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Abstract. Linked Data promises that a large portion of Web Data will
be usable as one big interlinked RDF database against which structured
queries can be answered. In this lecture we will show how reasoning –
using RDF Schema (RDFS) and the Web Ontology Language (OWL) –
can help to obtain more complete answers for such queries over Linked
Data. We first look at the extent to which RDFS and OWL features are
being adopted on the Web. We then introduce two high-level architec-
tures for query answering over Linked Data and outline how these can
be enriched by (lightweight) RDFS and OWL reasoning, enumerating
the main challenges faced and discussing reasoning methods that make
practical and theoretical trade-offs to address these challenges. In the
end, we also ask whether or not RDFS and OWL are enough and discuss
numeric reasoning methods that are beyond the scope of these standards
but that are often important when integrating Linked Data from several,
heterogeneous sources.

1 Introduction

Linked Data [36, 2] denotes the emerging trend of publishing structured data on
the Web as interlinked RDF graphs [48] following a number of simple principles:
use HTTP URIs to name things, return RDF about those things when their
URIs are looked up, and include links to related RDF documents elsewhere on
the Web. These trends – and related trends with respect to embedding metadata
into HTML pages (such as promoted by schema.org) – have lead to a huge
volume of RDF data being made openly available online, contributing to what
is often called the “Web of Data”.

The Semantic Web provides the necessary tools to query this data, (i) firstly
by defining RDF [48, 35] as a universal data format; (ii) secondly by defining
SPARQL [59, 30], a standard query language for RDF; and (iii) lastly by provid-
ing schema languages such as RDF Schema (RDFS) [13] and OWL [37], which
allow for adding rich semantics to the data.

It is the aim of this lecture to emphasise that all three components, and in
particular the reasoning capabilities enabled by RDFS and OWL, are essential to
enable usage of the Web of Data as “one huge database” as originally envisioned
by Tim Berners-Lee [9].

As opposed to standard reasoning and query answering in OWL, for instance
as described in the present volume in the chapter on Ontology-based Data Ac-
cess [46], reasoning over Linked Data poses several unique challenges:



C1 Linked Data is huge, that is, it needs highly scalable or modular reasoning
techniques;

C2 Linked Data is not “pure” OWL, that is, a lot of RDF Data published as
Linked Data violates the strict syntactic corset of OWL (2) DL, and thus is
not directly interpretable under OWL Direct Semantics;

C3 Linked Data is inconsistent, that is, if you take the Web of Data in its
entirety, it is quite normal to encounter inconsistencies – not only from ac-
cidental or malicious datasets – but also because publishers may express
contradicting views;

C4 Linked Data is evolving, that is, RDF Graphs on the Web evolve, they
change, information is added and removed;

C5 Linked Data needs more than RDFS and OWL, that is, there is more implicit
data hidden in Linked Data than can be captured with the semantics of
RDFS and OWL alone.

In this lecture, we will introduce and discuss robust and scalable reasoning
techniques that are specifically tailored to deal with these challenges in diverse
and large-scale Linked Data settings. We first recapitulate the basic concepts of
RDF, Linked Data, RDFS, OWL and SPARQL, and, with reference to a practical
real-world scenario, we exemplify the use of query-rewriting techniques and rule-
based approaches for reasoning over Linked Data (Section 2). We then will reflect
in more detail on challenges C1–C5 above and discuss basic architectures, namely
data-warehousing and on-the-fly-traversal based approaches, to reason about and
query over Linked Data (Section 3).

While the W3C has defined two standard OWL fragments tailored for both
rule-based (OWL 2 RL) and query-rewriting (OWL 2 QL) techniques, as we
will see, standard reasoning within these fragments may not be a perfect fit for
the Linked Data use-case; we will thus discuss which OWL features are actually
predominantly used in current Linked Data and how these features relate to
various standard and non-standard OWL fragments (Section 4).

The remaining chapters will then introduce specific approaches to Linked
Data reasoning, each of which addresses some of the above-named challenges:

Section 5 introduces two rule-based approaches for Linked Data warehouses,
both of which apply a cautious form of materialisation that considers where
the axioms in question were found on the Web:
– Context-Dependent Reasoning [17], which is deployed within the Sindice

semantic web engine [53].
– Authoritative Reasoning [41, 12], which is deployed within the Scalable

Authoritative OWL Reasoner (SAOR) as part of the Semantic Web
Search Engine (SWSE) [40].

Section 6 presents an alternative approach to enrich on-the-fly-traversal based
approaches for Linked Data query processing with lightweight OWL Rea-
soning [66].

Section 7 presents a technique for reasoning with “attribute equations” [10]
that models interdependencies between numerical properties expressible in
terms of simple mathematical equations, which we argue is complementary



to RDFS/OWL techniques in that it allows for integrating numerical infor-
mation embedded in Linked Data in a manner that RDFS and OWL do
not.

We then briefly recap and conclude the lecture material in Section 8.

2 Preliminaries

As mentioned in the introduction, more and more Web sources provide readily
accessible and interlinked RDF data. In the context of this paper, when speaking
about structured data on the Web, we focus on data represented and published in
the Resource Description Framework (RDF) according to the Linked Data prin-
ciples. Hundreds of such datasets have been published in this manner, and have
been collectively illustrated by Cyganiak and Jentzsch in the so-called “Linked
Data Cloud”.4 Among these DBpedia5 plays a central role as an RDF extract
of structured data from Wikipedia. As a further example, the New York Times6

provide RDF metadata about entities occurring in their articles as well as API
access to the latest articles about these entities.

In terms of reasoning, our main considerations revolve around deductive in-
ferences that enrich this RDF data with implicit information by means of ex-
ploiting (parts of) the formal semantics of RDFS and OWL. In particular, we
aim at motivating how such additional inferences can contribute to query an-
swering using SPARQL queries over the whole body of Web-accessible Linked
Data (per Berners-Lee’s “one big database” vision [9]).

We begin by introducing the basic concepts of the relevant Web standards
along with a running example from real-world Linked Data. As a sort of dis-
claimer upfront, we emphasise that these preliminaries are not intended to re-
place a fully-fledged introduction to RDF, SPARQL, OWL or Description Logics;
we refer the interested reader to excellent introductory chapters published within
the earlier editions of the Reasoning Web summer school or to the official current
W3C standard specifications in the references for further details.

2.1 The Resource Description Framework – RDF

Informally, all RDF data can be understood as a set of subject–predicate–object
triples, where all subjects and predicates are URIs, and in the object position
both URIs and literal values (such as numbers, strings, etc.) are allowed. Fur-
thermore, blank nodes can be used in the subject or object resource to denote
an unnamed resource with local scope. Some sample RDF data in the popular
Turtle syntax [5, 6] are shown in Fig. 1.

4 http://lod-cloud.net
5 http://dbpedia.org
6 http://data.nytimes.org



More formally, given the set of URI references U, the set of blank nodes B,
and the set of literals L, the set of RDF constants is denoted by C := UBL.7. A
triple t := (s, p, o) ∈ UB×U×C is called an RDF triple, where s is called subject,
p predicate, and o object. A triple t := (s, p, o) ∈ Tr,Tr := C × C × C is called
a generalised triple [25], which allows any RDF constant in any triple position:
henceforth, we assume generalised triples unless explicitly stated otherwise. We
call a finite set of triples G ⊂ Tr a graph.8

In the Turtle syntax, which we use for examples (see Fig. 1), URIs are of-
ten denoted either in full form using strings delimited by angle brackets (e.g.
<http://dbpedia.org/resource/Werner_von_Siemens>) or as shorthand pre-
fixed names (e.g. dbr:Werner_von_Siemens), where prefixes are as defined in
Fig. 1. Literals are delimited by double quotes (e.g. "SAP AG") with an optional
trailing language tag (e.g. @en, @de) or a datatype which itself is again iden-
tified by a URI (e.g. ^^xsd:dateTime). Blank nodes are (typically) scoped to
a local document [35, 47] and are denoted in Turtle either by the “prefix” _:

or alternatively using square brackets []. Furthermore, Turtle allows use of ‘a’
as a shortcut for rdf:type (denoting class membership) [5]. Finally, as shown
in Fig. 1, RDF triples in Turtle notation are delimited by a trailing ‘.’, where
predicate-object-pairs that share the same subject can be grouped using ‘;’ and
several objects for the same subject–predicate pair can be grouped using ‘,’.

The data provided in Fig. 1 reflects real-world Linked Data available on the
Web at the time of writing. However, we cheat slightly: in reality, revenue is not
given in DBpedia using a dedicated property that includes the currency name
(like dbo:revenueUSD or dbo:revenueEUR), but instead, e.g., the revenue data
for IBM mentioned in Fig. 1(b) rather appears as follows:

dbr:IBM dbp:revenue "US$ 106.916 billion";

dbo:revenue "1.06916E11"^^dbdt:usDollar .

The use of different units (currencies in this case) and the fact that these
units are often ill-defined for current Linked Data is a separate problem that we
discuss later in Section 7.

2.2 Linked Data Principles and Provenance

In order to cope with the unique challenges of handling diverse and unverified
RDF data spread over RDF graphs published at different URIs across the Web,
many algorithms require inclusion of a notion of provenance, i.e., the considera-
tion of the source of RDF data found on the Web. To this end, we provide some

7 Herein, we sometimes use the convention of concatenating set names to represent
unions; e.g. UBL = U∪B∪L. Also, though blank nodes are not constants by standard,
we consider them as such for convenience. For more details on blank nodes and
Skolemisation, we refer the interested reader to [47]

8 Note that we use ⊂ instead of ⊆ here since we consider RDF graphs as finite subsets
of the infinite set of triples Tr. We will also often use sans-serif (e.g., U) to denote
an infinite set and use normal math font (e.g., U) to denote a finite proper subset.



@prefix nytimes: <http://data.nytimes.com/element/> .
@prefix nyt: <http://data.nytimes.com/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

nyt:75293219995342479362
owl:sameAs dbr:SAP_AG ;
nytimes:associated_article_count 10 ;
nytimes:first_use "2007-03-23"^^xsd:dateTime ;
nytimes:latest_use "2010-05-13"^^xsd:dateTime ;
skos:prefLabel "SAP AP"@en ;
skos:inScheme nytimes:nytd_org ;
rdf:type skos:Concept .

nyt:N82918236209763785922
owl:sameAs dbr:Siemens ;
nytimes:associated_article_count 4 ;
nytimes:first_use "2008-12-21"^^xsd:dateTime ;
nytimes:latest_use "2009-11-06"^^xsd:dateTime ;
skos:inScheme nytimes:nytd_org ;
skos:prefLabel "Siemens A.G"@en ;
rdf:type skos:Concept .

nyt:49586210195898795812
owl:sameAs dbr:IBM ;
nytimes:associated_article_count 196 ;
nytimes:first_use "2004-09-01"^^xsd:dateTime ;
nytimes:latest_use "2010-04-27"^^xsd:dateTime ;
skos:inScheme nytimes:nytd_org ;
skos:prefLabel "International Business Machines

Corporation"@en
rdf:type skos:Concept .

@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

dbr:SAP_AG dbo:revenueEUR 1.622E10
rdfs:label "SAP AG"@en,

"SAP"@de ;
foaf:name "SAP AG"@en ;
dbo:foundedBy dbr:Claus_Wellenreuther,

dbr:Hasso_Plattner ,
dbr:Dietmar_Hopp ,
dbr:Klaus_Tschira ,
dbr:Hans-Werner_Hector ,
dbr:Rajkumar_Asokan;

rdf:type dbo:Company, dbo:Organisation,
dbo:Agent, owl:Thing.

dbr:Siemens dbo:revenueEUR 7.829E10 ;
rdfs:label "Siemens AG"@en ,

"Siemens"@de ;
foaf:name "Siemens AG"@en ;
dbo:foundedBy dbr:Werner_von_Siemens ;
rdf:type dbo:Company, dbo:Organisation,

dbo:Agent, owl:Thing.

dbr:IBM dbo:revenueUSD 1.06916E11 ;
rdfs:label "IBM"@en,
rdfs:label "IBM"@de ;
foaf:name "International Business Machines

Corporation"@en ;
rdf:type dbo:Company, dbo:Organisation,

dbo:Agent, owl:Thing;
dbo:foundedBy dbr:Thomas_J._Watson ;

(a) (b)

Fig. 1. Sample Data from DBpedia and NYT in Turtle Syntax (retrieved 10
March 2013)

formal preliminaries for the Linked Data principles, and HTTP mechanisms for
retrieving RDF data from dereferenceable URIs (i.e., URIs that return content
when looked up over HTTP).

Linked Data Principles Herein, we will refer to the four best practices of Linked
Data publishing as follows [7]:

LDP1: use URIs as names for things;
LDP2: use HTTP URIs so those names can be dereferenced;
LDP3: return useful – herein we assume RDF – information upon dereferencing

of those URIs; and
LDP4: include links using externally dereferenceable URIs.9

Data Source We define the http-download function get : U→ 2Tr as the mapping
from a URI to an RDF graph it provides by means of a given HTTP lookup [19]
which directly returns status code 200 OK and data in a suitable RDF format, or

9 That is, within your published RDF graph, use HTTP URIs pointing to other deref-
erenceable documents, that possibly contain further RDF graphs.



to the empty set in the case of failure; this function also performs a rewriting of
blank-node labels (based on the input URI) to ensure uniqueness when merging
RDF graphs [35]. We define the set of data sources S ⊂ U as the set of URIs
S := {s ∈ U | get(s) 6= ∅}.10

RDF Triple in Context/RDF Quadruple An ordered pair (t, c) with a triple
t := (s, p, o), and with a context c ∈ S and t ∈ get(c) is called a triple in
context c. We may also refer to (s, p, o, c) as an RDF quadruple or quad q with
context c. In Fig. 2 we illustrate the RDF data from Fig. 1 as dereferenceable
RDF graphs. Note that Fig. 2 contains more data than Fig. 1, where we include
triples obtained from dereferencing the founders of organisations mentioned in
Fig. 1, as well as data obtained from dereferencing class and property URIs.

HTTP Dereferencing/Redirects We now give some notation relating to a “Linked
Dataset”, which is inspired by the notion of named graphs in SPARQL, but where
the dataset reflects the get(·) function that maps graph names to RDF graphs
obtained from dereferencing URIs.

Definition 1 (Data Source and Linked Dataset).
We define a Linked Dataset as Γ ⊂ get; i.e., a finite set of pairs (s, get(s)) such
that s ∈ S.11 The “global” RDF graph presented by a Linked Dataset is denoted
as

merge(Γ ) :=
⊎

(u,G)∈Γ

G

where the operator ‘]’ denotes the RDF merge of RDF graphs: a set union
where blank nodes are rewritten to ensure that no two input graphs contain the
same blank node label [35]. (From the perspective of a SPARQL dataset, one
may consider merge(Γ ) as the “default graph” and all such (s, get(s)) as named
graph pairs.)

A URI may provide a HTTP redirect to another URI using a 30x response
code [19]; we denote this function as redir : U → U which first removes any
fragment identifier from the URI (a hash string suffix) and then follows a single
redirect, mapping a URI to itself in the case of failure (e.g., where no redirect
exists). We denote the fixpoint of redir as redirs, denoting traversal of a number
of redirects (a limit may be set on this traversal to avoid cycles and artificially
long redirect paths). We define dereferencing as the function deref := get ◦ redirs
which maps a URI to an RDF graph retrieved with status code 200 OK after
following redirects, or which maps a URI to the empty set in the case of failure.

We denote the set of dereferenceable URIs as D := {d ∈ U : deref(d) 6= ∅};
note that S ⊂ D and we place no expectations on what deref(d) returns, other

10 Note again that we use ⊂ instead of ⊆ to emphasise that obviously not all URIs
point to non-empty RDF graphs.

11 Γ is finite thus – again – we use ⊂ instead of ⊆.
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than returning some valid RDF.12 As a shortcut, we denote by derefs : 2U →
2U×2Tr

; U 7→ {(redirs(u), deref(u)) | u ∈ U ∩D)} the mapping from a set of URIs
to the Linked Dataset it represents by dereferencing all URIs (only including
those in D which return some RDF).

Example 1
Taking Fig. 2, dashed arrows indicate redirects: NYT provides some
“readable” URIs that redirect to its internal identifiers for enti-
ties, including redirs(nyt:Siemens) = nyt:N82918236209763785922.
Dereferencing the URI nyt:Siemens yields the RDF graph
for the source nyt:N82918236209763785922 (symbolised by the
gray box in Fig. 2); in other words deref(nyt:Siemens) =
get
(
redirs(nyt:Siemens)

)
= get(nyt:N82918236209763785922). Conversely,

we see deref(nytimes:nytd org) = ∅; the URI is not dereferenceable.
Thus we say that nyt:N82918236209763785922 ∈ D (and ∈ S) and
nyt:Siemens ∈ D, whereas nytimes:nytd org /∈ D. ♦

2.3 SPARQL, Conjunctive Queries and Rules

We now introduce some concepts relating to the query language SPARQL, where
details can be found in [59, 56, 30]. We herein focus on evaluating simple, con-
junctive, basic graph patterns (BGPs), we do not formally consider more complex
patterns (e.g., UNION, FILTER, etc.) of the SPARQL language, which can be lay-
ered on top [56]. In addition, we consider URIs and not IRIs for convenience and
to stay consistent with the RDF preliminaries.

Definition 2 (Variables, Triple Patterns & BGPs).
Let V be the set of variables ranging over UBL; we denote RDF variables as
alphanumeric strings with a ‘?’ prefix (e.g. ?X ). A triple pattern tp := (s, p, o) is
an element of the set Q := VUL×VU×VUL.13 For simplicity, we do not consider
blank-nodes in triple patterns (they could be roughly emulated by an injective
mapping from B to V). A finite (herein, non-empty) set of triple patterns Q ⊂ Q
is called a Basic Graph Pattern (BGP), or herein, simply a conjunctive query.
We use vars(Q) ⊂ V to denote the finite set of variables in Q and terms(Q) to
denote the set of all terms VUL in Q.

The solutions of a BGP for a dataset Γ are defined accordingly as follows.

Definition 3 (SPARQL solutions).
Call the partial function µ : dom(µ) ∪ UL → UBL a solution mapping with a

12 The URIs within D that are not in S are those that return (non-empty) RDF graphs
by means of (an) intermediate redirect(s) and/or after having a fragment identifier
stripped.

13 Though academic, SPARQL does allow for literals in the subject position.



domain dom(µ) ⊆ V. A solution mapping binds variables in dom(µ) to UBL and
is the identify function for UL. Overloading notation, let µ : Q→ Tr and µ : 2Q →
2Tr also resp. denote a solution mapping from triple patterns to RDF triples,
and basic graph patterns to RDF graphs such that µ(tp) := (µ(s), µ(p), µ(o)) and
µ(Q) := {µ(tp) | tp ∈ Q}. We now define the set of SPARQL solutions for a
query Q over a (Linked) Dataset Γ as

[[Q]]Γ :={µ | µ(Q)⊆merge(Γ ) ∧ dom(µ) = vars(Q)} .

For brevity, and unlike SPARQL as according to the official W3C specification,
solutions are herein given as sets (not multi-sets), implying a default DISTINCT

semantics for queries, and we assume that answers are given over the default
graph consisting of the merge of RDF graphs in the dataset.

Note that in the database literature, conjunctive queries are often rather
modelled as conjunctions of (first-order) atoms, inspired by languages such as
Datalog; let us introduce some basic concepts from Datalog to relate the notions
of BGPs, conjunctive queries, and rules:

Definition 4 (Atom).
An atomic formula or atom is a formula of the form p(e1, . . . , en), where all such
e1, . . . , en are terms (i.e. in our case constants from C or variables from V) and
where p is a predicate of arity n – we denote the set of all such atoms by Atoms.
Atoms that to not contain variables are called ground. As such, this notation can
be thought of as generalising that of RDF triples (or quadruples, resp.), where we
use a standard RDF ternary predicate T to represent RDF triples in the form
T (s, p, o) – for example, T(Siemens, foundedby, Werner von Siemens) – where
we will typically leave T implicit; analogously, we use the predicate Q(s, p, o, c)
synonymously for an RDF quadruple, again optionally leaving Q implicit.

In Logic Programming, atoms not containing variables are called ground
atoms. The set of all possible ground atoms – denoted as the set Facts – can
be viewed in our context as a generalisation of Tr. A finite set of ground atoms
I ⊆ Facts (often simply called “facts”) – which in our context again can be
viewed as a generalisation of a graph G – in Logic Programming is typically
synonymous to a (Herbrand) interpretation.

Letting A and B be two atoms, we say that A subsumes B—denoted A.B—
if there exists a substitution θ ∈ Θ of variables such that Aθ = B (applying θ to
the variables of A yields B); we may also say that B is an instance of A; if B is
ground, we say that it is a ground instance. Similarly, if we have a substitution
θ ∈ Θ such that Aθ = Bθ, we say that θ is a unifier of A and B; we denote by
mgu(A,B) the most general unifier of A and B which provides the “minimal”
variable substitution (up to variable renaming) required to unify A and B.

Definition 5 (Rule, Program). A rule R is given as follows:

H ← B1, . . . , Bn(n ≥ 0) ,



where H,B1, . . . , Bn are atoms, H is called the head (conclusion/consequent)
and B1, . . . , Bn the body (premise/antecedent). We use Head(R) to denote the
head H of R and Body(R) to denote the body B1, . . . , Bn of R.14 The variables
of our rules are range restricted, also known as safe [65]: like Datalog, the vari-
ables appearing in the head of each rule must also appear in the body whereby a
substitution that grounds the body must also ground the head. We denote the set
of all such rules by Rules. A rule with an empty body can be considered a fact; a
rule with a non-empty body is called a proper-rule. We call a finite set of such
rules a program P .

Like before, a ground rule is one without variables. We denote with Ground(R)
the set of ground instantiations of a rule R and with Ground(P ) the ground
instantiations of all rules occurring in a program P . Again, an RDF rule is a
specialisation of the above rule, where atoms strictly have the ternary predicate
T and contain RDF terms; an RDF program is one containing RDF rules, etc.

Definition 6 (Immediate Consequence Operator). We give the immediate
consequence operator TP of a program P under interpretation I as:15

TP : 2Facts → 2Facts

I 7→
{
Head(R)θ | R ∈ P ∧ ∃I ′ ⊆ I s.t. θ = mgu

(
Body(R), I ′

)}

The immediate consequence operator maps from a set of facts I to the set of
facts it directly entails with respect to the program P – note that TP (I) will
retain the facts in P since facts are rules with empty bodies and thus unify with
any interpretation, and note that TP is monotonic – the addition of facts and
rules to a program can only lead to the same or additional consequences. We
may refer to the application of a single rule T{R} as a rule application.

Since our rules are a syntactic subset of Datalog, TP has a least fixpoint,
denoted lfp(TP ), which can be calculated in a bottom-up fashion, starting from
the empty interpretation ∆ and applying iteratively TP [72] (here, convention
assumes that P contains the set of input facts as well as proper rules). Define
the iterations of TP as follows: TP ↑ 0 = ∆; for all ordinals α, TP ↑ (α+ 1) =
TP (TP ↑ α); since our rules are Datalog, there exists an α such that lfp(TP ) =
TP ↑ α for α < ω, where ω denotes the least infinite ordinal. In other words,
the immediate consequence operator will reach a fixpoint in countable steps [65].
Thus, TP is also continuous.

Definition 7 (least model, closure). We call lfp(TP ) the least model, or the
closure of P , which is given the more succinct notation lm(P ).

14 Such a rule can be represented as a definite Horn clause.
15 Recall again that in Herbrand semantics, an interpretation I can be thought of as

simply a set of facts.



Obviously, using the notation of rules, any BGP can be straightforwardly
seen as a conjunctive query (CQ) in the classical sense, and the more general
concept of a union of conjunctive queries (UCQs) can be defined as follows.

Definition 8 (Union of Conjunctive Queries (classical notion)). A con-
junctive query (CQ) is a special rule of the form

q(~x)← Body(~x, ~y)

where ~x is a sequence of variables called distinguished variables, ~y is a sequence
of variables called non-distinguished variables, and Body(~x, ~y) is a conjunction
of body atoms over these variables. A program Pq (where we just write q when
P is implicit form the context) that consists of only rules with the same head
q(~x) (such that q does not appear in any body) is a union of conjunctive queries
(UCQ).

Given a (Linked) Dataset Γ and a SPARQL BGP query Q, the definition of
solutions from Definition 3 thus corresponds to the notion of entailed answers for
the corresponding classical conjunctive query q, written Ans(q,merge(Γ )) (and
used in the literature, cf. for instance [14]).16 That is, in our context we can
equate Ans(q,merge(Γ )) with the set of tuples ~a such that q(~a) ∈ TPq (merge(Γ )).
Note that as for SPARQL, all variables are considered to be distinguished, since
there is no “real” projection in the sense of classical conjunctive queries: any
BGP occurring inside a SPARQL query is evaluated as a conjunctive query
without non-distinguished variables, whereupon the SPARQL algebra evaluates
more complex patterns, such as SELECT clauses and so forth [30, 21].

Example 2
The following SPARQL query asks for the labels and revenues (in EUR) of
organisations:
Query 1
SELECT ?X ?L ?R

WHERE { ?X a dbo:Organisation ; rdfs:label ?L ; dbo:revenueEUR ?R .}
This query asks to evaluating the basic graph pattern:

{(?X, a, dbo:Organisation), (?X, rdfs:label, ?L), (?X, dbo:revenueEUR, ?R)}

which, respectively, in the classical notation corresponds to the following
conjunctive query:

q(?X, ?L, ?R)← (?X, a, dbo:Organisation), (?X, rdfs:label, ?L), (?X, dbo:revenueEUR, ?R).

Given the data in Fig. 2, this pattern (and thus the query) would obtain
the following solutions (writing solution mappings µ in tabular form):

16 We use merge(Γ ) here synonymously with the knowledge base consisting of the facts
corresponding to the triples in merge(Γ ).



?X ?L ?R

dbr:SAP AG "SAP AG"@en 1.622E10

dbr:Siemens "Siemens"@de 7.829E10

Notably, the revenue for IBM is not returned (although it could be calcu-
lated from the EUR–USD exchange rate).

The next query, on the contrary, asks for the date of the latest article
published about each element in the SKOS scheme nytimes:nytd_org (i.e.,
a different way of asking for “organisations”, but using the NYT RDF
vocabulary):

Query 2
SELECT ?X ?D

WHERE { ?X skos:inScheme nytimes:nytd_org. ?X nytimes:latest_use ?D .}

with the following solutions:

?X ?D

nyt:75293219995342479362 2010-05-13

nyt:N82918236209763785922 2009-11-06

nyt:49586210195898795812 2010-04-27

Query 1 and Query 2 could each be answered by staying within a single
site (that is, Query 1 only would obtain answers from data at dbpedia.

org, whereas Query 2 would only produce answers with the data at data.
nytimes.org, respectively) and – at least for our sample – answers for
either query can be obtained from the individual dataset. However, the
real power of Linked Data lies in combining data from multiple datasets to
obtain answers over their combined content. For example Query 3 combines
knowledge from both sites and asks for the latest NYT article dates of IBM
(using its NYT identifier) and its revenue in USD:

Query 3
SELECT ?X ?D ?R

WHERE { nyt:49586210195898795812 nytimes:latest_use ?D .

nyt:49586210195898795812 owl:sameAs ?X .

?X dbo:revenueUSD ?R .}

Again assuming the entire graph of Fig. 2 as input, this query would obtain
the single result

?X ?D ?R
dbr:IBM 2010-04-27 1.06916E11

As a further example, let Query 4 ask for all foaf:Agents.



Query 4
SELECT ?X

WHERE { ?X a foaf:Agent .}

Clearly, for the RDF data in Fig. 2, this query would not return any solu-
tions (despite many implicit instances of the class being available), whereas:

Query 5
SELECT ?X

WHERE { ?X a foaf:Person .}

would return all the company founders listed in DBpedia, since these are
explicitly typed as foaf:Persons. ♦

We emphasise that these queries miss (implicit) results that would be intu-
itively expected as an answer and that could be achieved through reasoning. In
the following we will substantiate this intuition referring to some of the chal-
lenges (C1–C5) mentioned in the introduction; before that, however, we need to
clarify the importance of schema information and its semantics in RDF.

2.4 Inferring Additional Triples by Schema Information and Rules

In order to model schema information, which also allows to infer additional
implicit information in RDF, the Semantic Web offers two ontology languages:
the lightweight RDF Schema (RDFS) [13] and the expressive Web Ontology
Language (OWL) [37]. Within this section, we will briefly cover an overview of
the essential features of these languages in a Linked Data setting.

RDFS RDF itself already provides means to express class membership (rdf:
type); RDF Schema (RDFS) additionally provides a special vocabulary, consist-
ing primarily of RDF properties with a predefined semantics to model class hi-
erarchies (rdfs:subClassOf), and property hierarchies (rdfs:subPropertyOf),
as well as means to define domains and ranges that respectively allow for as-
sociating a class to the subject and object of a relation with a given property
(rdfs:domain, rdfs:range). These core RDFS properties allow for describing
and embedding the semantics of user-defined vocabularies in RDF itself.

OWL The Web Ontology Language (OWL) extends RDFS and allows for ex-
pressing further schema definitions in RDF, e.g., allowing to express equal-
ity of individuals (owl:sameAs), equivalence or disjointness of properties and
classes (owl:equivalentClass, owl:equivalentProperty, owl:disjointWith,
owl:propertyDisjointWith), or complex class definitions; while a full account
is beyond our scope, more details on additional OWL features will be discussed
in Section 4 below.



Some RDFS and OWL information expressed in RDF is shown in the light-
gray boxes of Fig. 2: for instance, the classes and properties used on DBpedia
are described using, amongst others, the dbo: and foaf: vocabularies (i.e., sets
of terms described in their respective ontologies) which include the “schema”
triples (aka. terminological triples) shown in Fig. 3.

@prefix dbo: <http://dbpedia.org/ontology/> .

dbo:foundedBy rdfs:range dbo:Agent .

dbo:Company rdfs:subClassOf dbo:Organisation.
dbo:Organisation rdfs:subClassOf dbo:Agent.
dbo:Person rdfs:subClassOf dbo:Agent.

dbo:Person owl:equivalentClass foaf:Person.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

foaf:name rdfs:subPropertyOf rdfs:label .
foaf:made rdfs:domain foaf:Agent .

foaf:Person rdfs:subClassOf foaf:Agent ,
geo:SpatialThing ;

owl:disjointWith foaf:Organization .
foaf:Organization rdfs:subClassOf foaf:Agent .

(a) (b)

Fig. 3. Sample schema triples from the DBpedia ontology and from FOAF (re-
trieved 10 March 2013)

The meaning of these OWL definitions are given by two alternative (but
related) semantics. The RDF-Based Semantics [63] can interpret arbitrary RDF
graphs without restriction, but where common reasoning tasks are undecidable as
a result. The Direct Semantics [51] is based on Description Logic (DL) theory [3,
62], where a subset of RDF graphs following certain syntactic restrictions can be
mapped to a set of DL axioms. A full translation from the OWL 2 DL language
to the DL SROIQ is implicit in [55], where we list a small snippet of constructs
used for our examples in Table 1. As such, according to Table 1, the RDF triples
in Fig. 3 can be viewed as DL ontologies containing the axioms listed in Fig. 4.

Typical reasoning tasks over an expressive DL like SROIQ (e.g., using
tableau methods to perform consistency checking, instance checking, satisfia-
bility checking, etc.; see [3, 62]) are in the worst case doubly-exponential even
for a non-deterministic machine, and in practice are often likewise very expen-

Table 1. Mapping DL axioms to RDF using the RDFS and OWL vocabularies

DL RDFS

1 A1 v A2 A1 rdfs:subClassOf A2

2 P1 v P2 P1 rdfs:subPropertyOf P2

3 ∃P v A P rdfs:domain A
4 ∃P− v A P rdfs:range A
5 A1 ≡ A2 A1 owl:equivalentClass A2

6 A1 uA2 ⊆ ⊥ A1 owl:disjointWith A2

7 A(x) x rdf:type A
8 R(x, y) x R y
9 x = y x owl:sameAs y



∃dbo:fundedby− v dbo:Agent foaf:name v rdfs:label

dbo:Company v dbo:Organisation ∃foaf:made v foaf:Agent

dbo:Organisation v dbo:Agent foaf:Person v foaf:Agent

dbo:Person v dbo:Agent foaf:Person v geo:SpatialThing

dbo:Person ≡ foaf:Person foaf:Person u foaf:Organisation v ⊥
foaf:Organization v foaf:Agent

(a) (b)

Fig. 4. DL axioms corresponding to the DBpedia and FOAF ontology snippets
from Fig. 3

sive, especially at the types of scales encountered in a Linked Data setting. Fur-
thermore, the decidability of conjunctive query answering for SROIQ is still
open [25].17 Thus, the W3C has identified three tractable profiles of OWL that
are particularly relevant for query answering [25], where we will focus upon two
such profiles in this lecture:

OWL 2 QL is designed as a language for which efficient (with respect to data
complexity), sound and complete query answering can be achieved by rewrit-
ing techniques – i.e., extending conjunctive queries (such as SPARQL BGPs)
to capture the semantics of the ontology.

OWL 2 RL is designed as a language for which sound and complete (with
respect to assertional knowledge) reasoning can be applied by means of
Datalog-style techniques – e.g., bottom-up or top-down rule-based inferenc-
ing. A standard OWL 2 RL ruleset, called OWL 2 RL/RDF, encodes part
of the RDF-Based Semantics of OWL 2. The assertional entailments given
by rule-based reasoning using OWL 2 RL/RDF over an OWL 2 RL ontology
correspond with the assertional entailments under the Direct Semantics for
that ontology [25, Theorem PR1]. The OWL 2 RL/RDF ruleset can also be
applied over arbitrary RDF graphs but beyond OWL 2 RL ontologies, the
aforementioned correspondence with the Direct Semantics no longer holds.

Query Rewriting The OWL 2 QL fragment [25, Section 3] contains a com-
bination of features that are tailored for efficient processing by query rewriting
techniques. That is, given an OWL (or, respectively, its DL counterpart) on-
tology O in this fragment, one can answer conjunctive queries Q correctly by
rewriting Q based on the axioms in O into a union of conjunctive queries (a
UCQ), where we denote this process by rewrite(Q,O).

To give the reader an idea, Algorithm 1 illustrates a very rudimentary version
of a rewriting algorithm that implements rewrite(Q,O) just for the basic RDFS
axioms (axioms of the forms 1–4 from Table 1). We note that this algorithm can

17 In this context, we note here that the case of SPARQL is decidable, since SPARQL’s
BGP matching treats all variables as distinguished, see above; for further details, we
refer to the SPARQL 1.1 Entailment Regimes specification [23] and a more detailed
book chapter in an earlier edition of the Reasoning Web summer school [21].



Algorithm 1: Basic Query Rewriting algorithm

Input: Conjunctive query q, DL ontology O
Output: Union (set) of conjunctive queries

1 P := Pq

2 repeat
3 P ′ := P
4 foreach q ∈ P ′ do
5 foreach g in q do // expansion
6 foreach axiom i of one of the forms 1–4 from Table 1 in O do
7 if i is applicable to g then
8 P := P ∪

{
q[g/ gr(g, i)]

}
// see Table 2

9 until P ′ = P
10 return P

Table 2. Semantics of gr(g, i) of Algorithm 1 (‘ ’ stands for a “fresh” variable)

g i gr(g/i)

(x, rdf:type, A) B v A (x, rdf:type, B)
∃P v A P (x, )
∃P− v A P ( , x)

(x, P1, y) P2 v P1 (x, P2, y)

be viewed as a very downstripped version of the PerfectRef algorithm [14] which
covers a much larger set of DL axioms; there have been a number of extensions
and alternative query rewriting techniques proposed recently [57, 61, 60, 45, 24].

Example 3
Taking Query 4 again, the BGP {(?X, a, foaf:Agent)} corresponds to the

conjunctive query:

q(?X) ← (?X, rdf:type, foaf:Agent)

which expanded by Algorithm 1 with respect to the ontology in Fig. 4(b)
results in the following UCQ:

q(?X) ← (?X, a, foaf:Agent)

q(?X) ← (?X, a, foaf:Person)

q(?X) ← (?X, a, foaf:Organization)

q(?X) ← (?X, foaf:made, ?Y )

The resulting UCQ can again (using the UNION pattern) be translated
back to SPARQL:



Query 4′

SELECT ?X

WHERE { { ?X a foaf:Agent } UNION

{ ?X a foaf:Person } UNION

{ ?X a foaf:Organization } UNION

{ ?X foaf:made ?Y } }

♦

With this small example, we have shown that the rewriting technique for
OWL 2 QL can be partially applied to SPARQL queries. However, note that
OWL 2 QL (and likewise the respective query rewriting algorithms from the
DL literature) omit important OWL features for Linked Data (discussed later
in Section 4), such as inferences from owl:sameAs, where rule-based inference
as mentioned in the following section might be more suitable.

Rule-based Reasoning As an alternative to query rewriting based on the
OWL 2 QL profile, another fragment of OWL – OWL 2 RL [25, Section 4] –
has a normative set of rules called OWL 2 RL/RDF, which encode a subset of
the semantics of RDFS and OWL 2 and can be directly used for (Datalog-style)
reasoning (see also the informal RDFS entailment rules in [35, Section 7], which
were later extended by OWL features in [64, 52]).

Some sample OWL 2 RL/RDF rules are given in Table 3 implementing the
basic features of RDFS and additionally supporting the semantics of equality
for owl:sameAs missed by OWL 2 QL. A more detailed discussion on which
OWL features (and respective rules encoding these) are particularly relevant for
Linked Data Reasoning will be discussed in Section 4.

Table 3. Core RDFS and owl:sameAs rules

ID Head Body

R
D

F
S

prp-spo1 (?s, ?p2, ?o) ← (?p1, rdfs:subPropertyOf, ?p2) , (?s, ?p1, ?o)
prp-dom (?p, rdf:type, ?c) ← (?p, rdfs:domain, ?c) , (?s, ?p, ?o)
prp-rng (?o, rdf:type, ?c) ← (?p, rdfs:range, ?c) , (?s, ?p, ?o)
cax-sco (?s, rdf:type, ?c2) ← (?c1, rdfs:subClassOf, ?c2) , (?s, rdf:type, ?c1)

S
a

m
e-

A
s eq-sym (?y, owl:sameAs, ?x) ← (?x, owl:sameAs, ?y)

eq-trans (?x, owl:sameAs, ?z) ← (?x, owl:sameAs, ?y) , (?y, owl:sameAs, ?z)
eq-rep-s (?s′, ?p, ?o) ← (?s, owl:sameAs, ?s′) , (?s, ?p, ?o)
eq-rep-p (?s, ?p′, ?o) ← (?p, owl:sameAs, ?p′) , (?s, ?p, ?o)
eq-rep-o (?s, ?p, ?o′) ← (?o, owl:sameAs, ?o′) , (?s, ?p, ?o)

As opposed to query-rewriting (top-down evaluation), OWL 2 RL/RDF rules
can also be applied in a bottom-up fashion for the purposes of a priori materiali-
sation: given a linked dataset Γ and a set of such inference rules R, pre-compute



and store the closure lm(merge(Γ ) ∪ R),18, issuing queries as they are input di-
rectly against the closure. Caching the full closure thus mitigates the expense of
reasoning during query-time, but may conversely incur huge pre-runtime costs,
storage overheads, as well as the cost of truth maintenance in dynamic scenarios.

Example 4
As an example, let us consider the following variant of Query 3: (i) in-

stead of explicitly following the owl:sameAs link, we assume the necessary
inferences are supplied by reasoning; (ii) we ask for all rdfs:labels of the
company (as opposed to just skos:prefLabel).
Query 3′

SELECT ?D ?R ?L

WHERE { nyt:49586210195898795812 nytimes:latest_use ?D ;

dbo:revenueUSD ?R ;

rdfs:label ?L }

while the first triple pattern is matched by explicitly stated data, the subse-
quent query-relevant triples must be obtained from the closure with respect
to, e.g., the rules in Table 3, which contains (amongst other triples):

nyt:49586210195898795812 nytimes:latest_use "2010-04-27"^^xsd:date ;

dbo:revenueUSD 1.06916E11 ;

rdfs:label "IBM"@en ,

"International Business Machines Corporation"@en .

leading to the following solutions:

?D ?R ?L

2010-04-27 1.06916E11 "IBM"@en
2010-04-27 1.06916E11 "International Business Machines Corporation"@en

♦

3 Overall Approaches and Challenges to Reason over and
Query Linked Data

We identify two main approaches to reason and query over Linked Data:

1. Data-warehousing approaches for querying linked data are typically deployed
for RDF search engines such as Sindice [53] or SWSE [40]. These engines pro-
vide query interfaces over a local centralised index of Linked Data harvested
from the Web and typically use rule-based materialisation (as presented in
Section 2.4) to cautiously infer additional RDF triples; Section 5 will discuss

18 That is, all RDF triples entailed by the RDF graph obtained from Γ (read as facts)
and R



such cautious reasoning techniques that are tailored to not infer too much
information in this setting.

2. Rather than relying on a centralised index, Linked Data itself can be viewed
as a database that can be queried directly and dynamically [33]. That is,
starting from the URIs appearing in the query, or from a set of seed URIs,
query-relevant data is navigated following Linked Data principles and re-
trieved dynamically. The main advantage of this approach is that results
are much fresher and all query-relevant data do not need to be known lo-
cally. However, the main weaknesses of this approach are that performing
remote lookups at query-time is costly, potentially a lot intermediate data
are transferred, and the recall depends significantly on the seed URIs and
conformance of the query-relevant sources with Linked Data principles. In
Section 6, we will present such an approach and discuss how reasoning can
be incorporated.

Getting back to the challenges enumerated in the introduction, let us now
briefly discuss how these affect the architectural choice for a particular reasoning
and querying infrastructure.

C1 Linked Data is huge. Our example contains only sample data from two ex-
ample datasets in the Linked Data Web. The most recent incarnation of the
Linking Open Data cloud (from September 2011), is claimed to represent
over 31 billion triples spread across 295 datasets.19 It is obvious that staying
aware of and gathering this dynamically evolving data for query process-
ing is an issue in terms of scale, but also in terms of deciding what parts
of which datasets are relevant for the query at hand. For example, broad
queries like Query 5, without further scope, are notoriously hard to answer,
since instances of foaf:Person are spread over various datasets and individ-
ual RDF files spread right across the Web: while data-warehouses probably
do not provide complete results on such queries, on-the-fly-traversal based
approaches in the worst case can’t answer such queries at all, or depending
on the seed URIs, cause prohibitively many lookups during query processing.

C2 Linked Data is not “pure” OWL. When all usage of the rdfs: and owl:

vocabulary is within the “mappable” fragment for OWL (see, e.g., Table 1),
the RDF graph in question is interpretable under the OWL Direct Seman-
tics. However, arbitrary RDF published on the Web does not necessarily fall
within these bounds. For example, the FOAF vocabulary defines inverse-
functional datatype properties such as foaf:mbox_sha1sum, which is disal-
lowed by the restrictions under which the Direct Semantics is defined. Even
worse, one may find “harmful” RDF published online that makes reason-
ing impossible or potentially uncontrollable, if done naively; for example,
consider the triples:20

rdfs:subPropertyOf rdfs:subPropertyOf owl:sameAs .

19 While the LOD cloud was not updated since then, the source it is based on – http:

//datahub.io/group/lodcloud – listed 337 LOD datasets at the time of writing.
20 A self-fulfilling prophecy: http://axel.deri.ie/~axepol/nasty.rdf.



rdf:type rdfs:subPropertyOf owl:sameAs .

that could have dramatic effects when fed into a rule-based reasoner (which
the reader can easily convince herself when considering our example data
along with the rules from Table 3). The improper use of URIs from the
special rdf:, rdfs:, and owl: vocabularies, i.e., the use of properties and
classes from these vocabularies in assertional “non-property” or “non-class”
positions is also referred to as non-standard vocabulary use in the literature.21

Any reasoning approach for Linked Data has to ensure that harmful triples
(be they erroneous or malicious) in published RDF are dealt with, either by
being ignored or otherwise by keeping inferences “confined”.

C3 Linked Data is inconsistent. While we have not explicitly mentioned incon-
sistent data in our examples – similar to non-standard use – inconsistencies
often occur in published RDF data [12]. Indeed a single additional triple
such as

dbr:Hasso_Plattner rdf:type foaf:Organization .

would render the example data from Fig. 2 inconsistent under OWL seman-
tics, due to the fact that dbr:Hasso_Plattner is also an asserted member of
the class foaf:Person which is declared disjoint with foaf:Organization

in the FOAF ontology. Again, reasoning techniques need to be robust in the
presence of such inconsistencies, trying to “isolate” them rather than falling
for ex falso quod libet (anything follows from a contradiction).

C4 Linked Data is evolving. As per the Web itself, Linked Data is inherently
dynamic [?]. For instance, our example data is not necessarily up-to-date
with Linked Data currently published by NYT: for example, an article about
IBM’s “Watson” project was published in 2012 after the “Jeopardy” show,22

making the nytimes:latest_use date of for IBM from Query 3′ above stale.
In fact, if NYT was about to update its Linked Data interface regularly with
the most current articles, a query like Query 3′ would become significantly
more challenging to deal with, particularly for data-warehousing approaches
that do not guarantee fresh results. We discuss these issues further in Sec-
tion Section 6 below.

C5 Linked Data needs more than RDFS and OWL. There is more implicit knowl-
edge hidden in Linked Data than can be captured with the semantics of
RDFS and OWL alone; in fact, it may be considered quite unintuitive that
Query 1 from p. 11 does not return IBM’s revenue: the exchange rate between
USD and EUR is itself available as data on the Web, so why shouldn’t the

21 That is, a property from these vocabularies may only be used as a predicate, and
likewise classes (such as e.g. rdfs:Resource) may only be used as the object of
rdf:type triples; see details within [16, 38] where non-standard vocabulary use is
formally defined. Though potentially very “dangerous”, non-standard triples are not
always “bad”: e.g., many axiomatic triples for RDFS are non-standard.

22 Article available online at https://www.nytimes.com/2012/01/08/jobs/

building-the-watson-team-of-scientists.html (retrieved 10 March 2013)



Web of Data be able to make use of this knowledge? However, ontology lan-
guages like OWL and RDFS do not provide means to express mathematical
conversions as necessary in this example. While not solvable with current
Linked Data standards and techniques, we discuss a possible approach to
tackle this problem in Section 7.

4 How much OWL is needed for Linked Data?

Given the variety of combinations of techniques and RDFS/OWL profiles that
can be applied for reasoning over Linked Data, an obvious question to ask is
which features of RDFS and OWL are most prominently used on the current
Web of Data?

Knowing which features are frequently used and which are infrequently used
provides insights into how appropriate the coverage of various OWL profiles
might be for the Linked Data use-case, and in particular, the relative costs
of supporting or not supporting the semantics of a certain language primitive
depending on its adoption in Web data for the setting of a given architectural
choice. For example, a language feature that is costly to support or that otherwise
adds complexity to a reasoning algorithm could potentially be “turned off”, with
minimal practical effect, if it is found to be very infrequently used in real-world
data.

In this section, we thus look at the features of RDFS and OWL that are
most/least widely adopted on the Web of Data. For the purposes of this study,
we take the Billion Triple Challenge 2011 corpus, which consists of 2.145 billion
quadruples crawled from 7.411 million RDF/XML documents through an open
crawl ran in May/June 2011 spanning 791 pay-level domains.23 This corpus
represents a broad sample of the Web of Data. We then look into the levels of
adoption of individual RDFS and OWL features within this broad corpus.

4.1 Measures Used

In order to adequately characterise the uptake of various RDF(S) and OWL
features used in this corpus, we present different measures to quantify their
prevalence and prominence.

First, we look at the prevalence of use of different features, i.e., how often
they are used. Here, we must take into account the diversity of the data under
analysis, where few domains account for many documents and many domains
account for few documents, and so forth [38]. We thus present two simple metrics:

Doc: number of documents using the language feature
Dom: number of pay-level-domains (i.e., sites) using the language feature.

23 A pay-level domain is a direct sub-domain of a top-level domain (TLD) or a second-
level country domain (ccSLD), e.g., dbpedia.org, bbc.co.uk. This gives us our no-
tion of “domain”.



However, raw counts do not reflect the reality that the use of an OWL fea-
ture in one important ontology or vocabulary may often have greater practical
impact than use in a thousand obscure documents. Thus, we also look at the
prominence of use of different features. We use PageRank to quantify our notion
of prominence: PageRank calculates a variant of the Eigenvector centrality of
nodes (e.g., documents) in a graph, where taking the intuition of directed links
as “positive votes”, the resulting scores help characterise the relative prominence
(i.e., centrality) of particular documents on the Web [54, 31].

In particular, we first rank documents in the corpus. To construct the graph,
we follow Linked Data principles and consider sources as nodes, where a directed
edge (s1, s2) ∈ S × S is extended from source s1 to s2 iff get(s1) contains (in
any triple position) a URI that dereferences to document s2 (i.e., there exists
a u ∈ terms(get(s1)) such that redirs(u) = s2). We also prune edges to only
consider (s1, s2) when s1 and s2 are non-empty sources in our corpus. We then
apply a standard PageRank analysis over the resulting directed graph, using
the power iteration method with ten iterations. For reasons of space, we refer
the interested reader to [54] for more detail on PageRank, and to the following
thesis [38] for more details on the particular algorithms used for this paper.

With PageRank scores computed for all documents in the corpus, for each
RDFS and OWL language feature, we then present:∑

Rank the sum of PageRank scores for documents in which the language
feature is used.

With respect to
∑

Rank, under the random surfer model of PageRank [54],
given an agent starting from a random location and traversing documents on
(our sample of) the Web of Data through randomly selected dereferenceable
URIs, the

∑
Rank value for a feature approximates the probability with which

that agent will be at a document using that feature after traversing ten links.
In other words, the score indicates the likelihood of an agent, operating over the
Web of Data based on dereferenceable principles, to encounter a given feature
during a random walk.

The graph extracted from the corpus consists of 7.411 million nodes and 198.6
million edges. Table 4 presents the top-10 ranked documents in our corpus, which
are dominated by core meta-vocabularies, documents linked therefrom, and other
popular vocabularies.24

4.2 Survey of RDF(S)/OWL Features

Table 5 presents the results of the survey of RDF(S) and OWL usage in our
corpus, where for features with non-trivial semantics, we present the measures
mentioned in the previous section, as well as support for the features in various
RDFS/OWL profiles. Those titled EL, QL and RL refer intuitively to the standard

24 We ran another similar analysis with links to and from core RDF(S) and OWL
vocabularies disabled. The results for the feature analysis remained similar. Mainly
owl:sameAs dropped several positions in terms of the sum of PageRank.



Table 4. Top ten ranked documents

№ Document URI Rank

1 http://www.w3.org/1999/02/22-rdf-syntax-ns 0.121
2 http://www.w3.org/2000/01/rdf-schema 0.110
3 http://dublincore.org/2010/10/11/dcelements.rdf 0.096
4 http://www.w3.org/2002/07/owl 0.078
5 http://www.w3.org/2000/01/rdf-schema-more 0.049
6 http://dublincore.org/2010/10/11/dcterms.rdf 0.036
7 http://www.w3.org/2009/08/skos-reference/skos.rdf 0.026
8 http://xmlns.com/foaf/spec/ 0.023
9 http://dublincore.org/DCMI.rdf 0.021

10 http://www.w3.org/2003/g/data-view 0.017

OWL 2 profiles [25]. The RDFS standard is titled RDFS. All other profiles are
non-standard proposals made in the literature. The profile titled RDFS+ refers
to RDFS-Plus as proposed by Allemang and Hendler [1], which extends RDFS
with lightweight OWL features. The profile titled L2 refers to a similar proposal
by Fisher et al. [20] to extend RDFS with some lightweight OWL features.
Description Logic Programs (DLP) was proposed by Grosof et al. [26] in order
to support incomplete OWL reasoning using rules; this proposal was later built
upon in Horst’s pD* profile [64]. The AL profile refers to features that can be
supported with rules that do not requires A-Box (i.e., assertional joins), which
are expensive to compute at scale; the AL profile is used later in Section 5.

In column ‘ST’, we indicate which features have expressions that can be
represented as a single triple in RDF, i.e., which features do not require auxiliary
blank nodes of the form :x or the SEQ production in Table 1 of the OWL 2
Mapping to RDF document [55]. This distinction is motivated by our initial
observations that such features are typically the most widely used in Web data.

From the list of language features, we exclude rdf:type, which trivially ap-
peared in 90.3% of documents. We present the table ordered by the sum of
PageRank measure [

∑
Rank].

Regarding prevalence, we see from Table 5 that owl:sameAs is the most
widely used axiom in terms of documents (1.778 million; 24%) and domains (117;
14.8%). Surprisingly (to us), RDF container membership properties (rdf: *)
are also heavily used (likely attributable to RSS 1.0 documents). Regarding
prominence, we make the following observations:

1. The top six features are those that form the core of RDFS [52].
2. The RDF(S) declaration classes rdfs:Class, rdf:Property are used in

fewer, but more prominent documents than OWL’s versions owl:Class,
owl:DatatypeProperty, owl:ObjectProperty.

3. owl:complementOf and owl:differentFrom are the least prominently used
original OWL features.

4. Of the features new to OWL 2, owl:NamedIndividual is the most promi-
nently used in thirty-first position. Our crawl was conducted nineteen months



Table 5. Survey of RDFS/OWL primitives used on the Web of Data and support
in different tractable profiles. ‘∼’ denotes partial support.

№ Primitive
∑

Rank Doc Dom R
D
F
S

L
2

R
D
F
S
+

D
L
P

p
D
*

E
L

Q
L

R
L

A
L

ST

1 rdf:Property 5.74E-01 8,049 48 X X X X X X X X X X
2 rdfs:range 4.67E-01 44,492 89 X X X X X X X X X X
3 rdfs:domain 4.62E-01 43,247 89 X X X X X X X X X X
4 rdfs:subClassOf 4.60E-01 115,608 109 X X X X X X X X X X
5 rdfs:Class 4.45E-01 19,904 43 X X X X X X X X X X
6 rdfs:subPropertyOf 2.35E-01 6,080 80 X X X X X X X X X X
7 owl:Class 1.74E-01 302,701 111 X X X X X X X X X X
8 owl:ObjectProperty 1.68E-01 285,412 92 X X X X X X X X X X
9 rdfs:Datatype 1.68E-01 23 9 ∼ X X ∼ ∼ ∼ ∼ ∼ ∼ ∼

10 owl:DatatypeProperty 1.65E-01 234,483 82 X X X X X X X X X X
11 owl:AnnotationProperty 1.60E-01 172,290 55 X X X X X X X X X X
12 owl:FunctionalProperty 9.18E-02 298 34 X X X X X X X X X X
13 owl:equivalentProperty 8.54E-02 141 23 X X X X X X X X X X
14 owl:inverseOf 7.91E-02 366 43 X X X X X X X X X X
15 owl:disjointWith 7.65E-02 230 27 X X X X X X X X X X
16 owl:sameAs 7.29E-02 1,778,208 117 X X X X X X X X ∼ X
17 owl:equivalentClass 5.24E-02 22,291 39 X X X X X X X X X X
18 owl:InverseFunctionalProperty 4.79E-02 111 24 X X X ∼ X X X X X X
19 owl:unionOf 3.15E-02 15,162 30 X X X ∼ X X X ∼ ∼ X
20 owl:SymmetricProperty 3.13E-02 120 23 X X X X X X X X X X
21 owl:TransitiveProperty 2.98E-02 150 30 X X X X X X X X X X
22 owl:someValuesFrom 2.13E-02 1,753 15 X X X ∼ ∼ X ∼ ∼ ∼ X
23 rdf: * 1.42E-02 293,022 62 X X X X X X X X X X
24 owl:allValuesFrom 2.98E-03 29,084 20 X X X ∼ ∼ X X ∼ X X
25 owl:minCardinality 2.43E-03 33,309 19 X X X ∼ X X X X X X
26 owl:maxCardinality 2.14E-03 10,413 24 X X X ∼ X X X ∼ X X
27 owl:cardinality 1.75E-03 3,170 24 X X X ∼ X X X X X X
28 owl:oneOf 4.13E-04 74 11 X X X ∼ X ∼ X ∼ ∼ X
29 owl:hasValue 3.91E-04 55 14 X X X ∼ X X X X X X
30 owl:intersectionOf 3.37E-04 186 13 X X X X X X ∼ X ∼ X

31 owl:NamedIndividual (2) 1.63E-04 3 2 X X X X X X X X X X
32 owl:AllDifferent 1.55E-04 21 8 X X X X X X X X X X

33 owl:propertyChainAxiom (2) 1.23E-04 14 6 X X X X X X X X X X
34 owl:onDataRange 8.41E-05 3 1 X X X X X X X X X X

35 owl:minQualifiedCardinality (2) 8.40E-05 2 1 X X X X X X X X X X

36 owl:qualifiedCardinality (2) 4.02E-05 2 1 X X X X X X X X X X

37 owl:AllDisjointClasses (2) 4.01E-05 2 2 X X X X X X X X X X

38 owl:maxQualifiedCardinality (2) 4.01E-05 1 1 X X X X X X X ∼ X X

39 owl:ReflexiveProperty (2) 1.30E-05 2 1 X X X X X X X X X X
40 owl:complementOf 1.96E-06 75 4 X X X ∼ X X ∼ ∼ X X
41 owl:differentFrom 7.18E-07 25 7 X X X X X X X X X X
42 owl:onDatatype 2.72E-07 1 1 X X X X X X X X X X
43 owl:disjointUnionOf 6.31E-08 2 2 X X X X X X X X X X

44 owl:hasKey (2) 3.67E-08 1 1 X X X X X X X X X X

45 owl:propertyDisjointWith (2) 2.43E-08 1 1 X X X X X X X X X X

Not Used: rdfs:ContainerMembershipProperty, owl:AllDisjointProperties (2), owl:Annotation (2),

owl:AsymmetricProperty (2), owl:Axiom (2), owl:IrreflexiveProperty (2),

owl:NegativePropertyAssertion (2), owl:datatypeComplementOf (2), owl:hasSelf (2)

after OWL 2 became a W3C Recommendation (Oct. 2009), where we note
that new OWL 2 features have had little penetration in prominent Web vo-
cabularies during that interim. Further, several OWL 2 features were not
used at all in our corpus.



5. The top eighteen features are expressible with a single RDF triple. The
highest ranked primitive for which this is not the case is owl:unionOf in
nineteenth position, which requires use of RDF collections (i.e., lists). Union
classes are often specified as the domain or range of a given property: the
most prominent such example is the SKOS vocabulary (the seventh highest-
ranked document) which specifies the range of the skos:member property as
the union of skos:Concept and skos:Container.

In terms of profile support, we observe that RDFS has good catchment for
a few of the most prominent features, but otherwise has poor coverage. Aside
from syntactic/declaration features, from the top-20 features (which cover 98%
of the total cumulative rank), L2 misses functional properties(pos=12), disjoint
classes(15), inverse-functional properties(18) and union classes(19). RDFS-Plus
omits support for disjoint(15) and union classes(19). DLP, as defined by Volz [69,
§A], has coverage of all such features, but does not support inverse-functional(18)
datatype properties. pD* does not support disjoint(15) or union classes(19).

Regarding the standard OWL 2 profiles, OWL 2 EL and OWL 2 QL both
omit support for important top-20 features. Neither include functional(12) or
inverse-functional properties(18), or union classes(19). OWL 2 EL further omits
support for inverse(14) and symmetric properties(20). OWL 2 QL does not sup-
port the prevalent same-as(16) feature. Conversely, OWL 2 RL has much better
coverage, albeit having only partial support for union classes(19).

Summing up, we acknowledge that such a survey cannot give a universal or
definitive indication of the most important OWL features for Linked Data. First,
we only survey a limited sample of the Web of Data. Second, the future may (or
may not) see radical changes in how OWL is used on the Web; e.g., OWL 2 terms
may soon enjoy more adoption. Still, Table 5 offers useful anecdotal insights into
the extant trends of adoption of RDFS and OWL on the Web, and what features
are the most crucial to support in a current Linked Data setting.

4.3 Survey of Datatype Use

Implementing the full range of RDF, XSD and OWL datatypes is often costly [18],
with custom code (or an external library) required to support each one. We are
thus interested to see which ones are most important to support.

Aside from plain literals, the RDF semantics defines a single datatype sup-
ported under RDF-entailment: rdf:XMLLiteral [35]. However, the RDF seman-
tics also defines D-entailment, which provides interpretations over a datatype
map that gives a mapping from lexical datatype strings into a value space. The
datatype map may also impose disjointness constraints within its value space.
These interpretations allow for determining which lexical strings are valid for a
datatype, which different lexical strings refer to the same value and which to dif-
ferent values, and which sets of datatype values are disjoint from each other. An
XSD-datatype map is then defined that extends the set of supported datatypes
into those defined for XML Schema, including types for boolean, numeric, tem-
poral, string and other forms of literals. Datatypes that are deemed to be am-



Table 6. Survey of standard datatypes used on the Web of Data

№ Primitive
∑

Rank Lit Doc Dom D O2

1 xsd:dateTime 4.18E-2 2,919,518 1,092,048 68 X X
2 xsd:boolean 2.37E-2 75,215 41,680 22 X X
3 xsd:integer 1.97E-2 1,015,235 716,904 41 X X
4 xsd:string 1.90E-2 1,629,224 475,397 76 X X
5 xsd:date 1.82E-2 965,647 550,257 39 X X
6 xsd:long 1.63E-2 1,143,351 357,723 6 X X
7 xsd:anyURI 1.61E-2 1,407,283 339,731 16 X X
8 xsd:int 1.52E-2 2,061,837 400,448 31 X X
9 xsd:float 9.09E-3 671,613 341,156 21 X X

10 xsd:gYear 4.63E-3 212,887 159,510 12 X X
11 xsd:nonNegativeInteger 3.35E-3 9,230 10,926 26 X X
12 xsd:double 2.00E-3 137,908 68,682 31 X X
13 xsd:decimal 1.11E-3 43,747 13,179 9 X X
14 xsd:duration 6.99E-4 28,541 28,299 4 X X
15 xsd:gMonthDay 5.98E-4 34,492 20,886 3 X X
16 xsd:short 5.71E-4 18,064 11,643 2 X X
17 rdf:XMLLiteral 4.97E-4 1,580 791 11 X X
18 xsd:gMonth 2.50E-4 2,250 1,132 3 X X
19 rdf:PlainLiteral 1.34E-4 109 19 2 X X
20 xsd:gYearMonth 8.49E-5 6,763 3,080 5 X X
21 xsd:positiveInteger 5.11E-5 1,423 1,890 2 X X
22 xsd:gDay 4.26E-5 2,234 1,117 1 X X
23 xsd:token 3.56E-5 2,900 1,450 1 X X
24 xsd:unsignedByte 2.62E-7 66 11 1 X X
25 xsd:byte 2.60E-7 58 11 1 X X
26 xsd:time 8.88E-8 23 4 3 X X
27 xsd:unsignedLong 6.71E-8 6 1 1 X X
– other xsd/owl dts. not used — — — — — —

biguously defined (viz. xsd:duration) or specific to XML (e.g., xsd:QName),
etc. are omitted.

The original OWL specification recommends use of a similar set of datatypes
to that for D-entailment, where compliant reasoners are required to support
xsd:string and xsd:integer. Furthermore, OWL allows for defining enumer-
ated datatypes.

With the standardisation of OWL 2 came two new datatypes: owl:real

and owl:rational, along with novel support for xsd:dateTimeStamp. How-
ever, XSD datatypes relating to date, time and Gregorian calendar values are
not supported. OWL 2 also introduced mechanisms for defining new datatypes
by restricting facets of legacy datatypes; however, from Table 5 we note that
owl:onDatatype (used for facet restrictions) has only very few occurrences in
our corpus.

Given this broad collection of datatypes, it is interesting to see which ones are
most commonly used on the Web of Data, and which ones are thus a priority to
support, where we use a similar methodology as presented before. In our corpus,
we found 278 different datatype URIs assigned to literals. Of these, 158 came
from the DBpedia exporter which models SI units, currencies, etc., as datatypes.
Using analogous measures as before, Table 6 lists the top standard RDF(S), OWL
and XSD datatypes as used to type literals in our corpus. We omit plain literals
which were used in 6.609 million documents (89%). The Lit column indicates
the number of literals with that datatype. D indicates the datatypes supported



by D-entailment with the recommended XSD datatype map. O2 indicates the
datatypes supported by OWL 2.

We make the following observations based on Table 6:

1. The top four standard datatypes are supported by both the traditional XSD
datatype map and by OWL 2.

2. OWL 2 does not support xsd:date(5), xsd:time(26), or the various Grego-
rian datatypes(10,15,18,20,22).

3. Despite not being supported by any standard entailment, xsd:duration(14)
was used in 28 thousand documents across four different domains.

4. Various standard datatypes are not used at all in the data. For example,
xsd:dateTimeStamp, the “new” OWL datatypes, binary datatypes and var-
ious normalised-string/token datatypes did not appear at all.25

4.4 A profile of OWL for Linked Data?

Our analysis of the adoption of RDFS and OWL has shown that while some
features are broadly adopted on the Web of Data, others are barely adopted at
all. Thus, it would seem possible, for example, to only support some fraction
of the standard OWL features while capturing support for the broad majority
of axioms present on the Web of Data. In Table 5, we already saw that the
most frequently used features corresponds with the ability to represent their
respective axioms in RDF as a single triple (and thus without blank nodes if
being interpreted under the Direct Semantics).

In previous work, we thus proposed the OWL LD (Linked Data) profile,
which is a proper subset of OWL 2 RL supporting only those features that
are expressible with a single RDF triple [22]. The RDF-Based Semantics of
the OWL LD profile can be (partly) supported by means of a subset of the
OWL 2 RL/RDF rules relating to the supported features. We also provide a
grammar under which the Direct Semantics of the profile can be supported,
making (optionally) conformant documents compatible with the OWL Direct
Semantics. We propose that OWL LD – as a practical, terse profile – facilitates
greater ease of implementation for Linked Data reasoning applications, while
maintaining high coverage of commonly used features.

5 Rule-Based inference for Linked Data: Authoritative
vs. Context-Dependent Reasoning

A common strategy for reasoning over multiple sources is to simply merge them
together and compute the deductive closure over the resulting monolithic RDF
graph. However, when dealing with arbitrary sources from the Web, one cannot
expect the data to always adhere to strict rules or to be universally infallible.
Web data is highly heterogeneous and unexpected usage of data and data schema

25 In fact, owl:real does not have a lexical space, and thus cannot be written down;
irrational numbers are difficult to write down.



is common. For example, data can be erroneous or crafted for malicious purposes.
As a consequence, there are risks for a reasoner to infer undesirable logical as-
sertions, which can be harmful for the system. These assertions increase the
noise in the data collection and decrease the precision of the querying system.
In addition, such inferences add an unnecessary computational overhead, which
augments the demand of computational resources and limits the performance of
the system. Therefore, a requirement of inference engines for Web data is the
ability to cope with disparate data quality, where, in fact, incompleteness (with
respect to standard RDFS/OWL profiles) is thus a desirable feature.

In this section, we present two cautious approaches for applying rule-based
inferencing over diverse Linked Data in a robust manner: Context-Dependent
reasoning [17] and Authoritative Reasoning [12]. Both have been designed to
cope with disparate data quality and to work at large scale. However, each ap-
proach has been optimised for different scenarios. Context-Dependent reasoning
is optimised for reasoning over a large number of small graphs, whereas Author-
itative Reasoning is optimised for reasoning over a large single graph.

5.1 Context-Dependent Reasoning

Context-Dependent reasoning has been developed to meet the requirements of
the Sindice search engine project [53]. The Sindice search engine indexes a large
number of Linked Data documents, each of which contains a small RDF graph.
Reasoning over these graphs enables to make explicit what would otherwise be
implicit knowledge, adding value to Sindice’s search engine results to ultimately
be more competitive in terms of precision and recall [49].

The Context-Dependent reasoning approach has been designed to work on
a multitude of small graphs in a distributed manner. Each computing node will
perform the deductive closure of one graph. A data source is divided into small
sub-graphs, e.g., on a per-entity basis or on a per-document basis such as in
the Sindice search engine. Each of these graphs represents a contextual graph.
Larger contextual graphs can be constructed from smaller ones depending on the
needs. For example, one can aggregate all documents that are connected with
owl:sameAs links into a single contextual graph if one needs to reason across
owl:sameAs links.

A fundamental requirement in the design of the Context-Dependent reason-
ing approach has been to confine T-Box claims (aka., terminological claims, aka.
schema claims, as per Table 3) and reasoning tasks into “contexts” in order to
track the provenance of inference results. By tracking the provenance of each
individual T-Box claim, we are able to prevent one ontology to alter the seman-
tics of other ontologies on a global scale. In addition, such a context-dependent
approach provides an efficient distributed computing model which scales linearly
with the amount of data [17].

To reason over contexts, we assume that the ontologies that these contexts
refer to are either included explicitly with owl:imports declarations or implicitly
by using property and class URIs that dereference directly to the data describing
the ontology itself. This later case should be the standard if the W3C best



practices for publishing ontologies [50] and the Linked Data principles [7] are
followed by data publishers. As ontologies might refer to other ontologies, the
import process then needs to be recursively iterated as explained in the next
section.

A naive approach would be to execute such a recursive fetching for each con-
textual graph and to create an aggregate context [28], i.e., the RDF merge of
the contextual graph and of the imported ontologies. At this point the deductive
closure of the aggregate context can be computed. Such a naive procedure is
however obviously inefficient since a lot of processing time will be used to re-
calculate the T-Box deductions which could be instead reused for possibly large
numbers of other contextual graphs. Thus an ontology base is used to store and
reuse such deductions and is described next.

Reasoning with Contexts The notions of context and lifting rules presented
in the following are based on Guha’s context mechanism [28]. Its aim is to control
the integration of data and ultimately avoid the aggregation of data that may
result in undesirable inferred assertions.

Within his framework, a Context is a first class resource and denotes the
scope of validity of a statement. The contents of the context are said to be true
in that context. This scope is defined by the symbol ist (“is true in context”),
introduced by Guha in [27]. The notation ist(c, ϕ) states that a proposition ϕ is
true in the context c. Since contexts are first class objects, it becomes possible to
define expressive formulae whose domains and ranges are contexts. An example
is the so called Lifting Rule that enables to lift axioms from one context to
another.

An Aggregate Context is a subclass of Context. Its content is composed by the
contents lifted from other contexts. An aggregate context must contain the full
specification of what it imports. In our case, each contextual graph is considered
an Aggregate Context, since it always contains the specification of what it imports
through explicit or implicit import declarations, as explained next.

Import Closure of RDF Models On the Semantic Web, ontologies are
published in order to be easily reused by third parties. OWL provides the
owl:imports primitive to indicate the inclusion of a target ontology inside an
RDF model. Conceptually, importing an ontology brings the content of that
ontology into the RDF model.

The owl:imports primitive is transitive. That is, an import declaration
states that, when reasoning with an ontology O, one should consider not only
the axioms of O, but the entire import closure of O. The import closure of an
ontology O is the smallest set containing the axioms of O and all of the axioms
from the ontologies that O (transitively) imports. For example, if ontology OA
imports OB , and OB imports OC , then OA imports both OB and OC .

Implicit Import Declaration Most RDF models published on the Web do not
contain explicit owl:imports declarations. For example, among the 228 million



documents in Sindice, only 704 thousand declare at least one owl:imports link;
also the example dbo: and foaf: ontologies26 in our examples do not contain
any explicit owl:imports links. Instead, many RDF models generally refer to
existing ontologies by their classes or property URIs. For example, most FOAF
profile documents do not explicitly import the FOAF ontology, but instead just
directly use the classes and properties of the FOAF vocabulary, which deref-
erence to the FOAF ontology. Following Linked Data principles, the URIs of
the classes and properties defined in an ontology should be dereferenceable and
should provide the machine-processable definition of the vocabulary (presumably
given in RDFS/OWL).

That is, in the presence of dereferenceable class or property URIs, we perform
what we call an implicit import. By dereferencing the URI, we attempt to retrieve
a graph containing the description of the ontological entity identified by this URI
and to include its content inside the source RDF model. The implicit import is
also considered transitive.

Example 5
In Fig. 2, if a RDF model such as dbr:Werner_von_Siemens refers to an
ontological entity such as dbo:Person from the ontology dbo, and if dbo

refers to an ontological entity foaf:Person in an ontology foaf, then the
model imports the two ontologies given by dbo and foaf. ♦

Import Lifting Rules Guha’s context mechanism defines the importsFrom lifting
rule [28] which corresponds to the inclusion of one context into another. The
owl:imports primitive and the implicit import declaration are easily mapped to
the importsFrom rule.

A particular case is when import relations are cyclic. Importing an ontology
into itself is considered a null action, so if ontology OA imports OB and OB
imports OA, then the two ontologies are considered to be equivalent [4]. Based
on this definition, we extend Guha’s definition to allow cycles in a graph of
importsFrom. We introduce a new symbol eq, and the notation eq(c1, c2) states
that c1 is equivalent to c2, i.e., that the set of propositions true in c1 is identical
to the set of propositions true in c2.

Definition 9 (Cyclic Import Rule). Let c1 and c2 be two contexts. If c1
contains the proposition importsFrom(c1, c2) and c2 the proposition imports-
From(c2, c1), then the two contexts are considered equivalent:

ist(c2, importsFrom(c2, c1)) ∧ ist(c1, importsFrom(c1, c2))→ eq(c1, c2)

26 In reality, the ontology defining the vocabulary in the dbo namespace is split over
many documents: one per class and property term; however, this is not important
for the current discussion.



Deductive Closure of RDF Models In Context-Dependent reasoning, the
deductive closure of a graph is the set of assertions that are entailed in the
aggregate context, composed of the graph itself and its ontology import closure.
We now explain how the deductive closure of an aggregate context is performed.
Given two contexts c1 and c2, for example a Linked Data document and an
ontology, their axioms are lifted into an aggregate context labelled c1 ∧ c2. The
deductive closure of the aggregate context is then computed using the rule-based
inference engine.

It is to be noticed that the deductive closure of an aggregate context can lead
to inferred statements that are not true in any of the source contexts alone.

Example 6
In Fig. 2, if a context c1 contains an instance dbr:Werner_von_Siemens of
the class dbo:Person, and a context c2 contains a proposition stating that
dbo:Person is equivalent to foaf:Person, then the entailed conclusion that
dbr:Werner_von_Siemens is a foaf:Person is only true in the aggregate
context c1 ∧ c2:

ist(c1,dbo:Person(x)) ∧
ist(c2, equivalentClass(dbo:Person, foaf:Person))→

ist(c1 ∧ c2, foaf:Person(x))

♦

The set of inferred statements that are not true in any of the source contexts
alone are called aggregate entailments:

Definition 10 (Aggregate Entailment). Let c1 and c2 be two contexts with
respectively two propositions ϕ1 and ϕ2, ist(c1, ϕ1) and ist(c2, ϕ2), and ϕ1∧ϕ2 |=
ϕ3, such that ϕ2 6|= ϕ3, ϕ1 6|= ϕ3; then we call ϕ3 a newly entailed proposition
in the aggregate context c1 ∧ c2. We call the set of all newly defined propositions
an aggregate entailment and denote it as ∆c1,c2 :

∆c1,c2 = {ist(c1, ϕ1) ∧ ist(c2, ϕ2) |= ist(c1 ∧ c2, ϕ3)

and ¬(ist(c1, ϕ3) ∨ ist(c2, ϕ3))}

The aggregate entailment property enables the reasoning engine to confine
inference results to specific contexts and therefore protects other contexts from
unexpected data usage. Unexpected data usage in one context will not alter the
intended semantics of other contexts if and only if no direct or indirect import
relation exists between them.



When considering (in our case (Horn) rule-based) RDFS/OWL inferences
only, aggregate contexts enjoy the following monotonicity property27: if the ag-
gregate context c1 ⊆ c2 then ist(c2, φ) implies ist(c1, φ), or respectively, for
overlapping contexts, if ist(c1 ∩ c2, φ) implies both ist(c1, φ) and ist(c2, φ). This
property is exploited in the implementation of the ontology base, which is de-
scribed next, to avoid storing duplicate inferred statements.

Context-Dependent Ontology Base A problem when reasoning over a large
number of contextual graphs independently is that the process of computing the
ontology import closure and its deductive closure has to be repeated for each
contextual graph. This is inefficient since the computation of the import clo-
sure and the deductive closure is resource demanding and can in fact be reused
for other contextual graphs. The import closure necessitates executing multiple
Web requests that place load on the network and take time, whereas the com-
putation of the deductive closure is CPU bound. In addition, the computation
of the T-Box closure is more CPU intensive than the computation of the A-Box
closure [17]. This observation suggests to focus on the optimisation of the T-Box
closure computation. Thanks to the smaller scale of the T-Box with respect to
the A-Box, we can store the computed ontology import closure as well as the
deductive closure in an ontology base in order to reuse them in later computation.

The ontology base, which can be seen as a persistent context-dependent T-
Box, is in charge of storing any ontology discovered on the Web along with their
import relations. The ontology base also stores the inference results that has been
performed in order to reuse them later. The ontology base serves the inference
engine by providing the appropriate and pre-computed T-Box for reasoning over
a given contextual graph.

Details on the formalisation of the ontology base and of an optimised strategy
to update the ontology base can be found in [17].

Implementation and Scalability The ontology base is implemented using an RDF
database to store the ontology statements in their context. A secondary index is
used to store the import relations between the contexts. A caching mechanism
is used on top of the ontology base to cache frequent requests. The caching
mechanism is especially useful when processing multiple contextual graphs from
a single data source. Since contextual graphs from a same data source are likely
to be described with the same ontologies, the requests to the ontology base are
identical and the cache hit rate increases.

The reasoning engine that is used by the ontology base is specifically designed
and optimised to compute entailments in memory using a standard bottom-
up semi-naive evaluation approach. Each RDF term in a statement is mapped
to a unique identifier (integer). Statements are indexed using in-memory data
structures, similar to triple tables, in order to lookup any kind of statement

27 We remark here that under the addition of possibly non-monotonic rules to the
Semantic Web architecture, this context monotonicity only holds under certain cir-
cumstances [58].



patterns. Rules are then checked against the index in an iterative manner, with
one rule being applied at a given iteration. The result of the rule is then added
to the index before proceeding to the next iteration. Iterations continue until
a fixpoint is reached. For rules that requires joins between multiple statements,
since we are working with a small amount of data and a small number of elements,
we rely on an efficient merge-join algorithm where both relations are sorted on
the join attribute using bit arrays. The bit arrays are then intersected using
bitwise operations.

The A-Box reasoning process is distributed by dividing up the large A-Box
on a per-context basis. Each context provides a chunk of data that is distributed
to different computing nodes. A computing node acts independently as an A-Box
reasoner and has its own ontology base. The A-Box rule engine is based on the
same rule engine used by the ontology base.

Since each chunk of data is relatively small, the deductive closure of the A-
Box can be entirely performed in memory without relying on disk accesses. With
respect to other distributed approaches that perform reasoning on the global
model, we avoid reading and writing multiple times the data directly from the
disk, and therefore we obtain better performance. Importantly, the distributed
model scales linearly with the number of available nodes in the cluster since
replicating the ontology base on each machine allows for embarrassingly parallel
execution during A-Box reasoning.28

The Context-Dependent reasoning implementation has been in use by the
Sindice search engine since 2008. The reasoner supports the pD* profile [64],
though the Context-Dependent approach generalises straightforwardly to any
materialisation mechanism. It is running on a Hadoop cluster of 150 computing
nodes as part of the indexing pipeline of Sindice. It has enabled Sindice to reason
over more than 700 million documents, which represents a total of more than 50
billion triples.

5.2 Authoritative Reasoning

The Authoritative reasoning algorithm was developed to provide RDFS and
OWL materialisation support in the context of the Semantic Web Search En-
gine (SWSE) project [40], with similar proposals made in the context of reason-
ing over class hierarchies for the Falcons search engine [15]. As opposed to the
Context-Dependent method, which partitions the problem of reasoning into a
large collection of (relatively) small contexts, the Authoritative reasoning algo-
rithm rather considers a single large RDF graph (in line with its SWSE use-case).
Tackling the fallibility of Web data, Authoritative reasoning builds a single global
T-Box that only includes axioms from “trusted sources”. The core intuition of
authoritative reasoning is that the T-Box axioms extracted from an ontology on
the Web should only be able to affect reasoning over data that instantiates the
terms in that ontology’s namespace.

28 That is, no communication is required between machines, where each can thus pro-
cess their own content independently



Example 7
In the data we merge from various Web sources, assume we find the follow-
ing two triples, both of which we consider to be T-Box axioms and neither
of which we initially know whether to trust or not:
foaf:Person rdfs:subClassOf geo:SpatialThing .

foaf:Person rdfs:subClassOf ex:EvilEntity .

Let’s take three triples instantiating the classes involved:

ex:Fred a foaf:Person .

ex:Jill a geo:SpatialThing .

ex:Tim a ex:EvilEntity .

Under RDFS semantics, these triples have the following corresponding en-
tailments:

ex:Fred a geo:SpatialThing .

ex:Fred a ex:EvilEntity .

According to the semantics of rdfs:subClassOf, the original T-Box axioms
only affect the inferences possible over data instantiating the foaf:Person

class. As to whether these T-Box axioms can be trusted, we thus ask:
are either of these T-Box axioms given in the document dereferenced by
foaf:Person? The first one is indeed in the FOAF ontology, and hence can
be trusted (and is considered “authoritative” along with its inferences). The
second one is not, and will not be considered by the authoritative reasoning
process. ♦

This intuitive notion of which sources to trust for individual T-Box axioms
then relies on two prerequisites:

T-Box distinguishable from A-Box: We assume that T-Box triples in the
data (and triple patterns in the rules) can be distinguished from A-Box
triples.

Authoritative relation: We assume an authoritative relation that maps from
an RDF document to a set of RDF terms it can speak authoritatively about.

We now discuss these general prerequisites in more detail for the setting of
applying RDFS/OWL reasoning over Linked Data.

T-Box distinguishable from A-Box We discussed previously that T-Box data
intuitively refers to ontological/schema definitions using the RDFS and OWL
standards to define the semantics of classes and properties in a vocabulary. This
intuition is sufficient for our purposes, where more precise definitions of T-Box
and A-Box in the context of Authoritative reasoning are provided, e.g., in [12].

Loosely related to the notion of meta-modelling in OWL, our A-Box also
contains the T-Box data (but not vice-versa). Thus, we can reason over schema



triples analogous to if they were assertions. We also split the body of rules into
a (possibly empty) A-Box and (possibly empty) T-Box graph pattern, where we
define a T-Box triple pattern as any pattern that can only unify with a T-Box
triple, and we define an A-Box triple pattern as the complement.

Example 8
Take the following OWL rule (cax-eqc1 in OWL 2 RL/RDF):

(?X, a, ?C2)← (?C1, owl:equivalentClass, ?C2) , (?X, a, ?C1)

The first (underlined) triple pattern in the body is considered T-Box since
it can only be matched by T-Box triples. The second triple pattern in the
body is considered A-Box because it is not a T-Box pattern. We do not
need to categorise the head of the rule in this manner. Of course, the A-Box
pattern in the body may also match a T-Box triple, as per the previous
meta-modelling discussion. ♦

Authoritative reasoning then involves checking the source of T-Box knowl-
edge. Incorrect or malicious T-Box triples are the most “dangerous” in a rea-
soning context, where, for example, if a dataset contains millions of instances of
foaf:Person, a single T-Box triple stated in an arbitrary location – such as one
of the following

foaf:Person rdfs:subClassOf ex:EvilEntity .

foaf:Person rdfs:subClassOf owl:Nothing .

can affect inferences computed for all the millions of instances of foaf:Person

defined in Linked Data.

Authoritative Relation Next, we need to establish a relationship between RDF
sources and the set of RDF terms they speak authoritatively for. In the Linked
Data setting, we can establish this authoritative relation by directly using the
notion of dereferencing.

Definition 11 (Authoritative sources for terms). We denote a mapping
from a source URI to the set of terms it speaks authoritatively for as follows:

auth : S→ 2C

s 7→ {c ∈ U | redirs(c) = s} ∪
(
terms(get(s)) ∩ B

)
A source is thus authoritative for all URIs that dereference to it and all blank
nodes it mentions. This formalises, for example, the intuitive relationship that
exists between the FOAF ontology and the set of terms in the foaf:* namespace
that dereference to it.29 No document is considered authoritative for literals,
though this has little effect on the reasoning process.

29 The source URI will often not share the namespace of the URIs it is authoritative
for since redirects (esp. PURLS) are commonly used for dereferencing schemes.



Authoritative reasoning is applied over a Linked Dataset as given in Defini-
tion 1, which tracks the source associated with each RDF graph. Furthermore,
the algorithm requires knowledge about redirects to establish the authoritative
function. In practice, these data are replicated locally for the reasoning engine
to access; the reasoner does not perform live lookups.

Authoritative Reasoning The primary goal of the authoritative reasoning process
is to safe-guard widely used vocabularies from redefinition in arbitrary locations.
Precise definitions and guarantees for authoritative reasoning are given elsewhere
in [38, 12]. Here sketching the main intuition, given an ontology O providing a
set of T-Box axioms and G an arbitrary RDF graph (e.g., a Web document
or a merge of documents), if G does not mention any term for which O is
authoritative, and O is not an implicit import of such a document, then we do
not want the T-Box axioms provided by O to affect materialisation over G.

Thus, for example, if G instantiates vocabulary terms from the FOAF ontol-
ogy but not from the DBpedia ontology, then the T-Box extracted from DBpedia
should not affect inferencing over the A-Box of G. The implicit imports of the
FOAF ontology can, however, affect inferencing over the T-Box of G, even if their
terms are not explicitly mentioned. For example, the FOAF ontology states that
foaf:Person is a sub-class of geo:SpatialThing; if G contains instances of
foaf:Person, they will be inferred to be instances of geo:SpatialThing and it
will then be the prerogative of the corresponding WGS84 Geo Ontology to define
what inferences are possible over the latter class, even though the corresponding
class is not explicitly referenced by G.

Whether or not a T-Box axiom is considered authoritative then directly de-
pends on the rules being applied in the reasoning process. In fact, a T-Box axiom
may be authoritative with respect to one rule and not another.

Example 9
Take the following T-Box triple from Fig. 1:
dbo:Person owl:equivalentClass foaf:Person .

This triple is given by the document that dbo:Person dereferences to. If
we then take OWL 2 RL/RDF rule cax-eqc1 mentioned in Example 8:

(?X, a, ?C2)← (?C1, owl:equivalentClass, ?C2) , (?X, a, ?C1)

the T-Box triple is authoritative for this rule since it translates data about
dbo:Person instances into foaf:Person instances.
Now, if we take the same T-Box triple but instead take OWL 2 RL/RDF
rule cax-eqc2:

(?X, a, ?C1)← (?C1, owl:equivalentClass, ?C2) , (?X, a, ?C2)

the T-Box triple is no longer authoritative since it translates instance data
about foaf:Person into dbo:Person instances, and as justified before, we
do not want the DBpedia ontology document to be able to affect inferences



over (FOAF) data that do not contain any DBpedia terms for which the
document is authoritative. ♦

Thus, we see that T-Box axioms are only authoritative with respect to the
rule(set) under consideration. When applying rules over the data, we can then
apply a relatively straightforward (and slightly stricter) condition to ensure that
the T-Box axiom matched in the body of the rule will lead to an authoritative
inference. Recall that the document serving the T-Box axiom should be authori-
tative for at least one term mentioned in the A-Box being reasoned over. We thus
look at the terms bound to variables that appear in both the T-Box and A-Box
part of the rule body. For a given rule application, if the document providing
the T-Box axiom is authoritative for at least one such term, we deem the rule
application to be authoritative; otherwise we consider it to be non-authoritative.

Example 10
From the previous example, if we look at rule cax-eqc1, the only variable
common to the T-Box and A-Box segments of the rule body is ?C1. Taking
the given T-Box axiom, ?C1 is bound to dbo:Person for which the T-Box
source is authoritative. Hence, for any triple of the form (?X, a, dbo:Person)
in our A-Box data, we can authoritatively infer the corresponding triple of
the form (?X, a, foaf:Person).
Instead taking rule cax-eqc2, the only variable common to the T-Box and
A-Box segments of the rule body is ?C2. For the given T-Box axiom, ?C2 is
bound to foaf:Person for which the DBpedia ontology is not authoritative.
Hence, for any A-Box triple of the form (?X, a, foaf:Person) in our data,
authoritative reasoning will block the inference of (?X, a, dbo:Person) (unless
the T-Box axiom is also given in the FOAF ontology, which in reality it is
not). ♦

If a rule contains only T-Box or only A-Box patterns in its body, authori-
tative reasoning does not block the inferences. Any inferences from T-Box level
reasoning are assigned to the context of the source from which all of the premises
originate; if a T-Box level inference involves premises from multiple documents,
it is not considered to have any fixed source and can never be authoritative.30

Standard Authoritative reasoning does not affect rules consisting of only A-
Box patterns, which includes rules that provide owl:sameAs entailments over
instances (see Table 3).

30 In any case, informally, we can conjecture that terminology-specific reasoning in rule-
sets such as OWL 2 RL/RDF is (often) redundant with respect to assertional infer-
encing applied recursively; for example, performing the transitive closure of sub-class
relations is only necessary to infer sub-class relations, where recursive application of
cax-sco will infer all assertions without it.



Implementation and Scalability Unlike the Context-Dependent reasoning algo-
rithm, Authoritative reasoning does not partition the problem of reasoning into
small contexts. Instead, Authoritative reasoning requires applying inference over
the entire dataset in “one go”. Thus, the methods of inference applied must scale
to the entire dataset (and not just individual contexts). We implement such
methods in the Scalable Authoritative OWL Reasoner (SAOR) [41], designed to
apply lightweight OWL reasoning over large collections of diverse Linked Data.
The reasoning process is divided into two distinct phases, as follows:

Compute T-Box The T-Box is extracted from the main body of data and
axioms are analysed for authoritativeness with respect to the given ruleset.
If required, T-Box level reasoning is applied.

Reason over A-Box The A-Box is reasoned over with respect to the global
authoritative T-Box built in the previous phase.

In terms of scalability, when dealing with large collections of Linked Data, we
observe that the T-Box is generally quite small (e.g., typically < 0.1% of the total
triple count [41]) and is frequently accessed during the reasoning process; hence
we load the T-Box into memory such that it can be accessed efficiently. Further-
more, a variety of papers have demonstrated that splitting the T-Box from the
main body of data allows for effective distributed computation of materialised
inferences [71, 68, 41, 67], where (similar to Context-Dependent reasoning) the
T-Box is replicated to each machine performing inference. Indeed, if the ruleset
does not contain any rules with more than one A-Box pattern in the body (as
is the case for, e.g., the RDFS inference rules [cf. Table 3] and for rules cax-sco,
cax-eqc1 and cax-eqc2 introduced previously in the examples), then this form
of distributed materialisation can reason over the A-Box in an embarrassingly
parallel fashion for any arbitrary distributed partitioning of the A-Box data.
Rules with multiple A-Box patterns in the body require joins over the very large
A-Box (typically between machines), and in many cases, such rules can produce
huge volumes of materialisations; for example, transitive-property reasoning is
quadratic with respect to the extension of that property in the A-Box.

An important practical question then is how much is lost by not consider-
ing rules that have multiple A-Box patterns in the body? In Table 5, the AL

profile lists the features that can be supporting using “A-Linear rules”: rules
with only one assertional pattern [41]. In SAOR, we implement A-Linear OWL
2 RL/RDF rules: the intersection of AL and RL. One of the most prominent fea-
tures we lose is the ability to reason over owl:sameAs relations; both to infer
such relations through, e.g., functional properties and inverse-functional proper-
ties, and to support the semantics of equality as per the rules in Table 3 (only
eq-sym is A-Linear).

In terms of completeness with respect to standard bottom-up rule-evaluation
(i.e., without any distinction between T-Box or A-Box), the main limitation of
considering a separate static T-Box while reasoning over the A-Box is that it
can lead to incompleteness if new T-Box triples are found while reasoning over
the A-Box [41] (these triples will not be reflected in the T-Box). Inference of



T-Box triples during A-Box reasoning can occur due to non-standard use of the
core RDFS or OWL vocabulary (see Section 3). Workarounds for this problem
are possible: for example to recursively identify and reason over non-standard
triples in a pre-processing step, etc. However, non-standard use of the RDF(S)
and OWL vocabulary is not found often in Linked Data, with notable exceptions
being, e.g., the RDFS axiomatic triples and the documents dereferenced by the
RDF, RDFS and OWL terms themselves.

In the SAOR system, following previous papers [71, 68], we also perform
A-Box reasoning in a distributed setting. We have evaluated the applicability
of SAOR over 1 billion Linked Data triples taken from 4 million Linked Data
documents. Using a variety of optimisations for our A-Linear profile of OWL 2
RL/RDF, on a cluster of nine machines with 4GB of RAM and 2.2 GHz single-
core processors, we computed 1 billion unique and authoritative inferences in
about 3.5 hours [41], roughly doubling the input size. Without considering the
authority of inferences, we estimated that the volume of materialisation would
increase by 55×, even for the lightweight reasoning profile being considered [12].

5.3 Comparison and Open Issues

Meeting the Challenges Tackling C1 (scalability) in the list of challenges enumer-
ated in Section 3, both Context-Dependent reasoning and Authoritative reason-
ing use distributed computing and partitioning techniques and various rule-based
optimisations to enable high levels of scale.

Tackling C2 (impure and fallible OWL), both approaches analyse the source
of input axioms and apply cautious materialisation, where incompleteness with
respect to standard OWL profiles is thus a feature, not a “bug”.31 Both ap-
proaches can use rule-based inferencing to support an incomplete RDF-Based
semantics, which does not require input graphs to conform to OWL 2 DL re-
strictions enforced by OWL’s Direct Semantics.

Regarding C3 (inconsistencies), both approaches use monotonic rule-based
reasoning techniques that do not reduce the deductive reasoning process to un-
satisfiability checking, and thus do not fall into “ex falso quod libet”. Inconsis-
tencies can be ignored. However, in the case of SAOR, we have also looked at
resolving the contradictions presented by inconsistencies: we investigated using
an annotated logic program framework to rank assertions under a PageRank
model, where the marginal assertion in a contradiction is defeated [12].

With respect to C4 (dynamic Linked Data), Context-Dependent reasoning
allows entailments to be updated on a context-by-context basis, where changes
to the ontology base can also be efficiently supported (see [17]); Authoritative
reasoning does not directly support incremental updates, where truth mainte-
nance techniques would be required. (The following section presents an approach
that better handles reasoning and querying over Linked Data in highly dynamic
scenarios.)

31 Importantly, a non-standard version of completeness can be rigorously defined in
both cases. See, e.g., [41] for details in the SAOR case.



With respect to C5 (more than RDFS/OWL required), both approaches gen-
eralise to the application of arbitrary rule-based reasoning, where the Context-
Dependent framework – a means to manage contexts – generalises further to any
form of deductive (or even inductive) reasoning process, as required.

Comparison of Both Approaches In terms of the differences between both ap-
proaches, the Context-Dependent approach is designed to run over small con-
texts, typically involving one “assertional” document and its recursive ontology
imports. Although the framework can handle aggregate contexts, the larger these
aggregate contexts become, the closer Context-Dependent reasoning resembles
the näıve case of standard reasoning over a monolithic graph. Thus, Context-
Dependent reasoning is not well-suited to deriving entailments across assertional
documents. The T-Box generated during Authoritative reasoning can be used to
cautiously derive entailments across assertional documents (effectively reflecting
a common consensus for a T-Box across all contexts); however, in practice, to
achieve scalability, the A-Linear profile disables such inferences.

Conversely, Context-Dependent reasoning trusts all axioms in a local context,
whereas Authoritative reasoning does not. In other words, Context-Dependent
reasoning allows non-authoritative reasoning within contexts, which Authorita-
tive reasoning never allows. With reference to Example 9, if a document imports
the DBpedia ontology involved, Context-Dependent reasoning will permit trans-
lating foaf:Person instances into dbo:Person instances, whereas Authoritative
reasoning will not.

Support for same-as? A primary limitation common to both approaches is the
inability to effectively reason over owl:sameAs relations. Context-Dependent rea-
soning can only process such relations with a single context, which will miss the
bulk of equivalence relations between assertional documents. In theory, Author-
itative reasoning can support owl:sameAs inferences, but for scalability reasons,
rules with A-Box joins are disabled in the SAOR implementation. However, in
other more focussed works, we have looked at specialised methods for authori-
tative reasoning of owl:sameAs relations in a Linked Data setting [42].

Indeed, owl:sameAs can produce huge volumes of inferences: in previous
work [42], we found 33,052 equivalent terms within a single (correct) owl:sameAs
clique, which would require 33, 0522 = 1, 092, 434, 704 triples just to materi-
alise the pair-wise and reflexive owl:sameAs relations between terms in this one
group, even before applying any of the eq-rep-* rules for replacement. Given the
importance of owl:sameAs reasoning for aligning entities in Linked Data, the
potential expense of such reasoning, and given that equivalence relations cannot
be universally trusted on the Web [29], a number of works have tackled this is-
sue with specialised techniques and optimisations [42, 44, 67]. For example, most
systems supporting owl:sameAs reasoning at large scale use a single canonical
identifier to represent each set of equivalent identifiers, avoiding the explosion
of data that could otherwise occur [39, 42, 67, 11]. In previous work, we applied
authoritative reasoning to compute owl:sameAs relations from functional and
inverse-functional properties and cardinality restrictions [42].



Interestingly, Hu et al. [42] investigate a notion of authority for owl:sameAs
inferencing, assigning a level of trust to such a relation based on whether the
given document is authoritative for the subject or object or both of a same-as
relation (here applying authority on an A-Box level). In any case, we note that
owl:sameAs is an important reasoning feature in the context of Linked Data,
but similarly requires specialised techniques – that go beyond a generic reasoning
framework – to handle effectively in scalable, real-world settings.

6 Enriching Link-traversal based Querying of Linked
Data by Reasoning

As discussed previously, data-warehousing approaches – such as those introduced
in the previous section – are not well suited for reasoning and querying over
highly dynamic Linked Data. Content replicated in local indexes will quickly
become out-of-date with respect to the current version of the respective sources
on the Web. However, we referred in the introduction to the vision of the Web of
Data itself as being a giant database spanning the Web, where certain types of
queries can be posed and executed directly over the sources it contains. Such an
approach for executing SPARQL queries directly over the Web of Data – called
Link Traversal Based Query Execution (LTBQE) – was first proposed by Hartig
et al. [33] (§ 6.1). However, the original approach did not offer any reasoning
capabilities; indeed, no existing reasoning approaches at the time would seem
suitable for such a scenario.

In this section, we first describe the LTBQE algorithm (a comprehensive
study of the semantics and computability of LTBQE has been covered in [32]),
complete with formal definitions and illustrative examples, motivate why RDF-
S/OWL reasoning is useful in such a setting, and then discuss methods we have
ourselves since proposed to support such reasoning features.

6.1 Overview of Baseline LTBQE

Given a SPARQL query, the core operation of LTBQE is to identify and retrieve
a focused set of query-relevant RDF documents from the Web of Data from
which answers can be extracted. The approach begins by dereferencing URIs
found in the query itself. The documents that are returned are parsed, and
triples matching patterns of the query are processed; the URIs in these triples
are also dereferenced to look for further information, and so forth. The process
is recursive up to a fixpoint wherein no new query-relevant sources are found.
New answers for the query can be computed on-the-fly as new sources arrive. We
now formally define the key notion of query-relevant documents in the context
of LTBQE, and give an indication as to how these documents are derived. 32

32 This is similar in principle to the generic notion of reachability introduced previ-
ously [34, 32], but relies here on concrete HTTP specific operations.



Definition 12 (Query Relevant Sources & Answers). First let uris(µ) :=
{u ∈ U | ∃v s.t. (v, u) ∈ µ} denote the set of URIs in a solution mapping µ.
Given a query Q and an intermediate dataset Γ , we define the function qrel,
which extracts from Γ a set of URIs that can (potentially) be dereferenced to
find further sources deemed relevant for Q:

qrel(Q,Γ ) :=
⋃
tp∈Q

⋃
µ∈[[{tp}]]Γ

uris(µ)

To begin the recursive process of finding query-relevant sources, LTBQE takes
URIs in the query—denoted with UQ := terms(Q)∩U—as “seeds”, and builds an

initial dataset by dereferencing these URIs: ΓQ0 := derefs(UQ). Thereafter, for
i ∈ N, define:33

ΓQi+1 := derefs
(
qrel(Q,ΓQi )

)
∪ ΓQi

The set of LTBQE query relevant sources for Q is given as the least n such
that ΓQn = ΓQn+1, denoted simply ΓQ. The set of LTBQE query answers for Q
is given as [[Q]]ΓQ , or simply denoted bbQcc.

Example 11
We illustrate this core concept of LTBQE query-relevant sources with a
simple example based on Fig. 2. Let us consider our example Query 3.
First, the process extracts all raw query URIs:

UQ = {nyt:4958--, nytimes:latest use, owl:sameAs, dbo:revenueUSD}

and the engine dereferences these URIs. Second, LTBQE looks to extract
additional query relevant URIs by seeing if any query patterns are matched
in the current dataset. LTBQE repeats the above process until no new
sources are found. When no other query-relevant URIs are found, a fix-
point is reached and the process terminates with the results given over the
retrieved “query-relevant documents”. ♦

6.2 (In)completeness of LTBQE

An open question is the decidability of collecting query-relevant sources: does
it always terminate? This is dependent on whether one considers the Web of
Data to be infinite or finite. For an infinite Web of Data, this process is indeed
undecidable [32]. To illustrate this case, Hartig [32] uses the example of a Linked
Data server describing all natural numbers34, where each n ∈ N is given a deref-

33 In practice, URIs need only be dereferenced once; i.e., only URIs in qrel(Q,ΓQ
i ) \

(qrel(Q,ΓQ
i−1) ∪ UQ) need be dereferenced at each stage.

34 Such a server has been made available by Vrandeč́ıc et al. [70], but unfortunately
stops just shy of a billion. See, e.g., http://km.aifb.kit.edu/projects/numbers/
web/n42.



erenceable URI, each n has a link to n + 1 with the predicate ex:next, and a
query with the pattern “?n ex:next ?np1 .” is given. In this case, the traver-
sal of query-relevant sources will span the set of all natural numbers. However,
if the (potential) Web of Data is finite, then LTBQE is decidable; in theory, it
will terminate after processing all sources. The question of whether the Web (of
Data) is infinite or not comes down to whether the set of URIs is infinite or not:
though they may be infinite in theory [8] (individual URIs have no upper bound
for length), they are finite in practice (machines can only process URIs up to
some fixed length).35

Of course, this is a somewhat academic distinction. In practice, the Web of
Data is sufficiently large that LTBQE may end up traversing an infeasibly large
number of documents before terminating. A simple worst case would be a query
with an “open pattern” consisting of three variables.

Example 12
The following query asks for data on the founders of dbr:SAP AG:
SELECT ?s ?p ?o WHERE {

dbr:SAP_AG dbo:foundedBy ?s .

?s ?p ?o .

}

The first query-relevant sources will be identified as the documents deref-
erenced from dbr:SAP AG and dbo:foundedBy. Thereafter, all triples in
these documents will match the open pattern, and thus all URIs in these
documents will be considered as potential query-relevant links. This will
continue recursively, crawling the entire Web of Data. Of course, this prob-
lem does not occur only for open patterns. One could also consider the
following query which asks for the friends of the founders of dbr:SAP AG:

SELECT ?o WHERE {

dbr:SAP_AG dbo:foundedBy ?s .

?s foaf:knows ?o .

}

This would end up crawling the connected Web of FOAF documents, as
are linked together by dereferenceable foaf:knows links. ♦

Partly addressing this problem, Hartig et al. [33] defined an iterator-based
execution model for LTBQE, which rather approximates the answers provided
by Definition 12. This execution model defines an ordering of triple patterns in
the query, similar to standard nested-loop join evaluation. The most selective
patterns (those expected to return the fewest bindings) are executed first and
initial bindings are propagated to bindings further up the tree. Crucially, later

35 It is not clear if URIs are (theoretically) finite strings. If so, they are countable [32].



triple patterns are partially bound when looking for query-relevant sources. Thus,
taking the previous example, the pattern “?s foaf:knows ?o .” will never be
used to find query-relevant sources, but rather partially-bound patterns like
“dbr:Werner Von Siemens foaf:knows ?o .” will be used. As such, instead
of retrieving all possible query-relevant sources, the iterator-based execution
model uses interim results to apply a more focused traversal of the Web of Data.
This also makes the iterator-based implementation order-dependent: results may
vary depending on which patterns are executed first and thus answers may be
missed. However, it does solve the problem of traversing too many sources when
low-selectivity patterns are present in the query.

Whether defined in an order-dependent or order-independent fashion, LT-
BQE will often not return complete answers with respect to the Web of Data [32].
We now enumerate some of the potential reasons LTBQE can miss answers.

Example 13
No dereferenceable query URIs: The LTBQE approach cannot return re-
sults in cases where the query does not contain dereferenceable URIs. For
example, consider posing the following query against Fig. 2:
SELECT ?s ?p WHERE {

?s ?p nytimes:nytd_org .

}

As previously explained, the URI nytimes:nytd org is not dereferenceable
(deref(nytimes:nytd org) = ∅) and thus, the query processor cannot com-
pute and select relevant sources from interim results. ♦

Example 14
Unconnected query-relevant documents: Similar to the previous case of
reachability, the number of results might be affected if query relevant doc-
uments cannot be reached. This is the case if answers are “connected” by
literals, blank-nodes or non-dereferenceable URIs. In such situations, the
query engine cannot discover and dereference further query relevant data.
The following query illustrates such a case:
SELECT ?comp ?name WHERE {

dbr:SAP_AG foaf:name ?name .

?comp skos:prefLabel ?name .

}

Answers (other than dbr:SAP AG) cannot be reached from the starting URI
dbr:SAP AG because the relevant documents are connected together by the
literal "SAP AG", which cannot be traversed as a HTTP link. ♦



Example 15
Dereferencing partial information: In the general case, the effectiveness
of LTBQE is heavily dependent on the amount of data returned by the
deref(u) function. In an ideal case, dereferencing a URI u would return all
triples mentioning u on the Web of Data. However, this is not always the
case; for example:

SELECT ?s WHERE {

?s owl:sameAs dbr:SAP_AG .

}

This quite simple query cannot be answered by link-traversal techniques
since the triple “nyt:75293219995342479362 owl:sameAs dbr:SAP AG

.” is not accessible by dereferencing dbr:SAP AG or owl:sameAs. ♦

The assumption that all RDF available on the Web of Data about a URI u
can be collected by dereferencing u is clearly idealised; hence, later in Section 6.4
we will empirically analyse how much the assumption holds in practice, giving
insights into the potential recall of LTBQE on an infrastructural level.

6.3 LiDaQ: Extending LTBQE with Reasoning

Partly addressing some of the shortcomings of the LTBQE approach in terms of
completeness (or, perhaps more fittingly, recall), Hartig et al. [33] proposed an
extension of the set of query relevant sources to consider rdfs:seeAlso links,
which sometimes overcomes the issue of URIs not being dereferenceable (as per
nytimes:nytd org in our example).

On top of this extension, we previously proposed a system called “LiDaQ”
that extends the baseline LTBQE approach with components that leverage
lightweight RDFS and owl:sameAs reasoning in order to improve recall. Formal
definitions of the extensions we propose are available in our paper describing
LiDaQ [66]. Here we rather sketch our proposals and provide intuitive examples.

Considering owl:sameAs links and inferences First, we propose following
owl:sameAs links, which, in a Linked Data environment, are used to state that
more information about the given resource can be found elsewhere under the
target URI. Thus, to fully leverage owl:sameAs information, we first propose
to follow relevant owl:sameAs links when gathering query-relevant sources and
subsequently apply owl:sameAs reasoning, which supports the semantics of re-
placement for equality, meaning that information about equivalent resources is
mapped to all available identifiers and made available for query answering. We
illustrate the need for such an extension with the following example:



Example 16
Consider the following query asking for the revenue(s) of the company
identified by the URI nyt:75293219995342479362.
SELECT ?rev WHERE {

nyt:75293219995342479362 dbo:revenueEUR ?rev .

}

When applying this query over the data in Fig. 2, the owl:sameAs rela-
tionship between nyt:75293219995342479362 and dbr:SAP AG states that
both URIs are equivalent and referring to the same real world entity, and
hence that the information for one applies to the other. Hence, the revenue
associated with dbr:SAP AG should be returned as an answer according to
OWL semantics. However, the baseline LTBQE approach will not return
any answers since such equality relations are not considered. In summary,
to answer this query, LTBQE must be extended to follow owl:sameAs links
and apply reasoning to materialise inferences with respect to the semantics
of replacement. ♦

To return answers for such examples, LTBQE needs to be extended to follow
owl:sameAs links and apply reasoning. Thus, the set of query-relevant sources is
extended to also consider documents dereferenced by looking up URIs that are
equivalent to query-relevant URIs (such as dbr:SAP AG in the previous example)
and subsequently applying the Same-As subset of OWL 2 RL/RDF rules given
in Table 3 over the merge of data, which performs replacement for equivalent
terms related through owl:sameAs.

Considering RDFS inferences Second, we can extend LTBQE to consider
some lightweight RDFS reasoning, which takes schema-level information from
pertinent vocabularies and ontologies that describe the semantics of class and
property terms used in the query-relevant data and uses it to infer new knowl-
edge. We motivate the need for RDFS reasoning with another straightforward
example:

Example 17
Consider the following query asking for the label(s) of the company identi-
fied by the URI dbr:IBM.
SELECT ?label WHERE {

dbr:IBM rdfs:label ?label .

}

When applying this query over the data in Fig. 2, baseline LTBQE will
return the answer “IBM”. However, from the schema data (right-hand side
of the example), we can see that the foaf:name property is defined in
RDFS as a sub-property of rdfs:label. Hence, under RDFS semantics,
we should also get “International Business Machines Corporation”



as an additional answer. As such, considering RDFS inferencing can help
find more answers under the LTBQE approach. ♦

Thus we can extend LTBQE to apply further reasoning and generate more
answers. Although our LiDaQ proposal only considers the RDFS rules enumer-
ated in Table 3, the approach can be generalised to other more comprehensive
rule-sets, such as OWL 2 RL/RDF.

As a first step, we must make (RDF) schema data available to the query
engine, where we propose three mechanisms:

1. a static collection of schema data are made available as input to the engine
(e.g., the schema data from Fig. 2 are made available offline to the engine);

2. the properties and classes mentioned in the query-relevant sources are deref-
erenced to dynamically build a direct collection of schema data (e.g., since
mentioned in the dbr:IBM query-relevant document, foaf:name is derefer-
enced to get the schema data at runtime); and

3. the direct collection of dynamic schema data is expanded by recursively
following links on a schema level (e.g., not only is foaf:name dereferenced,
but rdfs:label is also recursively dereferenced from that document).

The first approach follows the proposals for Authoritative reasoning laid out
in the previous section, whereas the latter two approaches follow a “live” ver-
sion of proposals for Context-Dependent reasoning, where the second mechanism
includes direct implicit imports and the third mechanism includes recursive im-
plicit imports (as argued in that section, since owl:imports is quite rare within
a Linked Data setting, we omit its support for brevity).

Using the schema data collected by one of these methods, in the second step,
we apply rule-based RDFS reasoning to materialise inferences and make them
available for query-answering. Thus we can achieve the types of answers missing
from the example.

6.4 Benefit of LTBQE Reasoning Extensions

Taken together, the two proposed reasoning extensions for LTBQE allow any
client with a Web connection to answer queries, such as given in Example 4, and
retrieve a full set of answers fresh from the original sources, potentially spanning
multiple domains. The client does not need to index the sources in question.

With respect to generalising the benefits of reasoning, we now briefly sum-
marise results of an empirical study we conducted to examine how LTBQE and
its extensions can be expected to perform in practice; details can be found in [66].
The study took a large crawl of the Web of Data (the BTC’11 corpus) as a sample
and surveyed the ratio of all triples mentioning a URI in our corpus against those
returned in the dereferenceable document of that URI; this is done for different
triple positions. In addition, the study also looks at the comparative amount of
raw data about individual resources considering (1) explicit, dereferenceable in-
formation; (2) including rdfs:seeAlso links [33]; (3) including owl:sameAs links
and inferences; (4) including RDFS inferences with respect to a static schema.



The study reports that, in the general case, LTBQE works best when a
subject URI is provided in a query-pattern, works adequately when only (non-
class) object URIs are provided, but works poorly when it must rely on property
URIs bound to the predicate position or class URIs bound to the object position.
Furthermore, we found that rdfs:seeAlso links are not so common (found
in 2% of cases) and do not significantly extend the raw data made available
to LTBQE for query-answering. Conversely, owl:sameAs links are a bit more
common (found in 16% of cases) and can increase the raw data made available
for answering queries significantly (2.5×). Furthermore, RDFS reasoning often
(81% of the time) increases the amount of available raw data by a significant
amount (1.8×).

We also tested the effect of these extensions for running queries live over
Linked Data. We generated a large set of queries intended to be answerable us-
ing LTBQE by means of random walks across dereferenceable URIs available
in our crawl. We then enabled and disabled the various configurations of the
extensions proposed and ran the queries live over Linked Data sources on the
Web. Summarising the results, we found that adding reasoning support to LT-
BQE allows for finding additional answers when directly querying Linked Data,
but also introduces significant overhead. In particular, proposals to dynamically
traverse implicit imports at runtime generate a huge overhead. Our conclusions
were that reasoning was possible in such a setting, but is only practicable for
simple queries involving few documents. Again, an excellent example of the type
of query well-supported by such an approach is Query 3′ listed earlier.

7 Extending Query Rewriting Techniques by Attribute
Equations for Linked Data

In this section, we are getting back to challenge C5 from the Introduction, that
is, the claim that Linked Data needs more than RDFS and OWL. To justify this
position, we return to our running example.

Example 18
We already pointed to the example of Query 1 from p. 11, where it may be
considered quite unintuitive that IBM’s revenue is not returned. Given the
exchange rate between EUR and USD (1 EUR = 1.30 USD as of 25 March,
2013), the value for dbo:revenueEUR should be computable from a value
for dbo:revenueUSD and vice versa. In general, many numerical properties
are related, not by rdfs:subPropertyOf relations or anything expressible
in RDFS/OWL, but rather by the simple mathematical equations such as,
for instance:

revenueUSD = revenueEUR ∗ 1.3 (1)

profitEUR = revenueEUR− totalExpensesEUR (2)



♦

While such equations are not expressible in RDFS or OWL itself, lots of
emerging Linked Data is composed of interdependent numerical properties as-
signed to resources. Lots of implicit information would be expressible in the form
of such simple mathematical equations modelling these interdependencies. These
dependencies include simple conversions, e.g., between currencies as in (1), or
functional dependencies between multiple properties, such as exemplified in (2).

In this section we present an approach to extend RDFS and OWL by so-
called attribute equations as part of the terminological knowledge in order to
enable inclusion of additional numerical knowledge in the reasoning processes for
integrating Linked Data. While an exhaustive discussion of the idea of attribute
equations in all depth is beyond the scope of this paper, we refer the interested
reader to [10] for more details.

7.1 Extending ontologies by attribute equations

Attribute equations in [10] allow a very restricted form of simple numerical
equations in multiple variables as follows.

Definition 13. Let {x1, . . . , xn} be a set of variables. A simple equation E is
an algebraic equation of the form x1 = f(x2, . . . , xn) such that f(x2, . . . , xn)
is an arithmetic expression over numerical constants and variables x2, . . . , xn
where f uses the elementary algebraic operators +, −, ·, ÷ and contains each xi
exactly once. vars(E) is the set of variables {x1, . . . , xn} appearing in E.

That is, we allow non-polynomials for f – since divisions are permitted
– but do not allow exponents (different from ±1) for any variable; the idea
here is that such equations can be solved uniquely for each xi by only ap-
plying elementary transformations, assuming that all xj for j 6= i are known:
i.e., for each xi, such that 2 ≤ i ≤ n, an equivalent equation E′ of the form
xi = f ′(x1, . . . , xi−1, xi+1, . . . , xn) is uniquely determined. Note that since each
variable occurs only once and standard procedure for solving single variable
equations can be used, we write solve(x1 = f(x2, . . . , xn), xi) to denote E′.36

In order to enable semantic support within OWL and RDFS for such sim-
ple equations where attribute URIs will be used as variable names, we need
a syntactic representation. To this end, in addition to DL axioms encoded in
the rdfs: and owl: vocabularies, we propose a new property (e.g., extending
the rdfs: vocabulary) rdfs:definedByEquation to encode so called equation
axioms. That is, we extend axioms as in Table 1 as follows:

Here, P1, . . . , Pn are URIs of numerical properties (which we also call at-
tributes); we write the respective arithmetic expressions f(P1, . . . , Pn) as plain

36 ... with analogy to notation used by computer algebra systems (such as Mathemat-
ica, cf. http://www.wolfram.com/mathematica/, or Maxima, cf. http://maxima.

sourceforge.net).



Table 7. Mapping equation axioms to RDF

DL RDFS

P0 = f(P1, . . . , Pn) P0 rdfs:definedByEquation “f(P1,. . . ,Pn)”

literals in this terse encoding (instead of, e.g., breaking down the arithmetic
expressions into RDF triples).

Example 19
The RDF encodings of (1) and (2) are
dbo:revenueUSD rdfs:definedByEquation "dbo:revenueEUR * 1.3" .

dbo:profitEUR rdfs:definedByEquation

"dbo:revenueEUR - dbo:totalExpensesEUR" .

♦

As mentioned before in the context of Definition 13, we consider equations
that result from just applying elementary transformations as equivalent. In order
to define the semantics of equation axioms accordingly, we will make use of the
following definition.

Definition 14. Let E : P0 = f(P1, . . . , Pn) be an equation axiom then, for any
Pi with 0 ≤ i ≤ n we call the equation axiom solve(E,Pi) the Pi−variant of E.

As for the details on the formal semantics of attribute equations we refer
the reader again to [10] and directly jump to two potential ways to implement
reasoning and querying with such equations.

In principle, there are the same two potential ways to implement reasoning
with property equations as already discussed in the context of RDFS and OWL
in Section 2.4: rule-based inference and query rewriting. As we will see, the main
problem in the context of attribute equations is that both of these approaches,
when extended straightforwardly, would potentially not terminate. In the fol-
lowing, we present both of these implementation approaches and discuss their
pros and cons.

7.2 Implementing Attribute Equations within Rules

Many rule-based approaches such as SWRL [43] offer additional support for
mathematical built-ins.

Example 20
Using SWRL, (1) could be encoded as follows:



(?X, dbo:revenueUSD, ?USD) ← (?X, dbo:revenueEUR, ?EUR), ?USD =?EUR ∗ 1.3 (3)

(?X, dbo:profitEUR, ?PEUR) ← (?X, dbo:revenueEUR, ?REUR),

(?X, dbo:totalExpensesEUR, ?TEUR), (4)

?PEUR =?REUR−?TEUR

♦

However, note that rules as exemplified above are not sufficient: (i) rule (3)
is in the “wrong direction” for inferring additional results necessary for Query
1, that is, we would need different variants of the rule for converting from EUR
to USD and vice versa; (ii) the above rules are not DL safe (i.e., we want to
go beyond binding values only to explicitly named individuals where we also
want to compute new values) which potentially leads to termination problems
in rule-based approaches (and it actually does in existing systems).

Problem (i) could be solved in some cases by simply adding additional rules
for each variant of each equation axiom, but the extended ruleset will, in turn,
often give rise to Problem (ii), as shown.

Example 21
For the previous example, we can add more SWRL rules as follows:

(?X, dbo:revenueEUR, ?EUR) ← (?X, dbo:revenueUSD, ?USD), (5)

?EUR =?USD/1.3

(?X, dbo:revenueEUR, ?REUR)← (?X, dbo:profitEUR, ?PEUR),

(?X, dbo:totalExpensesEUR, ?TEUR), (6)

?REUR =?PEUR+?TEUR

(?X, dbo:totalExpensesEUR, ?TEUR) ← (?X, dbo:revenueEUR, ?REUR),

(?X, dbo:profitEUR, ?PEUR), (7)

?TEUR =?REUR−?PEUR

However, here problem (ii) comes into play, as it is easy to see that these
rules potentially produce infinite results, which we leave as an exercise to
the reader. As a hint, consider the following example data:

:company1 dbo:profitEUR 1;

dbo:revenueEUR 1;

dbo:totalExpensesEUR 1;

Obviously, this data is not coherent with the equation, in the sense that
it is ambiguous and a rule-engine that tries to compute the closure would
not terminate (such example could occur in reality due to, e.g., rounding
errors). ♦

Certain rule engines provide special built-ins to avoid running into non-
termination problems as exemplified above. For instance, Jena provides a special
built-in noValue, which returns sound but incomplete results whereby it only fires



a rule if no value exists for a certain attribute on the inferences thus far or in
the data – not unlike negation-as-failure.

Example 22
Using the noValue built-in, rule (4) (and analogously the other rule vari-
ants) could be encoded in Jena’s rule syntax as follows:

[ (?X dbo:revenueEUR ?REUR) (?X dbo:totalExpensesEUR ?TEUR)

difference(?REUR, ?TEUR, ?PEUR) noValue(?X, dbo:profitEUR)

-> (?X dbo:profitEUR ?PEUR)]

Values for ?PEUR will only be computed from the given equations if no such
value for dbo:profitEUR already exists on the resource bound to ?X. ♦

7.3 Implementing Attribute Equations by Query Rewriting

An alternative implementation approach for reasoning with attribute equations
(which according to initial experiments in [10] seems to work better than rules-
based materialisation) is based on query rewriting – essentially extending Algo-
rithm 1 from p. 16.

The idea here is that the expansion step in line 8 of Algorithm 1 is extended
to also work with equation axioms as per Table 7. That is, informally, we extend
the expansion function gr(g, i) from Table 2 as follows:

g i gr(g/i)

(x, P0, y) P0 =;f(P1, . . . , Pn) (x, P1, ?VP1),. . . ,(x, Pn, ?VPn), A = f(?VP1 , . . . , ?VPn)

where we consider any equation axiom that has a P0-variant. Similar to the
rule-based approach, special care has to be taken such that equation axioms are
not expanded infinitely; to this end, a simple blocking condition in the variant
of Algorithm 1 presented in [10] avoids that the same equation axiom is used
twice to compute the same value.

Example 23
To illustrate the approach, let us take a variation of Query 1 as an example,
which only asks for the revenues of organisations, i.e., the SPARQL Query:
SELECT ?X ?R

WHERE { ?X a dbo:Organisation; dbo:revenueEUR ?R . }

We start with its formulation as a conjunctive query

q(?X, ?R)←(?X, a, dbo:Organisation), (?X, dbo:revenueEUR, ?R) (8)

which is expanded as follows:



q(?X, ?R)←(?X, a, dbo:Organisation), (?X, dbo:revenueEUR, ?R) (9)

q(?X, ?R)←(?X, a, dbo:Company), (?X, dbo:revenueEUR, ?R) (10)

q(?X, ?R)←(?X, a, dbo:Organisation), (?X, dbo:revenueUSD, ?VrevenueUSD), (11)

?R =?VrevenueUSD/1.3

q(?X, ?R)←(?X, a, dbo:Company), (?X, dbo:revenueUSD, ?VrevenueUSD), (12)

?R =?VrevenueUSD/1.3

♦

We note that translation back to SPARQL is not as straightforward here as
it was without attribute equations, due to the fact that, as opposed to UCQs
over only RDF triple predicates, we now are dealing with UCQs that also involve
equality predicates and arithmetic operations such as ?R =?VrevenueUSD/1.3 in
(11) and (12). Unions are again (like in Example 3) translated back to UNION
patterns in SPARQL, whereas equalities in query bodies are translated – depend-
ing on whether the left-hand side of these equalities is a variable or a constant
– to either a BIND pattern37, or a FILTER pattern.

Example 24
Following the previous example, this rewritten SPARQL 1.1 query will
return the revenues of all three companies in our example data in EUR:
SELECT ?X ?R

WHERE { { ?X a dbo:Organisation; dbo:revenueEUR ?R .}

UNION { ?X a dbo:Company; dbo:revenueEUR ?R .}

UNION { ?X a dbo:Organisation; dbo:revenueUSD ?V_revenueUSD .

BIND ( ?V_revenueUSD / 1.3 AS ?R ) }

UNION { ?X a dbo:Company; dbo:revenueUSD ?V_revenueUSD .

BIND ( ?V_revenueUSD / 1.3 AS ?R ) } }

♦

What we would like to emphasise here then, is that RDFS and OWL may not
be enough for the reasoning requirements of Linked Data, where we show how
(and why), e.g., numerical data can also be axiomatised for reasoning.

8 Summary

In this lecture we have illustrated particular challenges, opportunities and obsta-
cles for applying OWL and RDFS reasoning in the context of querying Linked
Data. We discussed the use of the RDFS and OWL standards in the area of
Linked Data publishing, showing the degree to which individual features have

37 BIND patterns are a new feature in SPARQL1.1 to assign values from an expression
to a variable, see [30].



been adopted on the Web. Though our results fall well short of indicating univer-
sal adoption, encouragingly, we find that many “lightweight” features of OWL
and in particular RDFS have been widely adopted. We also provided practical
examples as to how these RDFS and OWL axioms embedded in Linked Data
can help for querying diverse sources, and how reasoning can thus help to further
realise the vision of the Web of Data as one giant database.

However, while reasoning helps to obtain additional useful results in many
cases, caution is required and specifically tailored reasoning algorithms need
to be applied. In Sections 5–6 we have presented such tailored reasoning ap-
proaches and discussed their pros and cons; none of these approaches provides
a panacea for reasoning “in the wild”, the right approach depends a lot on the
use case, particularly on the datasets considered and the query at hand. Still,
the presented approaches have demonstrated that lightweight reasoning in di-
verse Linked Data setting is not only useful, but possible in practice, despite the
enumerated challenges relating to scale, fallible data, inconsistencies, etc.

On the other hand, for modelling certain integration scenarios in Linked
Data, we have shown that OWL and RDFS alone do not suffice to model a
lot of implicit information and have briefly discussed attribute equations as an
extension of OWL; given the increasing amount of published numerical data in
RDF on the emerging Web of data, we believe that this topic deserves increased
attention within the Semantic Web reasoning community. Generalising, though
we have shown RDFS and OWL reasoning to be useful for querying Linked
Data, these standards only provide a basis – not a solution – for capturing the
semantics of Linked Data and still fall far short of that required to properly
realise the vision of the Web of Data as a global, integrated database.
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