
Improving the Recall of Live Linked Data
Querying through Reasoning

Jürgen Umbrich1, Aidan Hogan1, Axel Polleres2, Stefan Decker1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
2 Siemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria
Emails: {firstname.lastname}@deri.org, axel.polleres@siemens.com

Abstract. Linked Data principles allow for processing SPARQL queries
on-the-fly by dereferencing URIs. Link-traversal query approaches for
Linked Data have the benefit of up-to-date results and decentralised
execution, but operate only on explicit data from dereferenced docu-
ments, affecting recall. In this paper, we show how inferable knowledge—
specifically that found through owl:sameAs and RDFS reasoning—can
improve recall in this setting. We first analyse a corpus featuring 7 million
Linked Data sources and 2.1 billion quadruples: we (1) measure expected
recall by only considering dereferenceable information, (2) measure the
improvement in recall given by considering rdfs:seeAlso links as previous
proposals did. We further propose and measure the impact of addition-
ally considering (3) owl:sameAs links, and (4) applying lightweight RDFS
reasoning for finding more results, relying on static schema information.
We evaluate different configurations for live queries covering different
shapes and domains, generated from random walks over our corpus.

1 Introduction

Recently, a rich lode of RDF data has been published on the Web as Linked Data
by governments, academia, industry, communities and individuals alike [15].
Publishing Linked Data is governed by four principles, here summarising [2]:
P1 use URIs to name things, such that P2 those URIs can be dereferenced via
HTTP, such that P3 dereferencing yields useful RDF content about that which
is named, such that P4 the returned content includes links (mentions external
URIs) for further discovery. Given that the URIs used to name resources map
(through HTTP) to the physical location of structured information about them,
information published as Linked Data can be viewed as forming a scale-free,
decentralised database, consisting of millions of structured Web documents [13].
Further still, thanks to the provision of typed “RDF links” between such docu-
ments [15, § 4.5], agents can traverse and navigate the resulting Web of Data in
a manner analogous to browsing through the Web of Documents.

Tangentially, SPARQL [22]—the W3C standardised RDF query language—
provides the declarative means to formulate structured queries against these
data. Traditional approaches for posing queries against Linked Data retrieve
and cache data in local indexes; however, the dynamicity and scope of Web data

implies that results are often stale or missing. Hartig et al. [12] propose using
dereferenceable URIs in a SPARQL query—and recursively, in the intermediate
results—to automatically determine a focussed set of sources that, by Linked
Data principles, are likely to be query relevant, retrieving them live from the
Web at query-time and processing them for answers. By operating over compliant
Linked Data, their approach bypasses the need for source graphs to be explicitly
named or pre-indexed, allowing for ad hoc, live discovery. Later work [10] calls
this approach Link Traversal Based Query Execution (LTBQE). A core challenge
for LTBQE is to identify, retrieve and process a minimal number of sources that
yield maximal results, keeping response times low while maximising answers.

In this paper, we first reintroduce the LTBQE approach, and highlight the
core assumptions under which it operates well. We then show to what extent
these assumptions hold in practice—i.e., measuring how much data is attain-
able from dereferencing—through empirical analysis of a corpus of ∼7.4 m RDF
Web documents. We further propose extensions of LTBQE to (i) minimise the
number of sources accessed by being more selective about links followed; (ii)
increase recall by considering some lightweight semantics of Linked Data that
allow for (ii.a) finding additional query-relevant sources and data through con-
sideration of owl:sameAs links, and (ii.b) finding additional query-relevant data
through rule-based materialisation with respect to a lightweight subset of RDFS
(viz. ρDF [20]). We measure the expected effect on recall for each of these ex-
tensions through similar analysis of our data. Finally, we generate a diverse set
of benchmark queries from our corpus and run them live over remote sources,
comparing different LTBQE configurations and extensions.

2 Background and Related Work

Traditional approaches to query Linked Data locally replicate the content of
remote Linked Data sources and execute SPARQL queries over the local copy.
In previous years, we supported such a service powered by YARS2 [9] allowing
for querying over millions of RDF Web documents (and their entailments), but
discontinued the endpoint due to prohibitive running costs. Current centralised
SPARQL endpoints harvesting Linked Data include “FactForge” [3]3 (powered
by BigOWLIM [4]), OpenLink’s LOD cache4 and Sindice’s “Semantic Web In-
dex” [21]5 (both powered by Virtuoso [7]). The primary targets for these engines
are (i) to have a broad coverage of the Web of Data, (ii) to keep results up to
date, (iii) to have fast response times. These objectives are (partially) met using
distribution techniques, replication, optimised indexes, compression techniques,
data synchronisation, and so forth [4, 7, 9, 21]. However, maintaining a broad,
up-to-date and optimised local index is a Sisyphean task.

Federated SPARQL engines execute queries over a group of independent
endpoints, dividing and routing sub-queries to individual endpoints [1, 23, 24].
3 http://factforge.net/sparql
4 http://lod.openlinksw.com/sparql
5 http://sparql.sindice.com/

Given the recent spread of SPARQL endpoints on the Web of Data, federation is
a timely topic and enjoys increasing attention. However, our techniques operate
over raw source documents, not SPARQL endpoints.

Recently, various authors have proposed methods for performing live query-
ing, accessing remote data at runtime. Ladwig and Tran [17] categorise these ap-
proaches as follows: (i) top-down query evaluation, (ii) bottom-up query evalua-
tion, and (iii) mixed strategy query evaluation. Top-down evaluation determines
remote, query-relevant sources using a source-selection index : a local reposi-
tory summarising information about sources that can vary from inverted-index
structures [19, 21], to query-routing indexes [26], schema-level indexes [25], or
lightweight hash-based structures [27]. The bottom-up query evaluation strategy
involves discovering relevant sources on-the-fly during the evaluation of queries
by selectively and recursively following links starting from a “seed set” of URIs
taken from the query [12]. The third strategy uses (in a top-down fashion) some
knowledge about sources to generate the seed list, then discovering additional
relevant sources using a bottom-up approach [17]. All such approaches rely on
time-consuming remote lookups, but conversely offer fresh results.

An appealing use-case for live querying is to combine both centralised and
live querying results: to complement the fast but potentially stale results of a
centralised engine with slower but fresher live results. A number of works have
tackled this combination on a variety of levels (see, e.g., [13, 18,28]).

3 Preliminaries

We now present some preliminaries. Before we continue, we introduce a moti-
vating example that will be used to explain the concepts involved: Figure 1 illus-
trates an RDF (sub)graph taken from four (real) interlinked sources on the Web
of Data. The graph contains structured information about one publication (dblp-
Pub:HartigBF09), “four” people (oh:olaf, cb:chris, dblpAuth:Olaf_Hartig,
dblpAuth:Christain_Bizer) and four dereferenceable documents.

Presented below Figure 1 are three example queries. For Query 1, the LT-
BQE approach dereferences oh:olaf, finds cb:chris as a binding, and dereferences
it to look for depictions; however the URI does not dereference, and so the LT-
BQE resorts to following the rdfs:seeAlso link, as supported in the original pro-
posal [12]. For Query 2, oh:olaf is again dereferenced, the FOAF file of cb:chris
is found through a see-also link; however, to traverse further and find answers,
the query-processor needs to traverse the owl:sameAs link and also support the
semantics thereof. We propose and evaluate this extension later. Finally, the
FOAF vocabulary defines foaf:name to be a sub-property of rdfs:label, where
RDFS reasoning is required to answer Query 3; we also propose this extension.

We now formally define these concepts, covering preliminaries relating to
RDF and Linked Data (§ 3.1), SPARQL (§ 3.2) and RDFS & OWL (§ 3.3).

3.1 RDF and Linked Data

We first provide some notation for dealing with RDF and Linked Data principles.

rdfs:seeAlso owl:sameAs

rdfs:label,
 foaf:name

dblpPub =http://dblp.l3s.de/d2r/resource/publications/conf/semweb/
dblpAuth =http://dblp.l3s.de/d2r/resource/authors/
dblpAuthP. =http://dblp.l3s.de/d2r/page/authors/
oh =http://olafhartig.de/foaf.rdf# ohDoc..=http://olafhartig.de/foaf.rdf
cb =http://www.bizer.de# cbDoc..=http://www4.wiwiss.fu-berlin.de/bizer/foaf.rdf

cb:chris

oh:olaf

foaf:knows

"Chris Bizer"

owl:sa
meAs

dblpAuth:Christian_Bizer

foaf:img

foaf:depiction

http://....

http://....

ohDoc:

cbDoc:

dblpPub:HartigBF09

dc:creator
foaf:maker

dblpAuth:Olaf_Hartig

"Olaf Hartig"

foaf:name

dc:creator foaf:maker dblpAuthP:Christian_Bizer

dblpAuthP:Olaf_Hartig

dereferenceable

foaf:name

Fig. 1: Snapshot of a sub-graph from the Linked Open Data Web

SELECT ?f ?img WHERE {
oh:olaf foaf:knows ?f .
?f foaf:depiction ?img }

Query 1: Friends’ images

SELECT ?f WHERE {
oh:olaf foaf:knows ?f .
?pub dc:creator ?f, oh:olaf }

Query 2: Coauthors

SELECT ?f ?l WHERE {
oh:olaf foaf:knows ?f .
?f rdfs:label ?l }

Query 3: Friends’ labels

Definition 1 (RDF Term, Triple and Graph).
The set of RDF terms consists of the set of URIs U, the set of blank-nodes
B and the set of literals L. An RDF triple t := (s, p, o) is an element of the
set G := UB ×U ×UBL (where, e.g., UB is a shortcut for set-union). A set
of RDF triples G ⊂ G is called an RDF graph. We use the functions subj(G),
pred(G), obj(G), terms(G), to denote the set of all terms projected from the resp.
triple position (terms gives all positions).

Definition 2 (Data Source and Linked Dataset).
We define the http-download function get : U→ 2G as the mapping from URIs
to RDF graphs provided by means of HTTP lookups that directly return status
code 200 OK and data in a suitable RDF format. We define the set of (RDF)
data sources S ⊂ U as the set of URIs S := {s ∈ U : get(s) 6= ∅}. We define a
Linked Dataset as Γ ⊂ get; i.e., a finite set of pairs (u, get(u)), and merge(Γ) :=⊎

(u,G)∈Γ G as the RDF merge of graphs in Γ , which preserves the uniqueness
of blank-node labels across graphs [14].

Definition 3 (Dereferencing RDF). A URI may issue a HTTP redirect to
another URI with a 30x response code; we denote this function as redir : U →
U, which strips the fragment identifier of a URI (if present) and which would
(thereafter) map a URI to itself in the case of failure (e.g., where no redirect
exists). We denote the fixpoint of redir as redirs, denoting traversal of a number
of redirects (a limit may be imposed to avoid cycles). We denote dereferencing by
the composition deref := get◦redirs, which maps a URI to an RDF graph retrieved
with status code 200 OK after following redirects, or which maps a URI to the

empty set in the case of failure. We denote the set of dereferenceable URIs as
D := {d ∈ U : deref(d) 6= ∅}; note that S ⊂ D and we place no expectations on
what deref(d) returns (as long as it returns some valid RDF).

Taking Figure 1, e.g., redir(oh:olaf) = ohDoc:, deref(oh:olaf) = deref(ohDoc:) =
{(oh:olaf, foaf:name, "Olaf Hartig") . . .} and deref(cb:chris) = ∅.

3.2 SPARQL

We now introduce some concepts relating to SPARQL [22]. Note that herein, we
focus on evaluating simple, conjunctive, basic graph patterns (BGPs) .

Definition 4 (Variables, Triple Patterns and Queries (BGPs)).
Let V be the set of variables ranging over UBL. A triple pattern tp := (s, p, o)
is an element of the set Q := VUL × VU × VUL. For simplicity, we do not
consider blank-nodes in triple patterns (they could be replaced with variables). A
finite (herein, non-empty) set of triple patterns Q ⊂ Q is called a Basic Graph
Pattern, or herein, simply a query. We use vars(Q) ⊂ V to denote the set of
variables in Q. Finally, we may overload graph notation where, e.g., terms(Q)
returns all elements of VUL in Q.

Definition 5 (SPARQL solutions).
Call the partial function µ : dom(µ) ∪UL → UBL a solution mapping, which
binds variables in dom(µ) ⊂ V to UBL and which is the identify function for
UL. Overloading notation, let µ : Q→ G and µ : 2Q → 2G also resp. denote a
solution mapping from triple patterns to RDF triples, and basic graph patterns to
RDF graphs such that µ(tp) := (µ(s), µ(p), µ(o)) and µ(Q) := {µ(tp) | tp ∈ Q}.
Now, we define the set of solutions for a query Q over a Linked Dataset Γ as
Ω(Γ,Q) := {µ | µ(Q) ⊆ merge(Γ) ∧ dom(µ) = vars(Q)}. Note that herein, and
unlike SPARQL, solutions are given as sets (not multi-sets), implying a default
DISTINCT semantics for queries.

Taking an example, if we let Γ be Figure 1 and Q be Query 3, then Ω(Γ,Q) =
{(?f, cb:chris), (?l, "Chris Bizer")}.

3.3 RDFS and OWL

We define some preliminaries relating to RDFS and OWL. In particular, we sup-
port a miniature subset of OWL 2 RL/RDF rules for supporting owl:sameAs
entailments, given in Table 1. Our RDFS rules are the subset of ρDF rules pro-
posed by Muñoz et al. [20], which deal with instance data entailments.6 Our
subset of OWL rules are specifically chosen to support the semantics of equal-
ity (particularly replacement) for owl:sameAs. Note that these rules support
the RDFS/OWL features originally recommended for use by Bizer et al. when
publishing Linked Data [5, §4.2, §6]. The rules we consider are given in Table 1.
6 We drop implicit typing [20] rules but allow generalised RDF in interim inferences.

Table 1: ρDF and owl:sameAs rules with OWL 2 RL/RDF naming
ID Body Head
prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?s ?p1 ?o . ?s ?p2 ?o .
prp-dom ?p rdfs:domain ?c . ?s ?p ?o . ?p a ?c .
prp-rng ?p rdfs:range ?c . ?s ?p ?o . ?o a ?c .
cax-sco ?c1 rdfs:subClassOf ?c2 . ?s a ?c1 . ?s a ?c2 .
eq-sym ?x owl:sameAs ?y . ?y owl:sameAs ?x .
eq-trans ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .
eq-rep-s ?s owl:sameAs ?s′ . ?s ?p ?o . ?s′ ?p ?o .
eq-rep-p ?p owl:sameAs ?p′ . ?s ?p ?o . ?s ?p′ ?o .
eq-rep-o ?o owl:sameAs ?o′ . ?s ?p ?o . ?s ?p ?o′ .

Definition 6 (Entailment Rules and Closure). Given a ruleset R and
a Linked Dataset Γ , we denote by RΓ := Γ ∪ (υ,G) the closure of Γ wrt. R,
where (abusing notation) G contains the materialised inferences from recursively
applying the rules in R over merge(Γ)] G up to a fixpoint, and where υ is a
built-in URI for naming the materialised graph.

4 Link Traversal Based Query Execution

We first introduce the Link Traversal Based Query Execution (LTBQE) ap-
proach introduced by Hartig et al. [12] (§ 4.1), and then look at extensions of
the approach (§ 4.2). Our formalisms are tailored for the purpose of this work;
a comprehensive study of semantics and computability is presented in [11].

4.1 Baseline LTBQE

Definition 7 (LTBQE Query Relevant Sources and Answers). Define
derefs : 2U → U× 2G; U 7→ {(redirs(u), deref(u)) | u ∈ U)} as the mapping from
a set of URIs to the Linked Dataset it represents by dereferencing all URIs.
Given a BGP query Q as before, let UQ := terms(Q) ∩ U denote the set of
URIs appearing in Q. Let ΓQ0 := derefs(UQ) represent the dataset retrieved by
dereferencing all query URIs.7 Next let uris(µ) := {u ∈ U | ∃v s.t. (v, u) ∈ µ}
denote the set of URIs in a solution mapping µ, and let Ui := {u ∈ uris(µ) |
∃µ,∃tp ∈ Q s.t. µ({tp}) ⊆ merge(ΓQi−1)} for i ∈ N be the set of URIs that
appear as a solution mapping for a triple pattern in Q for the dataset ΓQi−1, and
let ΓQi := derefs(Ui) ∪ ΓQ0 .8 The set of LTBQE query relevant sources for Q
is given as the least n such that ΓQn = ΓQn+1, denoted simply ΓQ. The set of
LTBQE query answers for Q is given as Ω(ΓQ, Q), or simply ΩQ.

With regards to completeness, let get denote the dataset (theoretically) rep-
resented by the entire Web of Data (note: get ⊂ U×2G). One may then ask when
ΩQ is complete with respect to get. A trivial sufficient condition for completeness
7 One could consider ΓQ

0 as also containing “seed” data [12].
8 Or, equivalently (for static data) ΓQ

i := ΓQ
i−1 ∪ derefs(Ui \ Ui−1).

SELECT * WHERE { cb:chris ?p ?o . }

Query 4: Not dereferenceable

SELECT ?olaf ?name WHERE {
oh:olaf foaf:name ?name . ?olaf foaf:name ?name . }

Query 5: Connected by literal

SELECT ?s WHERE { ?s owl:sameAs dblpAuth:Olaf_Hartig . }

Query 6: Not in dereferenceable document

SELECT ?paper WHERE {
cb:chris owl:sameAs ?dblpC .
oh:olaf owl:sameAs ?dblpO .
?dblpC foaf:maker ?paper .
?dblpO foaf:maker ?paper .

}

Query 7: Query answer
only reachable from the
seed URI oh:olaf

is given by ΓQ = get; such a case is, however, infeasible. Otherwise the com-
pleteness condition is rather simple and entirely unverifiable: ΓQ must contain
all of the data relevant on the Web to answer the query. Of course, verifying that
the condition does not hold is significantly easier in many cases. The implica-
tions are that: first, given a query with no dereferenceable URIs, LTBQE cannot
return results (as per Query 4 where cb:chris does not dereference). Second,
given a query with multiple URIs, different reachability conditions can occur
from different starting points (as per Query 7 where the answer is only reach-
able starting from ol:olaf); thus, all query URIs must be initially retrieved [12].
Third, answers “connected” by literals or involving blank-nodes in unreachable
documents will often affect completeness (as per Query 5 where the answer is
connected by the literal "Olaf Hartig"’, here not yet considering owl:sameAs).
Fourth, in the general case, reachability is heavily dependent on the amount of
data returned by the deref(u) function, which would ideally return all triples
mentioning u on the Web of Data (e.g., in Query 6, the owl:sameAs inlinks for
dblpAuth:Olaf_Hartig are not in its dereferenced document and will not be
found). The fourth assumption is clearly idealised; hence, in Section 5 we will
empirically analyse how much the assumption holds in practice, giving insights
into the recall of LTBQE. First, however, we propose our reasoning extensions.

4.2 Extending LTBQE

1. Following rdfs:seeAlso: The first extension to LTBQE is proposed by Hartig
et al., and uses rdfs:seeAlso links to extend the set of query sources. Adapting
Definition 7, let Γ̄Q0 := ΓQ0 and let:

Ūi := Ui ∪ {u ∈ U | ∃u′ ∈ Ui s.t. (u′, rdfs:seeAlso, u) ∈ merge(Γ̄Qi−1)} ,

let Γ̄Qi := derefs(Ūi)∪ΓQ0 , and finally let Γ̄Q be the fixpoint as before and let Ω̄Q
be the respective solutions. This extends LTBQE to find more sources through
rdfs:seeAlso links. An example for this has been presented in Query 1.

2. Following and reasoning over owl:sameAs: We propose an extension of LT-
BQE to consider owl:sameAs inferences. Let R denote the set of rules of the

form eq-* in Table 1. Let now eΓQ0 := RΓQ0 (recalling RΓ from Def. 6 and ΓQ0
from Def. 7), and let:

U ′i := {u ∈ uris(µ) | ∃µ,∃tp ∈ Q s.t. µ({tp}) ⊆ merge(eΓQi−1)} ,
eUi := {u ∈ U | ∃u′ ∈ U ′i s.t. (u′, owl:sameAs, u) ∈ merge(eΓQi−1)} ,

where eΓQi := Rderefs(eUi)∪eΓQ0 , and finally let eΓQ be the fixpoint as before and
let eΩQ be the respective solutions. Here, owl:sameAs links are used to expand
the set of query relevant sources, and owl:sameAs rules are used to materialise
inferable knowledge given by the OWL semantics, potentially generating addi-
tional answers. An example for this has been presented in Query 2.

3. Reasoning for ρDF: We propose a final novel extension of LTBQE to consider
a subset of RDFS reasoning as per the prp-* and cax-sco rules in Table 1, which
we again denote here by R. We currently consider a static set of schema data
representing vocabularies on the Web, which we denote by Γ voc. This serves
as input into the LTBQE algorithm. In future work, we plan to investigate
dereferencing schema knowledge live from the Web of Data.

Now, adapting Definition 7, let ρΓ
Q
0 := Γ voc ∪ RΓQ0 and let:

ρUi := {u ∈ uris(µ) | ∃µ,∃tp ∈ Q s.t. µ({tp}) ⊆ merge(ρΓ
Q
i−1)} ,

whereρΓ
Q
i := Rderefs(ρUi)∪ρΓQ0 , and finally letρΓQ be the fixpoint as before and

let ρΩQ be the respective solutions. Here, RDFS rules and background schema
knowledge (Γ voc) are used to materialise inferable knowledge, potentially gener-
ating additional answers (and thus possibly finding new query relevant sources).
An example for this has been presented in Query 3.

Combined Of course, the above methods can be combined in a natural fashion,
where, e.g., for combining all extensions, the query relevant sources are denoted
e
ρΓ̄

Q and the answers by e
ρΩ̄

Q.

5 Empirical Study

In Section 4.1, we mentioned that the recall of the LTBQE approach is—in the
general case—dependent on the dereferenceability of data. Along those lines,
we now present the results of our empirical study of a Linked Data corpus. We
survey the ratio of all triples mentioning a URI in our corpus against those re-
turned in the dereferenceable document of that URI; we do so for different triple
positions. We also look at the comparative recall of data considering (1) explicit,
dereferenceable information; (2) including rdfs:seeAlso links [12]; (3) including
owl:sameAs links and inferable knowledge; (4) including RDFS reasoning.

Empirical corpus We use the Billion Triple Challenge 2011 dataset for our survey,
which was crawled in mid-May 2011 from 7.4 million RDF/XML documents
spanning 791 pay-level domains (data providers). The resulting corpus contains
2.15 g quadruples (1.97 g unique triples) mentioning 538 m RDF terms, of which
52 m (10%) are Literals, 382 m (71%) are blank nodes, and 103 m (19%) are
URIs. We denote the corpus as Γ∼. It’s important to note that this corpus is only
a sample of the Web of Data; in particular, we only use the information about
HTTP lookups provided by the dataset. We found that a total of 25.4 m lookups
were performed (excluding robots.txt). As such, we only have knowledge of redir
and deref functions for 18.65 m URIs; all of these URIs are HTTP and do not
have non-RDF file-extensions. We denote these URIs by U∼. Of the 18.65 m,
8.37 m (44.8%) dereferenced to RDF; we denote these by D∼. Further note that,
wrt. the Web of Data, our sample recall measures specify an upper bound.

RDFS Schema From our corpus, we extract a static set of schema data for the
RDFS reasoning. As argued in [6], schema data on the Web is often noisy, where
third-party publishers “redefine” popular terms outside of their namespace; for
example, one document defines nine properties as the domain of rdf:type, which
would have a drastic effect on our reasoning.9 Thus, we perform authoritative rea-
soning, which conservatively discards certain third-party schema axioms (cf. [6]).
Our schema data only considers triples of the following form:

(s, rdfs:subPropertyOf, o) ∈ deref(s), (s, rdfs:subClassOf, o) ∈ deref(s)
(s, rdfs : domain, o) ∈ deref(s), (s, rdfs : range, o) ∈ deref(s)

We extracted a total of 397 thousand such authoritative RDFS triples from
98 PLDs as follows: 334 thousand rdfs:subClassOf (82 PLDs); 11 thousand
rdfs:subPropertyOf (67 PLDs); 26 thousand rdfs:domain (79 PLDs); and 26
thousand rdfs:range (77 PLDs).

5.1 Recall for Baseline

We first measure the average dereferenceability of information in our sample.
For a dereferenceable uri d, we compute the sample dereferencing recall sdr(d)
as the ratio of the number of unique triples mentioning d in deref(d) vs. unique
triples mentioning d across the entire sample. We denote by sdr∼ the average
sdr(d) for all d ∈ D∼. We also analyse the sdr(d) restricting the specific triple
positions where d appears. We ignore d in the average if it does not appear in the
relevant triple position in the sample. Table 2 presents the results for different
triple positions. Column type-object considers d only when appearing as object
in a triple with the predicate rdf:type (a class position).

The analysis provides some interesting initial insights into the LTBQE ap-
proach. Given a HTTP URI without a common non-RDF extension, we have a
44.8% success ratio to receive RDF/XML content regardless of the triple posi-
tion. If such a URI dereferences to RDF, we receive on average (at most) 51%
9 viz. http://www.eiao.net/rdf/1.0

Table 2: Dereferenceability results for different triple positions

Measure any subject predicate object type-
object

|U∼| 18.65 m 9.55 m 47.67 k 9.73 m 213.38 k
|D∼| 8.37 m 8.09 m 745 4.5 m 21.1 k
|U∼|/|D∼| 0.44 0.85 0.01 0.46 0.09

average sdr∼ 0.51 0.95 0.00007 0.438 0.002
std. dev. ± sdr∼ 0.5 ±0.195 ±0.008 ±0.458 ±0.05

of all triples in which it appears on the Web. Given a pattern with a URI in the
subject position, the dereferenceable ratio increases to 95%; for objects, the ratio
drops to 43.8%; LTBQE would perform poorly for triple patterns with (only)
a URI in the predicate position (0.007%); etc. High standard deviations imply
that the dereferenceability is often “all or nothing”. In summary, LTBQE per-
forms well when URIs appear as the subject of triple patterns, moderately when
URIs appear in the object, but will perform poorly when URIs appear in the
predicate or object of an rdf:type triple. In practice, documents dereferenced by
property and class terms do not host a high percentage of their extension.

5.2 Recall for Extensions

We now measure the sdr increase given by extending LTBQE to also consider
rdfs:seeAlso and owl:sameAs links, as well as inferable knowledge given by
owl:sameAs and RDFS reasoning.

Benefit of following rdfs:seeAlso links We measured the percentage of derefer-
enceable URIs in D∼ which have at least one rdfs:seeAlso link in their derefer-
enced document to be 2% (201 k URIs). Where such links exist, following them
increases the amount of unique triples by a factor of 1.006× vs. triples in the
dereferenced document alone. We conclude that, in the general case, considering
rdfs:seeAlso triples will only marginally affect the recall increase of LTBQE.

Benefit of following owl:sameAs links & inferable knowledge We measured the
percentage of dereferenceable URIs in D∼ which have at least one owl:sameAs
link in their dereferenced document to be 16% for our sample. Where such links
exist, following them and applying the eq-* entailment rules over the result-
ing information increases the amount of unique triples by a factor of 2.5× vs.
the unique (explicit) triples in the dereferenced document alone. We conclude
that, in the general case, owl:sameAs links are only sometimes found for def-
erenceable URIs, but where available, following them and applying entailment
generates significantly more data for generating answers (albeit potentially pro-
ducing “duplicate” answers under different URI aliases).

Benefit of including ρDF inferable knowledge We measured the percentage of
dereferenceable URIs in D∼ whose dereferenced documents given non-empty
unique entailments through authoritative ρDF reasoning with respect to Γ voc as
81%. Where such entailments are non-empty, they increase the amount of unique
triples by a factor of 1.78× vs. the unique (explicit) triples in the dereferenced
document. We conclude that such reasoning often increases the amount of data
available for LTBQE query answering, and by a significant amount.

6 Evaluation

In order to test our methods for queries covering a diverse set of sources and
query types, we evaluate our proposed LTBQE extensions for a set of pseudo-
randomly generated queries extracted from our Linked Data corpus. These
queries are then applied live to determine real-world behaviour. Our aim is to
compare and contrast different setups and assess our proposed extensions in a
realistic scenario. To the best of our knowledge, we are the first work to evaluate
the original LTBQE proposal in a live and diverse environment.

Implementation: We have (re-)implemented Hartig et al.’s iterator-based al-
gorithm for LTBQE (which was shown to be complete) [12]. We use ARQ to
parse and process input SPARQL queries.10 We further use the LDSpider crawl-
ing framework for performing live Linked Data lookups; LDSpider respects the
robots.txt policy, blacklists typical non-RDF URI patterns (e.g., .jpeg) and en-
forces a half-second delay between two consequential lookups for URIs hosted
at the same domain.11 We use the SAOR engine to support the aforementioned
rule-based reasoning extensions [6]. Note that we use the same input RDFS data
as used in the empirical study of the previous section.

Optimised LTBQE: Inspired by our empirical analysis, we also implement and
evaluate a variation of the LTBQE approach which does not dereference URIs
appearing only in the predicate position of a (possibly partially bound) triple-
pattern. Further, we add another optimisation to avoid dereferencing URIs that
are only bound by non-distinguished variables not appearing elsewhere in the
query (i.e., variables whose value is not used elsewhere). Since these optimisation
reduce the number of query-relevant sources, they may in theory lead to less
results, though in practice (and as per our empirical survey), we would expect
a minimal change in recall over the baseline.

Evaluation Queries: We benchmark queries of elemental graph shapes, viz., en-
tity, star and path queries.
Entity queries (entity-[s|o|so]) ask for all available triples for an entity. We
generate three types of entity queries, asking for triples where a URI appears as

10 http://jena.sourceforge.net/ARQ/
11 http://code.google.com/p/ldspider/

the subject (entity-s); as the object (entity-o); as the subject and object (entity-
so). An example for entity-so would be {<d> ?p1 ?o . ?s ?p2 <d> .}. These type
of queries are very common in Linked Data browsers or display interfaces.
Star queries (star-[s3|o3|s1-o1|s2-o1|s1-o2]) contain three acyclic triple pat-
terns which share exactly one URI (called the centre node) where predicate
terms are constant. We generate four variations of such queries, differing in the
number of triple patterns where the centre node appears as the subject (s) or
object (o). An example for star-s2-o1 would be {<d> foaf:knows ?o ; foaf:name
?o1 . ?o3 dc:creator <d> .}
Path queries ([s|o]-path-[2|3]) consist of 2 or 3 triple patterns that form a path
where precisely two triple pattern share the same variable. Exactly one triple
pattern has a URI at either the subject or object position and all predicate terms
are constant. We generate four path sub-types: path shaped queries of length 2
and 3 where either the subject or object of one triple pattern is a constant. An
example for s-path-2 is Query 1.

Query generation: In total, we generate 100 SELECT DISTINCT queries for
each of the above 11 query shapes using random walks in our corpus. To help
ensure that queries return non-empty results (in case there are no HTTP connec-
tion errors or time outs) we consider dereferenceable information for the query
generation which (1) picks randomly a pay-level-domain available in the deref-
erenceable URIs D∼, (2) selects randomly a URI from D∼ for that PLD and (3)
generates appropriate triple patterns from the dereferenceable document of the
selected URI. For path shaped queries, when performing steps (2) and (3), the
URI for the next triple pattern is selected out of the URIs contained for the previ-
ous triple pattern, as per a random walk of dereferenceable URIs. Distinguished
variables are picked by randomly choosing a single variable as distinguished and
make further variables distinguished with a probability of 0.5.

Benchmark Stable Queries: We observed that the results for the same query
varied over different runs and thus introduce the notion of “benchmark stable
queries” which are queries for which the response codes for the baseline URIs
are the same across all setups runs. The variation of results for different runs is
caused by remote server or connection failures while dereferencing content, e.g.,
we sometimes encountered 503 - Service unavailable response codes possibly due
to temporarily high loads on remote servers. Only considering stable queries im-
proves the comparability of results across different setups. Table 3 shows that in
average ∼94% (1,0291,100) of the queries are stable from which ∼38% (389

1,029) returned
empty results. We inspected the causes for the empty result set for all “stable”
queries (right side of Table 3). The typewritten numbers correspond to HTTP
server response codes.12 The column “mixed ” indicates that there are at least
two URIs with different response codes and the column “data” indicates that the

12 Aside from common response codes, a 498 code denotes robots.txt forbidden access,
499 denotes that a server returned a mime type different to application/rdf+xml,
602 denotes socket timeouts and 603 denotes unknown host exceptions.

Table 3: Statistics about stability of queries.
Breakdown (1,100) Causes for empty results (389)

stable (empty) unstable 403 404 498 499 500 502 602 603 mixed data

1,029 (389) 71 15 110 15 38 18 2 6 85 7 93

av
g.

qu
er
y
ti
m
e
in
cr
ea
se

entity-o (∼8.25 sec)
entity-s (∼9.99 sec)

entity-so (∼12.28 sec)

+0

+25

+50

+75

+100

legacy seeAlso sameAs ρDF comb

(a) Average time increase.
av
g.

re
su
lt
re
ca
ll
in
cr
ea
se

entity-o (∼53 results)
entity-s (∼16 results)

entity-so (∼34 results)

+0

+50

+100

+150

+200

legacy seeAlso sameAs ρDF comb

(b) Average recall increase.

Fig. 2: Average time and recall increase relative to baseline for entity queries.

missing results are not HTTP-related (e.g., the data changed). The main rea-
sons for empty “stable” queries are (i) either query relevant documents are not
available any more (404), (ii) the IP address of a host could not be determined
(indicated by 603) or (iii) the underlying data changed (last column).

Results per Query Class: We execute each query with six different setups: legacy
denotes the original LTBQE approach; base denotes optimised LTBQE; select
denotes seeAlso, sameAs, and ρDF which all extend base; comb denotes all
extensions of base applied together. We discuss the results for each query-type,
presented as bar plots showing the average recall and time increase per setup vs.
base (represented as the x-axis). For ρDF, we do not include the time needed
to load schema data, which can be done prior to query time.
Entity queries Figure 2a shows that the original source selection approach
requires between 60% to 110% additional time compared to our source selection
optimisation and increases the recall by 3%, shown in Figure 2b. All such figures
include the absolute baseline results (represented by the x-axis) in the legend. Our
extensions increase the recall for all entity queries with a maximum increase of
200% for entity-so queries and the combination of all extensions. To enable such
increases in recall, the query time increases by up to 55%.
Star queries The results for the star shaped queries, presented in Figure 3a
and Figure 3b show similarities with the observations for the entity queries.
The query times increase without an improvement of the recall if we dereference
all appearing URIs and our extensions improve the recall by a maximum of
140% for 3 out of the 4 query classes. It is worth noting the small volume of

av
g.

qu
er
y
ti
m
e
in
cr
ea
se

star-1-2 (∼ 7.08 sec)
star-0-3 (∼ 7.47 sec)

+800

+855

star-3-0 (∼7.16 sec)
star-2-1 (∼ 6.63 sec)

+0

+50

+100

+150

legacy seeAlso sameAs ρDF comb

(a) Average time increase.

av
g.

re
su
lt
re
ca
ll
in
cr
ea
se

star-3-0 (∼1 results)
star-2-1 (∼7 results)

star-1-2 (∼11 results)
star-0-3 (∼2 results)

+0

+50

+100

+150

+200

legacy seeAlso sameAs ρDF comb

(b) Average recall increase.

Fig. 3: Average time and recall increase relative to baseline for star queries.

in
cr
ea
se

av
g.

qu
er
y
ti
m
e

s-path-2 (∼8.86 sec)
s-path-3 (∼11.6 sec)

o-path-2 (∼11.26 sec)
o-path-3 (∼15.1 sec)

+300

+350

+400

+0

+50

+100

legacy seeAlso sameAs ρDF comb

(a) Average time increase.

av
g.

re
su
lt
re
ca
ll
in
cr
ea
se

s-path-2 (∼6 results)
s-path-3 (∼28 results)
o-path-2 (∼94 results)
o-path-3 (∼86 results)

+0

+50

+100

+150

+200

legacy seeAlso sameAs ρDF comb

(b) Average recall increase.

Fig. 4: Average time and recall increase relative to baseline for path queries.

results for the baseline, which may skew average relative increases. Further, we
observed some extreme outliers for the query class star-1-2 due to one query
which took around 1 hour to terminate because of a document download from
the ecowlim.tfri.gov.tw provider (which did not even contribute to the results).
Path queries The results for the path shaped queries show an average time
increase of up to 420% vs. legacy compared to our optimised selection for the
two o-path query classes in Figure 4a. In contrast to the previous query classes,
we see in Figure 4b that the seeAlso extension improves the recall by over 50%
for the s-path-3 query class, which is the highest measured improvement for
that extension across all query classes. In addition, we observe a recall increase
of at least 50% for s-path-* queries with the ρDF and comb setups, whereas we
measured only a marginal increase for o-path-* queries.

7 Conclusion

Proposed link-traversal query approaches for Linked Data have the benefit of up-
to-date results and decentralised execution, but operate over incomplete knowl-
edge available in dereferenced documents, thus affecting recall for results.

We empirically study this issue for a large sampling of the Web of Data,
consisting of 7.4 million Linked Data documents and 2.1 billion quadruples. We
further propose to improve recall by considering inferable knowledge, specifically
that found through owl:sameAs and RDFS reasoning. We again validate our
extensions by analysis of our corpus, where we show increases in data available
to the LTBQE approach (1) of 1.006× considering rdfs:seeAlso information as
proposed in [12], (2) of 2.5× considering owl:sameAs and (3) of 1.8× if we
apply ρDF reasoning using static schema information. We generate and run
queries (of eleven different shapes) live over the Web of Data, comparing six
different setups, demonstrating the degree to which our extensions find additional
results at the cost of accessing more sources and thus taking longer. In addition,
our comprehensive experiment also highlights the problem of unreliable server
behaviour, which affects query processing and is symptomised by outliers in
results and unavailability of data for certain queries.

Future Work We plan to extend our entailment rules to cover more of OWL
2 RL/RDF and to investigate changes in recall when considering dynamically
dereferenced schema data vs. static schema data. We also plan to use owl:sameAs
optimisations for canonicalising equivalent URIs as opposed to materialising all
equivalent data. Another open issue relates to that of data quality, where, e.g.,
Halpin et al. [8] suggest that owl:sameAs may often be unreliable; we have
experiences of dealing with data-quality issues for reasoning in other works [16].
From such work, we herein borrowed the notion of authoritative RDFS reasoning;
further measures to make results more “robust” are a subject for future work.

Given the relatively slow response times from the LTBQE approach (where
1% of all queries returned in less than a second, whereas 67% of the queries
executed in less than 10 seconds), our ultimate goal is to use such live querying
techniques, in a best-effort manner, to compliment centralised query services
with fresh answers, particularly for query patterns that are determined to be
dynamic and for which data should be retrieved directly from source. In this
scenario, our optimisations should help to get faster live-query answers and our
extensions to find further answers. In general, combining different Linked Data
querying techniques to find a sweet-spot between fast response times and a high
recall of (fresh) answers is an open question, the solution to which is likely to
be user- and query-specific. Along such lines, in this paper we have formalised,
proposed and evaluated the feasibility in a real-world setting of several novel live
querying techniques, a selection of which also incorporate lightweight reasoning.
Acknowledgements: This research has been supported by Science Founda-
tion Ireland under Grant No. SFI/08/CE/I1380 (Lion-II).

References

1. C. B. Aranda, M. Arenas, and Ó. Corcho. Semantics and optimization of the
SPARQL 1.1 federation extension. In ESWC, 2011.

2. T. Berners-Lee. Linked Data. Design issues, W3C, 2006.
3. B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and R. Velkov. Fact-

forge: A fast track to the web of data. Sem. Web J., 2011.

4. B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and R. Velkov. Owlim:
A family of scalable semantic repositories. SWJ, 2011.

5. C. Bizer, R. Cyganiak, and T. Heath. How to publish Linked Data on the web.
linkeddata.org Tutorial, July 2008.

6. P. A. Bonatti, A. Hogan, A. Polleres, and L. Sauro. Robust and scalable Linked
Data reasoning incorporating provenance and trust annotations. JWS, 2011.

7. O. Erling and I. Mikhailov. RDF support in the virtuoso dbms. In Networked
Knowledge – Networked Media. Springer, 2009.

8. H. Halpin, P. J. Hayes, J. P. McCusker, D. L. McGuinness, and H. S. Thompson.
When owl:sameas isn’t the same: An analysis of identity in Linked Data. In ISWC,
2010.

9. A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A federated repository
for querying graph structured data from the web. In ISWC, 2007.

10. O. Hartig. Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In ESWC, 2011.

11. O. Hartig. SPARQL for a web of Linked Data: Semantics and computability. In
ESWC, 2012.

12. O. Hartig, C. Bizer, and J.-C. Freytag. Executing SPARQL queries over the web
of Linked Data. In ISWC, 2009.

13. O. Hartig and A. Langegger. A database perspective on consuming Linked Data
on the web. Datenbank-Spektrum, 2010.

14. P. Hayes. RDF semantics. W3C Recommendation, Feb. 2004.
15. T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space.

Morgan & Claypool, 2011.
16. A. Hogan. Exploiting RDFS and OWL for Integrating Heterogeneous, Large-Scale,

Linked Data Corpora. PhD thesis, DERI, NUIG, 2011.
17. G. Ladwig and T. Tran. Linked Data query processing strategies. In ISWC, 2010.
18. G. Ladwig and T. Tran. SIHJoin: Querying remote and local Linked Data. In

ESWC, 2011.
19. Y. Li and J. Heflin. Using reformulation trees to optimize queries over distributed

heterogeneous sources. In ISWC, 2010.
20. S. Muñoz, J. Pérez, and C. Gutierrez. Simple and efficient minimal RDFS. JWS,

2009.
21. E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tummarello.

Sindice.com: a document-oriented lookup index for open Linked Data. IJMSO,
2008.

22. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
Recommendation, Jan. 2008. http://www.w3.org/TR/rdf-sparql-query/.

23. B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL.
In ESWC, 2008.

24. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: A federation
layer for distributed query processing on linked open data. In ESWC, 2011.

25. H. Stuckenschmidt, R. Vdovjak, G.-J. Houben, and J. Broekstra. Index structures
and algorithms for querying distributed RDF repositories. In WWW, 2004.

26. T. Tran, L. Zhang, and R. Studer. Summary models for routing keywords to Linked
Data sources. In ISWC, 2010.

27. J. Umbrich, K. Hose, M. Karnstedt, A. Harth, and A. Polleres. Comparing data
summaries for processing live queries over Linked Data. WWWJ, 2011.

28. J. Umbrich, M. Karnstedt, A. Hogan, and J. X. Parreira. Freshening up while
staying fast: Towards hybrid SPARQL queries. In EKAW, 2012.

