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Abstract. We present ODArchive, a large corpus of structured data
collected from over 260 Open Data portals worldwide, alongside with cu-
rated, integrated metadata. Furthermore we enrich the harvested datasets
by heuristic annotations using the type hierarchies in existing Knowledge
Graphs. We both (i) present the underlying distributed architecture to
scale up regular harvesting and monitoring changes on these portals, and
(ii) make the corpus available via different APIs. Moreover, we (iii) anal-
yse the characteristics of tabular data within the corpus. Our APIs can
be used to regularly run such analyses or to reproduce experiments from
the literature that have worked on static, not publicly available corpora.

Keywords: Open Data · Archiving · Profiling · Reference Tables.

1 Introduction

The Open Data (OD) movement, mainly driven by public administrations in
the form of Open Government Data has over the last years created a rich source
of structured data published on the Web, in various formats, covering different
domains and typically available under liberal licences. Such OD is typically be-
ing published in a decentralized fashion, directly by (governmental) publishing
organizations, with data portals, often operated on a national level as central
entry points. That is, while OD portals provide somewhat standardized meta-
data descriptions and (typically rudimentary, i.e. restricted to metadata only)
search functionality, the data resources themselves are available for download
on separate locations, as files on specific external download URLs or through
web-APIs, again accessible trough a separate URL.

In order to provide unified access to this rich data source, we have been
harvesting, integrating and monitoring meta-data from over 260 OD portals for
several years now in the Portal Watch project [14,11]. Underlining the increasing
importance of providing unified access to structured data on the Web, Google
recently started a dataset search [3] facility, which likewise indexes and unifies
portal metadata adhering to the Schema.org [5] vocabulary in order to make
such metadata searchable at Web scale. In fact, in our earlier works on Portal
Watch we demonstrated how the harvested metadata from different OD portal
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software frameworks, for instance CKAN,3 can be uniformly mapped to standard
formats like DCAT [8] and Schema.org, thereby making the metadata from all
indexed portals in Portal Watch available on-the-fly to Google’s dataset search.

Yet, while OD metadata is well investigated in terms of searchability or qual-
ity, the underlying referenced datasets, i.e. the actual structured data resources
themselves, and their characteristics are still not well understood: What kinds
of data are published as OD? How do the datasets themselves develop over
time? How do the characteristics of datasets vary between portals? How can
search facilities and indexes be built that allow searching within the data and
not only the metadata? In order to enable answering such questions, our goal
in the present paper is to provide a resource in terms of a dynamically updated
corpus of datasets from OD portals, with unified access and filtering capabilities,
that shall allow both profiling and scientific analyses of these datasets. To this
end we have created, on top of the Portal Watch framework, a dataset crawler
and archiver which regularly crawls and indexes OD resources, performs basic
data cleansing on known formats, and provides unified access to a large corpus
of structured data from OD portals through APIs that allow flexible filtering,
e.g. through SPARQL queries over the meta-data, for on-the-fly generation of
specific sub-corpora for experiments. We deem this project particularly useful as
a resource for experiments on real-world structured data: to name an example,
while large corpora of tabular data from Web tables have been made available
via CommonCrawl [6], the same is not true for tabular data from OD Portals,
for which we expect different characteristics. Indeed, most works on structured
OD and its semantics focus on metadata, whereas the structure, properties and
linkability of the datasets themselves is, apart from isolated investigations and
profiling of adhoc created subcorpora (restricted, for instance, to single data
portals), still largely unexplored.

We fill this gap by presenting the Open Dataset Archiver (ODArchive), an
infrastructure to crawl, index, and serve a large corpus of regularly crawled struc-
tured data from (at the moment) 137 active portals.4 We describe the challenges
that needed to be overcome to build such an infrastructure, including for instance
automated change frequency detection in datasets, and make the resource avail-
able via various APIs. Moreover, we demonstrate and discuss how these APIs
can be used to conduct and regularly update/reproduce various experiments
from the literature that have worked on static, not publicly available corpora;
as an example we present a detailed profiling analysis on the tabular CSV data
in the corpus. Specifically, we make the following concrete contributions:

– We present a detailed architecture of a distributed and scalable Dataset
Archiver. The archiver is deployed at https://archiver.ai.wu.ac.at, and
the software is openly available on Github5 under the MIT license.

3 https://ckan.org/, accessed 2020-08-17
4 Overall, historically we monitor and have monitored over 260 portals, however, sev-

eral of those have gone offline in the meantime or are so-called “harvesting” portals
that merely replicate metadata from other portals, for details cf.[14].

5 https://github.com/websi96/datasetarchiver

https://archiver.ai.wu.ac.at
https://ckan.org/
https://github.com/websi96/datasetarchiver
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– Using the introduced archiver, we regularly collect and archive – based on
an approximation of the change rates – a large corpus of datasets from OD
sources, and make the whole corpus, including the archived versions available
via different APIs, incl. download access to subsets of the corpus configurable
via SPARQL queries.

– We focus on the prevalent format in our corpus – tabular data – by presenting
a detailed profiling analysis of the CSV files in this corpus, and discuss their
characteristics. We heuristically annotate columns in these CSVs, using the
CSVWeb metadata standard [16], with base datatypes and type hierarchies
in existing Knowledge Graphs (DBpedia or Wikidata). Further, we present
an approach to scale finding reference columns in this corpus, i.e. tables that
contain one or more columns whose values likely reference foreign keys from
another reference table: as we can show, there are significantly more reference
tables than links to existing KGs in OD, suggesting that such reference tables
in OD tables themselves could be the basis for a knowledge graph on its own.

The remainder of this paper is structured as follows: In the next Section 2 we
present the architecture of our crawling and archiving framework; in Section 3
we discuss how to access and query the archived datasets; after an overview of
overall corpus characteristics of our archive (Section 4), we present experiments
on dataset profiling and analysis of identifying reference tables specifically on
tabular (CSV) data in Section 5. We discuss related and complementary works
in Section 6, and eventually conclude in Section 7.

2 Open Dataset Archive

Fig. 1. High-level structure of a data portal.

The datasets that we collect and archive come from the OD Portal Watch
project [14]: Portal Watch is a framework for monitoring and quality assess-
ment of (governmental) OD portals, see http://data.wu.ac.at/portalwatch.
It monitors and archives metadata descriptions from (governmental) portals,
however, not the actual datasets. The structure of such a data portal (or cat-
alog) is similar to digital libraries (cf. Figure 1): a dataset is associated with
corresponding metadata, i.e. basic descriptive information in structured format,
about these resources, for instance, about the authorship, provenance or licens-
ing of the dataset. Each such dataset description typically aggregates a group of

http://data.wu.ac.at/portalwatch
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data files (referred to as resources or distributions) available for download in one
or more formats (e.g., CSV, PDF, spreadsheet, etc.). The focus of the present
paper is on how to collect, archive, and profile these data files.

2.1 Architecture

Based on our earlier findings on crawling and profiling a static snapshot of CSV
data [9] from OD and about capturing and preserving changes on the Web of
Data[18], we expect a large amount of dynamically changing source datasets,
spread across different domains: as mentioned above the datasets to be crawled
themselves, which are cataloged at OD portals, typically reside on different URLs
on servers operated by many different data publishers per portal indexed by
Portal Watch and accessible by its SPARQL endpoint residing at http://data.
wu.ac.at/portalwatch/sparql.

In order to scalably and regularly crawl these datasets from their sources,
we therefore designed an infrastructure with three layers to distribute the work-
load in an extensible manner: (i) a network layer (handled by Kubernetes and
Ingress); (ii) a storage layer (using MongoDB), as well as (iii) a Scheduling and
Crawling layer handled by specific components written in JavaScript.

That is, the whole system is deployed on an extensible Kubernetes-Cluster
with an NGINX Ingress Controller, with currently three server nodes, running
our Data storage and Crawling/Scheduling components. We additionally use one
external server node with a NGINX Reverse Proxy for load-balancing external
traffic. The following software packages/frameworks are used:
1. Kubernetes: orchestrates our containerized software on the cluster.
2. NGINX :

– Ingress Controller : is a HTTP load balancer for applications, represented
by one or more services on different nodes.
– Reverse Proxy : is responsible for load-balancing HTTP requests and database
connections from external IPs.

3. MongoDB : stores all datasets as chunked binaries along with their associated
metadata.

4. Scheduler : crawling and scheduling component written in Node.js.
In order to scale the system, it is possible to not only plug in additional server
nodes but also whole clusters and spread the workload of the datastore and
crawling over their provided nodes. Section 2.1 illustrates the architecture com-
ponents and their interplay in more detail.

Scheduler. The scheduling component regularly feeds the MongoDB with Re-
source URLs from the Portal Watch Sparql endpoint. Then it fetches the least-
recently downloaded Resource URLs one by each Resource URLs Domain to
ensure that our Scheduler does not enforce a denial of service of a domain while
distributing the workload to our Crawling Workers via the Load Balancer.

Load Balancer. The Ingress Controller orchestrates the crawling requests by
assigning them to worker instances distributed over different nodes/clusters to

http://data.wu.ac.at/portalwatch/sparql
http://data.wu.ac.at/portalwatch/sparql
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Fig. 2. Archiver Architecture

work in parallel in a Round-Robin fashion. I.e., if there are 3 Workers (w) and
5 requests (r) queued, the requests will be handled by the Workers in following
order: r1 ⇒ w1; r2 ⇒ w2; r3 ⇒ w3; r4 ⇒ w1; r5 ⇒ w2

The Crawling Workers then download or crawl the requested resources from
the Web and store them in MongoDB.

Database. The MongoDB database instances consist of five collections: datasets,
datasets.chunks, datasets.files, hosts and sources. The datasets collection stores
essential meta- and crawling-information, e.g., available versions, crawl inter-
val, etc. In the sources collection we store information about the source of the
datasets, e.g., the data portal (obtained from Portal Watch). The remaining
collections organize the storage and chunks of the actual files.

2.2 Workload-Management and Scalability

To ensure our system does not overstrain single hosts nor our own underlying net-
work infrastructure, we make use of the “robots.txt” files and also implemented
other strategies to distribute the workload and avoid unnecessary re-crawls.

Dynamic crawl frequency. [18] proposes to implement the crawling scheduler
as an adaptive component in order to dynamically adapt the crawl frequency
per URLs based on estimated content change frequency from earlier crawls. We
accordingly base our implementation on a comparison sampling method – which
we evaluated in [12] – and take into account the Nyquist sampling theorem
[20]: to recreate a frequency from unknown source, the sampling rate must at
minimum be twice as high as the frequency itself. We monitor a fixed amount of
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past versions (concretely, we store the last up to 10 intervals between downloads
in seconds and a boolean declaring if a file has changed or not) in order to
schedule/predict the best next crawl timestamp. From the mean change interval
per dataset we pick half as the newly proposed interval, to ensure that our re-
crawl/sampling rate remains on average twice as high as the actual change rate.
We also set a maximum of every 6 months and a minimum of every 6 hours as
upper and lower bounds for the crawl rate.

Scalability For additional scalability we rely on MongoDB’s sharding capabili-
ties6 and Kubernetes’ container orchestration functionality7 to horizontally scale
across multiple machines: we currently use three nodes totaling 377GB of mem-
ory and 72 CPU cores to distribute all our workload. Each shard contains a
subset of the data and each query is routed by a MongoDB instance, providing
an interface between client applications and the sharded cluster. A shard key
defines which node stores file chunks: we shard by dataset id plus the version
number as shard key to keep all chunks of single files on the same node.

The combination of Ingress, Kubernetes and MongoDB connected through
micro-services can by extended dynamically, by adding more nodes, when needed.

3 Data Access & Client Interface

PREFIX arc: <https://archiver.ai.wu.ac.at/ns/csvw#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX csvw: <http://www.w3.org/ns/csvw#>
PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX dc: <http://purl.org/dc/elements/1.1>
INSERT {

<https://offenedaten.de/dataset/be8c1bf6-50cf-4fab-8ea3-179ca947652a>
dcat:accessURL <https://www.berlin.de/daten/liste-der-kfz-kennzeichen/kfz-kennz-d.csv> .

<https://www.berlin.de/daten/liste-der-kfz-kennzeichen/kfz-kennz-d.csv>
dcat:mediaType "text/csv" ;
dc:title "kfz-kennz-d.csv" ;
dc:hasVersion <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0> ;
dc:hasVersion <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_1> .

<https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0>
dc:identifier "0eec56f69acbda76b375ee982dbd4d7e" ;
dc:issued "2020-04-06T22:09:56.336Z" ;
dcat:byteSize 12642 .

<https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_1>
dc:identifier "74f78308cb653142663c057744cde84b" ;
dc:issued "2020-04-12T22:09:56.336Z" ;
dcat:byteSize 12642 . }

Fig. 3. Example INSERT statement to add the dataset meta-information.

SPARQL Endpoint. We make the metadata of the collected and archived datasets
queryable over SPARQL by providing the corresponding meta-information in

6 https://docs.mongodb.com/manual/sharding/#shard-keys, accessed 2020-05-22
7 https://kubernetes.io/, accessed 2020-05-22

https://docs.mongodb.com/manual/sharding/#shard-keys
https://kubernetes.io/
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a triple store; the endpoint is available at https://archiver.ai.wu.ac.at/

sparql. To describe the datasets we make use of the Data Catalog vocabulary
(DCAT) [8] for all crawled datasets (dcat:Dataset) to specify links to the portal
(dcat:Catalog) where datasets were published, as well as dcat:accessURLs of
resources and their respective format (dcat:mediaType). Additionally, for tab-
ular data resources, we provide metadata using the CSV on the Web vocabulary
(CSVW) [16]: CSVW provides table-specific properties, such as csvw:tableSchema
and csvw:datatypes per column. Figure 3 shows an example of the meta-
information stored for an archived dataset.

In this case, as the dataset is a CSV, we also insert CSVWeb metadata as
shown in Figure 4: for these CSVs we heuristically detect the encoding, delim-
iters, as well as column datatypes of a CSV table, and provide this information
using the csvw:dialect property. We further try to detect if the CSV provides
a header row, to extract column labels. Details on these heuristic annotations
are given in our preliminary work [9]. Additionally, as discussed in more detail
in Section 5 below, we annotate – where possible – column types as well as basic
statistics such as selectivity per table column.

INSERT {
_:csv csvw:url <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0> ;

arc:rows 403 ;
arc:columns 3 .

_:csv csvw:dialect [
csvw:encoding "utf-8" ;
csvw:delimiter "," ;
csvw:header true ] .

_:csv csvw:tableSchema [
csvw:column <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0#1> ;
csvw:column <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0#2> ] .

<https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0#1>
csvw:name "Stadt bzw. Landkreis" ;
csvw:datatype "string" ;
rdfs:range <http://dbpedia.org/ontology/Place> .

<https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0#2>
csvw:name "Bundesland" ;
csvw:datatype "string" ;
rdfs:range <http://dbpedia.org/ontology/PopulatedPlace> . }

Fig. 4. INSERT statement of example CSV meta-information.

API Endpoints. We provide the following API endpoints to interact with the
Dataset Archiver. The API is devided into a publicly available API for searching
and retrieving our crawled OD resources and a private API used for maintanance,
requiring resp. credentials.

Public API
/stats/basic – Basic statistics on the data stored in the crawler’s database.
/get/dataset/{URL} – Returns a JSON object of a dataset description by its
referencing URL.

https://archiver.ai.wu.ac.at/sparql
https://archiver.ai.wu.ac.at/sparql
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/get/datasets/{domain} – Returns a JSON object of all dataset descriptions
provided by the same domain.
/get/dataset/type/{TYPE} – Returns a JSON object of all dataset descriptions
which offer resources with the specified filetype e.g. “text/csv” or just “csv”.
/get/file/{URL} – Returns a resource (crawled file) by its referencingURL (i.e.,
for dc:accessURLs the latest downloaded version is retrieved, or, resp. a concrete
ds:hasVersion URL can be provided directly).
/get/files/type/{TYPE} – Returns a zip file containing all versions of the spec-
ified filetype e.g. “text/csv” or just “csv”.
/get/files/sparql?q={QUERY} – Returns a zip file of the resource versions spec-
ified by a SPARQL query, that is, all the files corresponding to (version or dataset)
URLs that appear in the SPARQL query result cf. detailed explanations below.

Private API
/post/resource?secret=SECRET – Adds a new resource to the crawler by posting
a JSON object containing the URL of the resource, the URL of the portal and the
format e.g. ‘text/csv’ or ‘csv’. Only the URL of the resource is mandatory and a
secret key credential is needed to post resources.
/post/resources?secret=SECRET – Adds several resources at once in batch, us-
ing the same parameters as above.

/crawl?id=ID&domain=DOMAIN&secret=SECRET – Tells the workers which resource

has to be crawled. It is used by the master scheduler; a crawl can also be enforced

with this endpoint.

Detailed usage examples of the different APIs are documented on our Webpage
at https://archiver.ai.wu.ac.at/api-doc.

Data Download via SPARQL. Besides the APIs to directly access files from our
crawler and the SPARQL interface to query metadata, we also offer a way of di-
rectly downloading data parameterized by SPARQL queries, i.e., for queries that
include any URLs from the subject (datasetURL) or object (versionURL) of the
dc:hasVersion property in our triple store, we provide a direct, zipped, down-
load of the data: here versionURLs will directly refer to concrete dowloaded file
versions, whereas any datasetURL will retrieve the resp. latest available version
in our corpus.

For instance, the query in Figure 5 selects all archived resources from a
specific data portal (data.gv.at),8 collected after a certain time stamp, with
a specific HTTP media type (in this case CSV files); executing this query at
our SPARQL user interface (https://archiver.ai.wu.ac.at/yasgui) gives
an additional option to retrieve the specific matching versions directly as a zip
file. Alternatively, given this query to the /get/files/sparql?q={QUERY} API
mentioned above, will retrieve these without the need to use the UI.

8 To filter datasets by certain data portals we enriched the descriptions by informa-
tion collected in the Portal Watch (https://data.wu.ac.at/portalwatch/): we use
arc:hasPortal to add this reference. More sophisticated federated queries could be
formulated by including the Portal Watch endpoint [14] which contains additional
metadata.

https://archiver.ai.wu.ac.at/api-doc
data.gv.at
https://archiver.ai.wu.ac.at/yasgui
https://data.wu.ac.at/portalwatch/
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SELECT ?versionURL WHERE {
?datasetURL arc:hasPortal ?Portal ; # ?datasetURL: the download URL of a specific resource

# ?Portal: a dcat:catalog indexed in Portal Watch
dc:hasVersion ?versionURL ; # ?versionURL: a crawled version of the resource
dcat:mediaType ?mediaType . # ?mediaType: media type as per HTTP response.

?versionURL dc:issued ?dateVersion . # ?dateVersion: crawl time.

FILTER (?Portal = <http://data.gv.at> &&
?mediaType = "text/csv" &&
strdt(?dateVersion, xsd:dateTimeStamp) >= "2020-05-10T00:00Z"^^xsd:dateTimeStamp) }

Fig. 5. Example query to get a set of URLs of archived datasets.

4 Overall Corpus Characteristics

Table 1 shows an overview of our overall current ODArchive corpus – as of week
21 in 2020: we regularly crawl a total of ∼800k resource URLs of datasets from
137 OD portals; over a time of 8 weeks we collected a total of 4.8 million versions
of these datasets. Resource URLs origin from 6k different (pay-level) domains,
collected from 137 OD portals, which demonstrates the spread of actual data-
providing servers and services indexed by OD portal catalogs. The latest crawled
versions of all datasets amount to a total of 1.2TB uncompressed, and the total
of all stored versions sums up to around 5.5TB. Additionally, Table 1 shows the
top-5 most common data formats across the most recent crawl.

Table 1. Total number of URLs of datasets, archived versions, domains/portals, and
size of the corpus (left); top-5 most frequent HTTP media types (right).

#Resource URLs 798,091

#Versions 4,833,271

#Domains 6,001

#Portals 137

Latest Versions Corpus Size 1.2 TB

Total Corpus Size 5.5 TB

Media Type Count

text/html 187,196
text/csv 116,922
application/json 102,559
application/zip 93,352
application/xml 76,862

Table 2 shows the main sources of our data corpus: in the left table we provide
the ten most frequent domains of the resource URLs in the corpus, whereas the
right table shows the top-10 data portals.

Note that these numbers can easily be computed through our SPARQL end-
point in an always up-to-date manner, and also over time, by restricting to the
most recent versions before a certain date, with queries analogous to those shown
in Section 3. For instance, the following query produces the statistics given in
Table 1: https://short.wu.ac.at/odarchiverquery1.

5 CSVs: Column Types from KGs and Reference Tables

In order to demonstrate the potential use of our data collection, we herein discuss
reproducible profiling experiments we conducted on a subcorpus of tabular data:

https://short.wu.ac.at/odarchiverquery1
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Table 2. Top-10 most frequent domains of the resource URLs in the archiver, and the
most frequent source portals.

Resource URL Domain Count

wab.zug.ch 77,436
data.opendatasoft.com 63,481
clss.nrcan.gc.ca 59,519
services.cuzk.cz 40,504
abstimmungen.gr.ch 36,604
www.geoportal.rlp.de 26,275
www150.statcan.gc.ca 20,295
archiv.transparenz.hamburg.de 19,321
cdn.ruarxive.org 17,242
www.dati.lombardia.it 15,743

Data Portal Count

europeandataportal.eu 282,541
open.canada.ca 118,949
data.opendatasoft.com 63,481
offenedaten.de 38,348
datamx.io 32,202
dados.gov.br 31,961
data.gov.ie 20,826
hubofdata.ru 19,783
edx.netl.doe.gov 19,379
data.gov.gr 18,687

the experiments focus on CSV files (116,922, as per Table 1 in the most recent
crawl) from our corpus, as the most prominent structured format in OD portals.
Also, as mentioned in the introduction, while tabular data on the Web is a
popular subject of investigations, the particular characteristics of tabular data
from OD portals have thus far not been the main focus of these investigations.

5.1 Labelling Columns with Types from KGs

In the first experiment section, we focus on scalably annotating columns in our
CSV table corpus to classes in existing knowledge graphs (KGs), specifically
DBpedia [2] and Wikidata [19]. To this end, we distinguish by column datatypes
between “textual” and “numeric” columns; we herein specifically focus on scaling
named entity recognition (NER) by textual labels in columns to our corpus. As
for numeric colums, we note that labeling numeric data in tabular OD corpora
with references to KGs has its own challenges and remains a topic of active
research, cf. for instance [13] for our own work in this space.

Our basic idea here is to build a NE gazetteer from DBpedia and Wikidata
labels, along with references of labels to their associated types (i.e., rdf:type
links in DPpedia, or wdt:P31 in Wikidata, resp.). The base assumption here is
that, despite potential ambiguities, columns containing labels of predominantly
same-typed entities, can be associated with the respective DBpedia/Wikidata
type(s). To this end, we extracted label and type information and as well as the
transitive class hierarchy (using rdfs:subClassOf, or wdt:P279 links, resp.)
from both KGs.9

In order to scale, rather than relying on SPARQL, we have constructed our
gazetteer by simply compiling the extracted data into huge Python dictionaries
(one for the types of a given label, and another for the labels of a given type).
This conceptually simple approach is further complicated by two main scalability
challenges, which we discuss in the following.

9 The resp. information has been extracted from the most recent DBpedia and Wiki-
data HDT [4] dumps available at http://www.rdfhdt.org/datasets/

http://www.rdfhdt.org/datasets/
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1. Synonyms and Homonyms: A given entity in the NE sources is often
associated with a number of ambiguous labels and a given label can be associated
with a number of entities, and therefore an even larger number of types; e.g., the
entity Abraham Lincoln in the sense of the 16th president of the United States
is assigned the types dbpedia.org/ontology/Person, xmlns.com/foaf/0.1/Person,
www.w3.org/2002/07/owl#Thing, schema.org/Person, dbpedia.org/ontology/-
Agent, and many others within DBpedia.

However, since many more entities share the name of the great president,
including bridges, ships, high schools, and universities, the number of types that
can be assigned to the label ‘Abraham Lincoln’ is in fact much larger. In addition,
the president is also known under a number of other labels, such ‘Abe Lincoln’,
‘Honest Abe’, and ‘President Lincoln’, each of which is also assigned (among
others) the types listed above.

2. Multi-linguality: Labels and types are available in various languages;
at the moment, we limit ourselves to English and German labels, implementing
multi-linguality only in principle and not in any sense exhaustively which would
of course still be limited to the language versions available in the NE sources.
Restricting to those two languages was also useful to significantly reduce size
of the extracted gazetteer from the raw DBPedia and Wikidata HDT dump
files containing all language labels. Still, while English labels and types form the
largest part of the NE sources, we assume many other languages in e.g. nationally
operated OD portals, which we do not cover yet. This label-type information was
then imported into Python dictionaries for efficient access to all types of labels
and vice versa, fitting in memory, provided that the available RAM is sufficient;
in this case roughly 30 GB.

CSV Table Pre-Processing We assume that very large files would not signifi-
cantly contribute to the results, and therefore only consider files <100KB in
the analysis, resulting in 71,787 CSVs (∼60% of all CSV files currently in our
corpus). The number of usable tables is further reduced due to import errors (es-
sentially empty, “headers only”, CSV files), to 67,974 tables with overall 685,276
columns.

As mentioned above we restrict our comparison to (tables with) columns with
textual content only, which further significantly reduces the number of columns
to be analysed: overall, the reduced corpus for the experiment considers 61,110
tables and a total of 294,485 textual columns (i.e., an avg. of 4.8 textual columns
per table) to be annotated. Looking at the individual values within the remaining
data set we find that only around 19% (and only 2% among the unique values)
of those values can be associated with at least one DBPedia or Wikidata type:10

10 While this needs further investigation, and obviously more sophisticated matching
techniques (substrings- or similarity-based), we note that this low percentage seems
to hint at the specific textual information in OD tables not necessarily being covered
by the more general, encyclopedic knowledge typical in public KGs.
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Total With Type Fraction
Values 28,442,981 5,278,327 0.186
Unique 5,299,125 104,985 0.02

Obvious additional measures to be taking into consideration for the type anno-
tations of table columns are the total number of values, the number of distinct
values, and the selectivity (the number of distinct values divided by the number
of total values): it proved useful to only look at columns with a minimum num-
ber of distinct values: For instance, in order to rule out “essentially boolean”
attributes,11 we only considered columns with at least three values. The listing
shows the selectivity of columns with at least three values.

Columns Avg Number of Values Avg Distinct Values Selectivity
233,416 121.5 46.0 0.28

Another measure for annotating columns with KG types is the fraction of
types covered in the value labels of a given column. For our column-type anno-
tation we consider the following threshold: type coverage for columns with at
least one common type with a fraction of 0.8 or greater.

Among the finally remaining 74,467 columns, we collect intersecting types
per colums and add those as column annotations (using the CSVWeb vocabu-
lary) to the corpus, cf. the example in Figure 4. Other column characteristics,
such as selectivity, are also added as annotations; via our API one could for
instance only consider a specific subcorpus based on these annotations.

The most often identified types are associated with organizations, locations,
and various types of media. Note that types from various knowledge graphs are
overlapping to varying degrees.

Type Number

wd/group 10,383
dbpedia.org/ontology/Location 8,601
schema.org/Place 8,601
wd/entity 8,405
wd/intellectual work 7,285
wd/series 7,057
dbpedia.org/ontology/Place 6,799
wd/creative work 6,749
wd/information 5,991
wd/communication medium 5,989

5.2 Finding Reference Tables

Apart from class annotations per column, which serve to link OD datasets with
KGs, we also analyzed potential interlinkage between OD tables in our corpus
by looking for potential references between tables; whereas e.g. [7] used semantic

11 E.g., “Ja” and “Nein” (German for “yes” and “no”), are labels for entities in Wiki-
data.
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and machine learning methods to find relations among web tables; here we apply
a basic but scalable approach (by again modularly restricting the number of
columns to be compared): a reference table contains one or more key columns
whose values are referenced i.e. are identical with values in other tables. Our basic
approach to identifying reference tables simply compares values in candidate key
columns with the complete set of columns from other tables by going through
all columns in all tables. We limit this brute force approach as described in the
following.
Overall, we compare two approaches for determining a possible reference:
– Strict i.e. all values of column A must be present in column B
– Lax i.e. at least a fraction of 0.9 of the values in A must be present in B

Both computations are done on the sets of column values rather than the original
list of values.

To further limit the amount of processing we put the following restrictions on
reference candidates: (i) the number of distinct values in B must be at least 10,
(ii) the selectivity must be 1 in the referenced column B (i.e., we only consider
single attribute candidate keys as references).

The “brute force” approach consists in checking every column of every table
with each column of every other table satisfying the restrictions (28,524 candi-
date reference tables), where the Python library ray 12 used for parallelisation
allowed us to scale this pairwise comparison between candidate tables and every
same-typed column of every other table. Applying this reference search by doing
a lax or strict check on each column with each reference candidate results in the
following number of actually (at least once) referenced tables, where we see that
applying a strict check does not decrease the number dramatically:

Reference Tables
lax 15,977
strict 15,052

That is, more than half of the candidate reference tables are actually referenced
from other tables, according to these heuristics.

Indeed, some tables are referenced very frequently, for instance reference
tables with regionally important area codes, such as US state codes, national
ISO country codes, or – as a less obvious example – the following table was
cited in 1,811 other tables in the corpus; it has 402 rows showing area codes for
German car license plates:

Kennzeichen, Juli 2012 Stadt bzw. Landkreis Bundesland

A Augsburg Bayern
AA Aalen Ostalbkreis Baden-Württemberg
AB Aschaffenburg Bayern
ABI Anhalt-Bitterfeld Sachsen-Anhalt
ABG Altenburger Land Thüringen
AC Aachen Nordrhein-Westfalen

12 https://github.com/ray-project/ray, accessed 2020-08-17

https://github.com/ray-project/ray
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Overall, while we defer a more detailed analysis to future work, these results
hint at a large number of possible additional inter-dataset links, apart from only
considering links to existing KGs. We explicitly invite usage of our resource to
enable further large scale respective experiments by the community.

6 Related Work

While OD tables are rarely covered (due to the lack of a readily available corpus
as we presented it herein) there are various works on Web tables; we see our
resource as a valuable contribution (i) to compare to an alternative evaluation
corpus, and (ii) to research the potential of applying existing approaches from
these works.

Lehmberg et al. [6] – comparable to our work – presented a large corpus
of (typically much smaller) Web tables, consisting of 233 million content tables
which they classified as either relational, entity, or matrix tables depending on
the orientation and structure of a table, detecting sub-header rows/multi-tables
and subject columns in a dataset. In future work, we want to apply this clas-
sification to our corpus of tabular resources, in order to highlight and compare
the differences of a corpus of Web/HTML and CSV tables. A survey on profiling
relational data can be found in [1].

As for related work on entity recognition and semantic interpretation on Web
tables [22,17,15] our working hypothesis (partially confirmed by our experiments
herein) is that relational data as found on OD repositories are fundamentally
different from such Web table corpora, and we will have to leverage additional
non-textual/numerical cues in the datasets in order to facilitate linkage to ex-
isting KGs. Our archived resources will allow us to test this hypothesis further
by applying and reproducing existing works on Web tables as future work. A
survey on Web table extraction approaches can be found in [21].

Related to our work on Knowledge Graph types and reference tables, [10]
studied the table union problem on a dataset from several OD portals using
Locality Sensitive Hashing (LSH) among other approaches, reporting a precision
of 0.9005 and a recall of 0.8377 [10, p. 823] on sample queries for unionable
tables. Since the subset operation over all columns is essentially a n2 operation
LSH was implemented as an additional alternative approach using minHash
LSH Ensemble.13 Originally designed for queries over large sets of documents
the fraction |Q ∩X|/|Q| is the required intersection of query Q with document
X which can be specified as threshold when querying the LSH ensemble. This
corresponds with the required fraction of elements in column Q present in parent
table column X for a referencing relationship as defined in this work.

In our own experiments using this LSH approach we achieved recall and
precision values that are somewhat higher than the figures reported in [10] with
a speedup of about 5-10 times, but still with a significant number of false positives
and negatives, compared to our own brute force set intersection results. A more
detailed comparison is on our agenda.

13 http://ekzhu.com/datasketch/lshensemble.html, accessed 2020-08-17

http://ekzhu.com/datasketch/lshensemble.html
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7 Conclusions

ODArchive is set to provide easy access to a large, up-to-date corpus of datasets
from OD portals: we archive regularly re-crawled versions of underlying data
resources for datasets from these portals, based on an adaptive, heuristically
estimated crawl rate and have presented a scalable extensible infrastructure to
sustainably run such an archive. Apart from overall characteristics of the crawled
corpus, in order to demonstrate its use, we presented two experiments in terms
of linking tabular OD datasets to existing KGs as well as interlinking them
amongst each other by finding reference tables within the corpus. Our initial
results clearly suggest that the characteristics of the structured data found on
OD portals and readily provided in our corpus are quite different from other
available copora, such as Web Tables. In future work we plan to also analyze
and attempt to interlink other structured formats in our corpus; additionally,
as our framework keeps on running, it shall also enable temporal analyses over
the evolution of OD resources. The infrastructure shall allow detailed analyses
overall, but also with a narrower scope, restricting to data from particular portals
or regions. Last, but not least, we invite the community to use ODArchive and
provide feedback (e.g., in terms of additional API feature requests).
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