
SPARQL and the Rules Layer

Axel Polleres1

1DERI Galway, National University of Ireland, Galway
axel.polleres@deri.org

European Semantic Web Conference 2007

A. Polleres – SPARQL and the Rules Layer 1 / 34

Outline

The SW Rules layer in a nutshell
Rules for the Semantic Web

Translating SPARQL to LP style rules languages
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure

Other Rules languages and formats
SWI Prolog, TRIPLE, N3
SPARQL and RIF

A. Polleres – SPARQL and the Rules Layer 2 / 34

Outline

The SW Rules layer in a nutshell
Rules for the Semantic Web

Translating SPARQL to LP style rules languages
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure

Other Rules languages and formats
SWI Prolog, TRIPLE, N3
SPARQL and RIF

A. Polleres – SPARQL and the Rules Layer 3 / 34

Back to the layer cake...

Hope you enjoyed the coffee break. . .

A. Polleres – SPARQL and the Rules Layer 4 / 34

Back to the layer cake...

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L

Bijan will talk about this one in the last part . . .

A. Polleres – SPARQL and the Rules Layer 4 / 34

Back to the layer cake...

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L

?

. . . Now what about that one?

A. Polleres – SPARQL and the Rules Layer 4 / 34

Rules for/on the Web: Where are we?

I Several proposals for systems and rules languages on the Web
usable on top of RDF/RDFS:

I TRIPLE [Decker et al., 2005]
I N3 [Berners-Lee et al., 2005]
I dlvhex [Eiter et al., 2005]
I SWI-Prolog’s semweb library [Wielemaker,]
I SWRL [Horrocks et al., 2004]
I SWSL Rules [Battle et al., 2005]
I WRL, WSML [Angele et al., 2005, de Bruijn et al., 2005]

I RIF working group chartered in Dec 2005 to provide common
interchange format (sic! Not a rule language) for the Web:

I Is currently producing first concrete results and first draft
format, in the future likely a common format for the
approaches above

I apart from deductive rules also concerned with other “rules”:
business rules, ECA rules, (integrity) constraints

A. Polleres – SPARQL and the Rules Layer 5 / 34

Rules for/on the Web: Where are we?

I Several proposals for systems and rules languages on the Web
usable on top of RDF/RDFS:

I TRIPLE [Decker et al., 2005]
I N3 [Berners-Lee et al., 2005]
I dlvhex [Eiter et al., 2005]
I SWI-Prolog’s semweb library [Wielemaker,]
I SWRL [Horrocks et al., 2004]
I SWSL Rules [Battle et al., 2005]
I WRL, WSML [Angele et al., 2005, de Bruijn et al., 2005]

I RIF working group chartered in Dec 2005 to provide common
interchange format (sic! Not a rule language) for the Web:

I Is currently producing first concrete results and first draft
format, in the future likely a common format for the
approaches above

I apart from deductive rules also concerned with other “rules”:
business rules, ECA rules, (integrity) constraints

A. Polleres – SPARQL and the Rules Layer 5 / 34

Outline

The SW Rules layer in a nutshell
Rules for the Semantic Web

Translating SPARQL to LP style rules languages
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure

Other Rules languages and formats
SWI Prolog, TRIPLE, N3
SPARQL and RIF

A. Polleres – SPARQL and the Rules Layer 6 / 34

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some trouble, see Unit 4!

A. Polleres – SPARQL and the Rules Layer 7 / 34

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some trouble, see Unit 4!

A. Polleres – SPARQL and the Rules Layer 7 / 34

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some trouble, see Unit 4!

A. Polleres – SPARQL and the Rules Layer 7 / 34

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some trouble, see Unit 4!

A. Polleres – SPARQL and the Rules Layer 7 / 34

SPARQL and LP 1/2

I Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERE City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

I That was easy... Now what about SPARQL?

I OPTIONAL and UNION probably cause some trouble, see Unit 4!

A. Polleres – SPARQL and the Rules Layer 7 / 34

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://con.fusion.at/dlvhex/):

I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable
model semantics) for a language extending
Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls
(built-in predicates).

I rdf[URL](S,P,O) is one such built-in to import RDF data.

The example translations in this Unit work similarly using e.g.
SWI-Prolog’s rdf db module
(see, http://www.swi-prolog.org/packages/semweb.html).

A. Polleres – SPARQL and the Rules Layer 8 / 34

http://con.fusion.at/dlvhex/
http://www.dlvsystem.com/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://con.fusion.at/dlvhex/):

I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable
model semantics) for a language extending
Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls
(built-in predicates).

I rdf[URL](S,P,O) is one such built-in to import RDF data.

The example translations in this Unit work similarly using e.g.
SWI-Prolog’s rdf db module
(see, http://www.swi-prolog.org/packages/semweb.html).

A. Polleres – SPARQL and the Rules Layer 8 / 34

http://con.fusion.at/dlvhex/
http://www.dlvsystem.com/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://con.fusion.at/dlvhex/):

I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable
model semantics) for a language extending
Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls
(built-in predicates).

I rdf[URL](S,P,O) is one such built-in to import RDF data.

The example translations in this Unit work similarly using e.g.
SWI-Prolog’s rdf db module
(see, http://www.swi-prolog.org/packages/semweb.html).

A. Polleres – SPARQL and the Rules Layer 8 / 34

http://con.fusion.at/dlvhex/
http://www.dlvsystem.com/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://con.fusion.at/dlvhex/):

I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable
model semantics) for a language extending
Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls
(built-in predicates).

I rdf[URL](S,P,O) is one such built-in to import RDF data.

The example translations in this Unit work similarly using e.g.
SWI-Prolog’s rdf db module
(see, http://www.swi-prolog.org/packages/semweb.html).

A. Polleres – SPARQL and the Rules Layer 8 / 34

http://con.fusion.at/dlvhex/
http://www.dlvsystem.com/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://con.fusion.at/dlvhex/):

I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable
model semantics) for a language extending
Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls
(built-in predicates).

I rdf[URL](S,P,O) is one such built-in to import RDF data.

The example translations in this Unit work similarly using e.g.
SWI-Prolog’s rdf db module
(see, http://www.swi-prolog.org/packages/semweb.html).

A. Polleres – SPARQL and the Rules Layer 8 / 34

http://con.fusion.at/dlvhex/
http://www.dlvsystem.com/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://con.fusion.at/dlvhex/):

I Prolog-like syntax

I We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

I dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

I supports so-called answer set semantics (extension of the stable
model semantics) for a language extending
Datalog [Eiter et al., 2006].

I plugin-mechanism for easy integration of external function calls
(built-in predicates).

I rdf[URL](S,P,O) is one such built-in to import RDF data.

The example translations in this Unit work similarly using e.g.
SWI-Prolog’s rdf db module
(see, http://www.swi-prolog.org/packages/semweb.html).

A. Polleres – SPARQL and the Rules Layer 8 / 34

http://con.fusion.at/dlvhex/
http://www.dlvsystem.com/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – SPARQL and the Rules Layer 9 / 34

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – SPARQL and the Rules Layer 9 / 34

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – SPARQL and the Rules Layer 9 / 34

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – SPARQL and the Rules Layer 9 / 34

SPARQL and LP: Basic Graph Patterns

I We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

I For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – SPARQL and the Rules Layer 9 / 34

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – SPARQL and the Rules Layer 10 / 34

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – SPARQL and the Rules Layer 10 / 34

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – SPARQL and the Rules Layer 10 / 34

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – SPARQL and the Rules Layer 10 / 34

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – SPARQL and the Rules Layer 10 / 34

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – SPARQL and the Rules Layer 10 / 34

SPARQL and LP: UNION Patterns 1/2

UNIONs are split of into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – SPARQL and the Rules Layer 11 / 34

SPARQL and LP: UNION Patterns 1/2

UNIONs are split of into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – SPARQL and the Rules Layer 11 / 34

SPARQL and LP: UNION Patterns 1/2

UNIONs are split of into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – SPARQL and the Rules Layer 11 / 34

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice”
<ex.org/bob#me> ”Bob”
<ex.org/bob#me> ”Bobby”

A. Polleres – SPARQL and the Rules Layer 12 / 34

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice”
<ex.org/bob#me> ”Bob”
<ex.org/bob#me> ”Bobby”

A. Polleres – SPARQL and the Rules Layer 12 / 34

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice” null

<ex.org/bob#me> ”Bob” null

<ex.org/bob#me> null ”Bobby”

A. Polleres – SPARQL and the Rules Layer 12 / 34

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres – SPARQL and the Rules Layer 13 / 34

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres – SPARQL and the Rules Layer 13 / 34

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – SPARQL and the Rules Layer 14 / 34

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – SPARQL and the Rules Layer 14 / 34

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 r M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – SPARQL and the Rules Layer 14 / 34

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference /
negation as failure by combining OPT and !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference
inherent, with the “!bound” we get it back again “purely”.

A. Polleres – SPARQL and the Rules Layer 15 / 34

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference /
negation as failure by combining OPT and !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference
inherent, with the “!bound” we get it back again “purely”.

A. Polleres – SPARQL and the Rules Layer 15 / 34

SPARQL’s OPTIONAL has “negation as failure”, hidden:

I Observation: SPARQL allows to express set difference /
negation as failure by combining OPT and !bound

“select all persons without an email address”

SELECT ?X
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

I Same effect as “NOT EXISTS” in SQL, set difference!.

I We’ve seen before that OPTIONAL, has set difference
inherent, with the “!bound” we get it back again “purely”.

A. Polleres – SPARQL and the Rules Layer 15 / 34

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – SPARQL and the Rules Layer 16 / 34

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – SPARQL and the Rules Layer 16 / 34

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – SPARQL and the Rules Layer 16 / 34

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – SPARQL and the Rules Layer 16 / 34

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – SPARQL and the Rules Layer 16 / 34

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 r M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – SPARQL and the Rules Layer 16 / 34

SPARQL and LP: OPT Patterns – Example

Graph: ex.org/bob

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker :a.
:a a foaf:Person ; foaf:name "Bob";

foaf:knows :b.

:b a foaf:Person ; foaf:nick "Alice".

<alice.org/> foaf:maker :b

Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;

foaf:knows :c.

:c a foaf:Person ; foaf:name "Bob" ;

foaf:nick "Bobby".

SELECT *

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

{ answer1("_:a","Bob",def), answer1("_:b",null, def),

answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres – SPARQL and the Rules Layer 17 / 34

SPARQL and LP: OPT Patterns – Example

Graph: ex.org/bob

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker :a.
:a a foaf:Person ; foaf:name "Bob";

foaf:knows :b.

:b a foaf:Person ; foaf:nick "Alice".

<alice.org/> foaf:maker :b

Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;

foaf:knows :c.

:c a foaf:Person ; foaf:name "Bob" ;

foaf:nick "Bobby".

SELECT *

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

{ answer1("_:a","Bob",def), answer1("_:b",null, def),

answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres – SPARQL and the Rules Layer 17 / 34

SPARQL and LP: OPT Patterns – Example

Graph: ex.org/bob

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker :a.
:a a foaf:Person ; foaf:name "Bob";

foaf:knows :b.

:b a foaf:Person ; foaf:nick "Alice".

<alice.org/> foaf:maker :b

Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;

foaf:knows :c.

:c a foaf:Person ; foaf:name "Bob" ;

foaf:nick "Bobby".

SELECT *

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N

:a ”Bob”
:b null

:c ”Bob”
alice.org#me ”Alice”

{ answer1("_:a","Bob",def), answer1("_:b",null, def),

answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres – SPARQL and the Rules Layer 17 / 34

SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following Unit 4!

A. Polleres – SPARQL and the Rules Layer 18 / 34

SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following Unit 4!

A. Polleres – SPARQL and the Rules Layer 18 / 34

SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following Unit 4!

A. Polleres – SPARQL and the Rules Layer 18 / 34

SPARQL and LP: OPT Patterns – With our translation?:

?X1 ?N

:a ”Bob”
:b null

:c ”Bob”
alice.org#me ”Alice”

./

?X2 ?N

:a null

:b ”Alice”
:c ”Bobby”

alice.org#me null

=

?X1 ?N X2

:b null :a
:b null alice.org#me

alice.org#me ”Alice” :b

What’s wrong here? Join over null , as if it was a normal constant.

Compared with SPARQL’s notion of compatibility of mappings, this is

too cautious!

A. Polleres – SPARQL and the Rules Layer 19 / 34

SPARQL and LP: OPT Patterns – With our translation?:

?X1 ?N

:a ”Bob”
:b null

:c ”Bob”
alice.org#me ”Alice”

./

?X2 ?N

:a null

:b ”Alice”
:c ”Bobby”

alice.org#me null

=

?X1 ?N X2

:b null :a
:b null alice.org#me

alice.org#me ”Alice” :b

What’s wrong here? Join over null , as if it was a normal constant.

Compared with SPARQL’s notion of compatibility of mappings, this is

too cautious!

A. Polleres – SPARQL and the Rules Layer 19 / 34

SPARQL and LP: OPT Patterns – Correct Result:

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

=

?X1 ?N X2

:a ”Bob” :a
:a ”Bob” alice.org#me

:b :a
:b ”Alice” :b
:b ”Bobby” :c
:b alice.org#me

:c ”Bob” :a
:c ”Bob” alice.org#me

alice.org#me ”Alice” :a
alice.org#me ”Alice” :b
alice.org#me ”Alice” alice.org#me

SPARQL defines a very brave way of joins: unbound, i.e.
null should join with anything!

A. Polleres – SPARQL and the Rules Layer 20 / 34

SPARQL and LP: OPT Patterns – Correct Result:

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

./

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

=

?X1 ?N X2

:a ”Bob” :a
:a ”Bob” alice.org#me

:b :a
:b ”Alice” :b
:b ”Bobby” :c
:b alice.org#me

:c ”Bob” :a
:c ”Bob” alice.org#me

alice.org#me ”Alice” :a
alice.org#me ”Alice” :b
alice.org#me ”Alice” alice.org#me

SPARQL defines a very brave way of joins: unbound, i.e.
null should join with anything!

A. Polleres – SPARQL and the Rules Layer 20 / 34

Semantic variations of SPARQL

We could call these alternatives of treatment of possibly
null-joining values alternative semantics for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

Which is the most intuitive? DAWG basically decided for b-join.

Now let’s see to how to fix our translation to logic programs...

A. Polleres – SPARQL and the Rules Layer 21 / 34

Semantic variations of SPARQL

We could call these alternatives of treatment of possibly
null-joining values alternative semantics for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

Which is the most intuitive? DAWG basically decided for b-join.

Now let’s see to how to fix our translation to logic programs...

A. Polleres – SPARQL and the Rules Layer 21 / 34

Semantic variations of SPARQL

We could call these alternatives of treatment of possibly
null-joining values alternative semantics for SPARQL:

I c-joining: cautiously joining semantics

I b-joining: bravely joining semantics (normative)

Which is the most intuitive? DAWG basically decided for b-join.

Now let’s see to how to fix our translation to logic programs...

A. Polleres – SPARQL and the Rules Layer 21 / 34

SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – SPARQL and the Rules Layer 22 / 34

SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – SPARQL and the Rules Layer 22 / 34

SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – SPARQL and the Rules Layer 22 / 34

SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – SPARQL and the Rules Layer 22 / 34

SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – SPARQL and the Rules Layer 22 / 34

SPARQL and LP: OPT Patterns – Improved!

How do I emulate b-joining Semantics? Solution:

We need to take care for variables which are joined and possibly

unbound, due to the special notion of compatibility in SPARQL

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).

answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

A. Polleres – SPARQL and the Rules Layer 23 / 34

SPARQL and LP: OPT Patterns – Improved!

How do I emulate b-joining Semantics? Solution:

We need to take care for variables which are joined and possibly

unbound, due to the special notion of compatibility in SPARQL

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).

answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

A. Polleres – SPARQL and the Rules Layer 23 / 34

SPARQL and LP: OPT Patterns

Attention:

I The “fix” we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

I This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Pérez et al., 2006].

I But: A slight modification of the translation (in the tech.
report version of [Polleres, 2007]) shows that this translation
is optimal: Non-recursive Datalog with negation as failure is
also PSPACE complete!

A. Polleres – SPARQL and the Rules Layer 24 / 34

SPARQL and LP: OPT Patterns

Attention:

I The “fix” we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

I This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Pérez et al., 2006].

I But: A slight modification of the translation (in the tech.
report version of [Polleres, 2007]) shows that this translation
is optimal: Non-recursive Datalog with negation as failure is
also PSPACE complete!

A. Polleres – SPARQL and the Rules Layer 24 / 34

SPARQL and LP: OPT Patterns

Attention:

I The “fix” we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

I This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Pérez et al., 2006].

I But: A slight modification of the translation (in the tech.
report version of [Polleres, 2007]) shows that this translation
is optimal: Non-recursive Datalog with negation as failure is
also PSPACE complete!

A. Polleres – SPARQL and the Rules Layer 24 / 34

From SPARQL to Rules . . . Summary!

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in [Polleres, 2007].

I FILTERS not treated in detail, basically an implementation issue,
needs a rules engine with support for external built-ins.

I In order to properly deal with the multiset-semantics of SPARQL,
UNIONS and projections need special care!

I Interesting might also be the other way around! “query pushing”

A. Polleres – SPARQL and the Rules Layer 25 / 34

From SPARQL to Rules . . . Summary!

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in [Polleres, 2007].

I FILTERS not treated in detail, basically an implementation issue,
needs a rules engine with support for external built-ins.

I In order to properly deal with the multiset-semantics of SPARQL,
UNIONS and projections need special care!

I Interesting might also be the other way around! “query pushing”

A. Polleres – SPARQL and the Rules Layer 25 / 34

From SPARQL to Rules . . . Summary!

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in [Polleres, 2007].

I FILTERS not treated in detail, basically an implementation issue,
needs a rules engine with support for external built-ins.

I In order to properly deal with the multiset-semantics of SPARQL,
UNIONS and projections need special care!

I Interesting might also be the other way around! “query pushing”

A. Polleres – SPARQL and the Rules Layer 25 / 34

From SPARQL to Rules . . . Summary!

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in [Polleres, 2007].

I FILTERS not treated in detail, basically an implementation issue,
needs a rules engine with support for external built-ins.

I In order to properly deal with the multiset-semantics of SPARQL,
UNIONS and projections need special care!

I Interesting might also be the other way around! “query pushing”

A. Polleres – SPARQL and the Rules Layer 25 / 34

From SPARQL to Rules . . . Summary!

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in [Polleres, 2007].

I FILTERS not treated in detail, basically an implementation issue,
needs a rules engine with support for external built-ins.

I In order to properly deal with the multiset-semantics of SPARQL,
UNIONS and projections need special care!

I Interesting might also be the other way around! “query pushing”

A. Polleres – SPARQL and the Rules Layer 25 / 34

From SPARQL to Rules . . . Summary!

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in [Polleres, 2007].

I FILTERS not treated in detail, basically an implementation issue,
needs a rules engine with support for external built-ins.

I In order to properly deal with the multiset-semantics of SPARQL,
UNIONS and projections need special care!

I Interesting might also be the other way around! “query pushing”

A. Polleres – SPARQL and the Rules Layer 25 / 34

From SPARQL to Rules . . . Summary!

I With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

I The target language is non-recursive Datalog with neg. as failure

I Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

I Full details of the translation in [Polleres, 2007].

I FILTERS not treated in detail, basically an implementation issue,
needs a rules engine with support for external built-ins.

I In order to properly deal with the multiset-semantics of SPARQL,
UNIONS and projections need special care!

I Interesting might also be the other way around! “query pushing”

A. Polleres – SPARQL and the Rules Layer 25 / 34

Prototype engine implemented and available at:
http://con.fusion.at/dlvhex/sparql-query-evaluation.php

A. Polleres – SPARQL and the Rules Layer 26 / 34

http://con.fusion.at/dlvhex/sparql-query-evaluation.php

A. Polleres – SPARQL and the Rules Layer 27 / 34

Outline

The SW Rules layer in a nutshell
Rules for the Semantic Web

Translating SPARQL to LP style rules languages
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure

Other Rules languages and formats
SWI Prolog, TRIPLE, N3
SPARQL and RIF

A. Polleres – SPARQL and the Rules Layer 28 / 34

Other LP style languages

Similar considerations apply to other rule systems that allow to
process RDF data, each of which has some syntactic peculiarities.
We exemplify here:

I dlvhex
I Done! SPARQL-plugin available.

I SWI-Prolog
I similar... rdf db module supports rdf/3, rdf/4 predicates,

analogous to dlvhex rdf built-in.

I TRIPLE

I N3

A. Polleres – SPARQL and the Rules Layer 29 / 34

TRIPLE

I RDF rules processor on top of XSB Prolog, developed by
Michael Sintek, Stefan Decker.

I F-Logic style syntax, i.e. triple S P O. viewed as F-Logic
molecule S[P->O]

I Special features: module mechanism.

Basic pattern SPARQL query “emulated” in TRIPLE:

@PREFIX foaf: <http://xmlns.com/foaf/0.1/> .
SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X foaf:name ?Y .

?X a foaf:Person . }

I UNION can be done as before.
I TRIPLE doesn’t support negation as failure, thus OPTIONAL

not possible.
I (Negation as failure under the well-founded semantics seems

to be a trivial extension though, since TRIPLE is XSB based.)
A. Polleres – SPARQL and the Rules Layer 30 / 34

TRIPLE

I RDF rules processor on top of XSB Prolog, developed by
Michael Sintek, Stefan Decker.

I F-Logic style syntax, i.e. triple S P O. viewed as F-Logic
molecule S[P->O]

I Special features: module mechanism.

Basic pattern SPARQL query “emulated” in TRIPLE:

foaf:= ’http://xmlns.com/foaf/0.1/’.
rdf:= ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
FORALL S,P,O S[P->O] <- S[P->O]@’http://alice.org’ OR

S[P->O]@’http://ex.org/bob’.
FORALL X,Y answer(X,Y) <- (X[rdf:name->Y] AND

X[foaf:type->foaf:person]).

I UNION can be done as before.
I TRIPLE doesn’t support negation as failure, thus OPTIONAL

not possible.
I (Negation as failure under the well-founded semantics seems

to be a trivial extension though, since TRIPLE is XSB based.)
A. Polleres – SPARQL and the Rules Layer 30 / 34

TRIPLE

I RDF rules processor on top of XSB Prolog, developed by
Michael Sintek, Stefan Decker.

I F-Logic style syntax, i.e. triple S P O. viewed as F-Logic
molecule S[P->O]

I Special features: module mechanism.

GRAPH pattern SPARQL query “emulated” in TRIPLE:

SELECT ?X ?Y
FROM <http://alice.org>
FROM NAMED <http://alice.org/bob>
FROM NAMED <http://ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

I UNION can be done as before.
I TRIPLE doesn’t support negation as failure, thus OPTIONAL

not possible.
I (Negation as failure under the well-founded semantics seems

to be a trivial extension though, since TRIPLE is XSB based.)
A. Polleres – SPARQL and the Rules Layer 30 / 34

TRIPLE

I RDF rules processor on top of XSB Prolog, developed by
Michael Sintek, Stefan Decker.

I F-Logic style syntax, i.e. triple S P O. viewed as F-Logic
molecule S[P->O]

I Special features: module mechanism.

GRAPH pattern SPARQL query “emulated” in TRIPLE:

FORALL S,P,O S[P->O] <- S[P->O]@’http://alice.org’.

FORALL X,Y answer(X,Y) <- (G[foaf:maker->X] AND
X[foaf:knows->Y]@G).

I UNION can be done as before.
I TRIPLE doesn’t support negation as failure, thus OPTIONAL

not possible.
I (Negation as failure under the well-founded semantics seems

to be a trivial extension though, since TRIPLE is XSB based.)
A. Polleres – SPARQL and the Rules Layer 30 / 34

TRIPLE

I RDF rules processor on top of XSB Prolog, developed by
Michael Sintek, Stefan Decker.

I F-Logic style syntax, i.e. triple S P O. viewed as F-Logic
molecule S[P->O]

I Special features: module mechanism.

I UNION can be done as before.

I TRIPLE doesn’t support negation as failure, thus OPTIONAL
not possible.

I (Negation as failure under the well-founded semantics seems
to be a trivial extension though, since TRIPLE is XSB based.)

A. Polleres – SPARQL and the Rules Layer 30 / 34

TRIPLE

I RDF rules processor on top of XSB Prolog, developed by
Michael Sintek, Stefan Decker.

I F-Logic style syntax, i.e. triple S P O. viewed as F-Logic
molecule S[P->O]

I Special features: module mechanism.

I UNION can be done as before.

I TRIPLE doesn’t support negation as failure, thus OPTIONAL
not possible.

I (Negation as failure under the well-founded semantics seems
to be a trivial extension though, since TRIPLE is XSB based.)

A. Polleres – SPARQL and the Rules Layer 30 / 34

N3

I RDF rules processor, CWM, implemented in python,
developed by Dan Conolly, et al.

I N3 logic syntax, an extension of Turtle syntax.

I Special features: has negation as failure (log:notIncludes).

I Semantics... ? Probably perfect model semantics (i.e. only
deals with stratified negation as failure)

Basic pattern SPARQL query “emulated” in N3:

@PREFIX foaf: <http://xmlns.com/foaf/0.1/> .
SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X foaf:name ?Y .

?X a foaf:Person . }

A. Polleres – SPARQL and the Rules Layer 31 / 34

N3

I RDF rules processor, CWM, implemented in python,
developed by Dan Conolly, et al.

I N3 logic syntax, an extension of Turtle syntax.

I Special features: has negation as failure (log:notIncludes).

I Semantics... ? Probably perfect model semantics (i.e. only
deals with stratified negation as failure)

Basic pattern SPARQL query “emulated” in N3:

{ <http://alice.org> log:semantics ?A.
<http://ex.org/bob> log:semantics ?B.
(?A ?B) log:conjunction ?C.
?C log:supports { ?X foaf:name ?Y . ?X a foaf:Person . }

} log:implies { myQuery hasAnswer (?X ?Y) . } }

Remark: We “encode” answer substitutions in triples here.

A. Polleres – SPARQL and the Rules Layer 31 / 34

N3

I RDF rules processor, CWM, implemented in python,
developed by Dan Conolly, et al.

I N3 logic syntax, an extension of Turtle syntax.

I Special features: has negation as failure (log:notIncludes).

I Semantics... ? Probably perfect model semantics (i.e. only
deals with stratified negation as failure)

GRAPH pattern SPARQL query “emulated” in N3:

{ <http://alice.org> log:semantics ?A.
?A log:supports { ?G foaf:maker ?X . }
?G log:semantics ?B.
?B log:supports { ?X foaf:knows ?Y. }

} log:implies { myQuery hasAnswer (?X ?Y) . } }

A. Polleres – SPARQL and the Rules Layer 31 / 34

N3

I RDF rules processor, CWM, implemented in python,
developed by Dan Conolly, et al.

I N3 logic syntax, an extension of Turtle syntax.

I Special features: has negation as failure (log:notIncludes).

I Semantics... ? Probably perfect model semantics (i.e. only
deals with stratified negation as failure)

How to “emulate” OPTIONAL patterns in N3:

log:notIncludes in N3 is negation as failure!

A. Polleres – SPARQL and the Rules Layer 31 / 34

SPARQL and RIF

I RIF charter requires rules to deal with RDF data

I It is also written in the RIF charter that RIF should compatible
to deal with SPARQL queries to access (external) datasets

I Both not yet addressed in WD1, first step:
I Simple “webbish” Horn-style rules language (RIF Core)
I Trouble: Has to address incompatibilities at lower levels... e.g.

I URIs: Qnames in XML vs. RDF treatment of namespaces
I compatibility with RDFS, OWL (not fully tackled in SPARQL

even)

I Last but not least: SPARQL itself may be viewed as a rules
language e.g. take the RDFS entailment rule (rdfs3)
from [Hayes, 2004]

→ More on that in the next Unit!

A. Polleres – SPARQL and the Rules Layer 32 / 34

SPARQL and RIF

I RIF charter requires rules to deal with RDF data

I It is also written in the RIF charter that RIF should compatible
to deal with SPARQL queries to access (external) datasets

I Both not yet addressed in WD1, first step:
I Simple “webbish” Horn-style rules language (RIF Core)
I Trouble: Has to address incompatibilities at lower levels... e.g.

I URIs: Qnames in XML vs. RDF treatment of namespaces
I compatibility with RDFS, OWL (not fully tackled in SPARQL

even)

I Last but not least: SPARQL itself may be viewed as a rules
language e.g. take the RDFS entailment rule (rdfs3)
from [Hayes, 2004]

→ More on that in the next Unit!

A. Polleres – SPARQL and the Rules Layer 32 / 34

SPARQL and RIF

I RIF charter requires rules to deal with RDF data

I It is also written in the RIF charter that RIF should compatible
to deal with SPARQL queries to access (external) datasets

I Both not yet addressed in WD1, first step:
I Simple “webbish” Horn-style rules language (RIF Core)
I Trouble: Has to address incompatibilities at lower levels... e.g.

I URIs: Qnames in XML vs. RDF treatment of namespaces
I compatibility with RDFS, OWL (not fully tackled in SPARQL

even)

I Last but not least: SPARQL itself may be viewed as a rules
language e.g. take the RDFS entailment rule (rdfs3)
from [Hayes, 2004]

→ More on that in the next Unit!

A. Polleres – SPARQL and the Rules Layer 32 / 34

SPARQL and RIF

I RIF charter requires rules to deal with RDF data

I It is also written in the RIF charter that RIF should compatible
to deal with SPARQL queries to access (external) datasets

I Both not yet addressed in WD1, first step:
I Simple “webbish” Horn-style rules language (RIF Core)
I Trouble: Has to address incompatibilities at lower levels... e.g.

I URIs: Qnames in XML vs. RDF treatment of namespaces
I compatibility with RDFS, OWL (not fully tackled in SPARQL

even)

I Last but not least: SPARQL itself may be viewed as a rules
language e.g. take the RDFS entailment rule (rdfs3)
from [Hayes, 2004]

→ More on that in the next Unit!

A. Polleres – SPARQL and the Rules Layer 32 / 34

SPARQL and RIF

I RIF charter requires rules to deal with RDF data

I It is also written in the RIF charter that RIF should compatible
to deal with SPARQL queries to access (external) datasets

I Both not yet addressed in WD1, first step:
I Simple “webbish” Horn-style rules language (RIF Core)
I Trouble: Has to address incompatibilities at lower levels... e.g.

I URIs: Qnames in XML vs. RDF treatment of namespaces
I compatibility with RDFS, OWL (not fully tackled in SPARQL

even)

I Last but not least: SPARQL itself may be viewed as a rules
language e.g. take the RDFS entailment rule (rdfs3)
from [Hayes, 2004]

If an RDF graph contains triples (P rdfs:range C) and
(S P O) then the triple O rdf:type C is entailed.

→ More on that in the next Unit!
A. Polleres – SPARQL and the Rules Layer 32 / 34

SPARQL and RIF

I RIF charter requires rules to deal with RDF data

I It is also written in the RIF charter that RIF should compatible
to deal with SPARQL queries to access (external) datasets

I Both not yet addressed in WD1, first step:
I Simple “webbish” Horn-style rules language (RIF Core)
I Trouble: Has to address incompatibilities at lower levels... e.g.

I URIs: Qnames in XML vs. RDF treatment of namespaces
I compatibility with RDFS, OWL (not fully tackled in SPARQL

even)

I Last but not least: SPARQL itself may be viewed as a rules
language e.g. take the RDFS entailment rule (rdfs3)
from [Hayes, 2004]

CONSTRUCT {?O a ?C . }
WHERE { ?P rdfs:range ?C . ?S ?P ?O . }

→ More on that in the next Unit!
A. Polleres – SPARQL and the Rules Layer 32 / 34

SPARQL and RIF

I RIF charter requires rules to deal with RDF data

I It is also written in the RIF charter that RIF should compatible
to deal with SPARQL queries to access (external) datasets

I Both not yet addressed in WD1, first step:
I Simple “webbish” Horn-style rules language (RIF Core)
I Trouble: Has to address incompatibilities at lower levels... e.g.

I URIs: Qnames in XML vs. RDF treatment of namespaces
I compatibility with RDFS, OWL (not fully tackled in SPARQL

even)

I Last but not least: SPARQL itself may be viewed as a rules
language e.g. take the RDFS entailment rule (rdfs3)
from [Hayes, 2004]

CONSTRUCT {?O a ?C . }
WHERE { ?P rdfs:range ?C . ?S ?P ?O . }

→ More on that in the next Unit!
A. Polleres – SPARQL and the Rules Layer 32 / 34

References I

Angele, J. et al. (2005).

Web rule language (WRL).
W3C Member Submission, available from http://www.w3.org/Submission/WRL/.

Battle, S. et al. (2005).

Semantic web services framework (SWSF).
W3C Member Submission, available from http://www.w3.org/Submission/SWSF/.

Berners-Lee, T., Connolly, D., Prud’homeaux, E., and Scharf, Y. (2005).

Experience with n3 rules.
In W3C Workshop on Rule Languages for Interoperability, Washington, D.C., USA.

de Bruijn, J., Fensel, D., Keller, U., Lausen, M. K. H., Krummenacher, R., Polleres, A., and Predoiu, L.

(2005).
Web Service Modeling Language (WSML).
W3C.
Member Submission. Available from http://www.w3.org/Submission/WSML/.

Decker, S. et al. (2005).

TRIPLE - an RDF rule language with context and use cases.
In W3C Workshop on Rule Languages for Interoperability, Washington, D.C., USA.

Eiter, T., Ianni, G., Polleres, A., and Schindlauer, R. (2006).

Answer set programming for the semantic web.
Tutorial at the European Semantic Web Conference (ESWC), see http://asptut.gibbi.com/.

Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2005).

A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer Set Programming.
In International Joint Conference on Artificial Intelligence (IJCAI) 2005, pages 90–96, Edinburgh, UK.

A. Polleres – SPARQL and the Rules Layer 33 / 34

http://www.w3.org/Submission/WRL/
http://www.w3.org/Submission/SWSF/
http://www.w3.org/Submission/WSML/
http://asptut.gibbi.com/

References II

Hayes, P. (2004).

RDF semantics.
Technical report, W3C.
W3C Recommendation, http://www.w3.org/TR/rdf-mt/.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean, M. (2004).

SWRL: A semantic web rule language combining OWL and RuleML.
W3C Member Submission.

Pérez, J., Arenas, M., and Gutierrez, C. (2006).

Semantics and complexity of sparql.
Technical Report DB/0605124, arXiv:cs.

Polleres, A. (2007).

From SPARQL to rules (and back).
In Proceedings of the 16th World Wide Web Conference (WWW2007), Banff, Canada.
Extended technical report version available at
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf.

Wielemaker, J.

SWI-Prolog Semantic Web Library.
available at http://www.swi-prolog.org/packages/semweb.html.

A. Polleres – SPARQL and the Rules Layer 34 / 34

http://www.w3.org/TR/rdf-mt/
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf
http://www.swi-prolog.org/packages/semweb.html

	The SW Rules layer in a nutshell
	Rules for the Semantic Web

	Translating SPARQL to LP style rules languages
	Basic Graph Patterns
	GRAPH Patterns
	UNION Patterns
	OPTIONAL and Negation as failure

	Other Rules languages and formats
	SWI Prolog, TRIPLE, N3
	SPARQL and RIF

