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ABSTRACT
While the volume of graph data available on the Web in RDF is

steadily growing, SPARQL, as the standard query language for

RDF still remains e�ectively unusable for the basic task of �nding

paths through the graph between selected nodes. Property Paths,

as introduced in SPARQL 1.1 are un�t for this purpose, as they

can only be used to test path existence. More expressive features,

such as counting distinct paths between two nodes, have been

shown highly intractable in the worst case, in particular in graphs

with high degree of cyclicity. Still, practical use cases demand a

solution for path retrieval even when the total number of paths is

prohibitively large. A common approach is to ask not for all, but

only for the k shortest paths. In this paper, we extend SPARQL 1.1

property paths in a manner that allows to compute and return the

k shortest paths matching a property path expression between two

nodes. For RDF graphs in the compact HDT format, we evaluate or

algorithm for top k shortest paths showing that a relatively simple

approach works (in fact, more e�ciently than other, more complex

algorithms in the literature) in practical use cases.
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•�eory of computation →Shortest paths; •Information sys-
tems →Network data models; Resource Description Frame-
work (RDF);
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1 INTRODUCTION
RDF data on the Web is starting to form a constantly growing,

labelled graph, sometimes called Linked Data, sometimes called

the “Web of Data”, but anyway justifying the claim that a tangible

portion of a “Semantic Web” has become a reality. In order to query

RDF and Linked Data graphs, SPARQL as the standard query lan-

guage is typically the tool of choice, but several omissions still make

it far from perfectly �t for the task. For instance, while SPARQL 1.1

introduced queries testing path existence between two nodes via a

feature called property paths, the language still falls short in both

counting and retrieving the paths. In fact, there is a history behind

this, as the seminal paper by Perez et al. in 2012, warned us not to

“count beyond the Yo�abyte”, i.e. the paper showed not only that –

at that time current – SPARQL engines implemented property paths

in an ine�cient manner, but also that a query language feature that

allowed to return (the number of) all property paths would easily

become infeasible even in relatively small graphs due to potentially

double-exponential number of solutions.

�e existential semantics which the authors proposed to the

rescue (and which became eventually a part of the �nal SPARQL

1.1 standard), has its limitations in practice where not only the

existence but the paths themselves are of interest. For instance,

in professional social networks, typically everybody is (somehow)

transitively connected to anyone, but we are interested in the k
most promising connections to get introduced to some peer.

�e SPARQL property path query

Listing 1: Property Path query in SPARQL1.1
SELECT * WHERE {:me foaf:knows+ :bob}

would not help here, in fact, it would simply return an empty

binding. Likewise, for most practical routing applications the mere

reachability test is not su�cient. On the other hand, enumerating
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all paths between given points is seldom required either: rather,

only the top most relevant (e.g., shortest) paths need to be found.

A particular interest for path queries comes from the bioinfor-

matics domain where the volume of semantic data is constantly

growing [5]. For instance, in the area of cancer genomics experts

o�en need to discover relevant associations between biological and

genetic entities such as diseases, drugs, genes, pathways etc. requir-

ing e�cient querying mechanisms [15, 16]. It is typical in medical

research that multiple genetic features, their e�ects like diseases,

and treatments to those diseases are studied together, o�en in a

larger context such as medical history. One of the key challenges

in cancer genomics – a cornerstone of precision medicine – is to

discover gene-disease-drug associations which might be relevant

for developing new treatment methods. Such associations essen-

tially correspond to paths in semantic databases. It is exactly the

paths that represent the associations and that need to be discov-

ered, however SPARQL 1.1 does not provide adequate means for

returning paths, only for testing reachability.

�e lack of support of path enumeration in SPARQL has long

been recognized as an issue. �ere have been several surges of

interest to the topic of implementing path queries in the context of

SPARQL in the past decade which we brie�y survey in Section 6. In

particular, the European Semantic Web Conference in 2016 de�ned

a challenge where the goal was exeactly to �nd the “Top-K Shortest

Path in Large Typed RDF Graphs”[21]. Only a handful of entries [12,

14, 23] were submi�ed where the winners approached the problem

with tailored versions special purpose graph algorithms. What the

short papers describing these approaches le� out, was a systematic

extension of SPARQL. It is surprising and unsatisfactory that still,

even with numerous open source triple stores like Virtuoso and

Jena, there is still no simple open source solution or extension

library for top k-paths problems which one could use and extend.

In this paper, we aim to close exactly this gap: building on our

prior work [9] we introduce an extension of SPARQL which allows

us to �nd the top k shortest paths compliant with the property path

expression. Using our syntax, the three most promising connections

could be obtained with the following query:

Listing 2: �ery using the :topk function
SELECT ?path WHERE {
?path ppath:topk (:me :bob 3 "foaf:knows+")}

Technically, our solution uses a built-in extension mechanism of

Jena ARQ and works out of the box with the Jena API
1

without a

need to recompile the Jena code or modify its syntax.

In the remainder of this paper, a�er presenting the preliminaries

(Section 2) we will discuss the syntax and semantics of the topk
function (Section 3), and provide a simple but functionally complete

evaluation strategy based on an e�cient indexing with HDT and on

the bidirectional breadth-�rst search (Section 4) with the support

of path restrictions via regular expressions. As we can show in our

evaluation Section 5, our proposed solution of path computation

on a HDT backend o�ers a very promising performance tackling

graphs with tens of millions of triples. In particular, as we mention

in a related work survey in Section 6, it signi�cantly outperforms

the approaches in [12, 14, 23] and — in terms of property path

1
h�ps://jena.apache.org/documentation/query/library-propfunc.html

evaluation — also the popular systems Virtuoso, Blazegraph and

Stardog. Concluding remarks and a note on future work are o�ered

in Section 7.

2 PRELIMINARIES
We assume a simpli�ed RDF model representing graph data as a set

of subject-predicate-object (spo) triples I ∪ B × I × (I ∪ B ∪ L)
where I is a set of globally unique resource identi�ers (IRIs), L is

the set of data values, or literals, and B is the set of placeholders

known as blank nodes. �e triples form a labeled directed graph G.

Speci�cally, each edge of G is a triple (s,p,o) where s is a subject

or a source node, p is a predicate or an edge label and o is an object

or a target node. We de�ne a path in G as an ordered sequence of

edges (e1, . . . , en ) such that (i) all edges in the path are unique i.e.,

ek , em for all integer k,m ≤ n, and (ii) adjacent edges have a

common incident node: that is, for every i the target node of ei
equals the source node of ei+1 if both edges are in a path. �e source

node of p is the source node of the �rst edge in it, and the target

node of p is the target node t of the last edge in p, in which case p
is called a path from s to t . If the source and the target node of a

path coincide, it is called a cycle. According to our de�nition, paths

can contain cycles: the same node can occur multiple times, but

repeating edges are not allowed. Using standard graph terminology,

our graph G is a multigraph, and every cycle in a path needs to be

a trail, that is a cycle without repeated edges. �e length of the path

p is a number of edges in it. By PG (s, t) we denote the set of all

paths from s to t inG , and by PascG (s, t)we denote a sequence of all

elements of PG (s, t) sorted in the order of non-decreasing lengths.

Our de�nition of path expressions is close to the SPARQL1.1

speci�cation of property paths, up to inverse properties which we

currently do not support.
2

Speci�cally, the following syntax is

supported:

P := Q∗ | Q+ | Q?

Q := a | ![a1, . . . ,ak ] | (P/P) | (P |P)
Here Q denotes an expression without occurrence restrictions, the

unary quanti�ers ∗,+ and ? respectively denote an unrestricted

number of occurrences, at least a single occurrence and at most a

single occurrence of a respective pa�ern Q . a ∈ I is an IRI repre-

senting a property, the set negation ![a1, . . . ,ak ], fora1, . . . ,ak ∈ I
is satis�ed by any single property b ∈ I \ {a1, . . . ,ak }. Finally,

(P/P) de�nes a sequence of path expressions and (P |P) stipulates

that only one of the expressions on the le� and on the right of |
need to be satis�ed. Both binary operators are associative, so we

will omit parentheses in sequences of repeated binary operators of

the same kind. �e top k shortest paths problem is de�ned below:

Given an RDF graph G, s ∈ I, t ∈ I ∪ L, an integer k , and a

regular path expression p.

Compute �rst k elements of PascG (s, t) satisfying p.

For our computation, we will rely on a compressed index repre-

sentation for RDF graphs called HDT : HDT[8] is a compact repre-

sentation of RDF triples encoding verbose textual IRIs, literals and

blank nodes as integers in an optimal way from the information

2
As a workaround, appropriately named inverse properties could be added to the

graph, resulting in at most twice the number of edges.

https://jena.apache.org/documentation/query/library-propfunc.html
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theoretic point of view (i.e., assigning smallest values to most fre-

quent items in the dataset). HDT supports the three-way indexing

of triples, which is crucial for the performance of our algorithm.

3 SPARQL SYNTAX EXTENSION AND
IMPLEMENTATION IN JENA

Our goal is to provide an implementation that can be embedded

into the existing open source SPARQL engines, in particular Jena

ARQ
3

without a need of changing any legacy code. Although not

part of any o�cial speci�cation, Jena SPARQL extension interfaces

can be seen as a de facto standard which we make use of.

Our implementation of the basic, but robust solution for the k
shortest path problem is based on bidirectional search: both the

source and the target node of the paths need to be speci�ed like in

most routing tasks. �e number of desired paths k defaults to 1, and

P defaults to the path pa�ern (! :)∗. 4
�ese arguments can either

be omi�ed or must be bound to constants of type integer (k) and

string (path expression). �e Jena ARQ framework allows SPARQL

variables to occur at the input argument positions: our function

requires those variables to also occur elsewhere in the query in

order to ensure that at the moment the topk function is called, all

its input parameters are bound (analogous to the notion of safety in

Datalog [22]). Upon each call (for each binding of s and t ), the topk
function queries the RDF graph again and computes the shortest

paths between s and t as explained in the next section. For each

input tuple, there are up to k output values each representing a path.

In our approach, we opted to encode the found path collections

as strings which can be then parsed by the calling applications to

extract the properties and resources involved.

�e type of Jena ARQ extension mechanism catering for all above

desiderata is known as property function. Syntactically property

functions use in�x notation, appearing in the WHERE clause of

SPARQL query as triples: the function is in the predicate position

(predicates are o�en called properties, hence the name “property

function”).

Both the values in the subject and in the object positions are

passed to the function as arguments, whereby one of the two is

meant to be the output and hence needs to contain an ubound

variable. To pass multipe arguments, RDF lists need to be used. �e

predicate denoting functions can be distinguished by a dedicated

namespace. �e �rst option is to directly instruct ARQ which Java

class to instantiate using a pseudo-url “java:〈java.namespace.〉”.
�e SPARQL function name needs to coincide with the name of

the Java class implementing it in this case, which is not always

convenient. �e other way is to use a special registry of IRIs that

resolve to property functions (such as ppath:topk) in our example.

Such a registry is provided by ARQ. �e downside of this approach

is a slight increase of boilerplate code and, most importantly, the

necessity to rebuild the calling Java program, which rules out this

option for existing applications with dynamic queries like Jena

Fuseki
5
. When the matching between the special predicate name

and the Java function is established by ARQ, the function is called

for each tuple of constants binding the variables occurring in the

3
h�ps://jena.apache.org/

4
We assume that the default namespace URI ‘:‘ with an empty name does not occur as

a term in the dataset.

5
h�ps://jena.apache.org/documentation/serving data/

triple that represent the property function call. �e function topk
is put into action in the small example in Listing 2.

4 ALGORITHM
�e core of our solution

6
is the implementation of the topk function

itself, for which we follow a relatively simple approach based on the

bidirectional breath �rst search (BBFS). Our prior work [9] showed

that BBFS can perform surprisingly well on semantic graphs in the

compact and e�cient HDT format.

Herein, we extend the algorithm from [9] with path pruning

based on path expressions, provide an implementation which is

easy to adapt to arbitrary graph models, and incorporates the path

search in full SPARQL via the extension function mentioned in the

previous section. �e listing of the extended path search algorithm

can be found below as algorithm 1.

�e bidirectional breadth-�rst search (BFS) algorithm maintains

the sets ff and fb of resources (RDF nodes) called frontiers: before

the i-th iteration of the search procedure, ff contains references

to resources reachable from the source in exactly bi/2c steps, and

fb refers to resources reachable from the target node in exactly

b(i − 1)/2c steps. At each iteration, either the forward frontier ff
(odd i) or the backward frontier fb (even i) is advanced. A resource

α referenced by both frontiers before the iteration i belongs to a

path of length i − 1. Since BFS is used, all paths of the speci�ed

length are identi�ed at the respective iteration of the algorithm.

�e �nding of [9] is the way of maintaining the set of paths from

the two terminal nodes to the respective frontiers using linked

lists, so that if two paths have common pre�x, this pre�x is only

represented once in the memory. �us, the actual data items stored

in frontiers are traversal edges (n, e,pr ,γ )where n denotes the node,

e is the incedent edge via which this node has been reached, pr
is the reference to the preceding traversal edge (np , ep ,prp ,γp )
constructed at the previous advance step in the same direction,

that is, on the one before previous iteration (the forward and the

backward frontiers are advanced interchangeably). �e meaning of

γ is explained below.

To account for the property path pa�ern P in the process of

search, we convert it into a nondeterministic �nite automaton

(NFA) using the library dk.brics.automaton[19] by Anders Møller.

�e implementation is based on character strings. �us, in a pre-

processing step (not shown in algorithm 1), we map each property

mentioned in the path expression P to a unique character. Further-

more, a special character ⊥ is reserved to represent properties not

used in P : such properties are not distinguished by P , therefore for

the admissibility w.r.t. P , all such properties can be represented

by one and the same symbol. �e overall size of P is limited by

the number of Unicode characters, which is perfectly su�cient in

practice.

To cater for path checking also in the backward search, the sec-

ond automaton based on the inverse of the path expression P is used:

to invert P in our property path language it su�ces to recursively

reverse all sequences occurring in P : that is, replace every sequence

(P1/P2) with (P2/P1). Longer sequences (P1/. . . /Pk ) (which we al-

low by virtue of associativity of /) are inverted as (Pk/. . . /P1). Two

NFAsAf andAb are obtained respectively from the path expression

6
Available online at h�ps://bitbucket.org/vadim savenkov/topk-pfn

https://jena.apache.org/documentation/serving_data/
https://bitbucket.org/vadim_savenkov/topk-pfn
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Algorithm 1 Bidirectional BFS with Pa�ern Enforcement via NFA

1: procedure BidirectionalBFS(G, start , tarдet , k , P )

2: sol ← ∅ . Solutions: shortest paths

3: Af ← Automaton(P) . RegExp P to NFA

4: Ab ← Automaton(inverse(P)) . Inverse of P to NFA

5: ff ← (start , null, null,γ
Af
init) . Forward frontier

6: fb ← (tarдet , null, null,γ
Ab
init) . Backward frontier

7: (fact ,Aact ) ← (ff ,Af ) . ff is the active frontier

8: (fpass ,Apass ) ← (fb ,Ab )
9: while |sol | ≤ k and not both ff , fb stable do

10: if Advance(fact ,Aact ) then
11: sol ← sol ∪ filter(P , join(ff , fb ))
12: else
13: Mark fact as stable.

14: end if
15: swap (fact ,Aact ) ↔ (fpass ,Apass )
16: end while
17: return sol
18: end procedure

19: procedure Advance(f , A)

20: f ′ ← ∅

21: inc =

{
successor if f is the forward frontier

predecessor otherwise

22: for (n, e,pr ,γ ) ∈ f do
23: for (e ′,n′) ∈ inc(n) do
24: γ ′ ← nextstate(A,γ , e ′)
25: if γ ′ , reject then
26: f ′ ← f ′ ∪ {(n′, e ′, (n, e,pr ,γ ),γ ′)}
27: end if
28: end for
29: end for
30: if f , ∅ then
31: Update the active frontier: f ← f ′

32: else
33: return fail
34: end if
35: end procedure

36: function join(ff , fb )

37: res ← ∅
38: for (n, e1,pr1,γ1) ∈ ff , (n, e2,pr2,γ2) ∈ fb do
39: res ← res ∪ trace(n, e1,pr1)·trace(n, e2,pr2)
40: end for
41: return res
42: end function

P and its inverse P ′. At the frontier advancement step, for a node n
in a frontier tuple (n, e,pr ,γ ), we only follow those incident edges

e of n which are not rejected by the respective automaton A in its

step γ (e is an outgoing edge for the forward frontier and incoming

for the backward one).

Triples Subjects Pred’s Objects Shared

0.1DB 9 264 609 313 036 13 114 3 482 820 58 535

1DB 46 275 619 1 457 983 21 875 13 751 780 462 478

Table 1: Evaluation dataset statistics

ID Source node (dbr:) Target node (dbr:) Property (dbp:)
Q1 Felipe Massa Red Bull firstWin
Q2 1952 Winter Olympics Elliot Richardson a�er
Q3 Karl W. Hofmann Elliot Richardson predecessor
Q4 Karl K. Polk Felix Grundy president

Table 2: Input parameters

5 EVALUATION
We experimented with two datasets from the DBpedia SPARQL

Benchmark [20] used in “Top-k Shortest Paths in large typed RDF

Datasets Challenge”
7

which was part of the 13th European Seman-

tic Web Conference in 2016. Our hardware setup was a desktop

machine with 4x3,2 GHz Intel i5 processor and 16GB RAM. �e

used datasets correspond to the 10% sample and to the full bench-

mark dataset, which we respectively denote 0.1DB and 1DB. �e

data is freed from blank and untyped nodes. Table 1 lists the total

number of triples, distinct subjects (IRIs), predicates, and objects,

as well as the number of IRIs that occur both in the subject and the

object position in the dataset. It is clear from the dataset statistics

that the number of such shared objects is relatively small, within

one promille of the number of triples.

Our experiment is based on the queries of the ESWC ’16 chal-

lenge, which were four distinct pairs of source and target IRIs and

two parameters, namely k and an additional path condition present

in half of the cases, stipulating that a certain label must be present

either as the �rst or the last edge of the path, captured by the

path pa�ern (〈property〉/(!:)* | (!:)*/〈property〉). All combinations

of input parameters used in the challenge are given in Table 2.

Listing 3 presents the query that computes required paths for

one of the tasks using our property function ppf:topk.

PREFIX : <h t t p : / / dbpe d ia . org / p r o p e r t y />
PREFIX dbr : <h t t p : / / dbpe d ia . org / r e s o u r c e />
PREFIX ppf : <java : at . ac . wu . a r q e x t . pa th .>
SELECT ? path WHERE {?path ppf : topk ( dbr : F e l i p e M a s s a dbr : R e d B u l l 10

” : f i r s t W i n / ( ( ! : ) ∗ ) | ( ! : ) ∗ / : f i r s t W i n ” )}

Listing 3: Implementation of the query Q1 with 10 paths

We summarize the results of this experiment graphically in the

following three �gures. �e �rst �gure shows the dependency

between the running time and the values of k used in di�erent

tasks. Note that not all tasks have the same values of k therefore

the chart is not monotone, however one can see the trend of the

running time increase with the growth ofk . �e two lines in Figure 1

show the average performance of the queries based on Table 2, for

the tasks with and without path expressions. �e dependency is

not strictly monotone since not all queries are evaluated with the

same values of k in the challenge. However, one can see that (i) the

impact of path expressions on the performance in this particular

7
cf. h�ps://bitbucket.org/ipapadakis/eswc2016-challenge/downloads/

https://bitbucket.org/ipapadakis/eswc2016-challenge/downloads/
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case is negligible (2) the dependency on k is linear (both axes in

the �gure are logarithmic).

Figure 2 shows the performance of exactly the same set of queries

run against 0.1DB and the full DBpedia Benchmark dataset 1DB.

It is noteworthy that an intuition that query performance should

degrade monotonically as size of the input increases does not hold

for top k paths queries. �e reason is that the k-th shortest path

computed on sampled data tends to be longer than if computed

on an extended dataset, degree of nodes in which may grow. For

instance, the longest path for the sample is of length 10, and of

length 9 for the full case. For 10 out of 38 queries of the challenge,

the maximal path length on 0.1DB was exceeding the maximal path

length on 1DB by 20 to 25%. As a consequence, the search for k
may take longer and thus the performance is sometimes worse on

0.1DB as Figure 2 shows.

In all cases, and on the HDT backend, our algorithm was able

to compute every single path in the maximum of 9 and 10 seconds

respectively for both databases 0.1DB and 1DB. �e median running

time is 46 ms, the average for the 0.1DB is 652 ms and for 1DB 929 ms.

Each task with k smaller than 100 took at most 112 ms to solve.

We compared the performance of k shortest paths queries over

HDT with the SPARQL 1.1 property paths queries using the same

source and target nodes, and the same path pa�ern. �is allowed us

to benchmark against popular SPARQL engines Blazegraph
8

(open

source), Virtuoso Community Edition
9

(open source) and Stardog
10

(closed source, commercial). It has to be stressed that this is by no

means a real benchmark, since our setup on top of an HDT store is a

read-only system highly optimized for querying, whereas the other

three systems are full SPARQL engines with the read and write

functionality. Furthermore, we made no performance optimizations

beyond ensuring that the systems can use all available memory.

�e results of the comparison on 0.1DB are summarized in Table 3.

�ery k = 1 k = 100 Stardog

(reachabil-

ity)

Blazegraph,

Virtuoso

Q1 (!:*) 24 94 57 N/A

Q1 125 6 138 19,732 N/A

Q2 (!:*) 15 132 45 N/A

Q2 19 2 568 34 707 N/A

Table 3: Performance of top-k / reachability queries (in ms)

Neither Blazegraph nor Virtuoso were able to cope with the

queries on 0.1DB within our 16Gb main memory limit. Stardog

was performing very well for unrestricted paths, however a path

expression �xing any of the �rst or the last path edge resulted in

a signi�cant performance degradation. �is suggests that an e�-

cient implementation of regular expressions may be an important

performance factor. One can see that for the value k = 100 our top

k paths function stands well in terms of performance against the

reachability test implementation of Stardog. Moreover, as Figure1

suggests, no clear performance penalty is associated with the ne-

cessity to enforce path pa�erns, due to our use of the BSD-licensed

8
h�ps://www.blazegraph.com/

9
h�ps://virtuoso.openlinksw.com/

10
h�ps://www.stardog.com/
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dk.brics.automaton library [19]. �e comparison also shows that

property paths support in popular open source systems can be

easily improved by using bidirectional search.

In the last experiment we searched for top k paths between

nodes occurring at the ends of a random walk of a given length,

which we varied in the range 5..20, in order to obtain the upper

bound on the shortest path length. To also �nd long enough paths

we were increasing the value of k . For 0.1DB, this approach typ-

ically allowed us to �nd paths of maximal length up to 14, in

https://www.blazegraph.com/
https://www.stardog.com/
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which case k was o�en close or even exceeding the value 10
6
,

since most of DBpedia paths belong to cycles, and have alterna-

tive paths in the graph (in particular, most properties with the

h�p://dbpeida.ort/propery namespace are also present in the names-

pace h�p://dbpeida.ort/ontology which alone causes a combinato-

rial explosion of the number of paths).

Figure 4 shows that both k and the query evaluation time are

exponential in the length of the top k-th path length.

6 RELATEDWORK
Although path search is one of the most studied problems in Com-

puter Science and also central in the Semantic Web area, the top k
shortest path problem has not received su�cient a�ention in the

Semantic Web context so far. In fact, to the best of our knowledge

the three ESWC’16 Challenge submissions [13], [14], [6] were the

�rst to deal with the top k path computation speci�cally. �e win-

ner approach by Herlting et al. [14] applied the Eppstein routing

algorithm [7], which was designed for weighted graphs. In [6] the

authors focus on decentralized computation and [13] developed an

extension of the algebraic algorithm based on matrix multiplication

and a special ρ-index structure. �e primary bene�t of our solution

compared with the mentioned works is performance: due to the use

of HDT-based indexing, for all reported queries our algorithm is at

least the order of magnitude faster than any of the aforementioned

solutions. �e second bene�t of our system is the possibility of

using it with the standard systems out of the box. Having tested it

with the HDT backend, we based our implementation on the stan-

dard Jena ARQ extension speci�cation which makes it applicable

to every system supporting this API.

Beyond the scope of top k path queries, the literature on property

path computation in the SPARQL context is broad. One of the earli-

est published accounts on addressing path queries was SPARQLeR

[17] and a comprehensive path query processor SPARQ2L [3]. Both

approaches extend SPARQL with path variables (prepended by %

or � instead of the usual single ?) instantiated by paths in queries

such as SELECT %path WHERE {〈r〉 %path 〈s〉}. Additional pos-

sibilities of extracting individual resources from the path, �ltering

paths using path expressions and length restrictions (in the FILTER
operator) and comparing paths, e.g. testing them for equality is

supported. Neither of the two systems support top k path queries:

to limit the number of retrieved results, one needs to restrict the

path length in the �lter condition. Ten years past the publication

date, neither SPARQ2L nor SPARQLeR system seem to be in use,

freely available online for download or can be combined with the

main open source SPARQL engines such as Jena ARQ or Virtuoso.

A path extension has been also reported for the e�cient RDF3X

engine [11]. With the syntax close to the previous two systems,

RDF3X path only �nds a single shortest path, not an arbitrary k
ones. �e extension is tightly incorporated into the RDF3X code-

base and cannot be used independently. One of the most compre-

hensive syntactical extensions of SPARQL has been undertaken

by the CPSPARQL engine [1], where regular path expressions are

extended with constraints on resources (nodes) occurring within

paths. Again, top k path queries are not supported in this system,

and although an implementation of the system is available, the

focus of research is on the �exible and expressive language itself

rather than on e�cacy of query evaluation. No performance results

on large graphs have been reported for CPSPARQL to the best of

our knowledge.
11

�e creators of Stardog have recently announced a plan to sup-

port path retrieval via a SPARQL extension Path�nder with an

expressive syntax supporting complex path expressions, somewhat

similar to CPSPARQL.
12

At the moment of publication of the present

paper the Path�nder extension has not yet been released. It should

also be noted that Stardog is a closed source system, and that it is

hard to predict whether the new syntax will be adopted by other

implementations and will eventually become part of the standard.

Blazegraph also provides two extensions connected through the

service interface, one called ALP and another GAS. ALP stands for

Arbitrary Length Paths, the respective service is meant to support

more complex path expressions (e.g. checking a �lter expression for

each property or node in the path) via a rewriting technique. ALP

mandates that the lower and upper bounds on the path length are

set. Performance-wise the service does not introduce signi�cant

traversal optimizations to the implementation of Blazegraph. GAS

service is named a�er the Gather-Apply-Sca�er framework [10],

which generalizes the “think like a vertex” approach of graph pro-

cessing pioneered by Google’s Pregel system [18] for big distributed

graphs. Several GAS algorithms are implemented, including the

bidirectional traversal and single-source shortest path algorithm.

Path expressions are not supported by the currently available GAS

algorithms. Furthermore, the GAS approach is quite di�erent from

SPARQL, results typically require post-processing, and for a basic

task of path enumeration on a locally stored graph this solution

might be too complex.

An increasingly popular approach to evaluating graph queries

is based on the graph traversal language Gremlin and the graph

processing framework Tinkerpop, both belonging to the Apache

technology stack.
13

Gremlin is a concise graph traversal language

which is however very di�erent from SPARQL. Both Stardog and

Blazegraph expose their RDF graphs to Gremlin via Gremlin’s own

query console. Comparison with such essentially non-SPARQL

tools is out of the scope of the present paper, where our focus is on

11
A predecessor of CPSPARQL, the PSPARQL system by the same authors [2], appar-

ently sharing large part of the code base with it, has been applied in the ”Yo�abyte“

context by [4] to advocate the existential semantics of path expressions. However,

input data sizes in [4] remain in the range of several kilobytes.

12
h�p://www.stardog.com/blog/a-path-of-our-own/

13
h�p://tinkerpop.apache.org/

http://www.stardog.com/blog/a-path-of-our-own/
http://tinkerpop.apache.org/
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a minimalistic and simple SPARQL extension, that should �t into

existing open source engines without a need for changing their

code base.

7 CONCLUSIONS
We presented an e�cient solution for the k shortest path problem

in the context of SPARQL. Our function is based on the adaptation

of the bidirectional breadth �rst search to top k paths computa-

tion [9], extending it with path expressions and embedding into

Jena ARQ via the extension mechanism of property functions. On

the indexed HDT backend, our implementation demonstrates very

promising performance even without complex optimizations. Em-

ploying reachability indexes to deal with very large and dense

graphs is le� for future work, as well as adaptation to further

SPARQL engines, in particular Sesame and Blazegraph. �e source

code of our implementation is openly available.
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