
Debugging non-ground ASP programs with Choice
Rules, Cardinality and Weight Constraints

Axel Polleres1, Melanie Frühstück1, Gottfried Schenner1, and
Gerhard Friedrich2

1 Siemens AG Österreich, Siemensstraße 90, 1210 Vienna, Austria
2 Alpen-Adria Universität, Klagenfurt, Austria

Abstract. When deploying Answer Set Programming (ASP) in an industrial
context, for instance for (re-)configuration [5], knowledge engineers need debug-
ging support on non-ground programs. Current approaches to ASP debugging,
however, do not cover extended modeling features of ASP, such as choice rules,
conditional literals, cardinality and weight constraints [13]. To this end, we en-
code non-ground ASP programs using extended modeling features into normal
logic progams; this encoding extends existing encodings for the case of ground
programs [4,10,11] to the non-ground case. We subsequently deploy this transla-
tion on top of an existing ASP debugging approach for non-ground normal logic
programs [14]. We have implemented and tested the approach and provide eval-
uation results.

1 Introduction

Answer Set Programming (ASP), with its intuitive and declarative modeling features –
offering the possibility to model knowledge base constraints concisely in the form of
non-ground programs plus advanced modeling feature such as choice rules, cardinality
constraints and weight constraints [13] – has become an attractive tool for knowledge
engineers also in an industrial context. For instance, within the RECONCILE project3

we deploy ASP for modeling and solving configuration and (re-)configuration prob-
lems [5] occurring in practical settings such as in large-scale projects in the railway
automation domain.

While in such a context the advanced features in Answer Set Programming (ASP)
significantly increase the declarative modeling capabilities of the language, debugging
tools that support the full language of ASP are still missing: most approaches for de-
bugging are only able to deal with propositional programs [1, 2, 9, 16, 18], with the
exception of Oetsch et al. [14], who developed a meta-program for debugging normal
logic programs. Still, this latter approach does not support debugging in the presence of
features such as choice rules, cardinality constraints and weight constraints.

Notably, as shown in earlier works, these language constructs do not raise expressiv-
ity beyond normal logic programs: Ferraris and Lifschitz [4] have shown how weight
constraints can be encoded as nested expressions, while Janhunen and Niemelä [11]

3 https://www.cee.siemens.com/web/at/de/corporate/portal/
Innovation/InnovationStories/Pages/Reconcile.aspx

provide a translation of choice rules, cardinality and weight constraints into normal
logic programs. In one step of the translation process they show how to transform
SMODELS programs to normal programs. Another representation of the translation
of choice and cardinality rules to normal logic programs can be found in [10]; their
approach is based on [11] introducing more intermediate steps in the translation.

However, all the above mentioned literature focus on propositional ASP programs.
In this paper we describe a transformation of non-ground choice rules, as well as car-
dinality and weight constraints with conditions into non-ground logic programs. Our
proposal is mainly based on the structure of rules of Gebser and Schaub [10]. Even-
tually, we show how to deploy this non-ground embedding for debugging programs
using advanced ASP features: based on the non-ground debugging approach by Oetsch
et al. [14] for normal logic programs, after applying our translation process, ASP de-
bugging also becomes feasible for programs using more advanced ASP features.

We first introduce the ASP language used herein in Section 2. Then, we extend
the translation of [10] to the non-ground case (Section 3). We present an evaluation of
this translation, comparing our non-ground embedding to the propositional embedding
from [11] in Section 4. Finally, in Section 5 we illustrate how our translation can be
embedded into the debugging approach of [14], before we conclude in Section 6.

2 Preliminaries

Syntax A literal is an atom that is possibly preceded by the strong negation symbol ¬.
We define a normal (non-ground) rule r as

h(xh)← Body(XBody). (1)

where h(xh) defines the head of the rule, i.e. a literal including its vector of parameters
xh (variables and constants).4 The body of a rule Body(XBody) = Body+(XBody) ∪
Body−(XBody−) consists of Body+(XBody), the set of all positive body literals, and
Body−(XBody−), a set of default-negated body literals (i.e. literals preceded by not).
XBody denotes the set of all variables occurring in body literals; note that since we
assume safety all these variables also occur in positive body literals, i.e. more precisely:
a rule r of the form (1) is called safe if Xh ⊆ XBody and XBody− ⊆ XBody; if the
head is omitted then r is called a constraint; if the body is empty then r is called a fact.

Additionally to normal rules of the form (1), we consider programs expanded with
choice rules and cardinality rules, as for instance supported by Potsdam Answer set
Solving Collection (Potassco) [7]. Choice rules have the form

{h1(xh1) : Cond(Yh1), . . . , hn(xhn) : Cond(Yhn)} ← Body(XBody). (2)

4 As usual, we denote variables by upper case letters and constants by alphanumeric strings
starting with a lower case letter. We further denote mixed vectors of constants and variables
by overlined lower case letters (such as x) whereas, accordingly, we denote the correspond-
ing vector of all variables occurring in x by X (preserving order) and by X we denote the
respective corresponding (unordered) set of variables.

where hi(xhi
) : Cond(Yhi

) is called a conditional literal. The condition Cond(Yhi
)

consists of positive literals (with variables in Yhi
) separated by further colons, read as

a conjunction, and can be possibly empty.5
Further, cardinality constraints l{h1(xh1) : Cond(Yh1), . . . , hn(xhn) : Cond(Yhn)}u

where l, u are either numeric constants or variables representing lower and upper bounds
are allowed in rule heads and bodies, i.e. w.l.o.g. in rules of the following forms:

h(xh)← l{b1(xb1) : Cond(Yb1), . . . , bn(xbn) : Cond(Ybn)}u,Body(XBody). (3)

h(xh)← not l{b1(xb1) : Cond(Yb1), . . . , bn(xbn) : Cond(Ybn)}u,Body(XBody). (4)

l{h1(xh1) : Cond(Yh1), . . . , hn(xhn) : Cond(Yhn)}u← Body(XBody). (5)

We call a set P of safe rules of the forms (1)–(5) a program: here, we extend the
standard notion of safety for rules of the form (1) to rules (2)–(5) as follows: a condi-
tional literal hi(xhi

) : Cond(Yhi
) within a rule r is safe if for all 1 ≤ i ≤ n it holds

that Xhi ⊆ XBody ∪ Yhi . Accordingly, rules of the forms (2)–(5) are safe if (i) they
are safe in the standard sense (see above), (ii) all conditional literals are safe, and (iii)
bounds l, u are either constants or variables from XBody.6

Semantics The Herbrand universe HUP of a program P is the set of all constants
appearing in P and the Herbrand base HBP is the set of all ground atoms constructed
by predicate symbols in P using constants from HUP .7

As usual in ASP, we define the semantics of a program P in terms of its grounding;
the grounding of a rule r, ground(r), is defined by the set of ground rules obtained from
(i) taking the set of all its ground instantiations, and (ii) replacing each conditional literal
hi(xhi) : Cond(Yhi) (within a choice or a cardinality constraint) with the set of all
possible ground conditional literals obtained from substituting variables with constants
from HUP . Accordingly, we call ground(P) =

⋃
r∈P ground(r), the grounding of

program P . Note that this procedure covers the two-step instantiation described in [17]:
i.e. what they call “global” variables are replaced through step (i) and “local” variables
during the expansion in step (ii).

An interpretation I ⊆ HBP satisfies a ground literal b, written I |= b, if b ∈
I . Analogously, I |= b for a ground cardinality constraint b = l{h1 : c1,1 : ... :
c1,m1

, . . . , hn : cn,1 : ... : cn,mn
}u, if

l ≤| {hi | {hi, ci,1, ..., ci,mi} ⊆ I} |≤ u

5 For simplicity we only consider positive conditional literals and conditions herein; tools of
Potassco also allow default negation within conditional literals which we leave to future work.
In our formal definitions we also exclude built-ins in conditions (which we allow though in
our implementation, cf. Section 5).

6 Note that we leave out the form where cardinality constraints can be used to assign val-
ues to unsafe variables; tools of Potassco also allow cardinality constraints of the form
X = {h1(xh1) : Cond(Yh1), . . . , hn(xhn) : Cond(Yhn)} which assign the cardinality
to an (unsafe) variable; we leave this extension to future work.

7 Note that we assume no “overloading”, i.e. each predicate symbol has a fixed arity. This re-
striction, which is not made in current ASP tools (like those of Potassco), can be easily lifted in
a preprocessing step where you replace predicate names occurring in different arities with new
unique predicate names per arity, e.g. p(X), p(X,Y) become p/2(X,Y), p/1(X), or alike.

Next, we define the reduct rI of a rule r wrt. I ⊆ HBP as a set of rules as follows
– if r : h← Body is a ground rule where h is a literal, then

rI =
{
{h← Body+} if there is no not b ∈ Body− with I |= b.
∅ otherwise

– if r : {h1 : c1,1 : ... : c1,m1
, . . . , hn : cn,1 : ... : cn,mn

} ← Body is a ground
choice rule, then rI is a set containing, for each hi ∈ I ∩ {h1, ..., hn}, the rule

rIhi
=

{
hi ← ci,1, ..., ci,mi , Body+ if there is no not b ∈ Body− with I |= b.
∅ otherwise

Any consistent interpretation I , such that I is a (subset-)minimal model of P I =⋃
r∈P rI is called an answer set; likewise, answer sets for a non-ground program P

are defined as the answer sets of ground(P).
As in [17], we view rules of the form (5) as syntactic sugar not treated separately in

the semantics; we will get back to these in the next section.
As a further extension, weighted conditional literals which assign a weight wi (ei-

ther a numeric constant or a safe variable, cf. footnote 6) to a conditional literal are
allowed in so called weight constraints of the form

l[h1(xh1) : Cond(Yh1) = w1, . . . , hn(xhn) : Cond(Yhn) = wn]u (6)

These distinguish from cardinality constraints in that values are summed in a multi-set
semantics, i.e. weights wi, wj of satisfying ground instances for each conditional literal
i and j count separately even if hi = hj , i.e. when replacing cardinality constraints
within rules of the forms (3)–(5) with their weighted counterparts, the upper and lower
bounds mean to indicate bounds for sums of weights of satisfied instances, rather than
counting distinct instances. The semantics of weight constraints extends the semantics
for cardinality constraints straightforwardly, formal details of which we omit here for
space limitations.

3 Translation to Normal Rules

We translate rules of forms (2)–(5) successively to normal rules in several steps.
Step 1. We first consider choice rules of the form (2). A choice rule can be translated
into following rules:

h1(xh1)← Body(XBody), Cond(Yh1), not h
′
r,1(xh1).

h′r,1(xh1)← Body(XBody), Cond(Yh1), not h1(xh1).

. . . (7)

hn(xhn)← Body(XBody), Cond(Yhn), not h
′
r,n(xhn).

h′r,n(xhn)← Body(XBody), Cond(Yhn), not hn(xhn).

where the h′r,i are new predicate symbols, unique to the rule r they appear in (to avoid
interferences between the translations of several choice rules).
Step 2. Next, we reduce any rules with cardinality constraints to the form of (3), that
is, we rewrite rules of the forms (4)+(5) in such a way that cardinality constraints only
appear positively in rule bodies: a cardinality rule r of the form (5) is replaced by

(i) its unconstrained variant, i.e. the translation (according to Step 1) of the choice rule
obtained by removing upper and lower bounds l and u; and

(ii) the following pair of rules (where, cr is a “fresh” predicate symbol):

cr(XBody)← l{h1(xh1) : Cond(Yh1), ..., hn(xhn) : Cond(Yhn)}u,Body(XBody). (8)

← not cr(XBody), Body(XBody). (9)

Similarly, cardinality rules of the form (4) are replaced by the pair of rules

cr(XBody)← l{b1(xb1) : Cond(Yb1), ..., bn(xbn) : Cond(Ybn)}u,Body(XBody). (10)

h(xh)← not cr(XBody), Body(XBody). (11)

Step 3. Finally, cardinality rules of the form (3) – including those of the forms (8)+(10)
obtained in the previous step – are translated as follows.
(i) First, we translate the body cardinality constraint to a variant with only lower

bounds as follows

h(xh)← lr(XBody), not ur(XBody), Body(XBody). (12)

lr(XBody)← l{b1(xb1) : Cond(Yb1), ..., bn(xbn) : Cond(Ybn)}, Body(XBody). (13)

ur(XBody)← u+ 1{b1(xb1) : Cond(Yb1), ..., bn(xbn) : Cond(Ybn)}, Body(XBody). (14)

where lr, ur are new predicate symbols. Note that Body(XBody) in rule (12) is
not strictly necessary when both a lower and an upper bound are given, but, since
both lr(XBody) and not ur(XBody) are optional in this rule, it is necessary to
guarentee safety in the absence of the latter. Likewise, rule (13) (and (14), resp.) is
only needed in case a lower (or upper, resp.) bound is given.

(ii) Next, we translate rules with a body cardinality constraint with only lower bounds,
i.e. rules of the form

h(xh)← l{b1(xb1) : Cond(Yb1), . . . , bn(xbn) : Cond(Ybn)}, Body(XBody). (15)

are translated to

h(xh)← cntr(XBody, C), Body(XBody), C ≥ l. (16)

The definition of the new predicate cntr is given as follows. We assume a built-in
predicate “<” defining a total, lexical order for pairs of constants in HUP . Further,
for sequence xbi , let xbi

′ denote the sequence obtained from replacing each variable x
occurring in xbi by a fresh variable x′. Lastly, let x∪r,i = (xbi , XBody), i.e. the concate-

nation of the two vectors xbi and XBody and x∪r,i
′
= (xbi

′, XBody).

We now define the predicate cntr by the following auxiliary rules, for each i ∈ {1, . . . , n}

valr,bi(x
∪
r,i)← bi(xbi), Cond(Ybi), Body(XBody). (17)

existsr,bi(XBody)← Body(XBody), valr,bi(x
∪
r,i). (18)

exists<r,bi(x
∪
r,i)← valr,bi(x

∪
r,i), valr,bi(x

∪
r,i

′
), xbi

′ <|xbi
| xbi . (19)

exists>r,bi(x
∪
r,i)← valr,bi(x

∪
r,i), valr,bi(x

∪
r,i

′
), xbi <|xbi

| xbi
′. (20)

nextr,bi(x
∪
r,i, x

∪
r,i

′
)← valr,bi(x

∪
r,i), valr,bi(x

∪
r,i

′
), xbi <|xbi

| xbi
′, (21)

not betweenr,bi(x
∪
r,i, x

∪
r,i

′
).

betweenr,bi(x
∪
r,i, x

∪
r,i

′′
)← valr,bi(x

∪
r,i), valr,bi(x

∪
r,i

′
), valr,bi(x

∪
r,i

′′
), (22)

xbi <|xbi
| xbi

′, xbi
′ <|xbi

| xbi
′′.

cntr,bi(x
∪
r,i, 1)← valr,bi(x

∪
r,i), not exists

<
r,bi

(x∪r,i). (23)

cntr,bi(x
∪
r,i

′
, N + 1)← nextr,bi(x

∪
r,i, x

∪
r,i

′
), cntr,bi(x

∪
r,i, N). (24)

cnt′r,bi(XBody, N)← cntr,bi(x
∪
r,i, N), not exists>r,bi(x

∪
r,i) (25)

cnt′r,bi(XBody, 0)← Body(XBody), not existsr,bi(XBody). (26)

where <n is an auxiliary predicate of arity 2n which determines whether the first of
two vectors of the same length n is lexicographically smaller than the latter. For n > 0,
the predicate <n can be easily defined recursively over the built-in predicate “<” in the
rules (27)+(28) as follows:

(X1, ..., Xk) <k (Y1, ..., Yk) ← X1 < Y1. ∀1 ≤ k ≤ n (27)

(X1, X2, ..., Xk) <k (X1, Y2, ..., Yk) ← (X2, ..., Xk) <k−1 (Y2, ..., Yk). ∀1 < k ≤ n (28)

Rule (17) “collects” all possible bindings (“values”) for variables that make a particu-
lar conditional atom bi true, dependent on a particular body instantiation. The auxiliary
rule (18) determines whether a value exists at all for a particular body instantiation; ex-
istence of a smaller, or greater, resp., than a prticular value is computed in the auxiliary
rules (19)+(20). Rules (21) and (22) define a total order over values, defining a suc-
cessor predicate (next) via the auxiliary information that no value lies in between two
consecutive values. The cntr,bi predicate then counts all the instantiations that belong
to a particular conditional atom bi, cf. rules (23)+(24). Rule (25) collects, for each bi
and body instantiation, the maximum count in the auxiliary predicates cnt′r,bi , where
rule (26) sets this predicate to 0, in case no actual value exists for the conditional atom
bi. Finally, cntr is defined by the following rule which simply sums up all the maximum
counts for the respective bi’s.

cntr(XBody, N)← cnt′r,b1(XBody, N1), ..., cnt
′
r,bm(XBody, Nm), N=N1+...+Nm. (29)

where {b1, . . . , bm} is the set of distinct predicate names occurring in {b1, . . . , bn}.

Proposition 1. The answer sets of a program P and its translation obtained from Steps
1-3 outlined above are in 1-to-1 correspondence.

While we omit a full proof, we argue that the translation steps outlined above “em-
ulate” semantics as described in Section 2 on non-ground programs, when assuming
that HUP contains apart from explicitly mentioned constants, integers from 0 to a

finitely computable upper bound for instantiating and evaluating N in rules (24),(25),
and (29) correctly; state-of-the-art ASP solvers like Potassco deal with such arithmetics
appropriately out-of-the-box, which is our main concern when deploying the translation
within our debugging use case (cf. Section 5 below).

As a possible optimization, which reduces the number and size of non-ground rules,
note that it is possible to equivalently replace rules (19)–(25) with the following rules

cntr,bi(x
∪
r,i, 1)← valr,bi(x

∪
r,i). (23’)

cntr,bi(x
∪
r,i

′
, N + 1)← valr,bi(x

∪
r,i

′
), xbi <|Xbi

| xbi
′, cntr,bi(x

∪
r,i, N). (24’)

cnt′r,bi(XBody, N)← cntr,bi(x
∪
r,i, N), not nmaxr,bi(XBody, N). (25’)

nmaxr,bi(XBody, N − 1)← cntr,bi(x
∪
r,i, N). (25”)

The idea behind this optimization is that, despite getting potentially various derivations
for each N per body instance in rules (23’)+(24’), there is only one unique maximum
N derived per body instance, cf. rule (25’), which is the only relevant fact for rule (29),
and in consequence for rule (16). Here, the new auxiliary rule (25”) is needed to assess
that a certain value N is not the maximum count.

Taking this further, the instances of <|Xbi
| above can be replaced by a custom com-

parison predicate smallerr,bi for each conditional atom bi. Let ki denote the arity of
bi, then smallerr,bi is defined by the following set of rules:

smallerr,bi(X1, . . . , Xki , Y1, . . . , Yki) ← X1 < Y1,

valr,bi(X1, . . . , Xki , XBody), valr,bi(Y1, . . . , Yki , XBody).

smallerr,bi(X1, X2, . . . , Xki , X1, Y2, . . . , Yki) ← X2 < Y2,

valr,bi(X1, X2, . . . , Xki , XBody), valr,bi(X1, Y2, . . . , Yki , XBody). (30)

...

smallerr,bi(X1, . . . , Xki , X1, . . . , Xki−1, Yki) ← Xki < Yki ,

valr,bi(X1, . . . , Xki , XBody), valr,bi(X1, . . . , Xki−1, Yki , XBody).

The idea of this definition is that the smallerr,bi predicate really only compares val-
ues relevant for the particular bi, instead of defining a generic smaller relation between
any tuples in HUn

P , which potentially narrows down the size of the grounding.

3.1 Extending the translation by weights

So far, we have only treated “pure” cardinality constraints, involving only conditional
atoms with the default weight 1. It is not hard to extend the translation above to arbitrary
weight constraints involving weighted conditional literals of the form (6). Firstly, we
redefine x∪r,i as follows

x∪r,i = (xbi , XBody, wi)

i.e. we carry over weights as an additional parameter in our auxiliary predicates. Apart
from this change, rules (17)–(22) are modified with respect to the predicate names

valr,bi , existsr,bi , exists
<
r,bi

, exists>r,bi , nextr,bi , and betweenr,bi which are now re-
placed with valr,i, firstr,i, existsr,i, exists<r,i, exists

>
r,i, nextr,i, and betweenr,i,

respectively. I.e. values are no longer collected “per predicate” bi, but separately for
each weighted conditional literal at position 1 ≤ i ≤ n, in order to cater for the multi-
set semantics of weight constraints. Secondly, we need to replace the counting rules
(23)–(26) and (29) by rules that do summation instead; we use, in analogy to the cnt
and cnt′ predicates from above a new predicates sum and sum′ here:

sumr,i(x∪r,i, wi)← valr,i(x∪r,i), not exists
<
r,i(x

∪
r,i). (31)

sumr,i(x∪r,i,W + wi)← nextr,i(x∪r,i
′
, x∪r,i), sumr,i(x∪r,i

′
,W). (32)

sum′r,i(XBody,W)← sumr,i(x∪r,i,W), not exists>r,i(x
∪
r,i). (33)

sum′r,i(x
∪,0
r,i , 0)← Body(XBody), not existsr,i(XBody). (34)

sumr(XBody,W)← sum′r,1(XBody,W1), ..., sum
′
r,n(XBody,Wn), (35)

W = W1 + ...+Wn.

Similar to the predicates cnt and cnt′ before, the unique total sum value over all
values is collected in the sum′r,i predicates for each i, whereas the sumr,i predicates
collect the respective intermediate sums. Note that, due to negative weights, sums are
not necessarily monotonically increasing over all values; this prevents, on the one hand,
the same optimization as for cnt (cf. rules (23’)+(25”)) to be applied in the case of
weight constraints. On the other hand, the resulting encoding can – assuming that re-
spective arithmetic is supported – deal with negative weights out-of-the-box, i.e. nega-
tive weights do not need to be eliminated as in [13].

Finally, rule (16) is analogously replaced by

h(Xh)← sumr(XBody,W), Body(XBody),W ≥ l. (36)

4 Evaluation

Obviously, the additional machinery added in our translation comes at a cost. In order
to evaluate how much it affects program size and performance in state of the art solvers,
we chose some benchmark problems from the second Answer Set Programming Com-
petition [3] involving cardinality constraints and choices: we took 8 different instances
for graph colouring, knight tour, hanoi and partner units.

For grounding and solving we used gringo (v. 3.0.5) and clasp (v. 2.1.1) from
Potassco. Results are reported in Table 1: each column reports size of the non-ground
program (#ng), size of the program after grounding (#g), and evaluation time (t) in
seconds (including grounding, translation and solving). We report results for grounding
and evaluating the original program (orig), our naı̈ve translation (tr), the optimized
translation (tropt) using rules (23’)–(30). Additionally, as a reference, we compare our
results to first grounding the original program and then applying a ground transfor-
mation trlp2normal to normal programs, using the tool lp2normal by Janhunen and
Niemelä [11].

Table 1. Total times (in seconds).

Program Instance∗ orig tr tropt trlp2normal

#ng/#g/t #ng/#g/t #ng/#g/t #ng/#g/t
Graph 1− 125 1672/6903/1.11 1690/23753/20.48 1687/20503/2.02 1672/10235/0.2
Colouring 11− 130 1757/7243/ > 900 1775/22778/ > 900 1772/19653/ > 900 1757/9780/ > 900

21− 135 1986/8087/ > 900 2004/25232/ > 900 2001/21857/ > 900 1986/11194/ > 900
30− 135 1794/7415/14.24 1812/24560/24.71 1809/21185/4.51 1794/10522/13.44
31− 140 2039/8315/419.13 2057/26095/ > 900 2054/22595/ > 900 2039/11537/283.05
40− 140 2219/8945/ > 900 2237/26725/ > 900 2234/23225/ > 900 2219/12167/ > 900
41− 145 2262/9138/ > 900 2280/27553/ > 900 2277/23928/ > 900 2262/12475/ > 900
51− 150 2405/9681/ > 900 2423/28731/ > 900 2420/24981/ > 900 2405/13133/ > 900

Knight 01− 8 21/1852/0 61/23078/0.45 55/17794/0.2 21/5043/0.01
Tour 03− 12 22/4526/0.01 62/68044/6.34 56/50975/1.08 22/13386/0.04

05− 16 21/8388/0.03 61/136810/44.62 55/101314/5.01 21/25822/0.08
06− 20 21/13432/0.05 61/229346/232.84 55/168760/15.46 21/42233/0.12
07− 30 21/31222/0.14 61/564694/ > 900 55/412272/181.31 21/100752/0.43
08− 40 21/56412/0.34 61/1048642/ > 900 55/762774/758.63 21/184230/0.85
09− 46 21/75078/0.42 61/1410338/ > 900 55/1024440/ > 900 21/246336/1.23
10− 50 22/89000/0.88 62/1681185/ > 900 56/1220267/ > 900 22/292706/1.58

Hanoi 09− 28 104/37323/1.56 168/3279898/ > 900 156/1745347/51.24 104/52445/4.39
11− 30 106/40041/13.62 170/3514328/ > 900 158/1870177/51.42 106/56243/5.74
15− 34 110/45477/51.56 174/3983116/ > 900 162/2119757/441.48 110/63839/31.71
16− 40 100/31886/1.56 164/2811325/ > 900 152/1496006/19.15 100/44848/2.07
22− 60 102/33314/0.82 166/3175997/633.51 154/1683463/26.99 102/46472/1.37
36− 80 106/40041/1.19 170/3514364/600.88 158/1870217/30.89 106/56243/1.11
41− 100 104/37322/0.48 168/3279933/321.64 156/1745386/22.45 104/52444/0.98
47− 120 99/30527/1.9 163/2694686/845.48 151/1434231/16.28 99/42949/0.75

Partner 176− 24 68/13213/0.61 146/162007/40.98 131/102667/7.1 68/19347/1.07
Units 29− 40 108/61777/0.13 186/1068887/ > 900 171/631427/ > 900 108/79679/6.98

23− 30 117/40332/0.13 195/451513/ > 900 180/277733/8.51 117/51127/0.49
207− 58 136/162537/0.61 214/4857458/ > 900 199/2730134/ > 900 136/203258/1.48
204− 67 141/223931/1.54 219/7672436/ > 900 204/4285390/ > 900 141/276403/1.86
175− 75 290/689087/20.78 368/15446057/ > 900 353/8611453/ > 900 290/762711/27.44
52− 100 254/963749/ > 900 332/36843565/ > 900 317/20137215/ > 900 254/1082289/ > 900
115− 100 254/963806/ > 900 332/37214669/ > 900 317/20328419/ > 900 254/1082942/ > 900

∗) For the instance naming convention, please refer to http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml.

As expected, the results in Table 1 show that the time that evaluation time rises
significantly, which is mainly due to a blowup during grounding. There are certain ex-
ceptions, as in our selection one particular graph colouring example where our opti-
mized encoding even outperforms all others. Solving the instances with pre-grounding
the original program and using lp2normal on the ground instantiated program shows
better results, however we couldn’t use this approach in our use case of debugging,
described in the next section.

5 Debugging with Ouroboros

In our project, we deploy ASP programs for encoding (re-)configuration problems [5],
where debugging of the resulting (non-ground) programs became a significant issue
in practical use cases. We base our debugger on the approach of Oetsch et al. [14],
who developed a meta-program for debugging non-ground programs in ASP. The basic
idea of this debugging method is to reify a program P as well as the fully expected
interpretation I . Reification means that the program and interpretation are brought onto
a meta-level. Finally, the meta program and meta interpretation are fed to an ASP solver.
The obtained answer sets explain why I is not an answer set of P .

There are two main explanation classes why an interpretation I is not answer set of
P . First, some atoms of the interpretation can form an unfounded loop. A non-empty set
L of ground literals is a loop of P iff for each pair (a, b) ∈ L there is a path from a to b
in the positive dependency graph. The length of the path from a to b can be equal to or
greater than 0. Additionally, let I, J be interpretations. J is supported by P wrt. I if the
grounding of P contains some rule r whose body is satisfied by I and some head atoms
of r are included in J , but all head atoms of r that are not included in J are false under
I . Moreover, this support is ensured to be external, that means without any reference to
the set J itself [14]. If J is not externally supported by P wrt. I , J is called unfounded
by P with respect to I . In particular, if there is a loop in P that is contained in I but
this loop is not externally supported (unfounded) by P with respect to I then I is not an
answer set and the debugger program returns the unfounded (sub)set of I . The second
type of explanation are unsatisfied rules, that means that instantiations of rules in P are
not satisfied by I , in this case the debugger returns the (non-ground) unsatisfied rule(s).

The original meta-program debugger was written for DLV System [12] and can han-
dle non-ground (even disjunctive) logic programs, integer arithmetic (+, ∗), comparison
predicates (=, 6=,≤, <,≥, >) and strong negation. We made some minor adaptions to
use Potassco, which we deployed throughout our project, where we do not need disjunc-
tion but make heavy use of other extended constructs such as choices, cardinality and
weight constraints: As a first step, we transformed the meta-program in such a way that
the usage of Potassco system [8] for debugging was facilitated. Debugging of programs
containing choices, cardinality and weight constraints was enabled straightforwardly
by (i) applying our presented translation from Section 3 above to the input, whereas we
translate back debugging results from the meta-program, such that they refer back to
the original rules with choices and cardinality constraints, whenever a rule occurring
from our translation is identified as “buggy”. Minor additional adaptions of the meta-
program included support for extended integer arithmetic (e.g. to support use of − in
rule (25”)). To support the debugging process including the translation of cardinality
constraints, we extended the SeaLion Eclipse plugin [15] (an integrated development
environment (IDE) for Answer Set Programming) by the Ouroboros plugin8. Our ex-
tended Ouroboros plugin can handle rules with cardinality constraints (and has not
yet implemented the translation of weight constraints).

The plugin, including the new transformed and extended meta-program debugger
based on [14], can be found at https://mmdasp.svn.sourceforge.net/svnroot/
mmdasp/sealion/trunk/org.mmdasp.sealion.ouroboros/ . To illustrate a sim-
ple debugging scenario consider the following example from constraint-based configu-
ration. ASP programmer Lilian wants to assign each thing to exactly one cabinet with
the constraint that there should not be more than two things in one cabinet. Her program,
P1, looks as follows:

thing(th1). thing(th2). thing(th3).
cabinet(c1). cabinet(c2). cabinet(c3).
1 {cabinetToThing(X, Y) : cabinet(X)} 1 :- thing(Y).
:- 2 {cabinetToThing(X, Y) : thing(Y)}, cabinet(X).

8 Details on the Ouroboros plugin can be found in a companion system description [6].

Executing P1, Lilian gets six answer sets. However, she wonders why there are only
answer sets where in each of them one cabinet has exactly one thing. Normally, there
should be answer sets where e.g. cabinet c2 has two things. So she decides to save the
following interpretation – I1 – as facts, where she replaced cabinetToThing(c3,
th2) with cabinetToThing(c2, th2) to check why it is not an answer set:

thing(th1). thing(th2). thing(th3).
cabinet(c1). cabinet(c2). cabinet(c3).
cabinetToThing(c1, th3).
cabinetToThing(c2, th1).
cabinetToThing(c2, th2).

Now she creates a debug configuration and selects the program file as well as the
adapted interpretation file and chooses the explanation type Unsatisfiability. After de-
bugging the explanation says Guessed rule: :- 2 {cabinetToThing(X, Y) : thing(Y)}, cab-
inet(X). Indeed, investigation of this rule reveals that the lower bound was set wrongly
and should be 3 instead of 2.

In the background of this debugging process, the following happens: Let us denote
the set of rules containing cardinality constraints or choices from a given program P
as Pcc = {rcc1 , . . . , rccn}. Moreover, let tr(rcci) be the translation of a resp. rule rcci
according to Section 3. In our case, the two cardinality constraint rules of P1,cc are
translated as follows:

cabinetTOthing(X, Y) :- thing(Y), cabinet(X), not -cabinetTOthing(X, Y).
-cabinetTOthing(X, Y) :- thing(Y), cabinet(X), not cabinetTOthing(X, Y).
:- not lowerUpperOK_1(Y), thing(Y).
lowerUpperOK_1(Y) :- not upper_1(Y), lower_1(Y), thing(Y).
lower_1(Y) :- cnt_1(Y, CounterC), CounterC >= 1, thing(Y).
upper_1(Y) :- CounterC > 1, cnt_1(Y, CounterC), thing(Y).
val_1_0(X, Y, Y) :- cabinet(X), cabinetTOthing(X, Y), thing(Y).
exists_1_0(Y) :- thing(Y), val_1_0(X, Y, Y).
smaller_1_0(X, Y, X1, Y1) :- val_1_0(X, Y, YBody), val_1_0(X1, Y1, YBody), X < X1.
smaller_1_0(X, Y, X, Y1) :- val_1_0(X, Y, YBody), val_1_0(X, Y1, YBody), Y < Y1.
cnt_1_0(X, Y, YBody, 1) :- val_1_0(X, Y, YBody).
cnt_1_0(X1, Y1, YBody, Ncounter1) :- val_1_0(X1, Y1, YBody),
smaller_1_0(X, Y, X1, Y1), cnt_1_0(X, Y, YBody, Ncounter), Ncounter1 = Ncounter+1.
cntPrime_1_0(YBody, Ncounter) :- cnt_1_0(X, Y, YBody, Ncounter),
not nmax_1_0(YBody, Ncounter).
cntPrime_1_0(Y, 0) :- thing(Y), not exists_1_0(Y).
nmax_1_0(YBody, Ncounter1) :- cnt_1_0(X, Y, YBody, Ncounter), Ncounter1 = Ncounter-1.
cnt_1(YBody, Ncounter0) :- cntPrime_1_0(YBody, Ncounter0).
:- lower_2(X), cabinet(X).
lower_2(X) :- cnt_2(X, CounterC), CounterC >= 2, cabinet(X).
val_2_0(X, Y, X) :- thing(Y), cabinetTOthing(X, Y), cabinet(X).
exists_2_0(X) :- cabinet(X), val_2_0(X, Y, X).
smaller_2_0(X, Y, X1, Y1) :- val_2_0(X, Y, XBody), val_2_0(X1, Y1, XBody), X < X1.
smaller_2_0(X, Y, X, Y1) :- val_2_0(X, Y, XBody), val_2_0(X, Y1, XBody), Y < Y1.
cnt_2_0(X, Y, XBody, 1) :- val_2_0(X, Y, XBody).
cnt_2_0(X1, Y1, XBody, Ncounter1) :- val_2_0(X1, Y1, XBody),
smaller_2_0(X, Y, X1, Y1), cnt_2_0(X, Y, XBody, Ncounter), Ncounter1 = Ncounter+1.
cntPrime_2_0(XBody, Ncounter) :- cnt_2_0(X, Y, XBody, Ncounter),
not nmax_2_0(XBody, Ncounter).
cntPrime_2_0(X, 0) :- cabinet(X), not exists_2_0(X).
nmax_2_0(XBody, Ncounter1) :- cnt_2_0(X, Y, XBody, Ncounter), Ncounter1 = Ncounter-1.
cnt_2(XBody, Ncounter0) :- cntPrime_2_0(XBody, Ncounter0).

Since the debugging approach requires a complete interpretation, we first have to
extend the interpretation I given for debugging by the newly derivable auxiliary liter-
als introduced in the translation. For this purpose a distinction must be made between

satisfied and unsatisfied (wrt. I) cardinality constraints: if rcci involves a cardinality
constraint with bounds, then tr(rcci) contains an integrity constraint (either the rule is
a constraint, then see rule (8) or (10) or otherwise see rule (9)); now, if the cardinality
constraint is satisfied under the interpretation at hand, solving tr(rcci) ∪ I yields one
answer set that contains the additionally required literals. If a cardinality constraint Pi

is not satisfied under the interpretation, then solving tr(rcci) ∪ I yields no answer set
at all. In this case, the original interpretation I is used. Thus, if a cardinality constraint
is unsatisfied under I the debugger meta-program will state that rule (17) and rule (26)
are unsatisfied.

As another case, some atoms of the interpretation can also form an unfounded loop.
Let us consider Lilian’s program just with the first cardinality constraint, denoted as P2:

thing(th1). thing(th2).
cabinet(c1). cabinet(c2).
1 {cabinetTOthing(X, Y) : cabinet(X)} 1 :- thing(Y).

This program has four answer sets. However, Lilian expects to have some answer
sets something like cabinetTOthing(c3,th3), i.e. expects interpretation I2 to be
an desired answer set:

thing(th1). thing(th2).
cabinet(c1). cabinet(c2).
cabinetTOthing(c2, th1).
cabinetTOthing(c1, th2).
cabinetTOthing(c3, th3).

In this case, the debugging output explains that cabinetTOthing(c3, th3).
forms an unfounded loop. In particular, there is neither a fact thing(th3) nor a fact
cabinet(c3).

We emphasize that both these kinds of errors – wrong cardinalities, missing facts –
occurred in practice in the encodings of our practical configuration settings.

6 Conclusions

We have presented a non-ground embedding of advanced ASP constructs (choices, car-
dinality and weight constraints) into normal logic programs and demonstrated how this
embedding can be used to debug non-ground ASP programs using these constructs in
the domain of configuration. While the non-ground embedding allowed us to extend an
existing debugging approach for normal non-ground progams [15] relatively straight-
forwardly, our preliminary evaluation of the non-ground transformation shows that it
cannot compete directly with non-ground embeddings as of yet. An investigation of
further optimizations, or the possibility to use more efficient ground transformations
directly in our debugger are on our agenda for future work.

Acknowledgements. The authors would like to thank Tomi Janhunen for providing ad-
vice on how to use the tools from [11] in our evaluation and Jörg Pührer for supporting
and giving advice regarding the Ouroboros plugin. This work was funded by FFG
FIT-IT within the scope of the project RECONCILE (grant number 825071).

References

1. Martin Brain and Marina De Vos. Debugging logic programs under the answer set semantics.
In 3rd International Workshop on Answer Set Programming (ASP’05). CEUR Workshop
Proceedings (2005) 141–152, 2005.

2. R. Caballero, Y. Garca-Ruiz, and F. Senz-Prez. A theoretical framework for the declara-
tive debugging of datalog programs. In Klaus-Dieter Schewe and Bernhard Thalheim, edi-
tors, Semantics in Data and Knowledge Bases, volume 4925 of Lecture Notes in Computer
Science, pages 143–159. Springer Berlin / Heidelberg, 2008.

3. Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Mirosław
Truszczyński. The second answer set programming competition. In Esra Erdem, Fangzhen
Lin, and Torsten Schaub, editors, Logic Programming and Nonmonotonic Reasoning, vol-
ume 5753 of Lecture Notes in Computer Science, pages 637–654. Springer Berlin Heidel-
berg, 2009.

4. Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory
Pract. Log. Program., 5(1-2):45–74, 2005.

5. G. Friedrich, A. Ryabokon, A.A. Falkner, A. Haselböck, G. Schenner, and H. Schreiner.
(Re)configuration using Answer Set Programming. In IJCAI 2011 Workshop on
Configuration, pages 17–25, 2011.

6. Melanie Frühstück, Jörg Pührer, and Gerhard Friedrich. Debugging answer-set programs
with Ouroboros – extending the SeaLion plugin. In LPNMR, 2013. In this volume.

7. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Sven Thiele. A user’s guide to gringo, clasp, clingo, and iclingo, 2010.

8. Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten Schaub,
and Marius Schneider. Potassco: The potsdam answer set solving collection. AI Commun.,
24(2):107–124, April 2011.

9. Martin Gebser, Jörg Pührer, Torsten Schaub, and Hans Tompits. A meta-programming tech-
nique for debugging answer-set programs. In Proceedings of the 23rd national conference
on Artificial intelligence - Volume 1, AAAI’08, pages 448–453. AAAI Press, 2008.

10. Martin Gebser and Torsten Schaub. Answer set solving in practice, 2011. Available
online at http://www.cs.uni-potsdam.de/˜torsten/ijcai11tutorial/
asp.pdf; visited on October 18th 2012.

11. Tomi Janhunen and Ilkka Niemelä. Compact translations of non-disjunctive answer set pro-
grams to propositional clauses. In Marcello Balduccini and Tran Cao Son, editors, Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning, volume 6565 of
Lecture Notes in Computer Science, pages 111–130. Springer, 2011.

12. Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM
Trans. Comput. Logic, 7(3):499–562, July 2006.

13. Ilkka Niemelä, Patrik Simons, and Timo Soininen. Stable model semantics of weight con-
straint rules. In LPNMR, pages 317–331, 1999.

14. Johannes Oetsch, Jörg Pührer, and Hans Tompits. Catching the ouroboros: On debugging
non-ground answer-set programs. Theory Pract. Log. Program., 10(4-6):513–529, July 2010.

15. Johannes Oetsch, Jörg Pührer, and Hans Tompits. The sealion has landed: An IDE for
answer-set programming. In 25th Workshop on Logic Programming (WLP), 2011.

16. Enrico Pontelli, Tran cao Son, and Omar Elkhatib. Justifications for logic programs under
answer set semantics. Theory Pract. Log. Program., 9(1):1–56, January 2009.

17. Tommi Syrjänen. Cardinality constraint programs. In JELIA 2004, volume 3229 of Lecture
Notes in Computer Science, pages 187–199. Springer, 2004.

18. Tommi Syrjänen. Debugging inconsistent answer set programs. Proc. NMR., 6:77–83, 2006.

