
SPAR2QL: From SPARQL to Rules?

Axel Polleres1 and Roman Schindlauer2

1 Universidad Rey Juan Carlos, Madrid, Spain
2 Institut für Informationssysteme 184/3, Technische Universität Wien, Austria

axel@polleres.net, roman@kr.tuwien.ac.at

As the data and ontology layers of the Semantic Web stack have achieved a
certain level of maturity in standard recommendations such as RDF and OWL,
the current focus lies on two related aspects. On the one hand, the definition
of a suitable query language for RDF, SPARQL, has just reached candidate
recommendation status within the W3C. The establishment of the rules layer on
top of the existing stack on the other hand marks the next step to be tackled,
where especially languages with their roots in Logic Programming and Deductive
Databases are receiving considerable attention. In this work we try to bridge
the gap between these two efforts by providing translations between SPARQL
and Datalog extended with negation and external built-in predicates. It appears
that such a combination serves both as an underpinning for a more general
rules and query language on top of RDF and SPARQL as well as for direct
implementations of SPARQL on top of existing rules engines. Our prototype
implementation is based on the datalog engine DLV. As it turns out, features of
the language of this system can be fruitfully combined with SPARQL.

Motivation. SPARQL, currently under consideration as a candidate recom-
mendation at W3C [5] provides a simple protocol and query language for RDF.
Whereas syntactically SPARQL has apparent similarities with RDBMS query
languages such as SQL, there are quite some semantic differences with respect
to the underlying relational algebra, particularly related to blank nodes, as well
as the UNION and OPTIONAL operators [4].

Analogies between Datalog and RDBMS query languages such as SQL are
well-studied; fragments such as unions of conjunctive queries with nested sub-
queries involving set difference can be expressed by Datalog¬ (i.e., Datalog with
negation) in a straightforward manner. Additionally, Datalog and its extensions
by non-monotonic, unstratified negation and disjunction [1] offer additional ex-
pressive capabilities beyond these query languages along with a declarative se-
mantics. However, no such investigations have yet been presented for SPARQL.

Existing engines for Datalog¬ such as DLV3 or smodels4 additionally handle
aggregates [3], external predicates [2] such as import of RDF data, arithmetics,
? This work is partially supported by the Spanish MEC under the project TIC-2003-

9001 and the Acción Integrada “Formal Techniques for Reasoning about Ontologies
in E-Science”, by the EC funded projects TripCom (FP6-027324) and REWERSE
(IST-2003-506779), and by the Austrian Science Fund (FWF) grant P17212-N04.

3 http://www.dlvsystem.com
4 http://www.tcs.hut.fi/Software/smodels/



datatype-built-ins, etc. Remarkably, the underlying powerful rule language of
these systems, often referred to as Answer Set Programming, is also considered
as a basis for the Semantic Web rules layer in several works.

Translation and Prototype. By providing a translation from SPARQL into
Datalog¬, we set the grounds for a smooth integration of powerful rules languages
with the query layer on top of RDF. For instance, a SPARQL query

SELECT ?X ?Y

FROM <http://polleres.net/foaf.rdf>

WHERE { <http://polleres.net/foaf.rdf#me> foaf:knows ?X .

OPTIONAL {?X foaf:mbox ?Y} }

can be straightforwardly expressed by the following rules (using the common
PROLOG style notation):

triple(X,Y,Z) :- importRDF("http://polleres.net/foaf.rdf",X,Y,Z)
answer(X,Y) :- triple("#me","foaf:knows",X), triple(X,"foaf:mbox",Y).

answer(X,unbound) :- triple("#me","foaf:knows",X), not answer1(X).

answer1(X) :- triple(X,"foaf:mbox",Y).

Here, importRDF is an external predicate which allows the import of RDF triples
from an external source. The extension of answer contains the pattern solutions
of the query, where the constant unbound denotes unbound variables. Further
external predicates are needed to cover, for instance, the evaluation of FIL-
TER conditions, such as isBlank, isURI, etc. in SPARQL. We have developed
an automatic translation covering all graph patterns in SPARQL which is fully
compliant to the SPARQL semantics. A prototype has been implemented on
top of the dlvhex system and is available at http://con.fusion.at/dlvhex/
sparql-query-evaluation.php for evaluation. As it turns out, such a combi-
nation also allows for straight-forward extensions of features beyond the current
version of SPARQL such as: Nested queries in ASK filters; transitive closure
queries which seem essential in a graph query language such as SPARQL; as well
as the addition of rules which can cover a larger subset of RDF(S)-entailment
than simple RDF entailment adopted by the current SPARQL specification.

References

1. T. Eiter, G. Gottlob, H. Mannila. Disjunctive Datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

2. T. Eiter, G. Ianni, R. Schindlauer, H. Tompits. Effective integration of declarative
rules with external evaluations for Semantic Web reasoning. ESWC 2006, 2006.

3. W. Faber, N. Leone, G. Pfeifer. Recursive aggregates in disjunctive logic programs:
Semantics and complexity. JELIA 2004, vol. 3229 LNAI. Springer, 2004.

4. J. Perez, M. Arenas, C. Gutierrez. Semantics and complexity of SPARQL. Technical
Report DB/0605124, arXiv:cs, 2006.

5. E. Prud’hommeaux, A. Seaborne (eds.). SPARQL query language for RDF,
2006. W3C Candidate Recommendationi, available at http://www.w3.org/TR/

2006/CR-rdf-sparql-query-20060406/.


