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Abstract XSPARQL is a transformation and query language that caters
for heterogenous sources: in its present status it is possible to transform
data between XML and RDF formats due to the integration of the XQuery
and SPARQL query languages. In this paper we propose an extension
of the XSPARQL language to incorporate data contained in relational
databases by integrating a subset of SQL in the syntax of XSPARQL.
Exposing data contained in relational databases as RDF is a necessary
step towards the realisation of the Semantic Web and Web of Data. We
present the syntax of an extension of the XSPARQL language catering
for the inclusion of the SQL query language along with the semantics
based on the XQuery formal semantics and sketch how this extended
XSPARQL language can be used to expose RDB2RDF mappings, as
currently being discussed in the W3C RDB2RDF Working Group.

1 Introduction

Our aim is to provide a transformation language that is capable of integrating,
querying, transforming and exposing data from heterogeneous sources such as
relational databases, XML [9], and RDF [23]. This language, called XSPARQL [2],
is based on existing standards, currently XQuery and SPARQL, for querying
XML and RDF input sources. In this paper we propose to extend XSPARQL
with the integration of a subset of the SQL query language, catering for input
from relational databases. The final result is an XQuery-flavoured language whose
semantics is also defined as an extension of the XQuery semantics [14].

Data integration is a long standing and not easily surpassable problem in
information systems [27]. The process commonly known as ETL (Extract, Trans-
form and Load) can be used to provide data integration for sources that share the
same underlying format, e.g., relational databases. The data integration problem
is further aggravated if the data resides in sources adhering to different repres-
entation formats. In this case, an extended ETL is required, for instance where
the Extract process “wraps” different formats into a common representation
model. Data integration on the Web is inherently an integration task involving
sources from different formats and such scenarios require flexible infrastructures



to aggregate data from the different information sources, e.g., relational data-
bases, XML documents and databases and recently RDF data exported from
Web content. The relational model (and data adhering to this model) is still
the predominant paradigm in current enterprise application scenarios, and many
works have investigated either distributed querying or integration of relational
sources [19,17,27]. On the Web, semi-structured XML is also widely used as
an exchange format [20] and the integration of the relational and XML data
formats has been published with the SQL language standard since 2003. The
RDF data-model has recently come into the picture, supported by efforts like
the Linked Open Data initiatives and is gaining importance on the Web and the
Semantic Web. RDF has clear advantages over the RDB and XML formats in
terms of providing a common integration model, by the fact that RDF is per se
schema-unaware.

Transforming data between the relational model and RDF is a necessary step
to further move forward the Semantic Web, as acknowledged by the W3C in the
ongoing RDB2RDF Working Group. On the other hand, transforming between
XML and RDF is already a much required – but not so simple – task in the
Semantic Web, e.g., in the realm of Semantic Web Services.

Another issue is that the current version of SPARQL [26,24], the W3C
recommended query language for RDF, is still preliminary in terms of expressivity
compared with SQL or XQuery. The SPARQL 1.1 query language, currently
under development by the W3C SPARQL Working Group, gives a leap forward
in terms of expressivity, however, providing mechanisms to convert data back
into the native legacy data models of XML or SQL databases is beyond the scope
of the Working Group.

The XSPARQL language considering only the integration of XQuery and
SPARQL, was presented in [2] and published as a W3C Member Submission [25].
An updated version of the semantics of XSPARQL along with some possible
optimisations was presented in [7]. With the addition of SQL and data from
relational databases, the language caters for a much broader set of use cases.
As a first trivial example we can think of the use case of exposing data in
relational databases as RDF, in a similar approach to the RDB2RDF proposals.
But furthermore a common language including SQL, XQuery and SPARQL
can support more involved transformations, for instance, enabling to integrate
enterprise legacy data into Linked Data.

1.1 Related work

In [17] the notion of dataspaces is introduced, which can be described as a
“topic specific data wrapper” i.e., provides a common view of a certain (general
or specific) topic across heterogeneous sources. The paper also describes the
functionalities that a dataspace support platform should provide, such as support
accessing all the data in the original sources and assuming there are other ways
(than those provided by the dataspace) to modify the original sources i.e., do not
assume we have full control of the data sources. Although these properties are
slightly different and a more involved approach, they share common properties



with our language. Furthermore we see our language as the transformation
language that is used within a dataspace to access the heterogeneous sources.

Another work that focuses on integration of sources from different data models
is Information Manifold [22]. Here each source is declaratively described in terms
of the information it contains and its query interface. The declarative model is
indeed an interesting part of this work, allowing to define query plans, query
equivalence and to ensure query correctness.

There are several projects that enable exposing RDB data as RDF data.
For instance, D2R Server [8] and D2R Map or Triplify [5] allow to specify the
conversions between RDB data and RDF. Large commercial database companies
are also providing solutions for RDF triplestores, such as Oracle [12] and Vir-
tuoso [16]. Most of these projects assume a fixed translation schema where, for
instance, database tables are translated into RDFS classes and table attributes
are represented as properties.

An analysis of the current RDB2RDF tools is presented in [18], also aiming
at studying the expressivity of SPARQL to represent scientific queries, namely
in the astronomy domain. Although, as stated by the authors, data and queries
were mostly numeric, thus being biased towards relational data and SQL, the
comparison gives a good overview of how the tested tools perform in comparison
to relational databases. Some of the conclusions indicate that these tools are still
not able to compete with relational databases in terms of performance and that
SPARQL is also not yet expressive enough to pose the necessary queries.

In comparison to XSPARQL, all of these approaches focus on mapping
relational data to RDF but do not consider the integration of XML. Providing
an integrated language to query and transform between the three data models is
XSPARQL’s strong point.

In the next section we present notions of the XSPARQL language, considering
the integration of XQuery and SPARQL, and briefly present the syntax and
semantics of the subset of SQL considered in this paper. Section 3 then proceeds
to presenting the integration of SQL in XSPARQL, the new syntax and the
semantics of the new expressions. In Section 4 we introduce the R2RML mapping
language and present an algorithm to process it in XSPARQL using the new
SQL expressions and Section 5 wraps up the paper while discussing future work.

1.2 Running example: Band Members

As a running example throughout this paper we will use the a database modelling
Bands and Persons that are members of bands. A possible schema for such a
database, along with data adhering to the schema, is presented in Figure 1.3 In
this figure the names of relation attributes represented as bold face indicate
primary keys of a relation, while italic corresponds to a foreign key constraint (in

3 The relation attributes described in figure are of type “character string” for the
data which is represented between “quotes” and numeric for the rest. Furthermore,
attribute ssn is short for Social Security Number.



id name origin

1 “U2” “Dublin”

(a) representation of
relational table band

ssn name memberOf

123 “Bono” 1

(b) representation of rela-
tional table person

Figure 1. Example database schema

this case the memberOf attribute of relation person references the id attribute
of relation band).

2 Preliminaries

This section presents a short overview of the current status of the XSPARQL
language and the subset of SQL considered for the integration in XSPARQL.

2.1 XSPARQL: merging XQuery and SPARQL

In its current iteration, XSPARQL can facilitate the process of transforming data
between the XML and RDF formats by merging the XQuery and SPARQL query
languages. XQuery allows for a convenient and concise syntax for XML query
processing and XML transformation, while SPARQL is the standard for RDF
querying and transformation.

Most approaches to transform data from RDF to XML rely on performing a
SPARQL SELECT query to gather the desired data and then performing a trans-
formation over the XML serialisation of the SPARQL SELECT results. XSPARQL
allows to perform such transformations within a single language, relying on the
full power of XQuery for processing results but also improves transformations
from XML to RDF, for example by performing automatic validation of the con-
structed RDF. Syntactically, the XSPARQL language integrates SPARQL SELECT

queries as a new expression in XQuery. A schematic overview of the XSPARQL
syntax is presented in Figure 5 (already including the SQL integration) and for
further details the reader is referred to [7]. As an example of an XSPARQL query,
consider a trivial representation of our running example data (Figure 1) in XML:
the XSPARQL query presented in Figure 2 converts this XML input into RDF.4

Semantics The semantics of XSPARQL is based on the XQuery Formal Se-
mantics and thus we next provide a small overview of the semantics of XQuery
(for a more detailed description the reader is referred to [14]). The semantics
of XQuery is defined by the following types of rules: normalisation rules, static
typing rules and dynamic evaluation rules. Normalisation rules reduce XQuery
to XQuery Core: a subset of XQuery over which the language is defined. These
rules are represented using mapping rules of the following notation:

4 The complete XML input file for this query is available at http://xsparql.deri.

org/data/bands.xml.

http://xsparql.deri.org/data/bands.xml
http://xsparql.deri.org/data/bands.xml


prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix band: <http://example.org/bands#>

for $person in doc("bands.xml")//person
for $band in doc("bands.xml")//band
where data($person/memberOf) eq data($band/@id)
construct { [] foaf:name {$person//name}; band:memberOf {$band//name} }

Figure 2. XSPARQL query example

Head: S select AttrSpecList

Body: D from RelationList
W where WhereSpecList

(a) Simplified schematic view on SQL

SQL datatype XML datatype
character string xs:string
numeric, decimal xs:decimal
boolean xs:boolean

(b) Mapping from SQL datatypes
to XML datatypes (partial)

Figure 3. Overview of the SQL language and mapping from SQL to XML datatypes

JObjectKsubscript

==

Mapped Object

This rule indicates that Object will be transformed into Mapped Object in XQuery
Core. The subscript is used to identify sets of rules and allow to selectively apply
them. Static typing rules are used to assign a type to each XQuery expression,
while the dynamic evaluation rules are responsible for producing the resulting
XML from each expression meanwhile guaranteeing that the input is coherent
with the type of the expression. Static typing and dynamic evaluation rules
are represented using logical inference rules containing a set of premises and a
conclusion, represented as follows:

premise1 . . . premisen
conclusion

In each of these steps two environments are available: statEnv and dynEnv.
Environments consist of a set of key/value pairs that can be used to store extra
information regarding the processing of the query. These are used for instance to
store the types of variables (statEnv) or their values during evaluation (dynEnv)
and can be accessed by the expressions statEnv.varType and dynEnv.varValue,
respectively. Other used operators are: (i) env ` expr⇒ value indicates that given
environment env, expr evaluates to value; (ii) env ` expr : type in environment
env, expr has type type; and (iii) environments can be changed (extended) using
the + operator.

For further information about the XQuery and SPARQL languages the reader
is referred, respectively, to [11,14] and [26,24].

2.2 SQL

For this paper we are considering a subset of SQL that consists of the commonly
known select-from-where queries: a schematic overview of this subset is presented



<SQLResult>
<result>

<id>1</id>
<name>U2</name>
<origin>Dublin</origin>

</result>
</SQLResult>

Figure 4. SQL XML results format

in Figure 3a. As an initial approach we chose to keep the supported set of SQL
expressions small and relay any more complex processing to XSPARQL (which
inherits all XQuery features). Thus, the main features of SQL that we are not
considering in this integration are aggregate functions and nesting, however both
of these features can be achieved by using XQuery functions and nesting.

Mapping SQL results to XML The mapping from SQL datatypes into XML
Schema datatypes is defined in the SQL specification and presented in [15]. An
example of this mapping is presented in Figure 3b. However XML datatypes
generically allow a wider range of valid values and thus concrete mappings may
impose further restrictions on XML datatypes. For the scope of our paper we
rely on the more general mapping (not considering restrictions or inclusion of
vendor specific datatypes) and define the result of an SQL query as a sequence
of elements of type SQLResult which consists of a complex datatype element with
the attribute name and the value of the relation as the text node. For instance
the result of an SQL query retrieving all tuples from the “band” relation from
the database in our running example (Figure 1) is represented in Figure 4.

Semantics The semantics of SQL is defined by a translation into relational
algebra as presented in [10]. SQL is first translated into a simplified syntax over
which the translation to relational algebra is defined. The result of evaluating an
SQL select-from-where query consists of a multiset of tuples, i.e., may contain
repeated answers in the results. This multiset can be trivially translated into our
datatype SQLResult.

3 RDB integration in XSPARQL

In this section we specify the extension of XSPARQL towards querying relational
data by extending XSPARQL’s syntax and semantics (detailed in [7]).

3.1 Syntax

This extension of XSPARQL consists of merging the subset of SQL presented in
Figure 3a into the syntax of XSPARQL and is presented schematically in Figure 5.
The XSPARQL syntax rules, although restricted to the new rules representing
SQL select-where-clauses, are presented in Figure 6.5 A query example, over the

5 In these syntax rules VarRef represents an XQuery variable ("$" prefixed).



Prolog: declare namespace prefix="namespace-URI"
or

prefix prefix : <namespace-URI>

Body: for var in FLOWR’ expression

XQuery
let var := FLWOR’ expression
where FLWOR’ expression
order by FLWOR’ expression

or
for varlist

SPARQL

from / from named ( <dataset-URI> or FLWOR’ expr)
where { pattern }
order by expression
limit integer > 0
offset integer > 0

or
for SelectSpec

SQLfrom RelationList
where WhereSpecList

Head: construct { template (with nested FLWOR’ expressions) }
or

return XML+ nested FLWOR’ expressions

Figure 5. Schematic view of XSPARQL

XSPARQLExpr ::= (FLWORExpr | SPARQLForClause | SQLForClause)
(ReturnClause | ConstructClause)

SQLForClause ::= "for" SelectSpec RelationList SQLWhereClause?
SelectSpec ::= AttrSpecList | "*" | "row" VarRef
AttrSpecList ::= AttrSpec AttrNameSpec? ("," AttrSpec AttrNameSpec?)*
AttrSpec ::= attrName | VarRef | relationName.attrName |

VarRef.attrName | relationName.VarRef | VarRef.VarRef
AttrNameSpec ::= "as" VarRef
RelationList ::= "from" TableSelector ("," TableSelector)*
TableSelector ::= TableName ("as" TableAlias)? | VarRef ("as" TableAlias)?
SQLWhereClause ::= "where" WhereSpecList
WhereSpecList ::= "(" WhereSpecList BooleanOp WhereSpecList ")" |

AttrSpec ComparisonOp AttrSpec | AttrSpec ComparisonOp Constant
BooleanOp ::= "and" | "or"
ComparisonOp ::= "=" | "!=" | "!=" | "<" | "<=" | ">" | "=>"

Figure 6. Extension of the XSPARQL syntax (partial)

relational schema described in Section 1.2, is presented in Figure 7. Intuitively,
the newly introduced element SQLForClause represents an SQL select query that
can be evaluated against the underlying database. Similarly to XQuery’s for

clause and XSPARQL’s SparqlForClause, the SQLForClause expression iterates
over the results returned by the execution of the SQL query and exposes the
result values to other subsequent expressions in the query.

Variable names are assigned to the results of an SQLForClause in order for other
XSPARQL expressions to reuse the expression results. We provide three ways
of specifying variable names for the results of an SQLForClause: (i) by explicitly
specifying a variable name for each attribute – represented by the syntax rule
AttrNameSpec (from Figure 6), where VarRef is the variable name to which the
attribute value is assigned; (ii) implicitly by omitting the variable name or using
“for *”; and (iii) using the row keyword instantiates the specified variable with
each result row the query produces. For (ii), each attribute in the result set is
assigned a variable name automatically (with the same name as the attribute
name). For example, in the query from Figure 7, if the AttrNameSpec (as $name



prefix foaf: <http://xmlns.com/foaf/0.1/>
prefix band: <http://example.org/bands#>

for person.name as $name, band.name as $bandName
from person, band
where { person.memberOf = band.id }
construct { [] foaf:name $name; band:memberOf $bandName }

Figure 7. XSPARQL DB query example

and as $bandName) had been omitted, the generated variable names would be
$person.name and $band.name, respectively.

The third form of specifying variable names is intended to be used when the
relation attributes are not known beforehand, e.g., if the relation is specified by
a variable. For example, if we use "row $r", $r is instantiated with each result

in the XML format (as represented in Figure 4) and the value of each attribute
can be accessed with the XPath expression $r/attributeName, e.g., $r/id.

So far we are not considering an update language for XSPARQL, thus it is
not possible to change a relational database from XML or RDB sources.

3.2 Semantics

We define the semantics of the newly introduced SQLForClause by means of the
normalisation rules, static type analysis rules, and dynamic evaluation rules
presented in this section. The semantics of XSPARQLConstructClauses are spe-
cified by rewriting them into ReturnClauses according to the rules presented in [7,
Section 4.2.3]. This approach is still valid for the newly introduced expressions
and thus we do not detail ConstructClauses in the rules presented in this paper.

Translating SQLForClause into relational algebra For the translation of
XSPARQL SQLForClauses into relational algebra we rely on the translation from
SQL to relational algebra as presented in [10,1]. However, we need to take into
account our extended syntax (as presented in Figure 6) that allows for variables
in SQLWhereClauses. For this translation we introduce a new formal semantics
function – fs:sql – that extends the translation described in [10] by replacing
any variables present in the SQLWhereClause with their values (taken from the
dynEnv.varValue environment component). If the variable is unbound, i.e., not
present in the environment component, it is replaced by null. In our semantics
this function also represents the evaluation of the SQLForClause, receiving two
parameters: RelationList and SQLWhereClause which represent, respectively, the
list of relations that the query involves and the pattern to be executed.

Following the XQuery datatypes for SQL results, briefly introduced in Sec-
tion 2.2, we further introduce the auxiliary function fs:value(SR, var) which
returns the value of the specified variable var in an SQLResult SR. If var is not
present in SR or its value is null, the empty sequence is returned. The result of
the evaluation of the relational algebra expression is a solution sequence that can
be translated directly into an XQuery sequence.



Normalisation rules First we specify the normalisation rule for SQLForClauses
with no attribute selection specified (“for *”):

Jfor ∗ RelationList SQLWhereClause ReturnClauseKExpr

==s
for JRelationList SQLWhereClause Kattrs RelationList
SQLWhereClause ReturnClause

{

Expr

(1)

The normalisation rule J·Kattrs returns a comma separated list of variables repres-
enting all the attributes from each relation from RelationList . These generated
variables are of the form: $relationName.attributeName.

Static type analysis The following static type rule defines the type of each
variable in an SQLForClause as xs:anySimpleType and determines the static type
of whole expression:

statEnv + varType(Var1 ⇒ xs:anySimpleType;
. . . ;
Varn ⇒ xs:anySimpleType

) ` ReturnExpr : Type

statEnv ` for AttrSpec1 as $Var1 . . .AttrSpecn as $Varn
RelationList SQLWhereClause return ReturnExpr : Type∗

(2)

This rule, given the static environment statEnv, takes care of creating a new
environment with the added information that each of the variables in the SQLFor-

Clause ($Var1 . . . $Varn) are of type xs:anySimpleType. Given this new extended
environment the type of ReturnExpr can be inferred to be Type (according to
ReturnExpr ), making the type of the overall SQLForClause a sequence of elements
of type Type .

Dynamic Evaluation The dynamic evaluation rules for SQLForClauses intuit-
ively define that the return expression ReturnExpr will be executed for each
SQLResult that is returned:

dynEnv ` fs:sql(RelationList ,SQLWhereClause)⇒ SR1, . . . ,SRm

dynEnv + varValue(Var1 ⇒ fs:value(SR1,Var1);
. . . ;
Varn ⇒ fs:value(SR1,Varn)

) ` ReturnExpr ⇒ Value1

...
dynEnv + varValue(Var1 ⇒ fs:value(SRm,Var1);

. . . ;
Varn ⇒ fs:value(SRm,Varn)

) ` ReturnExpr ⇒ Valuem

dynEnv ` for AttrSpec1 as $Var1 . . .AttrSpecn as $Varn RelationList
SQLWhereClause return ReturnExpr ⇒ Value1, . . . ,Valuem

(3)



If the evaluation of the SQL expression does not yield any solutions, i.e., evaluates
to an empty sequence, the overall result will also be the empty sequence:

dynEnv ` fs:sql(RelationList ,SQLWhereClause)⇒ ()

dynEnv ` for $Var1 . . . $Varn RelationList SQLWhereClause
return ReturnExpr ⇒ ()

(4)

4 Processing R2RML mappings in XSPARQL

The W3C RDB2RDF Working Group (WG) is currently in the process of defining
a standard language to translate a relational database into RDF. The WG has
defined 2 documents: the Direct Mapping [4] specifies the process of translating
a relational database into RDF in an automated manner, i.e., requiring minimal
user input, and the R2RML language definition [13] corresponds to a user specified
translation (in Turtle syntax) of the input relational database. The direct mapping
provides a generic representation of the relational database while the R2RML
provides more fine tunned control over the produced RDF.

In this paper we are focusing on the implementation of the R2RML language
since the Direct Mapping approach requires access to the schema of the relational
database in order to produce the RDF, a feature that is so far not provided within
the XSPARQL language. Next we start by giving an overview of the R2RML
language and then provide an algorithm for its implementation in XSPARQL.

4.1 The R2RML mapping language

The R2RML mapping is itself an RDF graph consisting of several TriplesMap,
that specify how to map a logical table in the input relational database into RDF.
The logical table can correspond to a table, a view existing in the database, or
the result of an SQL query to be executed over the input relational database.6

Each TriplesMap consists of one SubjectMap and possibly multiple Predicate-

ObjectMaps. Each row in the logical table produces a single subject in the target
RDF which is specified by the SubjectMap. The multiple PredicateObjectMaps

each specify how to generate a predicate and objects (by means of PredicateMaps

and ObjectMaps, respectively) that are related to the generated subject.
Furthermore, each SubjectMap, PredicateMap, and ObjectMap may specify how

the RDF term is generated by means of different predicates. For instance, using
column predicate for the mapping rule (e.g., stated as the predicate of the
ObjectMap as per line 6 of Figure 8) indicates that the RDF object should be
generated based on the value of the column in the input database. As another
example the template predicate allows to specify how terms can be generated
by a template based on values from the logical table, e.g., the subjectMap from
line 3 of Figure 8, states that the generated subject should be of the format
6 So far we do not allow to execute arbitrary SQL queries in XSPARQL and thus we

do not consider the case when a logical table is defined by an SQL query.



1 <#TriplesMapBand> a rr:TriplesMap;
2 rr:tableName "band";
3 rr:subjectMap [ rr:template "http://example.com/band/{id}" ];
4

5 rr:predicateObjectMap [
6 rr:predicateMap [ rr:predicate foaf:name ]; rr:objectMap [ rr:column "name" ] ];
7

8 r:predicateObjectMap [
9 rr:predicateMap [ rr:predicate foaf:based_near ]; rr:objectMap [ rr:column "origin" ] ]

Figure 8. RDB2RDF mapping for table “band”

Algorithm 1: rdb2rdf($m)

Input: RDB2RDF mapping $m (represented as RDF)
Result: RDF Graph

1 let $mapSk := skolemise($m)
2 for * from $mapSk
3 where
4 $map rdf:type TriplesMap; rr:subjectMap $s; rr:predicateObjectMap $po

5 return
6 for row $tableRow in $map do
7 let $subject := createTerm($mapSk, $tableRow, $s)
8 createPO($mapSk, $tableRow, $subject, $po)

http://example.com/band/{id}

where {id} is to be replaced by the value of the column id in the specific row. The
other predicate used in the example from Figure 8 is rr:predicate which states
that the value used for the predicate of the generated triples should be foaf:name
for the first predicateMap (line 6) and foaf:based_near for the predicateMap

from line 9.
An R2RML mapping produces an RDF dataset with all the generated triples

belonging to the default graph unless otherwise stated. Since in XSPARQL we
are only able to produce an RDF graph (as opposed to an RDF dataset with
possibly several named graphs) we are assuming that all the generated triples
belong to the default graph and ignore any rules that state the named graph in
which to generate the triple.

For further details on the R2RML mapping language the reader is referred to
the W3C specification [13].

4.2 R2RML implementation in XSPARQL

In this section we present an algorithm that has been developed for the imple-
mentation of an R2RML mapping in XSPARQL. The algorithm presented in
Algorithm 1 assumes that the XSPARQL query will be executed with previously
configured access to the underlying relational database. In this algorithm we rely
on multiple queries to the R2RML input mapping file and since the R2RML



Algorithm 2: createTerm($mapSk , $row , $spec)

Input: skolemised RDF2RDF mapping $mapSk , Database data $row , RDF term
specification $spec

Result: RDF Term
1 for * from $mapSk
2 where
3 $spec $specType $specValue

4 return
5 if $specType == rr:predicate then
6 createURI($specValue)
7 else if $specType == rr:column then
8 createLiteral($row/*[name() = $specValue])
9 else . . .

representation may use blank nodes for describing the mapping, we start by
skolemising blank nodes in the input RDF graph, i.e., any blank nodes used in
the R2RML mapping are substituted with newly generated URIs that are distinct
from any other URI in the graph. This transformation allows us to use these
newly generated URIs to merge data across different queries and is represented
in the algorithm by the skolemise function (line 1).

The SparqlForClause on lines 2-8 iterates over all the TriplesMaps present
in the mapping file and, for each of these TriplesMaps, retrieves the specified
data from the input relational database. This access to the (logical) table of
the relational database is represented by the SQLForClause on line 6 which, as
described in Section 3.1, instantiates $row with each result row the corresponding
SQL query returns. In line 7 we generate the subject that is shared by all the
triples derived from the same row of the relation and pass it to the auxiliary
function (line 8) that takes care of generating the predicate-object pairs.

The auxiliary function createTerm is partially presented in Algorithm 2: the
function produces an RDF term for a specific database table $row, according to
the specification given in the RDB2RDF mapping. The SparqlForClause from
lines 1-3 takes care of querying the RDB2RDF mapping to determine the type of
term to be produced. Finally, the return clause (lines 4-9) presents the process
of creating RDF terms for the rr:predicate and rr:column types of specifications.
The createURI and createLiteral functions used in this algorithm are built in
functions from XSPARQL that behave as constructors for URIs and Literals,
respectively. The missing specifications are similar to the presented ones possibly
requiring some extra processing, e.g., the rr:template specification types needs
to be parsed to extract the column names from the template and then access
their values of the current row. Foreign key references involve performing an
extra SQLForClause to access the referenced table from the input database and
also the representing TriplesMap in the RDB2RDF input mapping.

Algorithm 3 retrieves all the predicateMap and objectMaps associated with
the TriplesMap we are processing (lines 1-3), creates the respective predicate



Algorithm 3: createPO($mapSk , $row , $subject , $po)

Input: skolemised RDF2RDF mapping $mapSk , Database data $row , generated
RDF term $subject , input RDF term $po

Result: RDF Graph
1 for * from $mapSk
2 where
3 $po rr:predicateMap $p; rr:objectMap $o

4 return
5 let $predicate := createTerm($mapSk, $row, $p)
6 let $object := createTerm($mapSk, $row, $o)
7 construct
8 $subject $predicate $object

<http://example.com/band/1> <http://xmlns.com/foaf/0.1/name> "U2" .
<http://example.com/band/1> <http://xmlns.com/foaf/0.1/based_near> "Dublin" .
<http://example.com/person/123> <http://xmlns.com/foaf/0.1/name> "Bono" .
<http://example.com/person/123> <http://example.org/person#memberOf>

<http://example.com/band/1> .

Figure 9. Output of algorithm rdb2rdf (Algorithm 1)

(line 5) and object (line 6) and then generates an RDF triple using the XSPARQL
built-in construct expression. The construct expression automatically takes
care of discarding any non-valid RDF triples.

4.3 Mapping result

The RDF graph resulting from the applying Algorithm 1 to the RDF2RDF
mapping partially described in Figure 8 is presented in Figure 9. Since the
implementation of SQLForClauses in XSPARQL is still under development, this
output was obtained by using as input an XML representation of the data
contained in the relational database.

5 Conclusions

By merging two different query languages, XQuery and SPARQL, the XSPARQL
language can be used to easily integrate XML and RDF data, providing a tool
for transformation scenarios in several Semantic Web applications.

The extension described in this paper further considers the integration of
a subset of the SQL language in XSPARQL thus also providing access to data
stored in relational databases. We provided the semantics for this extension of
XSPARQL, accounting for the new expression SQLForClause, which provides the
access to the input relational databases.

A clear use case for the extended XSPARQL language is to expose data from
relational databases as RDF. The W3C RDB2RDF Working Group is currently



in the process of specifying a standard mapping language for exposing relational
data as RDF and, we provided an algorithm describing how the current mapping
language (R2RML) can be realised in an XSPARQL query.

The current implementation of the XSPARQL language consists of rewriting
the original XSPARQL query into an equivalent XQuery query with interleaved
calls to a SPARQL engine to provide facilities for RDF querying. The implement-
ation of the integration of SQL is still ongoing but the rewritten XQuery follows
this same approach to retrieve the data contained in relational databases.

Future work Regarding the integration of relational data, the next step for
XSPARQL is the implementation of the RDB2RDF direct mapping language
with the objective of making XSPARQL a fully compliant RDB2RDF engine and
overcoming some of the limitations of the current algorithm such as lacking the
possibility of creating named graphs. Another crucial next step is to provide a
declarative model sustaining a representative subset of the language with known
complexity bounds, while still allowing to perform queries over heterogeneous
sources. Some complexity results for a non-recursive core fragment of XQuery
have been investigated in [21]. The long standing mapping from relational algebra
to Datalog, and the more recently, also the equivalence of SPARQL to relational
algebra [3], provides another building block for defining the declarative model
of our language. Using the declarative model it is also possible to check the
equivalence between any proposed optimisations and also, in a similar approach
to [22], allow to assign a cost to each source in order to be able to calculate
optimal query plans.
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