
Comparative Preferences in SPARQL?

Peter F. Patel-Schneider1, Axel Polleres2,3, and David Martin1

1 NAIL Laboratory, Nuance Communications, Sunnyvale, CA, USA
2 Vienna Univ. of Economics & Business / Complexity Science Hub Vienna, Austria

3 Stanford University, CA, USA??

Abstract. Sometimes one does not want all the solutions to a query but instead
only those that are most desirable according to user-specified preferences. If a
user-specified preference relation is acyclic then its specification and meaning
are straightforward. In many settings, however, it is valuable to support prefer-
ence relations that are not acyclic and that might not even be transitive, in which
case though their handling involves some open questions. We discuss a defini-
tion of desired solutions for arbitrary preference relations and show its desirable
properties. We modify a previous extension to SPARQL for simple preferences to
correctly handle any preference relation and provide translations of this extension
back into SPARQL that can compute the desired solutions for all preference re-
lations that are acyclic or transitive. We also propose an additional extension that
returns solutions at multiple levels of desirability, which adds additional expres-
siveness over prior work. However, for the latter we conjecture that an effective
translation to a single (non-recursive) SPARQL query is not possible.

1 Introduction

Preferences and the notion of the Semantic Web are tightly interwoven: the seminal
vision article often cited as coining the term “Semantic Web” already mentions pref-
erences in several places [1], for instance: “Pete [...] set his own agent to [...] search
with [...] preferences about location and time.”. The same article also already mentions
standardization in terms of languages defining such preferences, such as the Composite
Capability/Preference Profile (CC/PP) [2], which allows a user agent (typically a client
application) to declare its preferences, e.g., in terms of device capabilities.

Interestingly this early interest in expressing preferences and retrieving Semantic
Web data compliant with these preferences has not found its way into later Semantic
Web Standards, such as SPARQL. There is no built-in way to express and evaluate
queries with preferences in SPARQL, but there have been several proposals [3–5] for
adding preferences to SPARQL and defining a meaning for such preferential queries.

We argue that preferences in their full generality are not correctly handled in the
proposals so far, and show how this can be addressed with a modified semantics. Addi-
tionally, we show that certain kinds of preferences can be expressed in a single SPARQL
? A poster of part of this paper is being presented at ISWC 2018. An extended techni-

cal report version of this paper, including proofs and the main algorithm, is available at
http://polleres.net/publications/patel-schneider-etal-2018TR.pdf

?? Axel Polleres’ work was supported under the Distinguished Visiting Austrian Chair Professors
program hosted by The Europe Center of Stanford University.

1.1 query, although the most recent proposal that translates preferences into standard
SPARQL queries fails to work on relatively simple examples due to problems in the
SPARQL 1.1 query standard [6].

Example 1 (Running Example). As a running example, let us assume data in a naviga-
tion scenario, where a user would be looking for gas stations with preferences among
features such as brand, distance to the user’s location, and different shops that sell
various antifreeze products, given as an RDF Graph G1:

:p123 a :GasStation; :brand :Mobil; :dist 1.1;
:shop :TigerMart; :antifreeze :Prestone .

:p456 a :GasStation; :brand :Chevron; :dist 0.5;
:shop :KwikieMart; :antifreeze :StarBrite .

:p789 a :GasStation; :brand :Shell; :dist 0.8;
:shop :711; :antifreeze :Zerex .

:p012 a :GasStation; :brand :Citgo; :dist 6 .

User preferences could be of different forms, such as:

P1 “I prefer gas stations within 1 mile distance” (simple boolean)
P2 “I prefer the closest gas station” (quantitative)
P3 “I prefer Mobil over Chevron” (comparative)
P4 “I prefer solutions within 1 mile (P1) and among those I prefer Mobil

over Chevron gas (P3), and Kwikie Mart over 7-11, and otherwise just the
closest (P2)” (combinations)

So atomic preferences can be simple boolean, i.e. stating preferences for solutions
fulfilling a certain boolean condition, quantitative, i.e., where each solution is given a
score from a totally ordered set, or comparative, i.e., preferences expressed as a binary
relation between solutions. Such atomic preferences can be combined in various ways.

A preference query takes the results of a non-preferential subquery (in this case, a
subquery that returns gas stations), and selects most preferred ones. (The precise defini-
tion of “most preferred" is part of what we are examining in this paper.) The preferences
we wish to handle call for a generalization of the skyline operator [7] in databases so
we will talk about obtaining the skyline of a preference relation, i.e., the most preferred
results based on a preference.4 Subsidiary preference results can be defined, such as the
nth skyline, i.e., the skyline after the first n−1 skylines have been removed, or returning
solutions along with their skyline number (which gives a rank for each solution).

We focus on comparative preferences, partly because (i) comparative preferences
are more general than simple boolean or quantitative preferences, (ii) comparative pref-
erences can capture combined preferences as part of their preference relation represen-
tation, (iii) user preferences are often comparative [8, 9].

As for (i), we note that quantitative preferences generalize simple boolean prefer-
ences, and comparative preferences generalize quantitative preferences, by preferring
solutions with a better score to solutions with a worse score.

4 In databases, skyline involves a multiway combination of totally ordered comparisons between
the values in tuples; qualitative preferences here instead allow an arbitrary comparison relation.

2 Foundations and Motivation

We adapt our formal definition of comparative preferences from that of Chomicki [10]
as also used by other work in the area such as Troumpoukis et al. [5].

Definition 1. Given a set of potential solutions P , a preference relation � is any rela-
tion over P×P. A solution s1 is dominated by a solution s2 if s2 � s1.

Although a preference relation is defined over a universe of potential solutions, it is ap-
plied to finite sets of candidate solutions. Typically, potential solutions are all solutions
that are representable under the schema of some information source. Candidate solu-
tions are then solutions returned from the ordinary (non-preferential) part of a query.

Example 2. Referring back to Example 1, the four gas stations shown could be the
candidate solutions returned by the ordinary SPARQL query, Q1:

Q1: SELECT * {?X a :GasStation; :brand ?B; :dist ?D. FILTER(?D<=10)}

The potential solutions would be a much larger set (i.e., all gas stations that could be
represented in an information source). The preference relation for P3 would include
all pairs (m, c) where m is a Mobil station and c a Chevron station. After applying
this preference relation, for reasons discussed below, one would be left with the Mobil,
Shell, and Citgo stations.

In this paper, we ground candidate solutions in results of SPARQL 1.1 queries [6]
(that is, multisets of variable bindings). We also allow for solutions from SPARQL ex-
tended with external services.5 The examples in this paper will not use such service ex-
tensions; for simplicity we will just use preferences over solutions of SPARQL queries
over a RDF graph, such as G1 in Example 1.

We do not require any other properties of preference relations. In particular, a pref-
erence relation here need not be irreflexive, asymmetric, acyclic, or transitive.6 It may
seem that these should be required aspects of a preference relation but we want to study
what happens with arbitrary preference relations, such as those likely to be obtained
directly from users.

Example 3. We allow a combination of comparative preferences on different aspects of
gas stations. For example P6a: a preference for Mobil brand gas stations over Chevron;
P6b: a preference for gas stations with KwickieMart stores over those with 7-11’s; and
P6c: a preference for gas stations selling Zerex antifreeze over those selling Prestone.
(What is important here is that the preferences on the aspects are only partial orders,
not total orders.)

Example 4. We also allow the obviously cyclic preference relation consisting only of
P3a: a preference for Mobil brand gas stations over Chevron brand; P3b: a preference
for Chevron over Citgo; and P3c: a preference for Citgo over Mobil.

5 SPARQL 1.1 provides a basic mechanism for such external services (e.g., to look up or com-
pute current prices or exchange rates), using the SERVICE keyword [11].

6 To review the basic properties of binary preference relations see Chomicki [10].

The implementation of our preference relations in SPARQL will be arbitrary
SPARQL expressions. If solutions contain objects from some sort of knowledge repos-
itory the relation can depend on anything accessible in the repository. (Troumpoukis
et al. [5] call preferences that do not use external information intrinsic preferences.) In
SPARQL this means that an expression defining a preference relation can access prop-
erties of a solution object from the underlying graph (such as the brand of fuel sold at
a gas station, its current distance, or whether it has a roof over its pumps), and other
information in the graph (such as whether it is currently raining, etc.), without having
this information in the solution itself.

Our preference relations are not examinable in general, and the set of potential
solutions will generally be very large, or even infinite.

Example 5. For instance, the preference P5: “I prefer between two solutions the one
closer in distance”, could apply to infinitely many potential solutions (not knowing the
underlying graph G). Note also that there could be other gasoline brands in G that are
not named explicitly in the preferences at hand.

It can thus be practically infeasible to compute the transitive closure of a preference
relation, or indeed determine whether a preference relation is irreflexive, asymmetric,
acyclic, or transitive.

?D = 0.5

?D = 0.8

?D = 1.1

?D = 6

P5 P3a-d

?B = Mobil?B = CitGo

?B = Chevron

?B = Shell
P6a-c

?B = Mobil

?B = Chevron?S = Kwickie

?S = 711
?A = Prestone?A = Zerex

p123

p456

p789

Fig. 1. Preference relations P5, P3a-d, and P6a-c for the solutions of query Q1 over graph G1.

Example 6. For instance, P5 is transitive on all sets of candidate solutions. However,
if we view P3a-c as a single preference relation, transitivity does not hold. As well,
additional preferences such as P3d “I prefer Shell over Mobil” could make the pref-
erence relation lose completeness7 (every element comparable with every other). See
Figure 1 for a graphical illustration. Similarly, P6a-c produces a preference cycle on
our example gas stations.

The basic operation in comparative preferences is the winnow operator [10]. The
intuitive notion is that given an candidate set of solutions and a preference relation, the
winnow operator returns those solutions that have no solution dominating them. Based
on its similarity to skylines in databases, we call the result of the winnow operator the
skyline of a preference relation. Formally this is (again adapted from Chomicki [10]):

Definition 2. If S is a finite set of (candidate) solutions and � a preference relation
over some (potentially infinite) superset of S then the skyline of S with respect to � is

ω�(S) = {s ∈ S|¬∃s′ ∈ S.s′ � s}
7 Chomicky calls this connectivity [10, Def.2.1].

We loosely refer to the definition of skyline as the “semantics” of preference rela-
tions. Note here that � has access to extrinsic information about objects in solutions in
S. In the SPARQL setting this means that � has access to the graph being queried.

We can also define the second skyline as the skyline after the initial skyline has been
removed from the solution set, and so on, thus defining “levels” of skyline solutions:

Definition 3. If S is a finite set of (candidate) solutions and � a preference relation
over some superset of S then the nth skyline of S with � is defined as

ωn
�(S) = {s ∈ S \

n−1⋃
i=1

ωi
�(S) | ¬∃s′ ∈ S \

n−1⋃
i=1

ωi
�(S) . s

′ � s}

The rank of a solution, s, in S with respect to � is the number of the skyline that it is
in, i.e., rankS

�(s) = n for s ∈ ωn
�(S). If a solution is not in any skyline, then its rank is

undefined.

Returning multiple skylines is valuable if all elements of the top skyline might be
deemed unsuitable by later processing, or if a minimum number of solutions is required,
which could exceed the size of the top skyline.

Example 7. Looking at Figure 1 let us assume for the moment a slight re-formulation
of P5 to be “I prefer between two solutions the one closer or equal in distance”. This
obviously is not very intuitive as it makes the preference relation reflexive, and thereby
makes each solution dominate itself – resulting in an empty skyline. However, as we
will see current proposals for encoding preferences in SPARQL allow such preferences.

Example 8. Cyclic preferences can appear in practice by collecting single user prefer-
ences, expressed on separate occasions, and with the definitions above can lead to un-
expected results. We take here the example of P3a-d from Figure 1. Intuitively, among
all four candidate solutions the solution with brand Shell is most preferred, but then
under Definition 3 the second skyline is empty, since each remaining solution is dom-
inated by another candidate solution. Our intuition is that in such a case all of these
three solutions should be equally preferred, and in the second skyline. Note that P6a-c
also produce a cycle in the 4 candidate solutions, even though their expression does not
look obviously cyclic.

Assuming, on the other hand, that Citgo was not within the candidate solutions,
say by changing Q1 to Q2 as follows:

Q2: SELECT * {?X a :GasStation; :brand ?B; :dist ?D. FILTER(?D<=5)}

That would reduce the number of candidate solutions to just Shell, Mobil, and
Chevron, which would be in the first, second and third skyline, respectively (this time
in accord with our intuitions). So, we see that removing (and likewise adding) candidate
solutions can change the rank and ordering of solutions.

To complicate things further, if we consider P3a-d or P6a-c in combination with
P1 the handling of the combined preference relation becomes even less clear, depend-
ing on the semantics of combinations and their respective consideration of candidate
solutions.

Given examples such as these, we aim to shed more light on the semantics for pref-
erences in queries, and provide definitions that handle these situations more intuitively
and satisfy basic desiderata, such as that each level of skyline should contain at least
one solution, even in cases where preferences are not necessarily coherent.

Our primary contributions in the present work are
– an analysis of what goes wrong with a widely used definition of the skyline operator

when a preference relation fails to be acyclic and/or transitive,
– a definition that works for arbitrary preference relations,
– a slightly simpler definition that can be used with transitive preference relations,

with performance benefits,
– translations to SPARQL 1.1 (based on translations proposed in prior work [12, 5])

to implement these new definitions, and
– a further extension that allows a query to request multiple levels of skylines.

In the next section, we will review some earlier approaches to the formulation of
preferences in SPARQL, in the light of whether they can express comparative semantics
at all and how they would handle the cases above. We will then approach the analysis
of preference relations and variations of the definition of the skyline operator more
formally in Section 4 and Section 5, by discussing what we call simple (i.e., acyclic
and/or transitive) preferences and non-simple preferences separately. Along the way
we will refine the notion of skyline operators and provide two more variations thereof.
Finally, in Sections 6 and 7 we will discuss which of these proposed variations can
be implemented in SPARQL 1.1, and which require extensions in terms of bespoke
evaluation algorithms. In this topic, we will identify problems in existing approaches to
translating preference handling to SPARQL, and propose repairs, where possible.

3 Previous Work

The notion of preference has a central role in many disciplines, including economics,
psychology and other social sciences, some areas of philosophy, decision theory and
game theory (themselves interdisciplinary topics), and computer science. The formal-
ization of comparative preferences as binary preference relations runs throughout much
of this work, although the definitional details vary. Much work on preference relations
assumes, mandates, or arranges for them to be acyclic and/or transitive (or constrained
in other ways), for a variety of reasons. Nonetheless, there is a large literature showing
that cyclic and/or intransitive preference relations do arise naturally in the real world of
human judgments [8, 9].

Turning to preferences used with query languages, Rosati et al. [13] show how a
set of preferences modeled as a CP-net can be represented in RDF, and how gener-
ated SPARQL queries can use the RDF representation to rank the results of an ordi-
nary (non-preferential) SPARQL query. Whereas the preferences semantics discussed
here are determined primarily by the definition of skyline, in their approach the seman-
tics are determined by the CP-net formalism. Whereas we are concerned with prefer-
ences expressed directly in a SPARQL query, along with non-preferential query clauses,

their preferences are acquired and represented independently of the non-preferential
SPARQL queries to which they apply8.

Chomicki [10] analyzes intrinsic comparative preferences in a relational database
setting. He considers preferences as multidimensional combinations of atomic prefer-
ences where each atomic preference is a built-in SQL function (such as numeric or-
dering). A preference function could be to consider distance and fuel brand separately,
which ends up with the closest gas station for each brand, or to first consider distance
and then some ordering of brands, which ends up with the closest gas station but if there
is a tie for closest then chooses by brand. He analyzes the properties of his winnow op-
erator with an eye to how it can be optimized in SQL queries.

Siberski et al. [3] transform a subset of these preferences into an early version of
SPARQL, producing a SPARQL query extension for conjunctive (combine preferences
over two different values) cascaded (consider preference over one value before prefer-
ence over another) intrinsic preferences. They implement these preferences as an ex-
tension to ARQ9, with a syntax inspired by an early version of the Preference SQL
language [14].

Gueroussova et al. [4, 12] transform a version of Chomicki’s preferences (which
they call conditional preferences) to SPARQL, extending the work of Siberski et al. by
adding more combination operators. They define an extension to SPARQL, which they
call PrefSPARQL (after the later version of Preference SQL [15] which incorporates
these features) and provide a mapping from PrefSPARQL to both SPARQL 1.0 queries
[16] and SPARQL 1.1 queries.

Unfortunately their mapping to SPARQL 1.1 uses the SPARQL EXISTS operator.
SPARQL EXISTS has many known problems [17], and their solution falls prey to one
one them, namely that the SPARQL BOUND operator does not work correctly inside
EXISTS. Their mapping to SPARQL 1.0 is not affected by this problem, as shown by
the next example.

Both the approaches by Siberski et al. and Gueroussova et al. focus on combined
preferences over boolean preferences, that is, while they allow the combination of dif-
ferent preferences, these preferences do not give the full flexibility of comparing arbi-
trary solutions pairwise, but only by declaring boolean “preferred conditions” C, that
divide the solution space into preferred and non-preferred solutions according to the
preference, according to the schema in Equation (1).

SELECT V WHERE { P PREFERRING C } (1)

Example 9. In both the approaches above preferences like P1 can be written by extend-
ing queries like Q1. In PrefSPARQL this is:

Q3: SELECT * { ?X a :GasStation; :brand ?B; :dist ?D .
PREFERRING (?D <= 1) }

Combined preferences can be expressed (so long as they do not involve comparisons
between different attributes of solutions), such as this variant of P4:

8 In a later version of [13], available on semanticscholar.org, the approach is extended to handle
CP-theories.

9 https://jena.apache.org/documentation/query/

P4’ “I prefer solutions within 1 mile and among those I prefer Mobil, and
otherwise just the closest.”

which in PrefSPARQL could be written as the following query:

Q4: SELECT * { ?X a :GasStation; :brand ?B; :dist ?D .
PREFERRING ((?D <= 1) AND ?B="Mobil") PRIOR TO LOWEST ?D) }

While referring for details to [12], we illustrate PrefSPARQL’s translation back to
“vanilla” SPARQL by the example of Q3 which in SPARQL 1.1 yields Q1.1

3 :

Q1.1
3 : 1 SELECT * { {?X a :GasStation; :brand ?B; :dist ?D .}

2 FILTER NOT EXISTS { ?X’ a :GasStation; :brand ?B’; :dist ?D’ .
3 FILTER ((?D’ <= 1) > (?D <= 1)) } }

That is, the translation relies in principle on creating a copy of the query pattern
within a SPARQL 1.1 NOT EXISTS clause (line 2) and then encoding dominance of
the solutions to this copy in an inner FILTER expression (line 3).

As shown in [12], this principle can be easily extended to combined preference
relations (through encoding AND and PRIOR TO, and adding conditional IF-THEN-
ELSE preferences from Preference SQL to more complex inner FILTER expressions).
Specific quantitative comparative preference relations are also expressible with the key-
word HIGHEST or LOWEST, but not general comparative preferences.

Example 10. The quantitative preference P2 would be expressible in PrefSPARQL as
query

Q4: SELECT ?X ?B ?D { ?X a :GasStation; :brand ?B; :dist ?D.
PREFERRING LOWEST ?D }

However, there exists as mentioned above a problem with this translation due to the
semantics of NOT EXISTS, as illustrated with the following example:

Example 11. Let us assume P7 saying "I prefer gas stations with a shop", which in
PrefSPARQL could be expressed as

Q5: SELECT * { ?X a :GasStation. OPTIONAL { ?X :shop ?S. }
PREFERRING (BOUND(?S)) }

in which case the translation from [12] no longer works, as shown in Q1.1
5 :

Q1.1
5 : 1 SELECT * { { ?X a :GasStation. OPTIONAL { ?X :shop ?S. } }

2 FILTER NOT EXISTS { ?X’ a :GasStation. OPTIONAL { ?X’ :shop ?S’. }
3 FILTER(BOUND(?S’) > BOUND(?S)) } }

This fails because the substitution semantics of EXISTS here produces algebra ex-
pressions like BOUND (:TigerMart) that are undefined in SPARQL 1.1; we refer to
details in [17]. We note though, that Gueroussova et al.’s [12] SPARQL 1.0-based way
of encoding non-existence through a combination of OPTIONAL and !BOUND(), as
illustrated in the following query Q1.0

5 , works as intended:

Q1.0
5 : 1 SELECT * { { ?X a :GasStation. OPTIONAL { ?X :shop ?S. } }

2 OPTIONAL { ?X’ a :GasStation. OPTIONAL { ?X’ :shop ?S’. }
3 FILTER (BOUND(?S’) > BOUND(?S)) }
4 FILTER (!BOUND(?X’) } }

Troumpoukis et al. [5] expand on this work to allow arbitrary SPARQL expressions
as the � operator; that is, they define an extension to SPARQL 1.1 that can express full
comparative preferences called SPREFQL, and also provide a mapping from SPREFQL
into SPARQL 1.1 queries. They implemented SPREFQL and compared its performance
to the performance of their mapping.

As opposed to PrefSPARQL, in SPREFQL one can express comparative preferences
by explicitly referring to variables in the “copy” of the query pattern over which pref-
erences are defined using a clause PREFER-TO-IF which creates two explicit copies
V1, V2 of the variables V in the SELECT clause that can be referenced in a comparative
condition C:

SELECT V WHERE { P } PREFER V1 TO V2 IF C (2)

Example 12. The quantitative preference P2 would be expressible in SPREFQL as a
comparative preference in query Q6:

Q6: SELECT ?X ?B ?D { ?X a :GasStation; :brand ?B; :dist ?D. }
PREFER ?X1 ?B1 ?D1 TO ?X2 ?B2 ?D2 IF (?D1 < ?D2)

More general comparative preferences such as P3 can also be expressed in SPRE-
FQL, as in query Q7:

Q7: SELECT ?X ?B ?D { ?X a :GasStation; :brand ?B; :dist ?D . }
PREFER ?X1 ?B1 ?D1 TO ?X2 ?B2 ?D2

IF (?B1 = :mobil && ?B2 = :chevron)

Combined preferences are also supported, through AND and PRIOR TO clauses.
Unfortunately, however, with the syntactic expansion over PrefSPARQL, it is quite pos-
sible for the preference relation to be non-transitive or to have loops.

Example 13. For instance, imagine Q6 modified by replacing < with≤ (which we will
refer to as Q′6 below), so that each solution dominates itself. Another example involves
expressing P6a-c as:

Q8: SELECT ?X ?B ?S ?T {?X a :GasStation; :brand ?B; :shop ?S; :antifreeze ?A.}
PREFER ?X1 ?B1 ?S1 ?A1 TO ?X2 ?B2 ?S2 ?A2
IF ((?B1 = :Mobil && ?B2 = :Chevron) ||

(?S1 = :KwikieMart && ?S2 = :711) ||
(?A1 = :Zerex && ?A2 = :Prestone))

This is problematic, as Troumpoukis et al. only use the simple definition of win-
nowing above. If there is a preference loop in the candidate solutions, as for Q8 on the
example data, then none of the solutions in the loop will ever be returned, because each
of them is dominated by another solution. The preference combination operators do not
help: AND will just produce the same cyclic preference and PRIOR TO does not have
a suitable meaning. This problem also occurs for reflexive loops, as for Q′6 where each
solution dominates itself. We provide a simple but general solution for these problems
below. As we will see, the absence of transitivity does not cause a problem by itself, but
does complicate the problem of loops.

Also, note that Troumpoukis et al. provide a mapping to SPARQL 1.1 where the
schema of Equation (2) is replaced by (again, we refer for details to [5]):

SELECT V WHERE {P FILTER NOT EXISTS {P(V/V1) FILTER C(V2/V) }}
(3)

This is a straightforward extension of the PrefSPARQL translation, which however
depends again on SPARQL EXISTS and also falls prey to the problem with BOUND,
as in Example 11.

4 Simple Comparative Preferences

We first establish that acyclic preference relations are non-problematic: they are guar-
anteed to determine a nonempty skyline over any finite, non-empty set of solutions and
ranks behave well. In addition, as we discuss in detail in Section 6, a skyline query over
an acyclic preference relation is specifiable in SPARQL 1.1. As every transitive and
irreflexive relation is acyclic, handling acyclic preference relations also handles this
common requirement imposed on preference relations.

Theorem 1. If the preference relation � is acyclic over a finite, non-empty set of can-
didate solutions S, i.e., there is no candidate solution s for which there is a sequence of
candidate solutions starting and ending with s such that each dominates the next, then
ω�(S) is non-empty.

Because each skyline is non-empty for a finite, non-empty set of solutions if the
preference relation is acyclic, each solution has a uniquely defined rank.

Corollary 1. If the preference relation � is acyclic over a finite, non-empty set of can-
didate solutions S then rankS

�(s) is defined for each s ∈ S.

Dominance between solutions is reflected in their relative ranks.

Theorem 2. If the preference relation � is acyclic over a finite, non-empty set of can-
didate solutions S then s1 � s2 implies rankS

�(s1) < rankS
�(s2).

As Troumpoukis et al. [5] use ω� as their winnow operator, their solution performs
correctly on acyclic preference relations. However, if the preference relation has loops,
then none of the solutions in the loop will be in any skyline (and thus none of them
will have a rank), even if there is no other solution dominating any solution in the
loop. Even a simple reflexive loop, such as accidentially writing ≤ instead of < as in
Example 13, query Q′6 above, causes problems for Definition 2. A preference written
like this seems unintuitive, but it is not forbidden in SPREFQL. As arbitrarily complex
SPARQL expressions can occur in the IF clause it might not be obvious or even possible
beforehand to determine whether a preference is irreflexive.

5 Non-Simple Comparative Preferences

To address such cases, we begin by addressing the empty-skyline problem mentioned
above, which can be done by modifying the definition of skyline.

What makes intuitive sense in the presence of preference loops in the candidate
solutions is to consider all the solutions in the loop as if they were equally preferred,
i.e., they don’t count as dominating each other or themselves. This regains the desirable
property that a finite, non-empty set of candidate solutions has a non-empty skyline.

Formally, we modify the definition of skyline (Definition 2) as follows:

Definition 4. If S is a finite set of solutions and � a preference relation over some
superset of S then the skyline of S with � is

ωl
�(s) = {s ∈ S|¬∃s′ ∈ S.(s′ �∗ s ∧ ¬(s �∗ s′))}

where�∗ is the transitive closure of� over candidate solutions, i.e., there is a sequence
of candidate solutions, each dominating the next.

In English, this says that a solution is in the skyline if there is no solution that
transitively dominates it and that it does not transitively dominate.

This definition regains the desirable properties from above, slightly modified.

Theorem 3. ωl
�(S) is non-empty for S any finite, non-empty set of candidate solutions.

Corollary 2. rankS
�(s) is defined for each s ∈ S for S any finite, non-empty set of

candidate solutions.

Loops cause the rank of solutions in the loop to be the same, so dominance only
produces a rank at least as large.

Theorem 4. For any preference relation � over a finite, non-empty set of candidate
solutions S, s1 � s2 implies rankS

�(s1) ≤ rankS
�(s2).

Note that, in Definition 4, transitive closure is needed for both the ancestor and the
descendant of s. Consider a solution s that dominates only a single element s1 of a
minimal domination cycle10 s1, . . . , sn, s1, with n > 2. Now s should knock each si
out of a skyline but no sj should. To get to only s requires looking at the transitive
dominators of si, not just its direct dominators.

Example 14. Getting back to the preference relation from the right-hand-side of Fig-
ure 1, the solution sShell dominates sMobil directly, but sChevron and sCitgo are dom-
inated only indirectly. Thus, if in Definition 4 s′ �∗ s were replaced by s′ � s, then
sChevron and sCitgo – counter to our intuition – would end up in the first skyline. On
the other hand, if we replaced ¬(s �∗ s′) with ¬(s � s′), it is easy to see that the
second skyline would be empty, again going counter to our intuition.

As a special case (specifically considered here because of its relationship to
SPARQL), if the preference relation is known to be transitive then there is no need
to compute its transitive closure; that is, the following simpler definition suffices to deal
such known transitive (including reflexive) preferences, even if they are cyclic. Here, in
English, a solution is in the skyline if there is no solution that directly dominates it and
that it does not directly dominate.

Definition 5. If S is a finite set of (candidate) solutions and � a transitive preference
relation over some superset of S then the skyline of S with � is

ωt
�(S) = {s ∈ S|¬∃s′ ∈ S.(s′ � s ∧ ¬(s � s′))}

This definition maintains the desirable properties from Theorems 2, 3, and 4, for
transitive preference relations. They all come from the simple observation that the tran-
sitive closure of a transitive relation is itself, so Definitions 4 and 5 coincide for tran-
sitive preference relations. Note that transitivity is not actually required in general for
Definition 5 to suffice, but only transitivity into loops, i.e., a direct dominator of any so-
lution in a loop is a direct dominator of every solution in the loop. We call the preference
relation � clique-cyclic in this case.
10 A domination cycle is minimal if the only domination relationships between elements of the

cycle are those from one element of the cycle to the next.

Theorem 5. Let S be any finite set of (candidate) solutions. Let� be clique-cyclic, i.e.,
for any solutions s1 and s2, if s1 �∗ s2 and s2 �∗ s1 then for any solution s if s � s1
then s � s2. Then ωt

�(S) = ωl
�(S).

6 Comparative Preferences in SPARQL

As discussed in Section 3 above, languages like PrefSPARQL and SPREFQL have sug-
gested translations to native SPARQL, thus showing a – not necessarily very efficient –
implementation path in terms of off-the-shelf engines, and proving that the respective
languages do not add expressivity on top of SPARQL. However, since both these trans-
lations only implement the simple winnow operator from Definition 2, we now turn to
the question whether ωt

�(S) and ωl
�(S) can likewise be expressed in SPARQL 1.1.

As we want to allow for general comparative preferences, we adopt the SPREFQL
syntax [5] as opposed to the syntax of earlier work such as PrefSPARQL [4].

We recall the mapping from SPREFQL to SPARQL 1.1 by the schema given in
Equation (3). While Troumpoukis et al. already suggest that evaluating this translation
is potentially more expensive than directly implementing PREFER, for now we are
only concerned with the expressibility of the different variations of skyline operators
we introduced in SPARQL.

We recall there are two problems in the original translation: first, the use of NOT
EXISTS in the translation into SPARQL, and second, that the reliance on the skyline
operator of Definition 2 only works for the simple case of acyclic preference relations.

The first problem can be overcome using the translation that uses OPTIONAL and
!BOUND() instead of NOT EXISTS from Gueroussova et al. [12], cf. Example 11.
This idea can be generalized to SPREFQL with the following mapping for Equation (2).

Mapping 1 (Simple Mapping to SPARQL)

SELECT V WHERE { P
OPTIONAL { P(V/V1) FILTER (C(V2/V)) BIND (1 TO ?exists) }
FILTER (!BOUND(?exists)) }

Theorem 6. Mapping 1 correctly implements ω�.
Proof. (Sketch) The OPTIONAL part only binds a value to ?exists when a domina-
tor exists so the final filter only lets through solutions that are not dominated.

Handling the second problem however requires changing the semantics of PREFER.
When we view the intuitive meaning of Equation (2) decoupled from the mapping to
SPARQL it conceptually reduces to first constructing the solution set S for

SELECT V WHERE { P }

and then eliminating non-dominated solutions of this query according to the chosen
winnow operator. So we need to repair the semantics to use our winnow operator ωl,
which as we showed above produces desirable results for any preference relation, in-
stead of the original ω. Of course this is quite a significant change. On the plus side,
it doesn’t have problems with loops. On the negative side, it may require computing (a
part of) the transitive closure of �. We will discuss next whether and how this compu-
tation can also be realized within SPARQL itself, or by means of bespoke algorithms.

7 Implementing SPARQL Preferences

This repaired version of comparative preferences semantics can be efficiently imple-
mented. Instead of just checking whether a solution has a direct dominator we have to
check its transitive dominators and see whether they are in a loop. This sounds expen-
sive, going around the loops repeatedly, but can actually be done relatively efficiently.

The basic idea11 behind the algorithm is to check � between each pair of candidate
solutions. The algorithm keeps track of a representative for each solution which repre-
sents all the solutions that are in loops involving the solution. When a new loop is found,
the solutions in the loop are given the same representative. This operation has to be done
efficiently over the entire exploration. Fortunately, the union-find algorithm [18] does
precisely this in time O(nlog∗(n)), where n is the number of candidate solutions. Af-
ter the representatives are found, all that is needed is to check whether a solution has a
direct dominator with a different representative.

The algorithm checks � between each pair of solutions so its running time is domi-
nated by the n2 computations of �; the union-find algorithm only adds O(nlog∗(n)).
The most significant change in actual running time between the computation of ω� and
ωl
� will be due to not being able to quit checking for dominators of a solution when the

first one is found.
If the preference relation is known to belong to either of the special cases discussed

in the context of Definition 5, i.e., if either the preference relation is acyclic, transitive
or clique-cyclic, then it is possible to translate preferences back into SPARQL itself.
For an acyclic preference relation the translation is the one in Mapping 1. For transi-
tive preference relations (or, likewise, if � is clique-cyclic) a slightly more complex
translation is needed.
Mapping 2 (Mapping to SPARQL for transitive Preferences)

SELECT V WHERE { P
OPTIONAL { P(V/V1) FILTER (C(V2/V) && ! C(V1/V,V2/V1))

BIND (1 TO ?exists) }
FILTER (!BOUND(?exists)) }

Theorem 7. Mapping 2 correctly implements the winnow operator ωt
�.

The general case is much tougher to translate back to a single SPARQL query as it
has to compute (part of) the transitive closure of � over the solutions. If, however, we
allow for multiple queries we can first construct a graph that reifies the solutions and
asserts� between them and then determine the skyline with a subsequent query against
the union of that constructed graph and the original graph.

8 Multiple Skylines

There are situations where more solutions than the top skyline are desired, and it is
inconvenient to submit multiple different queries to get those additional solutions, man-
ually eliminating prior solutions. Thus, a SPARQL extension that returns multiple levels
of skylines, possibly including an indicator of each solution’s rank, seems natural.
11 The full algorithm is in the extended technical report version of the paper.

Siberski et al. [3] propose that a use of SPARQL’s existing keyword pattern “LIMIT
k”, in combination with their proposed keyword PREFERRING, can inform the query
evaluator to retrieve enough levels of skyline to produce solutions numbering at least k.
However, this approach has 3 weaknesses: it gives the LIMITmodifier a counterintuitive
special meaning when it is used in that combination; it precludes the use of LIMIT with
its usual meaning; and it does not support the specification of an explicit number of
complete skylines to be returned.

To address these issues, we propose the addition of the keyword SKYLINE, to be
used in conjunction with LIMIT, in either of the following patterns:

– LIMIT SKYLINE n [TO m] [AS vrank] . . . return complete skyline(s)
with rank n (or with ranks n to m, with 1 ≤ n ≤ m).

– LIMIT SKYLINE ALL AS vrank . . . return all skylines.

The AS vrank is optional if explicit limits are given. If present it adds a new binding
to the solution bindings of the query assigning to variable vrank the rank of the solu-
tion. Ranks are counted starting at 1, and the absence of a LIMIT SKYLINE clause is
equivalent to LIMIT SKYLINE 1.

Our implementation of ωl can be simply extended to compute which skyline a so-
lution is in. Each solution is initially given a tentative skyline of 1. When a non-looping
dominator of a solution is found the solution’s representative is assigned to the tentative
skyline that is the maximum of its previous tentative skyline and one plus the tentative
skyline of the dominator’s representative. As non-looping dominators are only found
when their dominators have been completely processed their tentative skyline is their
final one. This way each solution representative is assigned to their skyline number so
the algorithm can produce the first (top) skyline, solutions in skyline(s) ranked between
n and m along with their skyline number, or all solutions with their skyline number.

9 Conclusions

We have considered the semantics of queries that rely on user preferences, extensions of
SPARQL that would allow for handling such queries, and their possible implementation
by translation into SPARQL. We identified several categories of preference relations
with different characteristics that are significant in terms of specifying preference query
semantics and specifying translations to SPARQL.

We summarize our conclusions, in order of increasing generality of the allowed
preference relations: The semantics of acyclic preference relations are as (implicitly)
indicated by Troumpoukis et al. [5]. However, we identified a problem with their trans-
lation to SPARQL, and showed how it can be repaired. Transitive, irreflexive preference
relations, which occur in many applied settings, as a special case of acyclic preference
relations, are subject to the same observations. For transitive preference relations in
general, a modified semantics is needed, as well as a slightly more complex transla-
tion into SPARQL. This semantics allows for more efficient processing than the most
general semantics mentioned below. We defined a category of clique-cyclic preference
relations (a superset of transitive preference relations, cf. Theorem 5), which can be

handled with the same semantics as transitive preference relations. Finally, for arbi-
trary preference relations, we gave a semantics that is slightly more complex than for
transitive preference relations, and showed that preference queries can be implemented
by translation to multiple (sequentially executed) SPARQL queries.

In addition, we showed that our proposed semantics and implementation for each
of these categories satisfies basic desiderata for the results of queries with preferences,
and we discussed an algorithm that would be more efficient than the implementation by
multiple, nested SPARQL queries. Finally, we proposed an additional SPARQL exten-
sion that provides a

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5)
(2001) 28–37

2. Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., Tran, L.: Composite
Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0 (January 2004) W3C
Recommendation.

3. Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences. In: The
5th International Semantic Web Conference (ISWC 2006). (2006) 612–624

4. Gueroussova, M., Polleres, A., McIlraith, S.A.: SPARQL with qualitative and quantitative
preferences. In: 2nd International Workshop on Ordering and Reasoning (OrdRing 2013), at
ISWC 2013. (2013) CEUR Workshop Proceedings, Volume 1059.

5. Troumpoukis, A., Konstantopoulos, S., Charalambidis, A.: An extension of SPARQL for
expressing qualitative preferences. In: The 16th International Semantic Web Conference
(ISWC 2017). (2017) 711–727

6. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation (March
2013) Available at http://www.w3.org/TR/sparql11-query/.

7. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings 17th Inter-
national Conference on Data Engineering. (2001) 421–430

8. Tversky, A.: Intransitivity of preferences. Psychological review 76(1) (1969) 31–48
9. Nurmi, H.: Making sense of intransitivity, incompleteness and discontinuity of preferences.

In: Group Decision and Negotiation. A Process-Oriented View, Springer (2014) 184–192
10. Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database

Systems 28(4) (2003) 427–466
11. Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in SPARQL 1.1:

Syntax, semantics and evaluation. Journal of Web Semantics 18(1) (2013) 1–17
12. Gueroussova, M., Polleres, A., McIlraith, S.A.: SPARQL with qualitative and quantitative

preferences (extended report). University of Toronto CSRG Report 619 (2013)
13. Rosati, J., Noia, T.D., Lukasiewicz, T., Leone, R.D., Maurino, A.: Preference queries with

ceteris paribus semantics for linked data. In: OTM Conferences. (2015)
14. Kießling, W., Köstler, G.: Preference SQL - design, implementation, experiences. In: 28th

International Conference on Very Large Data Bases. (2002) 990–1001
15. Kießling, W., Endres, M., Wenzel, F.: The preference SQL system - an overview. IEEE Data

Engineering Bulletin 34(2) (2011) 11–18
16. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommenda-

tion, https://www.w3.org/TR/rdf-sparql-query/ (2008)
17. Patel-Schneider, P.F., Martin, D.: EXISTStential aspects of SPARQL. In: The 15th Interna-

tional Semantic Web Conference (ISWC 2016). (October 2016)
18. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM

22(2) (1975) 215–225

