge Management, 5 articles are from IJCAI, and 2
are from NeurIPS. The remaining papers are from the journals IEEE Access
and Knowledge-Based Systems, with 7 and 4 papers. This means we do not
have the necessary performance data for the performance evaluation from
papers of The Web Conference and Journal of Web Semantics. The date of
publication for these scientific articles range from 2015 to 2022. With the
earliest release in 1.1.2015 and the latest at 5.5.2022. The total amount of
unique data entries is 978. The first bar chart, “Number of KGE or NKGE
methods“ in Figure 13 visualizes the relation of entries between KGE and
NKGE. The bar represents True as a KGE with 44 papers and False as a
NKGE with 13. This means that some papers of NKGE include performance
data for KGE methods. The second bar chart shows the usage of each in-
KG task. The most prominent task is link prediction with 39 papers and
triple classification as the second biggest with 18. The last three are entity
prediction, entity classification, and entity resolution with 9, 3, and 1 papers.
The first 2 bar charts can include papers of both KGE and NKGE methods
and more than one In-KG-task within their performance data. The third
bar chart in Figure 13 includes the total amount of paper published in each
year. The year 2019 contains the most articles, with 11. The least amount
of publications is in 2022 with 2. The last chart visualizes all articles that
include a variance within their performance results. One entry within our 46
publications uses variance. We continue with the explanation of our paper
attributes.
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Conference Number of papers

AAAI 18
EMNLP 9
International Conference on Information
and Knowledge Management 1
IJCAI 5
NeurIPS 2

Journal Number of papers

IEEE 7
Knowledge-Based Systems 4

Table 10: Number of papers for each conference and journal, which are in-
cluded in the performance evaluation.

In Table 11 we include structural information of our performance graphs,
plots and bar charts. The performance data we collect and use for our com-
parison are all from filter instead of raw. The filter option removes corrupted
triples and delivers better performance than the raw version. Consequently,
the literature prefers to use the filter variant for performance testing.
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X-axis Publication date
Y-axis Performance data from papers
Primary key Digital Object Identifier (DOI)

Column contents

Embedding true, false
Variance included true, false
In-KG tasks Link prediction (LP),

Triple classification (TC),
Entity prediction (EP),
Entity classification (EC),
Entity resolution (ER)

Methods TransE, TransR, TransH,
DKRL, SSP, PRA,
DistMult, ConvE, MINERVA,
M-Walk, ADRL, RESCAL,
SE, SME, LFM, TransD,
TranSparse, ConvKB, R-GCN,
BILINEAR, ComplEX, ANALOGY,
TorusE, RotatE, DCN,
M-DCN, HolE, Unstructured,
SACN, QuatE, SimplE,
DualE, LMF, Random Walk,
Goal-Directed Random Walk, TuckER,
NeuralLP, NTP, DRUM,
Multihop-KG, DeepPath,
SLM, NTN, CKRL

Data-sets WN18, WN18RR,
FB15k, FB15k-237,

Evaluation protocols hits@10, MAP

Table 11: Paper attributes presents the structure of an entry within our data
table. Each entry has a DOI as primary key, a publication date for the x-axis,
the performance for the y-axis. The column additionally includes if the data
uses embedding or variance, which in-KG tasks it performs, KGC method,
and on which data-set it tests.
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We insert the data collection into a table with the columns DOI, publi-
cation date, embedding, variance reported, In-KG-Tasks, Method, Category,
Top-k Criterion, Data-Sets, and Results. We input each performance result
from an article into a row. This can lead to more entries from one paper.
The publication date represents the latest version of papers. We use it as
x-axis to enable a performance comparison over time. The DOI describes
the digital object identifier and primary key for the results of each scientific
paper. The embedding column represents a boolean that indicates the usage
of a KGE method for this result. With the “variance included“ column, we
determine the amount of data that represent their results with a variance
through true or false. The variance shows the spread of the performance
score. An example would be the LP score of 98.2 with the variance of �2.
This means scores spread around 2 point higher or lower from 98.2. In-KG
tasks defines a task, like LP. Methods represent a specific KGE or NKGE
method. The “Results“ field contains the performance data. We describe the
input for the data-sets column in the next paragraph.

Data-sets To enable a performance comparison between NKGE and KGE
methods, we collect data from each paper through the qualitative synthesis.
It is only possible to compare the performance for each method from the
same data-set. This leads to the limitation of the data-sets most common
in literature. Our performance comparison contains the 4 data-sets WN18,
WN18RR, FB15K and FB15K-236. These data-sets are either subsets of
WordNet or Freebase. Our first data set we describe is the WordNet fam-
ily. WordNet has the two data sets WN18 and WN18RR [1]. In WordNet
the relation is conceptual-semantic [1, 39]. The structure is build through a
hierarchy with relations build as lexical relationships [3, 73, 22]. The WN18
data-set around 40,900 terms and 18 relationships [1]. WN18RR is another
subset of WordNet. WN18RR is similar to WN18. It is a subset of WordNet
and has the same amount of terms as WN18. The difference is the removal
of inverse relations [3]. This subset has 11 relationships [1]. The first free-
base data-set is FB15K. FB15K contains real world facts like about movies,
awards, actors, and sports [3]. The amount of entities is around 15,000 with
1,345 relationships between them [1]. The last data-set we include is FB15K-
237. This subset is comparable to the WN18RR variant, as the relations are
inverse [1, 3]. This change leads to worse performance for simple models
[3]. The next important topic we discuss is the evaluation protocol of our
collection of performance data.
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5.2 Performance comparison
We discuss the performance comparison of in-KG tasks between KGE and
NKGE methods over time. The two tasks we present are link prediction
and triple classification. For link prediction, we have enough data to vi-
sualize a graph for all four data-sets with WN18, WN18RR, FB15K, and
FB15K-237. Triple classification has one plot with the data-set FB15K-237.
The x-axis represents the years, and the y-axis contains information about
the performance on the criterion and the performance results. The legend
for the performance comparison graph includes “Embedding“ and “Standard
Deviation“. The blue lines represent the performance for KGE and are “Em-
bedding“ and the light blue area visualizes the “Standard Deviation“. The
orange line stands for the NKGE data performance and the light orange area
for the “Standard Deviation“ of traditional methods. We start with the link
prediction on the data set WN18 in the next paragraph.

Figure 14: The performance comparison of the evaluation data is from the
link prediction task and the criterion hits@10. These four figures visualize
the performance within the data-sets WN18, WN18RR, FB15K, and FB15K-
237.

Link prediction on WN18 The upper left graph in Figure 14 contains the
link prediction performance of KGE and NKGE methods on the HITS@10
criterion. The comparison over time ranges from years 2015 to 2022. For
the NKGE methods within link prediction on WN18, we possess not enough
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data to enable a render for the light orange standard deviation area. The
performance of the KGE in 2015 shows a result of about 79. In the 2016 this
performance rises to around 80 with a following slightly lower performance
of 79 in 2017. The performance increases in 2018 and 2019 to 86 and 92.
From 2020 to 2021 the performance increases to 94 and 95 and drops back
in 2022 to 94. The lowest point for KGE is in 2015 and 2017 and the highest
in 2021. The standard deviation for KGE between 2015 and 2019 is massive.
Whereas in 2019 to 2022 it is narrow. NKGE has 2 data points, because of
the lack of performance data for these methods within the WN18 data-set.
The performance for NKGE is slightly decreasing between 2016 and 2019
from around 95 to 94. In 2016 NKGE methods are about 18.8% better in
performance than KGE. In 2019 NKGE has around 2.2% better results. A
comparison between the standard deviation is not possible due to the lack of
data. In the performance graph for link prediction with the data set WN18,
the NKGE methods possess better results in comparable years. With the
next graph, we present the link prediction results on WN18RR.

Link prediction on WN18RR The graph for WN18RR on the in-KG
task LP is the upper right on Figure 14. The data ranges from the years 2018
to 2022. The standard deviation for NKGE starts at 2020 as not enough data
exists. The KGE results in 2018 are at 47 and increase around 21.3% in 2019
to 57. In the next year is a slowly increases in performance to 58. Then
we register decreases to 53 in 2021 and 50 in 2022. NKGE starts with a
better performance than the other category in 2018 at 51. In the year 2019
there is no data point. Then it increases to 69 in 2020 to its highest point.
The next performance result for NKGE in 2021 lowers drastically to 56. In
the last year we register another slow increase to 57. The results for both
categories in link prediction on WN18RR shows that NKGE performs better
in every year with an existing data point. At its highest point in 2020 the
performance difference is 18.9% in favour of the traditional methods. Both
methods have their lowest point in 2018 with 8.5% better results for NKGE.
The trajectory of both lines within WN18RR are comparably similar. The
KGE standard deviation is besides 2018 and 2022 very spread out and in
2021 there is no standard deviation. The blue area is drastically spread
out in the years 2019 and 2020. The NKGE standard deviation measures
only in 2020 to 2022. The data is similarly spread out to the blue variant
for the years 2020 and 2021. But in 2022 the standard deviation is small.
Overall the results show better performance for the NKGE methods with
the lowest performance advantage in 2018 with 8.5% and the highest in 2020
with 18.9%. In the LP graph with the data-set WN18RR, NKGE perform
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better for each year. In the upcoming paragraph, we discuss the performance
difference over time for LP on the FB15K data-set.

Link prediction on FB15K The graph for LP on FB15K is in the lower
left corner from the Figure 14. The data comes from the years between 2015
and 2022. Similar to the previous two graphs, the lack of data leads to no
visible standard deviation for the NKGE methods. Additionally, NKGE has
only two data points. KGE start in 2015 on 52. It then decreases in the next
year to 51. Between 2016 and 2021 there is a constant increase of performance
that reaches 83. For 2022 there is another small reduction that ends at 80.
The standard deviation for KGE is not as spread out as in the previous
graphs, but still high. In the year 2021 possesses the standard deviation,
is the smallest value for KGE. Besides the reduction of performance from
2015 to 2016 and 2021 to 2022, the performance has a continuous upwards
trend. NKGE has a comparable performance increase in the 2016 to 2019,
to KGE methods with 59 and 82. For the performance comparison of LP in
FB15K, NKGE methods present better results than its competitor. In 2016
the traditional variants have up to 15.7% better results and 13.9% in 2019.
The highest point is NKGE with 82 and the lowest is from KGE with 51.
We present the results of the last LP comparison next.

Link prediction on FB15K-237 The last graph is in the lower right side
in Figure 14. It compares both methods in LP on the data-set FB15K-237.
The comparison runs over the time period 2018 to 2022. Both methods
have a standard deviation. However, there is no data of NKGE methods in
2018. Embedding performance starts in 2018 with a mean performance of
around 42. The results increase continuously until they reach their highest
point in 2021 with 61. For the last year, there is a drastic drop to 47. The
NKGE line starts from the lowest point in the entire graph, with 36. Then
it reaches the highest point of the graph in 2020 with a performance of 67.
For the remainder of the traditional methods, the performance decreases. It
ends with a result of 44 in 2022. Within the FB15K-237 LP graph, the KGE
methods have the lowest standard deviation of the Figure 14. In comparison,
NKGE standard deviation has a higher spread. The KGE have a better
performance for every year besides 2020. In that year NKGE has its highest
point with 67. And the lowest performance is in 2019 from NKGE data. The
last comparison we have is for the triple classification task.
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Figure 15: The performance comparison of the triple classification task is on
the data-set FB15K-237 and the evaluation protocol MAP.

Triple classification on FB15K-237 The comparison over time for triple
classification on the data-set FB15K-237 is visible in the Figure 15. The
x-axis represents the publication years and the y-axis the criterion. The
criterion for the in-KG task TC is MAP. The performance data ranges over
a span of three years, from 2019 to 2021. For the NKGE category, there is
no standard deviation present. The reason for this is the data sparsity in
literature. KGE starts in 2019 with a performance of 84. It decreases in
performance significantly in 2020 with 60 and in 2021 with 30. The standard
deviation for KGE in TC is low for 2019 and 2021. But it is very high in
2020. The orange performance start at 57 in 2019. Sinks sightly in 2020
with 54 and reaches its worst results in 2021 with 32. The KGE performance
through these years is better than the NKGE methods. KGE has both the
best performing year and the weakest within our data evaluation in TC. The
upcoming section discusses our performance results.
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6 Discussion
In the discussion section, we present the most important findings of our re-
search. This includes current trends within scientific articles of KGC, our in-
terpretation of the results, strengths and limitations of our research method,
and the answers to our research questions. We begin with the discussion of
current trends.

Scientific research trends for KGC Within the current publications
for KGC with the focus on KGE or NKGE there exist several observable
trends within our data. We focus on the three most notable. We begin with
the none existing comparison to NKGE methods within KGE papers, the
complete exclusion of variance within performance results, and the lack of
in-KG data besides LP and TC. First is the exclusion of NKGE within KGE
articles. This means that in scientific papers with focus on KGE methods,
they exclude NKGE methods from their test results. We must note that
within our performance data papers that focus on KGE methods, do not
include performance data of NKGE. In contrary to papers that concentrate
on NKGE categories. These papers all include KGE results to compare their
methods. The next trend within the current literature is the none existent
usage of variance to represent their performance data. This is visible within
the lower right plot of our Figure 13. A handful of papers include a reason
for the exclusion [59]. Et al. Li is an exception. They list and discuss the
variance within their results and are the sole inclusion within our data [31].
The last trend visible within our data is focus on LP and TC tasks. As the
upper right figure in Figure 13 presents, those two in-KG tasks are 87.9% of
our total data entries. Next we discuss our findings of the bachelor thesis.

Our interpretation of findings In this paragraph we present our main
findings, we summarize our results, and we interpret the key findings. Our
main results to answer our research questions include the number of paper
that include either KGE or NKGE, the amount of in-KG tasks in the per-
formance data, and the exclusion of reporting a variance. As previously
mentioned, the relation of KGE to NKGE methods data within our selection
of literature is a serious matter. We have 899 entries from 44 papers for
the embedding categories and only 79 without. This is a critical difference,
and it is noticeable that the NKGE methods are disregarded in the KGE
literature. We must add that we needed to conduct an expansion strategy
to be able to start a comparison. Another stark contrast in numbers is vis-
ible within the usage of in-KG tasks. The literature favours the LP task
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significantly more than others. It has more than twice as many entries in
39 papers within our data, with a 66.4% share in total. We must note that
these numbers restrict the comparison of data and present a lack of research
for the other in-KG tasks in recent literature. The last finding is the most
surprising. Within our 978 entries from 46 papers, there is only one that
includes the variance within their performance results representation. This
is critical as it diminishes the credibility of the results. Next, we discuss
our results of the performance comparison over time. In Figure 14, NKGE
methods perform better in LP in all data-sets besides FB15K-237. In WN18,
traditional KGE performs around 9.9% better. With around 12% the NKGE
category has better results within WN18RR and 14.6% better performance
for FB15K. Only in FB15K-237 the KGE has better results within the LP
task with around 0.49%. In the TC task, KGE performance is 21.7% better
than the KGE methods. With the next paragraph, we continue with the
strengths and limitations of our research method.

Strengths and limitations of our research method Our systematic
literature review process with PRISMA as guideline is a reliable and robust
process. In the research process, the biggest problem we encountered, was
the diminishing low amount of NKGE methods performance data within
our initial selection. As solution we conducted an expansion strategy that
allowed us to conduct a performance comparison. We speculate that the
current extensive focus on KGE methods in the literature is the reason for
the low amount of NKGE data. Another limitation is the usage of only two
databases, with Google Scholar and Scopus.com. In the last paragraph of
our discussion section, we answer our research questions.

Answering our research questions In this paragraph, we answer our
research questions and explain the reasoning behind our answers. The first
question Q1 asks about the performance difference in in-KG tasks between
KGE and NKGE methods. As we mention in the previous paragraph, the
results show that there is a difference in performance in favour of NKGE.
However, we could only compare the in-KG tasks of LP and TC. The second
question is about the extent of performance difference and if it justifies the
additional focus that KGE methods receives in the literature. Our findings
show that NKGE methods perform better in 3 of our 5 test cases. On the
FB15K-237 data-set in LP, the KGE have a better overall result and within
our TC test result. The extent between those two favours NKGE significantly
with 9.9% WN18, 12% WN18RR, and 14.6% FB15K better performance in
LP. The two test cases with better performance for KGE are TC with 21.8%
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FB15K-237 and LP with 0.49% FB15K-237. These results lead us to the
suggestion to increase the research focus for NKGE. The next subsection
covers potential future research direction that derive from our results.

Future research Through our research in this bachelor thesis, we identi-
fied gaps in the KGC literature. This includes the lack of variance in current
study performance results, the exclusion of NKGE in KGE research papers
results, the direct comparison between the KGC categories, and the unequal
distribution of performance evaluation of in-KG. To fill these gaps in litera-
ture, future studies could evaluate the reason for the current lack of depth.
Another important future study we strongly suggest is a direct performance
comparison of KGE and NKGE within experiments that include all in-KG
tasks we list on not modified data-sets.
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7 Conclusion
In our bachelor thesis, we present the performance comparison between KGE
and NKGE within the two KGC in-KG tasks LP and TC over a historic time
period. We focus on data from the data-sets WN18, WN18RR, FB15K, and
FB15K-237 on the filter option. We present current trends within KGC liter-
ature. With the use of a systematic literature review, we present that NKGE
outperforms the embedding categories within our results. Our data leads us
to the conclusion, that the current weak focus on NKGE methods in litera-
ture is not justified. We support more transparency within the comparison
knowledge graph completion methods and suggest that KGE papers should
include NKGE methods.
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APPENDICES

A PRISMA 2020 CHECKLIST

Figure 16: PRISMA checklist for our systematic literature review

55



B Statistics summary of paper selection with data entries

Figure 17: Number of data entries for each In-KG task within our perfor-
mance data

Figure 18: Number of data entries which include embedding methods within
our performance data
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Figure 19: Number of data entries which include variance within our perfor-
mance data

Figure 20: Number of data entries for each year within our performance data
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C Collection of granular time series plots

Figure 21: Granular time series plot
for LP on the data set WN18

Figure 22: Granular time series plot
for LP on the data set WN18RR

Figure 23: Granular time series plot
for LP on the data set FB15K

Figure 24: Granular time series plot
for LP on the data set FB15K-237
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Figure 25: Line plot with error bar for
LP on the data set WN18

Figure 26: Line plot with error bar for
LP on the data set WN18RR

Figure 27: Line plot with error bar for
LP on the data set FB15K

Figure 28: Line plot with error bar for
LP on the data set FB15K-237
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Figure 29: Asymmetric error for LP
on the data set WN18

Figure 30: Asymmetric error for LP
on the data set WN18RR

Figure 31: Asymmetric error for LP
on the data set FB15K

Figure 32: Asymmetric error for LP
on the data set FB15K-237
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