From SPARQL to Rules (and back)

Axel Polleres!

1DERI Galway, National University of Ireland, Galway
axel.polleres@deri.org

World Wide Web Conference 2007

A. Polleres — From SPARQL to Rules (and back) 1/29

Outline

Rules and SPARQL
Rules for the Semantic Web

From SPARQL to (LP style) rules ...
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure

..and back
Use SPARQL as rules
Mixing data and rules

A. Polleres — From SPARQL to Rules (and back)

2/29

Rules for/on the Web: Where are we?

» Several existing systems and rules languages on top of RDF/RDFS:
» TRIPLE , N3/CWM, divhex , SWI-Prolog’s SW library

» RIF about to make those interoperable by providing a common
exchange format

A. Polleres — From SPARQL to Rules (and back) 3/29

Rules for/on the Web: Where are we?

» Several existing systems and rules languages on top of RDF/RDFS:
» TRIPLE , N3/CWM, divhex , SWI-Prolog's SW library

» RIF about to make those interoperable by providing a common
exchange format

» How to combine SPARQL with (Logic Programming style) rules
languages is unclear

» Rule languages are closely related to query languages: Datalog!
» BTW: How do we integrate with RDFS, OWL?

L
-O'< > Rules | | Ontologies (OWL) |
%
o
]

| RDFS |

RDF Core

Namespaces

A. Polleres — From SPARQL to Rules (and back) 3/29

Outline

From SPARQL to (LP style) rules ...
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure

A. Polleres — From SPARQL to Rules (and back)

4 /29

» Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalog™*)

Example: Two tables containing adressbooks
myAddr (Name, Street, City, Telephone)
yourAddr (Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"
UNION

SELECT name FROM yourAddresses

answerl(Name) :- myAddr(Name, Street, "Calgary", Tel).
answerl(Name) :- yourAddr(Name, Address).

7- answerl(Name) .
» That was easy... Now what about SPARQL?
» OPTIONAL and UNION probably cause some
trouble [Perez et al., 2006]!

«0O)>» «F»r <

it
i
i
)
0
i)

SPARQL and LP 1/2

» Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalog™°*)

A. Polleres — From SPARQL to Rules (and back) 5/29

SPARQL and LP 1/2

» Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalog™°*)

Example: Two tables containing adressbooks
myAddr (Name, Street, City, Telephone)
yourAddr (Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"
UNION
SELECT name FROM yourAddresses

A. Polleres — From SPARQL to Rules (and back) 5/29

SPARQL and LP 1/2

» Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalog™°*)

Example: Two tables containing adressbooks
myAddr (Name, Street, City, Telephone)
yourAddr (Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"
UNION
SELECT name FROM yourAddresses

answerl(Name) :- myAddr(Name, Street, "Calgary", Tel).
answerl(Name) :- yourAddr(Name, Address).

7- answerl (Name) .

A. Polleres — From SPARQL to Rules (and back) 5/29

SPARQL and LP 1/2

» Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalog™°*)

Example: Two tables containing adressbooks
myAddr (Name, Street, City, Telephone)
yourAddr (Name, Address)

SELECT name FROM myAddr WHERW City = "Calgary"
UNION
SELECT name FROM yourAddresses

answerl(Name) :- myAddr(Name, Street, "Calgary", Tel).
answerl(Name) :- yourAddr(Name, Address).

?- answerl(Name).

» That was easy... Now what about SPARQL?

» OPTIONAL and UNION probably cause some
trouble [Perez et al., 2006]!

A. Polleres — From SPARQL to Rules (and back) 5/29

SPARQL and LP 2/2

We start with Datalog with some additional assumptions:

A. Polleres — From SPARQL to Rules (and back) 6 /29

http://con.fusion.at/dlvhex/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP 2/2

We start with Datalog with some additional assumptions:
» Prolog-like syntax

A. Polleres — From SPARQL to Rules (and back) 6 /29

http://con.fusion.at/dlvhex/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP 2/2

We start with Datalog with some additional assumptions:

» Prolog-like syntax

» We assume availability of built-in predicate
rdf [URL] (S,P,0) to import RDF data.

A. Polleres — From SPARQL to Rules (and back)

6 /29

http://con.fusion.at/dlvhex/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP 2/2

We start with Datalog with some additional assumptions:

» Prolog-like syntax

» We assume availability of built-in predicate
rdf [URL] (S,P,0) to import RDF data.

» We do it by example here, find the formal stuff in the paper!

(Note: The example translations here are based on dlvhex
(http: // con. fusion. at/dlvhex/) syntax, similarly using e.g. SWI-Prolog’s rdf.db
module, see, http: //www. swi-prolog. org/packages/ semweb. html.)

A. Polleres — From SPARQL to Rules (and back) 6 /29

http://con.fusion.at/dlvhex/
http://www.swi-prolog.org/packages/semweb.html

SPARQL and LP: Basic Graph Patterns

“select persons and their names”

SELECT 7X 7Y
FROM <http://alice.org>
FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . ?X foaf:name ?Y .

A. Polleres — From SPARQL to Rules (and back)

7/29

SPARQL and LP: Basic Graph Patterns

“select persons and their names”

SELECT 7X 7Y

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . 7X foaf:name 7Y . }

triple(S,P,0,def) :- rdf["http://ex.org/bob"](S,P,0).

triple(S,P,0,def) :- rdf["http://alice.org"](S,P,0).

answerl(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),
triple(X,"foaf :name",Y,def).

?7- answerl(X,Y,def).

A. Polleres — From SPARQL to Rules (and back) 7/29

SPARQL and LP: Basic Graph Patterns

» We import all triples in a predicate triple(Subj,Pred,0Object,Graph)
which carries an additional argument for the dataset.

» For the import, we use the rdf [URL] (S,P,0) built-in.

“select persons and their names”

SELECT 7X 7Y

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { 7?X a foaf:Person . 7X foaf:name 7Y . }

triple(S,P,0,def) :- rdf["http://ex.org/bob"](S,P,0).

triple(S,P,0,def) :- rdf["http://alice.org"](S,P,0).

answerl(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),
triple(X,"foaf:name",Y,def).

?7- answerl(X,Y,def).

A. Polleres — From SPARQL to Rules (and back) 7/29

SPARQL and LP: Basic Graph Patterns

» We import all triples in a predicate triple(Subj,Pred,0Object,Graph)
which carries an additional argument for the dataset.

» For the import, we use the rdf [URL] (S,P,0) built-in.

“select persons and their names”

SELECT 7X 7Y

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { 7?X a foaf:Person . 7X foaf:name 7Y . }

triple(S,P,0,def) :- rdf["http://ex.org/bob"](S,P,0).

triple(S,P,0,def) :- rdf["http://alice.org"](S,P,0).

answerl(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),
triple(X,"foaf:name",Y,def).

7- answerl(X,Y,def).

A. Polleres — From SPARQL to Rules (and back) 7/29

SPARQL and LP: Basic Graph Patterns

» We import all triples in a predicate triple(Subj,Pred,0Object,Graph)
which carries an additional argument for the dataset.

» For the import, we use the rdf [URL] (S,P,0) built-in.

“select persons and their names”

SELECT 7X 7Y

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . 7X foaf:name 7Y . }

triple(S,P,0,def) :- rdf["http://ex.org/bob"](S,P,0).

triple(S,P,0,def) :- rdf["http://alice.org"](S,P,0).

answerl(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),
triple(X,"foaf :name",Y,def).

?7- answerl(X,Y,def).

A. Polleres — From SPARQL to Rules (and back) 7/29

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT 7X 7Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { 7G foaf:maker 7X .
GRAPH 7G { 7X foaf:knows ?Y. } }

A. Polleres — From SPARQL to Rules (and back) 8 /29

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT 7X 7Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { 7G foaf:maker 7X .
GRAPH 7G { 7X foaf:knows ?Y. } }

triple(S,P,0,def) :- rdf["alice.org"](S,P,0).
triple(S,P,0,"alice.org") :- rdf["alice.org"](S,P,0).
triple(S,P,0,"ex.org/bob") :- rdf["ex.org/bob"](S,P,0).
answerl(X,Y,def) :- triple(G,"foaf:maker",X,def),
triple(X,"foaf :knows",Y,G) .

For legibility we left out the http:// prefix

A. Polleres — From SPARQL to Rules (and back) 8 /29

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT 7X 7Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { 7G foaf:maker 7X .
GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,0,def) :- rdf["alice.org"](S,P,0).
triple(S,P,0,"alice.org") :- rdf["alice.org"](S,P,0).
triple(S,P,0,"ex.org/bob") :- rdf["ex.org/bob"](S,P,0).
answerl(X,Y,def) :- triple(G,"foaf:maker",X,def),
triple(X,"foaf :knows",Y,G) .

For legibility we left out the http:// prefix

A. Polleres — From SPARQL to Rules (and back) 8/29

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT 7X 7Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker 7X .
GRAPH 7G { ?X foaf:knows 7Y. } }

triple(S,P,0,def) :- rdf["alice.org"](S,P,0).
triple(S,P,0,"alice.org") :- rdf["alice.org"](S,P,0).
triple(S,P,0,"ex.org/bob") :- rdf["ex.org/bob"](S,P,0).
answerl(X,Y,def) :- triple(G,"foaf:maker",X,def),
triple(X,"foaf :knows",Y,G) .

For legibility we left out the http:// prefix

A. Polleres — From SPARQL to Rules (and back) 8 /29

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT 7X 7Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker 7X .
GRAPH 7G { 7X foaf:knows ?Y. } }

triple(S,P,0,def) :- rdf["alice.org"](S,P,0).
triple(S,P,0,"alice.org") :- rdf["alice.org"](S,P,0).
triple(S,P,0,"ex.org/bob") :- rdf["ex.org/bob"](S,P,0).
answerl(X,Y,def) :- triple(G,"foaf:maker",X,def),
triple(X,"foaf :knows",Y,G) .

For legibility we left out the http:// prefix

A. Polleres — From SPARQL to Rules (and back) 8 /29

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT 7X 7Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { 7G foaf:maker 7X .
GRAPH 7G { ?X foaf:knows 7Y. } }

triple(S,P,0,def) :- rdf["alice.org"](S,P,0).
triple(S,P,0,"alice.org") :- rdf["alice.org"](S,P,0).
triple(S,P,0,"ex.org/bob") :- rdf["ex.org/bob"](S,P,0).
answerl(X,Y,def) :- triple(G,"foaf:maker",X,def),
triple(X,"foaf :knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres — From SPARQL to Rules (and back) 8 /29

SPARQL and LP: UNION Patterns 1/2

UNIONSs are split of into several rules:

“select Persons and their names or nicknames”

SELECT 7X 7Y
FROM ...
WHERE { { 7?X foaf:name 7Y . }
UNION { ?X foaf:nick ?Y .} }

A. Polleres — From SPARQL to Rules (and back) 9 /29

SPARQL and LP: UNION Patterns 1/2

UNIONSs are split of into several rules:

“select Persons and their names or nicknames”

SELECT 7X 7Y
FROM ...
WHERE { { ?X foaf:name 7Y . }
UNION { ?X foaf:nick ?Y .} }

triple(S,P,0,def) :- ...

answerl(X,Y,def) :- triple(X,"foaf:name",Y,def).
answerl(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres — From SPARQL to Rules (and back) 9 /29

SPARQL and LP: UNION Patterns 1/2

UNIONSs are split of into several rules:

“select Persons and their names or nicknames”

SELECT 7X 7Y
FROM ...
WHERE { { ?X foaf:name 7Y . }
UNION { ?X foaf:nick 7Y .} }

triple(S,P,0,def) :- ...

answerl(X,Y,def) :- triple(X,"foaf:name",Y,def).
answerl(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres — From SPARQL to Rules (and back) 9 /29

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don't coincide?
Slightly different than in SQL!

SELECT 7X 7Y 7Z
FROM ...
WHERE { { ?X foaf:name 7Y . }
UNION { ?X foaf:nick ?Z .} }

A. Polleres — From SPARQL to Rules (and back)

10 / 29

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don't coincide?
Slightly different than in SQL!

SELECT 7X 7Y 7Z
FROM ...
WHERE { { ?X foaf:name 7Y . }
UNION { ?X foaf:nick ?Z .} }

Data:

<alice.org#me> foaf:name "Alice".

<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

7X 7Y 7z
<alice.org#me> | "Alice”
<ex.org/bob#me> | "Bob”
<ex.org/bob#me> " Bobby”

A. Polleres — From SPARQL to Rules (and back) 10 / 29

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don't coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT 7X 7Y 7Z
FROM ...
WHERE { { ?X foaf:name 7Y . }
UNION { ?X foaf:nick 7?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".

Result:
7X 7Y 7z
<alice.org#me> | "Alice” null
<ex.org/bob#me> | "Bob” null
<ex.org/bob#me> | null " Bobby”

A. Polleres — From SPARQL to Rules (and back) 10 / 29

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don't coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X 7Y ?7Z
FROM ...
WHERE { { ?X foaf:name ?Y . }
UNION { ?X foaf:nick ?Z .} %}

triple(S,P,0,def) :- ...
answerl(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answerl(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres — From SPARQL to Rules (and back) 11/29

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don't coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X 7Y ?7Z
FROM ...
WHERE { { ?X foaf:name ?Y . }
UNION { ?X foaf:nick ?Z .} %}

triple(S,P,0,def) :- ...
answerl(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answerl(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres — From SPARQL to Rules (and back) 11/29

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT =
WHERE
{
7X a foaf:Person .
OPTIONAL {?X foaf:name 7N }
¥

A. Polleres — From SPARQL to Rules (and back) 12 /29

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT =*
WHERE
{

7?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }
}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

A. Polleres — From SPARQL to Rules (and back)

12 /29

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT =*
WHERE
{

7?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }
}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{Pl OPTIONAL {Pz}} Mi; x My = (Ml X M2) U (Ml N Mz)
where My and M, are variable binding for P; and P, resp.

A. Polleres — From SPARQL to Rules (and back) 12 /29

SPARQL and LP: OPT Patterns — First Try

SELECT =*
WHERE
{
7?X a foaf:Person .
OPTIONAL {?X foaf:name 7N }
¥

A. Polleres — From SPARQL to Rules (and back) 13 /29

SPARQL and LP: OPT Patterns — First Try

SELECT =*
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }
}

Recall: (P1 OPT Py): My x My = (My x Mp) U (Mg~ Ma)

A. Polleres — From SPARQL to Rules (and back) 13 /29

SPARQL and LP: OPT Patterns — First Try

SELECT =*
WHERE
{
7?X a foaf:Person .
OPTIONAL {?X foaf:name 7N }
¥

Recall: (Pl OPT P2)Z M; x My = (Ml X Mz) U (Ml N Mz)

triple(S,P,0,def) :- ...

answerl(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),
triple(X,"foaf:name",N,def).

answerl(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),
not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

A. Polleres — From SPARQL to Rules (and back)

13 /29

SPARQL and LP: OPT Patterns — First Try

SELECT =*
WHERE
{
7?X a foaf:Person .
OPTIONAL {?X foaf:name 7N }
¥

Recall: (P1 OPT Pa): My x My = (My x M) U (Mg ~ Ma)

triple(S,P,0,def) :- ...

answerl(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),
triple(X,"foaf:name",N,def) .

answerl(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),
not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

A. Polleres — From SPARQL to Rules (and back)

13 /29

SPARQL and LP: OPT Patterns — First Try

SELECT =*
WHERE
{
7?X a foaf:Person .
OPTIONAL {?X foaf:name 7N }
¥

Recall: (Pl OPT P2)Z M; x My = (Ml X Mz) U (Ml AN M2)

triple(S,P,0,def) :- ...

answerl(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),
triple(X,"foaf:name",N,def) .

answerl(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),
not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

A. Polleres — From SPARQL to Rules (and back)

13 /29

SPARQL and LP: OPT Patterns — First Try

SELECT =*
WHERE
{
7?X a foaf:Person .
OPTIONAL {?X foaf:name 7N }
¥

Recall: (P1 OPT Pa): My x My = (My x Mp) U (Mg ~ Ma)

triple(S,P,0,def) :- ...

answerl(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),
triple(X,"foaf:name",N,def) .

answerl(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),
not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set

difference.
A. Polleres — From SPARQL to Rules (and back)

13 /29

SPARQL and LP: OPT Patterns — Example from the paper

¥ Graph: ex.org/bob

@prefix bob: <ex.org/bob#>

foaf:knows _:b.

<alice.org/> foaf:maker

@prefix foaf: <http://xmlns.com/foaf/0.1/>

<ex.org/bob> foaf:imaker _:a
_:a a foaf:Person ; foaf:name "Bob";

_:b a foaf:Person ; foaf:nick "Alice".
—:b

¥ Graph: alice.org

@prefix foaf: <http://zxmlns.com/foaf/0.1/>
@prefix alice: <alice.org#>

alice:me a foaf:Person ; foaf:name "Alice" ;
foaf:knows _:c.

:¢ a feocaf:Perscn ; foaf:name "Bob" ;
foaf:nick "Bobby".

SELECT *

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { 7X a foaf:Person

A. Polleres — From SPARQL to Rules (and back)

OPTIONAL { 7X foaf:name 7N } }

14 / 29

SPARQL and LP: OPT Patterns — Example from the paper

¥ Graph: ex.org/bob ¥ Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix bob: <ex.org/bob#> @prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix alice: <alice.org#>

<ex.org/bob> foaf:maker _:a.

_:a a foaf:Person ; foaf:name "Bob";
foaf:knows _:b.

alice:me a foaf:Person ; foaf:name "Alice" ;
foaf:knows _:c.

_:b a foaf:Person ; foaf:nick "Alice". _:e a feoaf:Perscn ; foaf:name "Bob" ;
<alice.org/> foaf:maker _:b foaf:nick "Bobby".

SELECT *
FROM <http://alice.org>

FROM <http://ex.org/bob>
WHERE { 7X a foaf:Person . OPTIONAL { 7X foaf:name 7N } }

Result:
X 7N
_:a "Bob”
—:b
_:c "Bob”
alice.orgime | "Alice”

A. Polleres — From SPARQL to Rules (and back) 14 /29

SPARQL and LP: OPT Patterns — Example from the paper

¥ Graph: ex.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix bob: <ex.org/bob#>

<ex.org/bob> foaf:maker _:a.
_:a a foaf:Person ; foaf:name "Bob";
foaf:knows _:b.

_:b a foaf:Person ; foaf:nick "Alice".
<alice.org/> foaf:maker _:b

¥ Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix alice: <alice.org#>

alice:me a foaf:Person ; foaf:name "Alice" ;
foaf:knows _:c.

:¢ a feocaf:Perscn ; foaf:name "Bob" ;
foaf:nick "Bobby".

SELECT *

FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person

Result:

OPTIONAL { 7X foaf:name 7N } }

X

7N

_:a
_:b
_:c

alice.org#me

" Bob”
null

" Bob”

" Alice”

{ answer1("_:a","Bob",def), answer1("_:b",null, def),
answerl("_:c","Bob",def), answerl("alice.org#me","Alice", def) }

A. Polleres — From SPARQL to Rules (and back)

14 / 29

SPARQL and LP: OPT Patterns — Nasty Example

Ask for pairs of persons 7X1, 7X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT =*

FROM ...
OPTIONAL { ?X1 foaf:name 7N }

WHERE { { 7X1 a foaf:Person .
{ 7X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

7X1 7N 7X2 N
_:a " Bob” _:a

—b >l _:b " Alice”
_:c " Bob" _:c " Bobby"
alice.org#me | "Alice” alice.orgt#me

A. Polleres — From SPARQL to Rules (and back) 15 /29

SPARQL and LP: OPT Patterns — Nasty Example

Ask for pairs of persons 7X1, 7X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT =*

FROM ...
OPTIONAL { ?X1 foaf:name 7N }

WHERE { { 7X1 a foaf:Person .
{ 7X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } }

7X1 7N 7X2 N
_:a " Bob” _:a

—b >l _:b " Alice”
_:c " Bob" _:c " Bobby"
alice.org#me | "Alice” alice.orgt#me

Now this is strange, as we join over unbound variables.

A. Polleres — From SPARQL to Rules (and back) 15 /29

SPARQL and LP: OPT Patterns — Nasty Example

Ask for pairs of persons 7X1, 7X2 who share the same name and

nickname where both, name and nickname are optional:

SELECT =*
FROM ...

WHERE { { 7X1 a foaf:Person .
{ 7X2 a foaf:Person .

OPTIONAL { ?X1 foaf:name 7N }
OPTIONAL { ?X2 foaf:nick ?N } }

7X1 7N 7X2 N
_:a " Bob” _:a

—b —:b " Alice”
_:c " Bob" _:c " Bobby"
alice.org#me | "Alice” alice.orgt#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following Pérez et

al. [Perez et al., 2006]!

A. Polleres — From SPARQL to Rules (and back)

15 / 29

SPARQL and LP: OPT Patterns — With our translation?:

7X1 7N 7X2 7N
—:a " Bob" _:a null
—:b null || _:b " Alice”
_:c "Bob” _:c " Bobby"
alice.org#me | "Alice” alice.orgime null

?X1 7N X2

_ | =b null —:a

| b null alice.org#me
alice.org#me | "Alice” | _:b

16 / 29

A. Polleres — From SPARQL to Rules (and back)

SPARQL and LP: OPT Patterns — With our translation?:

7X1 7N 7X2 7N
—:a " Bob" _:a null
—:b null || _:b " Alice”
_:c "Bob” _:c " Bobby"
alice.org#me | "Alice” alice.orgime null
7X1 7N X2
_ | =b null —:a
I null | alice.org#me
alice.org#me | "Alice” | _:b

What's wrong here? Join over null , as if it was a normal constant.
Compared with SPARQL’s normative semantics is too cautious!

16 / 29

A. Polleres — From SPARQL to Rules (and back)

SPARQL and LP: OPT Patterns — Correct Result:

A. Polleres

7X1 7N 7X2 7N
_:a " Bob” _:a
_:b | _:b " Alice”
_:c " Bob” _:c " Bobby"
alice.org#me | "Alice” alice.org#me
7X1 7N X2
_:a " Bob” _:a
_:a " Bob” alice.org#me
—:b _:a
_:b "Alice” | _:b
| =b "Bobby" | _:c
I alice.org#me
_:c " Bob” _a
_:c " Bob” alice.orgt#me
alice.org#me | "Alice” | _:a
alice.org#me | "Alice” | _:b
alice.org#me | "Alice” | alice.org#me

From SPARQL to Rules (and back)

17 /29

SPARQL and LP: OPT Patterns — Correct Result:

SPARQL defines a very brave way of joins: unbound, i.e.

7X1 7N 7X2 7N
_:a " Bob” _:a
_:b | _:b " Alice”
_:c " Bob” _:c " Bobby"
alice.org#me | "Alice” alice.org#me
7X1 7N X2
_:a " Bob” _:a
_:a " Bob” alice.org#me
—:b _:a
_:b "Alice” | _:b
_:b "Bobby" | _:c
—:b alice.org#me
_:c " Bob” _a
_:c " Bob” alice.orgt#me
alice.org#me | "Alice” | _:a
alice.org#me | "Alice” | _:b
alice.org#me | "Alice” | alice.org#me

null should join with anything!

A. Polleres — From SPARQL to Rules (and back)

17 / 29

SPARQL and LP: OPT Patterns — third alternative

One could think of a third alternative:

7X1 7N 7X2 7N
_:a " Bob” _:a NULL
_:b NULL _:b " Alice”
_:c " Bob” _:c " Bobby"
alice.org#me | "Alice” alice.org#me NULL

7X1

7N

X2

" | alice.org#me | "Alice”

A. Polleres -

From SPARQL to Rules (and back)

18 / 29

SPARQL and LP: OPT Patterns — third alternative

One could think of a third alternative:

7X1 7N 7X2 7N
_:a " Bob” _:a NULL
_:b NULL || —:b " Alice”
_:c " Bob” _:c " Bobby"
alice.org#me | "Alice” alice.org#me NULL

_ 7X1 7N X2
" | alice.org#me | "Alice” | _:b

In RDBMS implementations of OUTER JOINS, NULL values usually
don't join with anything, i.e. this is more strict than the current SPARQL

definition!

A. Polleres — From SPARQL to Rules (and back) 18 /29

Semantic variations of SPARQL

According to these three alternatives of treatment of possibly

null-joining variables, the paper formally defines three semantics
for SPARQL:

» c-joining: cautiously joining semantics
» b-joining: bravely joining semantics (normative)

» s-joining: strictly joining semantics

A. Polleres — From SPARQL to Rules (and back) 19 /29

Semantic variations of SPARQL

According to these three alternatives of treatment of possibly
null-joining variables, the paper formally defines three semantics
for SPARQL:

» c-joining: cautiously joining semantics
» b-joining: bravely joining semantics (normative)

» s-joining: strictly joining semantics

Which is the most intuitive? Open issue.

A. Polleres — From SPARQL to Rules (and back) 19 /29

Semantic variations of SPARQL

According to these three alternatives of treatment of possibly
null-joining variables, the paper formally defines three semantics
for SPARQL:

» c-joining: cautiously joining semantics
» b-joining: bravely joining semantics (normative)
» s-joining: strictly joining semantics

Which is the most intuitive? Open issue.

Now let's get back to our translation to logic programs...

A. Polleres — From SPARQL to Rules (and back) 19 /29

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name 7N }
{ 7X2 a foaf:Person . OPTIONAL { 7X2 foaf:nick 7N } }

triple(S,P,0,def) :- rdf["ex.org/bob"](S,P,0).
triple(S,P,0,def) :- rdf["alice.org"](S,P,0).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4d(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4 (N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answerb (X2,def) :- triple(X2,"nick",N,def).

A. Polleres — From SPARQL to Rules (and back) 20 /29

SELECT *
FROM ...
WHERE { { 7?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name 7N }
{ 7X2 a foaf:Person . OPTIONAL { 7X2 foaf:nick 7N } }

triple(S,P,0,def) :- rdf["ex.org/bob"](S,P,0).
triple(S,P,0,def) :- rdf["alice.org"](S,P,0).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4d(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :— triple(X1,"name" ,N,def).

answer4 (N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answer5(X2,def) :— triple(X2,"nick",N,def).

A. Polleres — From SPARQL to Rules (and back) 20 / 29

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name 7N }
{ 7X2 a foaf:Person . OPTIONAL { 7X2 foaf:nick 7N } }

triple(S,P,0,def) :- rdf["ex.org/bob"](S,P,0).
triple(S,P,0,def) :- rdf["alice.org"](S,P,0).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4d(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4 (N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answerb (X2,def) :— triple(X2,"nick",N,def).

A. Polleres — From SPARQL to Rules (and back) 20 / 29

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name 7N }
{ 7X2 a foaf:Person . OPTIONAL { 7X2 foaf:nick 7N } }

triple(S,P,0,def) :- rdf["ex.org/bob"](S,P,0).
triple(S,P,0,def) :- rdf["alice.org"](S,P,0).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4 (N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answerb (X2,def) :- triple(X2,"nick",N,def).

Here is the problem!

A. Polleres - From SPARQL to Rules (and back) 20 / 29

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name 7N }
{ 7X2 a foaf:Person . OPTIONAL { 7X2 foaf:nick 7N } }

triple(S,P,0,def) :- rdf["ex.org/bob"](S,P,0).
triple(S,P,0,def) :- rdf["alice.org"](S,P,0).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4d(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4 (N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answerb (X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres - From SPARQL to Rules (and back) 20 / 29

SPARQL and LP: OPT Patterns — Improved!

How do | emulate b-joining Semantics?

triple(S,P,0,def) :- rdf(["ex.org/bob"](S,P,0).
triple(S,P,0,def) :- rdf["alice.org"](S,P,0).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).
answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).
answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :— triple(X1,"name",N,def).

answer4 (N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answerb (X2,def) :- triple(X2,"nick",N,def).

A. Polleres — From SPARQL to Rules (and back) 21 /29

SPARQL and LP: OPT Patterns — Improved!

How do | emulate b-joining Semantics? Solution:
We need to take care for variables which are joined and possibly
unbound, due to the special notion of compatibility in SPARQL

triple(S,P,0,def) :- rdf["ex.org/bob"](S,P,0).
triple(S,P,0,def) :- rdf["alice.org"](S,P,0).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).
answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).
answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),
triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),
not answer3(X1,def).

answer3(X1,def) :— triple(X1,"name",N,def).

answer4 (N, X2,def) :- triple(X2,"a","Person",def),
triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),
not answer5(X2,def).

answerb (X2,def) :- triple(X2,"nick",N,def).

A. Polleres — From SPARQL to Rules (and back) 21 /29

SPARQL and LP: OPT Patterns

s-joining semantics can be similarly emulated.

Attention:

» The “fix" we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

A. Polleres — From SPARQL to Rules (and back) 22 /29

SPARQL and LP: OPT Patterns

s-joining semantics can be similarly emulated.

Attention:

» The “fix" we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

» This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Perez et al., 2006].

A. Polleres — From SPARQL to Rules (and back)

22 /29

SPARQL and LP: OPT Patterns

s-joining semantics can be similarly emulated.

Attention:

» The “fix" we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

» This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Perez et al., 2006].

» But: A slight modification of the translation (in the tech.
report version of the paper [Polleres, 2006]) shows that this
translation is optimal: Non-recursive Datalog with negation as
failure is also PSPACE complete!

A. Polleres — From SPARQL to Rules (and back) 22 /29

From SPARQL to Rules . ..

> With these ingredients any SPARQL query @ can be translated
recursively to a Datalog program P, with a dedicated predicate
answerlg which contains exactly the answer substitutions for Q.

A. Polleres — From SPARQL to Rules (and back) 23 /29

From SPARQL to Rules . ..

> With these ingredients any SPARQL query @ can be translated
recursively to a Datalog program P, with a dedicated predicate
answerlg which contains exactly the answer substitutions for Q.

»> The target language is non-recursive Datalog with neg. as failure

A. Polleres — From SPARQL to Rules (and back) 23 /29

From SPARQL to Rules . ..

> With these ingredients any SPARQL query @ can be translated
recursively to a Datalog program P, with a dedicated predicate
answerlg which contains exactly the answer substitutions for Q.

»> The target language is non-recursive Datalog with neg. as failure

» Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

A. Polleres — From SPARQL to Rules (and back) 23 /29

From SPARQL to Rules . ..

A. Polleres -

With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program P, with a dedicated predicate

answerlg which contains exactly the answer substitutions for Q.

The target language is non-recursive Datalog with neg. as failure

Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

Full details of the translation in the paper

From SPARQL to Rules (and back)

23 /29

From SPARQL to Rules . ..

A. Polleres -

With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program P, with a dedicated predicate

answerlg which contains exactly the answer substitutions for Q.

The target language is non-recursive Datalog with neg. as failure

Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

Full details of the translation in the paper

FILTERS not treated in detail, basically an implementation issue,
needs special built-ins.

From SPARQL to Rules (and back)

23 /29

Some more things discussed in the paper (appetizer):

>

>

Extend the translation to cover CONSTRUCT queries

CONSTRUCTSs themselves can be viewed as rules! Our translation

sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

The translation can serve as a basis for extensions of SPARQL, e.g.

nested queries (currently working on implementing these)

The translation can be easily combined with translations for RDFS,

OWL fragments (e.g. ter Horst's fragment [ter Horst, 2005])
= extended entailment regimes for SPARQL!

«0>» «Fr» «E>» «E)>»

DA

...and back

Some more things discussed in the paper (appetizer):

» Extend the translation to cover CONSTRUCT queries

A. Polleres — From SPARQL to Rules (and back) 24 /29

.and back

Some more things discussed in the paper (appetizer):

» Extend the translation to cover CONSTRUCT queries

» CONSTRUCTSs themselves can be viewed as rules! Our translation
sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

A. Polleres — From SPARQL to Rules (and back) 24 /29

.and back

Some more things discussed in the paper (appetizer):

» Extend the translation to cover CONSTRUCT queries

» CONSTRUCTSs themselves can be viewed as rules! Our translation
sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

» The translation can serve as a basis for extensions of SPARQL, e.g.
nested queries (currently working on implementing these)

A. Polleres — From SPARQL to Rules (and back) 24 /29

...and back

Some more things discussed in the paper (appetizer):

» Extend the translation to cover CONSTRUCT queries

» CONSTRUCTSs themselves can be viewed as rules! Our translation
sets the basis for querying combined sets of RDF data and
CONSTRUCT queries! (thus the “and back”)!

» The translation can serve as a basis for extensions of SPARQL, e.g.
nested queries (currently working on implementing these)

» The translation can be easily combined with translations for RDFS,
OWL fragments (e.g. ter Horst's fragment [ter Horst, 2005])
= extended entailment regimes for SPARQL!

A. Polleres — From SPARQL to Rules (and back) 24 /29

CONSTRUCT 1/3

CONSTRUCTSs themselves may be viewed as rules over RDF
themselves.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT 7X foaf:name 7Y . ?X a foaf:Person .
WHERE { ?X vCard:FN ?Y }

For blanknode-free CONSTRUCTSs our translation can be simply
extended:

A. Polleres — From SPARQL to Rules (and back) 25 /29

CONSTRUCT 1/3

CONSTRUCTSs themselves may be viewed as rules over RDF
themselves.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT 7X foaf:name 7Y . ?X a foaf:Person .
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTSs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

A. Polleres — From SPARQL to Rules (and back) 25 /29

CONSTRUCT 1/3

CONSTRUCTSs themselves may be viewed as rules over RDF
themselves.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT 7X foaf:name 7Y . ?X a foaf:Person .
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTSs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate
triple(S,P,0,constructed)

in post-processing to get the constructed RDF graph

A. Polleres — From SPARQL to Rules (and back) 25 /29

CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

A. Polleres — From SPARQL to Rules (and back) 26 /29

CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

Mock-up syntax, mixing TURTLE and SPARQL to describe

implicit data within RDF:

foafWithImplicitdData.rdf

:me a foaf:Person.

:me foaf:name "Axel Polleres".

:me foaf:knows [foaf:name
[foaf :name
[foaf :name
[foaf :name
[foaf :name
CONSTRUCT{ :me foaf:knows

"Marcelo Arenas"],
"Claudio Gutierrez"],
"Bijan Parsia"],
"Jorge Perez'"],

"Andy Seaborne"].

7X }

FROM <http://www.deri.ie/about/team>

WHERE { ?X a foaf:Person.

A. Polleres — From SPARQL to Rules (and back)

}

26 / 29

CONSTRUCT 3/3

Attention! If you apply the translation to LP and two
RDF+CONSTRUCT files refer mutually to each other, you might
get a recursive program!

» even non-stratified negation as failure!

» two basic semantics for such “networked RDF graphs”
possible:
» stable [Polleres, 2006]
» well-founded [Schenk and Staab, 2007]

A. Polleres — From SPARQL to Rules (and back) 27 /29

» Prototype implemented and available at
http://con.fusion.at/dlvhex/

» Tight integration with existing rules engines possible:
» Opens up body of optimization work!

» SPARQL queries in rule bodies

» Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:

» tuple-based instead of set-based

» FILTERs treated non-local

» Translation can be adapted with minor modifications
(personal discussion with editors.)

Thank you! Questions please!

«O» «Fr « « =) o

it
v

» Prototype implemented and available at
http://con.fusion.at/dlvhex/

» Tight integration with existing rules engines possible:
» Opens up body of optimization work!

» SPARQL queries in rule bodies

» Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:

» tuple-based instead of set-based

» FILTERs treated non-local

» Translation can be adapted with minor modifications
(personal discussion with editors.)

Thank you! Questions please!

«0O)>» «F»r < «E)» Q>

it
v

Outlook

» Prototype implemented and available at
http://con.fusion.at/dlvhex/
» Tight integration with existing rules engines possible:

» Opens up body of optimization work!
» SPARQL queries in rule bodies

A. Polleres — From SPARQL to Rules (and back) 28 /29

Outlook

» Prototype implemented and available at
http://con.fusion.at/dlvhex/
» Tight integration with existing rules engines possible:
» Opens up body of optimization work!
» SPARQL queries in rule bodies
» Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:
» tuple-based instead of set-based
» FILTERSs treated non-local
» Translation can be adapted with minor modifications
(personal discussion with editors.)

A. Polleres — From SPARQL to Rules (and back) 28 /29

Outlook

» Prototype implemented and available at
http://con.fusion.at/dlvhex/
» Tight integration with existing rules engines possible:

» Opens up body of optimization work!
» SPARQL queries in rule bodies

» Most recent working draft of SPARQL has a rel.algebra that
slightly deviates from [Perez et al., 2006]:

» tuple-based instead of set-based
» FILTERs treated non-local

» Translation can be adapted with minor modifications
(personal discussion with editors.)

Thank you! Questions please!

A. Polleres — From SPARQL to Rules (and back) 28 /29

References

Perez, J., Arenas, M., and Gutierrez, C. (2006).

Semantics and complexity of sparql.
Technical Report DB/0605124, arXiv:cs.

Polleres, A. (2006).

SPARQL Rules!
Technical Report GIA-TR-2006-11-28, Universidad Rey Juan Carlos.

Schenk, S. and Staab, S. (2007).

Networked rdf graph networked rdf graphs.
Technical Report 3/2007, Universsity of Koblenz.
available at http://www.uni-koblenz.de/ sschenk/publications/2006/ngtr.pdf

) W & &

ter Horst, H. J. (2005).
Completeness, decidability and complexity of entailment for rdf schema and a semantic extension involving

the owl vocabulary.
Journal of Web Semantics, 3(2)

A. Polleres — From SPARQL to Rules (and back) 29 /29

http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf

	Rules and SPARQL
	Rules for the Semantic Web

	From SPARQL to (LP style) rules …
	Basic Graph Patterns
	GRAPH Patterns
	UNION Patterns
	OPTIONAL and Negation as failure

	…and back
	Use SPARQL as rules
	Mixing data and rules

