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Waseem Akhtar and Jacek Kopecký and Thomas Krennwallner and Axel Polleres
Published in of the 5th European Semantic Web Conference (ESWC2008), pp.
432–447, Nov. 2007, Springer LNCS vol. 3803, ext. version published as tech.
report, cf. http://www.deri.ie/fileadmin/documents/TRs/DERI-TR-2007-12-14.pdf
and as W3C member submission, cf. http://www.w3.org/Submission/2009/01/

3



Dedicated to Inga & Aivi

4



Preface

“The truth is rarely pure and never simple.” (Oscar Wilde) . . . particularly on the Web.

The Semantic Web is about to grow up. Over the last few years technologies and standards to
build up the architecture of this next generation of the Web have matured and are being deployed
on large scale in many live Web sites. The underlying technology stack of the Semantic Web
consists of several standards endorsed by the World Wide Web consortium (W3C) that provide
the formal underpinings of a machine-readable “Web of Data” [94]:

• A Uniform Exchange Syntax: the eXtensible Markup Language (XML)

• A Uniform Data Exchange Format: the Resource Description Framework (RDF)

• Ontologies: RDF Schema and the Web Ontology Language (OWL)

• Rules: the Rule interchange format (RIF)

• Query and Transformation Languages: XQuery, SPARQL

The eXtensible Markup Language (XML)

Starting from the pure HTML Web which allowed mainly to exchange layout information for
Web pages only, the introduction of the eXtensible Markup Language (XML) in its first edition
in 1998 [19] meant a breakthrough for Web technologies. With XML as a uniform exchange syn-
tax, any semi-structured data can be modeled as a tree. Along with available APIs, parsers and
other tools, XML allows to define various other Web languages besides HTML. XML nowadays
is not only the basis for Web data, but also for Web services [45] and is used in many custom
applications as a convenient data exchange syntax. Schema description languages such as XML
Schema [112] can be used to define XML languages; expressive query and transformation lan-
guages such as XQuery [27] and XSLT [68] allow to query specific parts of an XML tree, or to
transform one XML language into another.

The Resource Description Framework (RDF)

The Resource Description Framework (RDF) – now around for over a decade already as well
– is the basic data model for the Semantic Web. It is built upon one of the simplest structures
for representing data: a directed labeled graph. An RDF graph is described by a set of triples
of the form 〈Subject Predicate Object〉, also called statements, which represent the edges of
this graph. Anonymous nodes in this graph – so called-blank nodes, akin to existential vari-
ables – allow to also model incomplete information. RDF’s flat graph-like representation has
the advantage of abstracting away from the data schema, and thus promises to allow for eas-
ier integration than customised XML data in different XML dialects: whereas the integration
of different XML languages requires the transformation between different tree structures using
transformation languages such as XSLT [68] or XQuery [27], different RDF graphs can simply
be stored and queried alongside one another, and as soon as they share common nodes, form
a joint graph upon a simple merge operation. While the normative syntax to exchange RDF,
RDF/XML [13], is an XML dialect itself, there are various other serialisation formats for RDF,
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such as RDFa [1], a format that allows to embed RDF within (X)HTML, or non-XML repre-
sentations such as the more readable Turtle [12] syntax; likewise RDF stores (e.g. YARS2 [54])
normally use their own, proprietary internal representations of triples, that do not relate to XML
at all.

RDF Schema and the Web Ontology Language (OWL)

Although RDF itself is essentially schema-less, additional standards such as RDF Schema and
OWL allow to formally describe the relations between the terms used in an RDF graph: i.e.,
the predicates in an RDF triple which form edges in an RDF graph (properties) and types of
subject or object nodes in an RDF graph (classes). Formal descriptions of these properties and
classes can be understood as logical theories, also called ontologies, which allow to infer new
connections in an RDF graph, or link otherwise unconnected RDF graphs. Standard languages
to describe ontologies on the Web are

• RDF Schema [20] – a lightweight ontology language that allows to describe essentially
simple class hierarchies, as well as the domains and ranges of properties; and

• the Web Ontology language (OWL) [108] which was first published in 2004 and recently
has been extended with additional useful features in the OWL2 [56] standard.

OWL offers richer means than RDF Schema to define formal relations between classes and
properties, such as intersection and union of classes, value restrictions or cardinality restrictions.
OWL2 offers even more features such as, for instance, the ability to define keys, property chains,
or meta-modeling (i.e., speaking about classes as instances).

The Rule Interchange Format (RIF)

Although ontology languages such as OWL(2) offer a rich set of constructs to describe relations
between RDF terms, these languages are still insufficient to express complex mappings between
ontologies, which may better be described in terms of rule languages. The lack of standards in
this area had been addressed by several proposals for rule languages on top of RDF, such as the
Semantic Web Rule language (SWRL) [62], WRL [6], or N3 [14, 15]. These languages offer,
for example, support for non-monotonic negation, or rich sets of built-in functions. The impor-
tance of rule languages – also outside the narrow use case of RDF rules – has finally lead to
the establishment of another W3C working group in 2005 to standardise a generic Rule Inter-
change Format (RIF). RIF has recently reached proposed recommendation status and will soon
be a W3C recommendation. The standard comprises several dialects such as (i) RIF Core [17], a
minimal dialect close to Datalog, (ii) the RIF Basic Logic Dialect (RIF-BLD) [18] which offers
the expressive features of Horn rules, and also (iii) a production rules dialect (RIF-PRD) [35].
A set of standard datatypes as well as built-in functions and predicates (RIF-DTB) are defined
in a separate document [92]. The relation of RIF to OWL and RDF is detailed in another docu-
ment [31] that defines the formal semantics of combinations of RIF rule sets with RDF graphs
and OWL ontologies.

Query and Transformation Language: SPARQL

Finally, a crucial puzzle piece which pushed the recent wide uptake of Semantic Web technolo-
gies at large was the availability of a standard query language for RDF, namely SPARQL [97],
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which plays the same role for the Semantic Web as SQL does for relational data. SPARQL’s
syntax is roughly inspired by Turtle [12] and SQL [109], providing basic means to query RDF
such as unions of conjunctive queries, value filtering, optional query parts, as well as slicing and
sorting results. The recently re-chartered SPARQL1.1 W3C working group1 aims at extending
the original SPARQL language by commonly requested features such as aggregates, sub-queries,
negation, and path expressions.

The work in the respective standardisation groups is partially still ongoing or only finished
very recently. In parallel, there has been plenty of work in the scientific community to define the
formal underpinnings for these standards:

• The logical foundations and properties of RDF and RDF Schema have been investi-
gated in detail [83, 52, 89]. Correspondence of the formal semantics of RDF and RDF
Schema [55] with Datalog and First-order logic have been studied in the literature [21,
22, 66].

• The semantics of standard fragments of OWL have been defined in terms of expressive
Description Logics such as SHOIN (D) (OWL DL) [61] or SROIQ(D) (OWL2DL) [60],
and the research on OWL has significantly influenced the Description Logics community
over the past years: for example, in defining tractable fragments like the EL [8, 9] family
of Description Logics, or fragments that allow to reduce basic reasoning tasks to query
answering in SQL, such as the DL-Lite family of Description Logics [26]. Other frag-
ments of OWL and OWL2 have been defined in terms of Horn rules such as DLP [51],
OWL− [34], pD* [110], or Horn-SHIQ [72]. In fact, the new OWL2 specification defines
tractable fragments of OWL based on these results: namely, OWL2EL, OWL2QL, and
OWL2RL [79].

• The semantics of RIF builds on foundations such as Frame Logic [70] and Datalog. RIF
borrows, e.g., notions of Datalog safety from the scientific literature to define fragments
with finite minimal models despite the presence of built-ins: the strongly-safe fragment
of RIF Core [17, Section 6.2] is inspired by a similar safety condition defined by Eiter,
Schindlauer, et al. [39, 103]. In fact, the closely related area of decidable subsets of
Datalog and answer set programs with function symbols is a very active field of re-
search [10, 42, 25].

• The formal semantics of SPARQL is also very much inspired by academic results, such as
by the seminal papers of Pérez et al. [85, 86]. Their work further lead to refined results on
equivalences within SPARQL [104] and on the relation of SPARQL to Datalog [91, 90].
Angles and Gutierrez [7] later showed that SPARQL has exactly the expressive power of
non-recursive safe Datalog with negation.

Likewise, the scientific community has identified and addressed gaps between the Semantic
Web standards and the formal paradigms they are based on, which we want turn to next.

Gaps in the Semantic Web Architecture
Although the standards that make up the Semantic Web architecture have all been established by
the W3C, they do not always integrate smoothly, indeed these standards had yet to prove useful

1http://www.w3.org/2009/sparql/wiki
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“in the wild”, i.e., to be applied on real Web data. Particularly, the following significant gaps
have been identified in various works over the past years by the author and other researchers:

Gap 1: XML vs. RDF The jump from XML, which is a mere syntax format, to RDF, which
is more declartive in nature, is not trivial, but needs to be addressed by appropriate – yet
missing – transformation languages for exchanging information between RDF-based and
XML-based applications.

Gap 2: RDF vs. OWL The clean conceptual model of Description Logics underlying the OWL
semantics is not necessarily applicable directly to all RDF data, particularly to messy,
potentially inconsistent data as found on the Web.

Gap 3: RDF/OWL vs. Rules/RIF There are several theoretical and practical concerns in com-
bining ontologies and rules, such as decidability issues or how to merge classical open
world reasoning with non-monotonic closed world inference. The current RIF specifica-
tion leaves many of these questions open, subject to ongoing research.

Gap 4: SPARQL vs. RDF Schema/RIF/OWL Query answering over ontologies and rules and
subtopics such as the semantics of SPARQL queries over RDF Schema and OWL ontolo-
gies, or querying over combinations of ontologies with RIF rulesets are still neglected by
the current standards.

In the following, we will discuss these gaps in more depth, point out how they have been ad-
dressed in scientific works so far, and particularly how the work of the author has contributed.

Gap 1: XML vs. RDF

Although RDF’s original normative syntax is an XML dialect, it proves impractical to view an
RDF graph as an XML document: e.g., when trying to transform XML data in a custom format
into RDF (lifting) or, respectively, RDF data into a specific XML schema (lowering) as may
be required by a Web service: while W3C’s SAWSDL [44] an GRDDL [29] working groups
originally proposed XSLT for these tasks, the various ambiguous formats that RDF/XML can
take to represent the same graph form an obstacle for defining uniform transformations [3]: to
some extent, treating an RDF graph as an XML document contradicts the declarative nature of
RDF. Several proposals to overcome the limitations in lifting and lowering by XSLT include (i)
compiling SPARQL queries into XSLT [50], (ii) sequential applications of SPARQL and XSLT
queries (via the intermediate step of SPARQL’s result format [28], another XML format), or (iii)
the extension of XSLT by special RDF access features [114] or SPARQL blocks [16]. The au-
thor of the present thesis and his co-authors have established another proposal: XSPARQL [3, 2],
which is a new language integrating SPARQL and XQuery; this approach has the advantage of
blending two languages that are conceptually very similar and facilitates more concise transla-
tions than the previous approaches. XSPARQL has recently been acknowledged as a member
submission by the W3C [95, 71, 75, 84].

Gap 2: RDF vs. OWL

There is a certain “schism” between the core Semantic Web and Description Logics communities
on what OWL shall be: the description of an ontology in RDF for RDF data, or an RDF exchange
format for Description Logic theories. This schism manifests itself in the W3C’s two orthogonal
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semantic specifications for OWL: OWL2’s RDF-based semantics [105], which directly builds
upon RDF’s model-theoretic semantics [55], and OWL2’s direct semantics [80], which builds
upon the Description Logics SROIQ but is not defined for all RDF graphs. Both of them ad-
dress different use cases; however, particular analyses on Web Data have shown [11, 58] that pure
OWL(2) in its Description Logics based semantics is not practically applicable: (i) in published
Web data we find a lot of non-DL ontologies [11], which only leave to apply the RDF-based se-
mantics; (ii) data and ontologies found on the Web spread across different sources contain a lot
of inconsistencies, which – in case one aims to still make sense out of this data – prohibits com-
plete reasoning using Description Logics [58]; (iii) finally, current DL reasoners cannot deal with
the amounts of instance data found on the Web, which is in the order of billions of statements.
The approach included in the selected papers for the present thesis, SAOR (Scalable Authorita-
tive OWL Reasoner) [59], aims at addressing these problems. SAOR provides incomplete, but
arguably meaningful inferences over huge data sets crawled from the Web, based on rule-based
OWL reasoning inspired by earlier approaches such as pD*[110], with further cautious modifica-
tions. Hogan and Decker [57] have later compared this approach to the new standard rule-based
OWL2RL [79] profile, coming to the conclusion that OWL2RL, as a maximal fragment of OWL2
that can be formalised purely with Horn rules, runs into similar problems as Description Logics
reasoning when taken as a basis for reasoning over Web data without the further modifications
proposed in SAOR. An orthogonal approach to reason with real Web data [36] – also proposed
by the author of this work together with Delbru, Tummarello and Decker – is likewise based on
pD*, but applies inference in a modular fashion per dataset rather than over entire Web crawls.

Gap 3: RDF/OWL vs. Rules/RIF

Issues on combining RDF and/or OWL with rules, and particularly with rule sets expressed in
RIF, have so far mostly been discussed on a theoretical level, perhaps because there has not yet
been time enough for meaningful adoption of RIF on the Web.

One strand of these discussions is concerned with extending RDF with rules and constraints,
in terms of either suggesting new non-standard rule languages for RDF to publish such rules [106,
15, 5, 6, 4], or theoretical considerations such as redundancy elimination with rules and con-
straints on top of RDF [78, 88]. An interesting side issue here concerns rule languages that allow
existentials in the head such as RDFLog [23], or more recently Datalog+/− [24], which may in
fact be viewed as a viable alternative or complement to purely Description Logics based ontol-
ogy languages. Non-monotonicity – which is not considered in OWL, but is available in most of
the suggested rule languages for RDF [5, 15, 6] by incorporating a form of “negation as failure”
– has sparked a lot of discussions in the Semantic Web community, since it was viewed as inad-
equate for an open environment such as the Web by some, whereas others (including the author
of the present work) argued that “scoped negation” [69, 93] – that is, non-monotonic negation
applied over a fixed, scoped part of the Web – was very useful for many Web data applications.
This is closely related to what Etzioni et al. [43] called the “local closed world assumption” in
earlier work.

Another quite significant strand of research has developed on the theoretical combination
of Description Logics and (non-monotonic) rules in a joint logical framework. While the naı̈ve
combination of even Horn rules without function symbols and ontologies in quite inexpressive
Description Logics loses the desirable decidability properties of the latter [74], there have been
several proposals for decidable fragments of this combination [51, 82, 72] or even extending the
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idea of such decidable combinations to rules with non-monotonic negation [98, 99, 101, 81, 77].
Another decidable approach was to define the semantic interplay between ontologies and rules
via a narrow, query-like interface within rule bodies [40]. Aside from considerations about
decidability, there have been several proposals for what would be the right logical framework
to embed combinations of classical logical theories (which DL ontologies fall into) and non-
monotonic rule languages. These include approaches based on MKNF [81], FO-AEL [32], or
Quantified Equilibrium Logics (QEL) [33], the latter of which is included in the collection of
papers selected for the present thesis. For an overview of issues concerned with combining
ontologies and rules, we also refer to surveys of existing approaches in [38, 37, 100], some of
which the author contributed to.

As a side note, it should be mentioned that rule-based/resolution-based reasoning has been
very successfully applied in implementing Description Logics or OWL reasoners in approaches
such as KAON2 [63] and DLog [76] which significantly outperform tableaux-based DL reason-
ers on certain problems (particularly instance reasoning).

Gap 4: SPARQL vs. RDF Schema/RIF/OWL

SPARQL has in its official specification only been defined as a query language over RDF graphs,
not taking into account RDF Schema, OWL ontologies or RIF rule sets. Although the official
specification defines frame conditions for extending SPARQL by higher entailment regimes [97,
Section 12.6], few works have actually instantiated this mechanism and defined how SPARQL
should handle ontologies and rule sets.

As for OWL, conjunctive query answering over expressive description logics is a topic of
active research in the Description Logics Community, with important insights only being very
recent [41, 47, 46, 73], none of which yet having covered the Description Logics underlying
OWL and OWL2, i.e. SHOIN (D) and SROIQ(D). Answering full SPARQL queries on top
of OWL has only preliminarily been addressed in the scientific community [107, 67] so far.

In terms of SPARQL on top of RDF in combination with rule sets, the choices are more
obvious. Firstly, as mentioned above, SPARQL itself can be translated to non-recursive rules
– more precisely into non-recursive Datalog with negation [91, 7]. Secondly, expanding on the
translation from [91], additional RDF rule sets that guarantee a finite closure, such as Datalog
style rules on top of RDF, can be allowed, covering a significant subset of RIF or rule-based
approximations of RDFS and OWL [65, 64]. Two of the works dealing with these matters [91,
64] are included in the selected papers of this thesis.

One should mention here that certain SPARQL queries themselves may be read as rules: that
is, SPARQL’s CONSTRUCT queries facilitate the generation of new RDF triples (defined in a
CONSTRUCT template that plays the role of the rule head), based on the answers to a graph
pattern (that plays the role of a rule body). This idea has been the basis for proposals to extend
RDF to so-called Networked Graphs [102] or Extended RDF graphs [96], that enable the inclu-
sion of implicit knowledge defined as SPARQL CONSTRUCT queries. Extending RDF graphs
in such fashions has also been proposed as an expressive means to define ontology mappings by
the author of this thesis [96], where the respective contribution is also included in the selected
papers.

The recently started W3C SPARQL1.1 working group, co-chaired by the author of the
present thesis, has published a working draft summarising first results on defining an OWL en-
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tailment regime for SPARQL [49], which, although worth to be mentioned, will not necessarily
encompass full conjunctive queries with non-distinguished variables.

Selected Papers
The present habilitation thesis comprises a collection of articles reflecting the author’s contribu-
tion in addressing a number of relevant research problems to close the above mentioned gaps in
the Semantic Web architecture.

The first paper, “A Semantical Framework for Hybrid Knowledge Bases” [33], co-authored
with Jos de Bruijn, David Pearce and Agustı́n Valverde contributes to the fundamental discus-
sion of a logical framework for combining classical theories (such as DL ontologies) with logic
programs involving non-monotonic negation, in this case under the (open) answer set semantics.
Based on initial discussions among the author and David Pearce, the founder of Equilibrium
Logics (a non-classical logic which can be viewed as the base logic of answer set programming),
we came to the conclusion that Quantified Equilibrium Logics (QEL), a first-order variant of EL,
is a promising candidate for the unifying logical framework in quest. In the framework of QEL,
one can either enforce or relax the unique names assumption, or – by adding axiomatisations
that enforce the law of the excluded middle for certain predicates – make particular predicates
behave in a “classical” manner whereas others are treated non-monotonically in the spirit of
(open) answer set programming. We showed that the defined embedding of hybrid knowledge
bases in the logical framework of QEL encompasses previously defined operational semantics by
Rosati [98, 99, 101]. This correspondence naturally provides decidable fragments of QEL. At the
same time, concepts such as strong equivalence, which are well-investigated in the framework of
answer set programming, carry over to hybrid knowledge bases embedded in the framework of
QEL. This work particularly addresses theoretical aspects of Gap 3: RDF/OWL vs. Rules/RIF.

Another line of research addressing Gap 4: SPARQL vs. RDF Schema/RIF/OWL is presented
in the following three works.

The second paper, “From SPARQL to Rules (and back)” [91] clarifies the relationship of
SPARQL to Datalog. Besides providing a translation from SPARQL to non-recursive Datalog
with negation, several alternative join semantics for SPARQL are discussed, which – at the time
of publication of this paper and prior to SPARQL becoming a W3C recommendation – were
not yet entirely fixed. Additionally, the paper sketches several useful extensions of SPARQL by
adding rules or defining some extra operators such as MINUS.

The third paper, “SPARQL++ for Mapping between RDF Vocabularies” [96], co-authored
with Roman Schindlauer and François Scharffe continues this line of research. Based on the
idea of reductions to answer set programming as a superset of Datalog, we elaborate on several
SPARQL extensions such as aggregate functions, value construction, or what we call Extended
Graphs: i.e., RDF graphs that include implicit knowledge in the form of SPARQL queries which
are interpreted as “views”. We demonstrate that the proposed extensions can be used to model
Ontology mappings not expressible in OWL. It is worthwhile to mention that at least the first two
new features (aggregates and value construction) – which were not present in SPARQL’s original
specification but easy to add in our answer set programming based framework – are very likely
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to be added in a similar form to SPARQL1.1.2

The fourth paper, “Dynamic Querying of Mass-Storage RDF Data with Rule-Based Entail-
ment Regimes”[64], co-authored with Giovambattista Ianni, Thomas Krennwallner, and Alessan-
dra Martello, expands on the results of the second paper in a different direction, towards provid-
ing an efficient implementation of the approach. In particular, we deploy a combination of the
DLV-DB system [111] and DLVHEX [39], and exploit magic sets optimisations inherent in DLV
to improve on the basic translation from [91] on RDF data stored in a persistent repository.
Moreover, the paper defines a generic extension of SPARQL by rule-based entailment regimes,
which the implemented system allows to load dynamically for each SPARQL query: the system
allows users to query data dynamically with different ontologies under different (rule-based) en-
tailment regimes. To the best of our knowledge, most existing RDF Stores only provide fixed
pre-materialised inference, whereas we could show in this paper that – by thorough design –
dynamic inferencing can still be relatively efficient.

The fifth paper, “Scalable Authoritative OWL Reasoning for the Web” [59] co-authored with
Aidan Hogan and Andreas Harth, addresses Gap 2: RDF vs. OWL by defining practically viable
OWL inference on Web data: similar to the previous paper, this work goes also in the direction
of implementing efficient inference support, this time though following a pre-materialisation
approach by forward-chaining. The reason for this approach is a different use case than before:
the goal here is to provide indexed pre-computed inferences on an extremely large dataset in the
order of billions of RDF triples to be used in search results for the Semantic Web Search Engine
(SWSE) project. The paper defines a special RDF rule set that is inspired by ter Horst’s pD*,
but tailored for reasoning per sorting and file scans, i.e., (i) by extracting the ontological part
(T-Box) of the dataset which is relatively small and can be kept in memory, and (ii) avoiding
expensive joins on the instance data (A-Box) where possible. We conclude that all of the RDFS
rules and most of the OWL rules fall under a category of rules that does not require A-Box joins.
As a second optimisation, the application of rules is triggered only if the rule is authoritatively
applicable, avoiding a phenomenon which we call “ontology hijacking”: i.e., uncontrolled re-
definition of ontologies by third parties that can lead to potentially harmful inferences. In order
to achieve this, we introduce the notion of a so-called T-Box split-rule – a rule which has a body
divided into an A-Box and T-Box part – along with an intuitive definition of authoritative rule
application for split rules. Similar approaches to do scalable reasoning on large sets of RDF data
have been independently presented since, demonstrating that our core approach can be naturally
applied in a distributed fashion [115, 113]. None of these other approaches go beyond RDFS
reasoning and neither apply the concept of authoritativeness, which proves very helpful on the
Web to filter out bogus inferences from noisy Web data; in fact, both approaches [115, 113] only
have been evaluated on synthetic data.

Finally, the sixth paper “XSPARQL: Traveling between the XML and RDF worlds – and
avoiding the XSLT pilgrimage”[3], co-authored by Waseem Akhtar, Jacek Kopecký and Thomas
Krennwallner, intends to close Gap 1: XML vs. RDF by defining a novel query language which is
the merge of XQuery and SPARQL. We demonstrate that XSPARQL provides concise and intu-
itive solutions for mapping between XML and RDF in either direction. The paper also describes

2cf. http://www.w3.org/2009/05/sparql-phase-II-charter.html, here value con-
struction is subsumed under the term “project expressions”.
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an initial implementation of an XSPARQL engine, available for user evaluation.3 This paper
had been among the nominees for the best paper award at the 5th European Semantic Web Con-
ference (ESWC2008). The approach has experienced considerable attention and been extended
later on to a W3C member submission under the direction of the thesis’ author [95, 71, 75, 84].
In the paper included here, we also include the formal semantics of XSPARQL, which was not
published in [3] originally, but as a part of the W3C member submission [71].

Additionally, the author has conducted work on foundations as well as practical applications
of Semantic Web technologies that is not contained in this collection, some of which is worth-
while to be mentioned in order to emphasise the breath of the author’s work in this challenging
application field for information systems.

In [93], different semantics for rules with “scoped negation” were proposed, based on re-
ductions to the stable model semantics and the well-founded semantics. The author conducted
the major part of this work, based on discussions with two students, Andreas Harth and Cristina
Feier.

In [87], we have presented a conceptual model and implementation for a simple workflow
language on top of SPARQL, along with a visual editor, which allows to compose reusable
data-mashups for RDF data published on the Web. This work was a collaboration with several
researchers at the National University of Ireland, Galway (Danh Le Phuoc, Manfred Hauswirth,
Giovanni Tummarello) where the author’s contribution was in defining the underlying conceptual
model and base operators of the presented workflow language.

In [30], we have developed extensions to the widely used open-source content management
system Drupal,4 in order to promote the uptake of Semantic Web technologies. This work has
won the best paper award in the in-use track of last year’s International Semantic Web Conferece
(ISWC2009). Furthermore, the effort has eventually lead to the integration of RDF technologies
into Drupal 7 Core, potentially affecting over 200,000 Web sites currently using Drupal 6. The
work was conducted in collaboration with Stéphane Corlosquet, a master student under the au-
thor’s supervision, and based on input from and discussions with Stefan Decker, Renaud Delbru
and Tim Clark, where the author provided the core mapping of Drupal’s content model to OWL,
co-developed a model to import external data from external SPARQL endpoints and provided
overall direction of the project.

In [53], the author together with colleagues from the National University of Ireland, Galway
(Jürgen Umbrich, Marcel Karnstedt), the University of Ilmenau (Kai-Uwe Sattler), University of
Karlsruhe (Andreas Harth), and the Max-Planck Institute in Saarbrücken (Katja Hose) have pre-
sented a novel approach to perform live queries on RDF Data published across multiple sources
across the Web. In order to define a reasonable middle-ground between storing crawled data
in a large centralised index – like most current search engines perform – or directly looking up
known sources on demand, we propose to use lightweight data summaries based on QTrees for
source selection, with promising initial results. The author’s contribution in this work was in
providing conceptual guidance in terms of the different characteristics of linked RDF data with
common database scenarios where QTrees have been applied earlier, whereafter the ideas of the
paper were developed jointly in a very interactive fashion among all contributors.

3cf. http://xsparql.deri.org/
4http://drupal.org/
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Daniela Florescu. XQuery 1.0: An XML Query Language. W3C recommendation,
W3C, January 2007. W3C Recommendation, available at http://www.w3.org/TR/
xquery/.

[28] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL Protocol for RDF.
W3C recommendation, W3C, January 2008. Available at http://www.w3.org/TR/
rdf-sparql-protocol/.

[29] Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages (GRDDL).
W3C Recommendation, W3C, September 2007. Available at http://www.w3.org/
TR/sawsdl/.
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Abstract

In the ongoing discussion about combining rules and Ontologies on the Se-
mantic Web a recurring issue is how to combine first-order classical logic with
nonmonotonic rule languages. Whereas several modular approaches to define a
combined semantics for such hybrid knowledge bases focus mainly on decidabil-
ity issues, we tackle the matter from a more general point of view. In this pa-
per we show how Quantified Equilibrium Logic (QEL) can function as a unified
framework which embraces classical logic as well as disjunctive logic programs
under the (open) answer set semantics. In the proposed variant of QEL we re-
lax the unique names assumption, which was present in earlier versions of QEL.
Moreover, we show that this framework elegantly captures the existing modular
approaches for hybrid knowledge bases in a unified way.

Keywords:Hybrid Knowledge Bases, Ontologies, Nonmonotonic Rules, Se-
mantic Web, Logic Programming, Quantified Equilibrium Logic, Answer Set Pro-
gramming

1 Introduction
In the current discussions on the Semantic Web architecture a recurring issue is how
to combine a first-order classical theory formalising an ontology with a (possibly non-
monotonic) rule base. Nonmonotonic rule languages have received considerable at-
tention and achieved maturity over the last few years especially due to the success of
Answer Set Programming (ASP), a nonmonotonic, purely declarative logic program-
ming and knowledge representation paradigm with many useful features such as aggre-
gates, weak constraints and priorities, supported by efficient implementations (for an
overview see [1]).
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As a logical foundation for the answer set semantics and a tool for logical analysis
in ASP, the system of Equilibrium Logic was presented in [24] and further developed in
subsequent works (see [25] for an overview and references). The aim of this paper is to
show how Equilibrium Logic can be used as a logical foundation for the combination
of ASP and Ontologies.

In the quest to provide a formal underpinning for a nonmonotonic rules layer for
the Semantic Web which can coexist in a semantically well-defined manner with the
Ontology layer, various proposals for combining classical first-order logic with differ-
ent variants of ASP have been presented in the literature.1 We distinguish three kinds
of approaches: At one end of the spectrum there are approaches which provide an
entailment-based query interface to the Ontology in the bodies of ASP rules, result-
ing in a loose integration (e.g. [10, 9]). At the other end there are approaches which
use a unifying nonmonotonic formalism to embed both the Ontology and the rule base
(e.g. [4, 23]), resulting in a tight coupling. Hybrid approaches (e.g. [29, 30, 31, 16]) fall
between these extremes. Common to hybrid approaches is the definition of a modular
semantics based on classical first-order models, on the one hand, and stable models –
often, more generally, referred to as answer sets2 – on the other hand. Additionally, they
require several syntactical restrictions on the use of classical predicates within rules,
typically driven by considerations upon retaining decidability of reasoning tasks such
as knowledge base satisfiability and predicate subsumption. With further restrictions
of the classical part to decidable Description Logics (DLs), these semantics support
straightforward implementation using existing DL reasoners and ASP engines, in a
modular fashion. In this paper, we focus on such hybrid approaches, but from a more
general point of view.

Example 1 Consider a hybrid knowledge base consisting of a classical theory T :

∀x.PERSON(x)→ (AGENT (x) ∧ (∃y.HAS-MOTHER(x, y)))
∀x.(∃y.HAS-MOTHER(x, y))→ ANIMAL(x)

which says that every PERSON is an AGENT and has some (unknown) mother,
and everyone who has a mother is an ANIMAL, and a nonmonotonic logic program
P:

PERSON(x)← AGENT (x),¬machine(x)
AGENT (DaveBowman)

which says that AGENT s are by default PERSONs, unless known to be machines,
and DaveBowman is an AGENT .

Using such a hybrid knowledge base consisting of T and P , we intuitively would
conclude thatPERSON(DaveBowman) holds since he is not known to be amachine,
and furthermore we would conclude thatDaveBowman has some (unknown) mother,
and thus ANIMAL(DaveBowman). 3

We see two important shortcomings in current hybrid approaches:
1Most of these approaches focus on the Description Logics fragments of first-order logic underlying the

Web Ontology Language OWL.
2“answer sets” denote the extension of stable models, which originally have only been defined for normal

logic programs to more general logic programs such as disjunctive programs.
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(1) Current approaches to hybrid knowledge bases differ not only in terms of syntac-
tic restrictions, motivated by decidability considerations, but also in the way they deal
with more fundamental issues which arise when classical logic meets ASP, such as the
domain closure and unique names assumptions.3 In particular, current proposals im-
plicitly deal with these issues by either restricting the allowed models of the classical
theory, or by using variants of the traditional answer set semantics which cater for open
domains and non-unique names. So far, little effort has been spent in a comparing the
approaches from a more general perspective. In this paper we aim to provide a generic
semantic framework for hybrid knowledge bases that neither restricts models (e.g. to
unique names) nor imposes syntactical restrictions driven by decidability concerns. (2)
The semantics of current hybrid knowledge bases is defined in a modular fashion. This
has the important advantage that algorithms for reasoning with this combination can be
based on existing algorithms for DL and ASP satisfiability. A single underlying logic
for hybrid knowledge bases which, for example, allows to capture notions of equiva-
lence between combined knowledge bases in a standard way, is lacking though.

Our main contribution with this paper is twofold. First, we survey and compare
different (extensions of the) answer set semantics, as well as the existing approaches
to hybrid knowledge bases, all of which define nonmonotonic models in a modular
fashion. Second, we propose to use Quantified Equilibrium Logic (QEL) as a unified
logical foundation for hybrid knowledge bases: As it turns out, the equilibrium models
of the combined knowledge base coincide exactly with the modular nonmonotonic
models for all approaches we are aware of [29, 30, 31, 16].

The remainder of this paper is structured as follows: Section 2 recalls some basics
of classical first-order logic. Section 3 reformulates different variants of the answer
set semantics introduced in the literature using a common notation and points out cor-
respondences and discrepancies between these variants. Next, definitions of hybrid
knowledge bases from the literature are compared and generalised in Section 4. QEL
and its relation to the different variants of ASP are clarified in Section 5. Section 6
describes an embedding of hybrid knowledge bases into QEL and establishes the cor-
respondence between equilibrium models and nonmonotonic models of hybrid KBs.
We discuss some immediate implications of our results in Section 7. In Section 8 we
show how for finite knowledge bases an equivalent semantical characterisation can be
given via a second-order operator NM. This behaves analogously to the operator SM
used by Ferraris, Lee and Lifschitz [12] to define the stable models of a first-order
sentence, except that its minimisation condition applies only to the non-classical pred-
icates. In Section 9 we discuss an application of the previous results: we propose a
definition of strong equivalence for knowledge bases sharing a common structural lan-
guage and show how this notion can be captured by deduction in the (monotonic) logic
of here-and-there. These two Sections (9 and 8) particularly contain mostly new mate-
rial which has not yet been presented in the conference version [5] of this article. We
conclude with a discussion of further related approaches and an outlook to future work
in Section 10.

3See [3] for a more in-depth discussion of these issues.
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2 First-Order Logic (FOL)
A function-free first-order language L = 〈C,P 〉 with equality consists of disjoint sets
of constant and predicate symbols C and P . Moreover, we assume a fixed countably
infinite set of variables, the symbols ‘→’, ‘∨’, ‘∧’, ‘¬’, ‘∃’, ‘∀’, and auxiliary paren-
theses ‘(’,‘)’. Each predicate symbol p ∈ P has an assigned arity ar(p). Atoms and
formulas are constructed as usual. Closed formulas, or sentences, are those where each
variable is bound by some quantifier. A theory T is a set of sentences. Variable-free
atoms, formulas, or theories are also called ground. If D is a non-empty set, we denote
by AtD(C,P ) the set of ground atoms constructible from L′ = 〈C ∪D,P 〉.

Given a first-order language L, an L-structure consists of a pair I = 〈U, I〉, where
the universe U = (D,σ) (sometimes called pre-interpretation) consists of a non-empty
domainD and a function σ : C∪D → D which assigns a domain value to each constant
such that σ(d) = d for every d ∈ D. For tuples we write σ(~t) = (σ(d1), . . . , σ(dn)).
We call d ∈ D an unnamed individual if there is no c ∈ C such that σ(c) = d. The
function I assigns a relation pI ⊆ Dn to each n-ary predicate symbol p ∈ P and
is called the L-interpretation over D . The designated binary predicate symbol eq,
occasionally written ‘=’ in infix notation, is assumed to be associated with the fixed
interpretation function eqI = {(d, d) : d ∈ D}. If I is an L′-structure we denote by
I|L the restriction of I to a sublanguage L ⊆ L′.

An L-structure I = 〈U, I〉 satisfies an atom p(d1, . . . , dn) of AtD(C,P ), written
I |= p(d1, . . . , dn), iff (σ(d1), . . . , σ(dn)) ∈ pI . This is extended as usual to sentences
and theories. I is a model of an atom (sentence, theory, respectively) ϕ, written I |= ϕ,
if it satisfies ϕ. A theory T entails a sentence ϕ, written T |= ϕ, if every model of T
is also a model of ϕ. A theory is consistent if it has a model.

In the context of logic programs, the following assumptions often play a role: We
say that the parameter names assumption (PNA) applies in case σ|C is surjective, i.e.,
there are no unnamed individuals in D; the unique names assumption (UNA) applies
in case σ|C is injective; in case both the PNA and UNA apply, the standard names
assumption (SNA) applies, i.e. σ|C is a bijection. In the following, we will speak about
PNA-, UNA-, or SNA-structures, (or PNA-, UNA-, or SNA-models, respectively), de-
pending on σ.

An L-interpretation I over D can be seen as a subset of AtD(C,P ). So, we can
define a subset relation forL-structures I1 = 〈(D,σ1), I1〉 and I2 = 〈(D,σ2), I2〉 over
the same domain by setting I1 ⊆ I2 if I1 ⊆ I2.4 Whenever we speak about subset
minimality of models/structures in the following, we thus mean minimality among all
models/structures over the same domain.

4Note that this is not the substructure or submodel relation in classical model theory, which holds between
a structure and its restriction to a subdomain.
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3 Answer Set Semantics
In this paper we assume non-ground disjunctive logic programs with negation allowed
in rule heads and bodies, interpreted under the answer set semantics [21].5 A program
P consists of a set of rules of the form

a1 ∨ a2 ∨ . . . ∨ ak ∨ ¬ak+1 ∨ . . . ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn (1)

where ai (i ∈ {1, . . . , l}) and bj (j ∈ {1, . . . , n}) are atoms, called head (body, respec-
tively) atoms of the rule, in a function-free first-order language L = 〈C,P 〉 without
equality. By CP ⊆ C we denote the set of constants which appear in P . A rule with
k = l and m = n is called positive. Rules where each variable appears in b1, . . . , bm
are called safe. A program is positive (safe) if all its rules are positive (safe).

For the purposes of this paper, we give a slightly generalised definition of the com-
mon notion of the grounding of a program: The grounding grU (P) ofP wrt. a universe
U = (D,σ) denotes the set of all rules obtained as follows: For r ∈ P , replace (i) each
constant c appearing in r with σ(c) and (ii) each variable with some element in D.
Observe that thus grU (P) is a ground program over the atoms in AtD(C,P ).

For a ground program P and first-order structure I the reduct PI consists of rules

a1 ∨ a2 ∨ . . . ∨ ak ← b1, . . . , bm

obtained from all rules of the form (1) in P for which it holds that I |= ai for all
k < i ≤ l and I 6|= bj for all m < j ≤ n.

Answer set semantics is usually defined in terms of Herbrand structures over L =
〈C,P 〉. Herbrand structures have a fixed universe, the Herbrand universeH = (C, id),
where id is the identity function. For a Herbrand structure I = 〈H, I〉, I can be
viewed as a subset of the Herbrand base, B, which consists of the ground atoms of
L. Note that by definition of H, Herbrand structures are SNA-structures. A Herbrand
structure I is an answer set [21] of P if I is subset minimal among the structures
satisfying grH(P)I . Two variations of this semantics, the open [15] and generalised
open answer set [16] semantics, consider open domains, thereby relaxing the PNA. An
extended Herbrand structure is a first-order structure based on a universe U = (D, id),
where D ⊇ C.

Definition 1 A first-order L-structure I = 〈U, I〉 is called a generalised open answer
set of P if I is subset minimal among the structures satisfying all rules in grU (P)I . If,
additionally, I is an extended Herbrand structure, then I is an open answer set of P .

In the open answer set semantics the UNA applies. We have the following correspon-
dence with the answer set semantics. First, as a straightforward consequence from the
definitions, we can observe:

Proposition 1 IfM is an answer set of P thenM is also an open answer set of P .

The converse does not hold in general:
5By ¬ we mean negation as failure and not classical, or strong negation, which is also sometimes consid-

ered in ASP.
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Example 2 Consider P = {p(a); ok ← ¬p(x); ← ¬ok} over L = 〈{a}, {p, ok}〉.
We leave it as an exercise to the reader to show that P is inconsistent under the answer
set semantics, butM = 〈({a, c1}, id), {p(a), ok}〉 is an open answer set of P . 3

Open answer set programs allow the use of the equality predicate ‘=’ in the body
of rules. However, since this definition of open answer sets adheres to the UNA, one
could argue that equality in open answer set programming is purely syntactical. Posi-
tive equality predicates in rule bodies can thus be eliminated by simple preprocessing,
applying unification. This is not the case for negative occurrences of equality, but, since
the interpretation of equality is fixed, these can be eliminated during grounding.

An alternative approach to relax the UNA has been presented by Rosati in [30]:
Instead of grounding with respect to U , programs are grounded with respect to the
Herbrand universe H = (C, id), and minimality of the models of grH(P)I wrt. U is
redefined: I�H = {p(σ(c1), . . . , σ(cn)) : p(c1, . . . , cn) ∈ B, I |= p(c1, . . . , cn)}, i.e.,
I�H is the restriction of I to ground atoms of B. Given L-structures I1 = (U1, I1) and
I2 = (U2, I2),6 the relation I1 ⊆H I2 holds if I1�H ⊆ I2�H.

Definition 2 An L-structure I is called a generalised answer set of P if I is ⊆H-
minimal among the structures satisfying all rules in grH(P)I .

The following Lemma (implicit in [14]) establishes that, for safe programs, all atoms
of AtD(C,P ) satisfied in an open answer set of a safe program are ground atoms over
CP :

Lemma 2 Let P be a safe program over L = 〈C,P 〉 withM = 〈U, I〉 a (generalised)
open answer set over universe U = (D,σ). Then, for any atom from AtD(C,P ) such
thatM |= p(d1, . . . , dn), there exist ci ∈ CP such that σ(ci) = di for each 1 ≤ i ≤ n.

Proof: First, we observe that any atom M |= p(d1, . . . , dn) must be derivable from
a sequence of rules (r0; . . . ; rl) in grU (P)M. We prove the lemma by induction over
the length l of this sequence. l = 0: Assume M |= p(d1, . . . , dn), then r0 must
be (by safety) a ground fact in P such that p(σ(c1), . . . , σ(cn)) = p(d1, . . . , dn) and
c1, . . . , cn ∈ CP . As for the induction step, let p(d1, . . . , dn) be inferred by application
of rule rl ∈ grU (P)M. By safety, again each dj either stems from a constant cj ∈ CP
such that σ(cj) = dj which appears in some true head atom of rl or dj also appears in
a positive body atom q(. . . , dj , . . .) of rl such thatM |= q(. . . , dj , . . .), derivable by
(r0; . . . ; rl−1), which, by the induction hypothesis, proves the existence of a cj ∈ CP
with σ(cj) = dj . 2

From this Lemma, the following correspondence follows directly. Note that the
answer sets and open answer sets of safe programs coincide as a direct consequence of
Lemma 2:

Proposition 3 M is an answer set of a safe program P if and only ifM is an open
answer set of P .

Similarly, on unsafe programs, generalised answer sets and generalised open answer
sets do not necessarily coincide, as demonstrated by Example 2. However, the follow-
ing correspondence follows straightforwardly from Lemma 2:

6Not necessarily over the same domain.
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Proposition 4 Given a safe program P , M is a generalised open answer set of P if
and only if M is a generalised answer set of P .

Proof:
(⇒) AssumeM is a generalised open answer set of P . By Lemma 2 we know that

rules in grU (P)M involving unnamed individuals do not contribute to answer
sets, since their body is always false. It follows thatM =M�H which in turn is
a ⊆H-minimal model of grH(P)M. This follows from the observation that each
rule in grH(P)M and its corresponding rules in grU (P)M are satisfied under
the same models.

(⇐) Analogously.

2

By similar arguments, generalised answer sets and generalised open answer sets
coincide in case the parameter name assumption applies:

Proposition 5 LetM be a PNA-structure. ThenM is a generalised answer set of P
if and only ifM is a generalised open answer of P .

If the SNA applies, consistency with respect to all semantics introduced so far boils
down to consistency under the original definition of answer sets:

Proposition 6 A program P has an answer set if and only if P has a generalised open
answer set under the SNA.

Answer sets under SNA may differ from the original answer sets since also non-
Herbrand structures are allowed. Further, we observe that there are programs which
have generalised (open) answer sets but do not have (open) answer sets, even for safe
programs, as shown by the following simple example:

Example 3 Consider P = {p(a); ← ¬p(b)} over L = 〈{a, b}, {p}〉. P is ground,
thus obviously safe. However, although P has a generalised (open) answer set – the
reader may verify this by, for instance, considering the one-element universe U =
({d}, σ), where σ(a) = σ(b) = d – it is inconsistent under the open answer set seman-
tics, i.e. the program does not have any open (non-genrealised) answer set. 3

4 Hybrid Knowledge Bases
We now turn to the concept of hybrid knowledge bases, which combine classical the-
ories with the various notions of answer sets. We define a notion of hybrid knowledge
bases which generalizes definitions in the literature [29, 30, 31, 16]. We then compare
and discuss the differences between the various definitions. It turns out that the differ-
ences are mainly concerned with the notion of answer sets, and syntactical restrictions,
but do not change the general semantics. This will allow us to base our embedding into
Quantified Equilibrium Logic on a unified definition.

A hybrid knowledge baseK = (T ,P) over the function-free languageL = 〈C,PT ∪
PP〉 consists of a classical first-order theory T (also called the structural part of K)
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over the language LT = 〈C,PT 〉 and a program P (also called rules part of K) over
the language L, where PT ∩ PP = ∅, i.e. T and P share a single set of constants, and
the predicate symbols allowed to be used in P are a superset of the predicate symbols
in LT . Intuitively, the predicates in LT are interpreted classically, whereas the predi-
cates in LP are interpreted nonmonotonically under the (generalised open) answer set
semantics. With LP = 〈C,PP〉 we denote the restricted language of P to only the
distinct predicates PP which are not supposed to occur in T .

We do not consider the alternative classical semantics defined in [29, 30, 31], as
these are straightforward.

We define the projection of a ground program P with respect to an L-structure
I = 〈U, I〉, denoted Π(P, I), as follows: for each rule r ∈ P , rΠ is defined as:

1. rΠ = ∅ if there is a literal over AtD(C,PT ) in the head of r of form p(~t) such
that p(σ(~t)) ∈ I or of form ¬p(~t) with p(σ(~t)) 6∈ I;

2. rΠ = ∅ if there is a literal over AtD(C,PT ) in the body of r of form p(~t) such
that p(σ(~t)) 6∈ I or of form ¬p(~t) such that p(σ(~t)) ∈ I;

3. otherwise rΠ is the singleton set resulting from r by deleting all occurrences of
literals from LT ,

and Π(P, I) =
⋃
{rΠ : r ∈ P}. Intuitively, the projection “evaluates” all classical

literals in P with respect to I.

Definition 3 Let K = (T ,P) be a hybrid knowledge base over the language L =
〈C,PT ∪ PP〉. An NM-model M = 〈U, I〉 (with U = (D,σ)) of K is a first-order
L-structure such thatM|LT is a model of T andM|LP is a generalised open answer
set of Π(grU (P),M).

Analogous to first-order models, we speak about PNA-, UNA-, and SNA-NM-models.

Example 4 Consider the hybrid knowledge base K = (T ,P), with T and P as in Ex-
ample 1, with the capitalised predicates being predicates in PT . Now consider the inter-
pretation I = 〈U, I〉 (with U = (D,σ)) withD = {DaveBowman, k}, σ the identity
function, and I = {AGENT (DaveBowman), HAS-MOTHER(DaveBowman, k),
ANIMAL(DaveBowman), machine(DaveBowman)}. Clearly, I|LT is a model
of T . The projection Π(grU (P), I) is

← ¬machine(DaveBowman),

which does not have a stable model, and thus I is not an NM-model of K. In fact,
the logic program P ensures that an interpretation cannot be an NM-model of K if
there is an AGENT which is neither a PERSON nor known (by conclusions from
P) to be a machine. It is easy to verify that, for any NM-model of K, the atoms
AGENT (DaveBowman), PERSON(DaveBowman), andANIMAL(DaveBow-
man) must be true, and are thus entailed by K. The latter cannot be derived from
neither T nor P individually. 3
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4.1 r-hybrid KBs
We now proceed to compare our definition of NM-models with the various definitions
in the literature. The first kind of hybrid knowledge base we consider was introduced
by Rosati in [29] (and extended in [31] under the name DL+log), and was labeled r-
hybrid knowledge base. Syntactically, r-hybrid KBs do not allow negated atoms in rule
heads, i.e. for rules of the form (1) l = k, and do not allow atoms from LT to occur
negatively in the rule body.7 Moreover, in [29], Rosati deploys a restriction which is
stronger than standard safety: each variable must appear in at least one positive body
atom with a predicate from LP . We call this condition LP -safe in the remainder.
In [31] this condition is relaxed to weak LP -safety: there is no special safety restriction
for variables which occur only in body atoms from PT .

Semantically, Rosati assumes (an infinite number of) standard names, i.e. C is
countably infinite, and normal answer sets, in his version of NM-models:

Definition 4 Let K = (T ,P) be an r-hybrid knowledge base, over the language L =
〈C,PT ∪ PP〉, where C is countably infinite, and P is a (weak) LP -safe program. An
r-NM-modelM = 〈U, I〉 of K is a first-order L-SNA-structure such thatM|LT is a
model of T andM|LP is an answer set of Π(grU (P),M).

In view of the (weak) LP -safety condition, we observe that r-NM-model existence
coincides with SNA-NM-model existence on r-hybrid knowledge bases, by Lemma 2
and Proposition 6.

The syntactic restrictions in r-hybrid knowledge bases guarantee decidability of the
satisfiability problem in case satisfiability (in case of LP -safety) or conjunctive query
containment (in case of weak LP -safety) in T is decidable. Rosati [29, 31] presents
sound and complete algorithms for both cases.

4.2 r+-hybrid KBs
In [30], Rosati relaxes the UNA for what we will call here r+-hybrid knowledge bases.
In this variant the LP -safety restriction is kept but generalised answer sets under arbi-
trary interpretations are considered:

Definition 5 Let K = (T ,P) be an r+-hybrid knowledge base consisting of a theory
T and an LP -safe program P . An r+-NM-model, M = 〈U, I〉 of K is a first-order
L-structure such thatM|LT is a model of T andM|LP is a generalised answer set of
Π(grU (P),M).

LP -safety guarantees safety of Π(grU (P),M). Thus, by Proposition 3, we can con-
clude that r+-NM-models coincide with NM-models on r-hybrid knowledge bases. The
relaxation of the UNA does not affect decidability

7 Note that by projection, negation of predicates from PT is treated classically, whereas negation of
predicates from PP is treated nonmonotonically. This might be considered unintuitive and therefore a reason
why Rosati disallows structural predicates to occur negated. The negative occurrence of classical predicates
in the body is equivalent to the positive occurrence of the predicate in the head.
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SNA variables disjunctive negated
rule heads LT atoms

r-hybrid yes LP -safe pos. only no
r+-hybrid no LP -safe pos. only no
rw-hybrid yes weak LP -safe pos. only no
g-hybrid no guarded neg. allowed∗ yes

∗ g-hybrid allows negation in the head but at most one positive head atom

Table 1: Different variants of hybrid KBs

4.3 g-hybrid KBs
G-hybrid knowledge bases [16] allow a different form of rules in the program. In order
to regain decidability, rules are not required to be safe, but they are required to be
guarded (hence the ‘g’ in g-hybrid): All variables in a rule are required to occur in a
single positive body atom, the guard, with the exception that unsafe choice rules of the
form

p(c1, . . . , cn) ∨ ¬p(c1, . . . , cn)←

are allowed. Moreover, disjunction in rule heads is limited to at most one positive
atom, i.e. for rules of the form (1) we have that k ≤ 1, but an arbitrary number of
negated head atoms is allowed. Another significant difference is that, as opposed to
the approaches based on r-hybrid KBs, negative structural predicates are allowed in the
rules part within g-hybrid knowledge bases (see also Footnote 7). The definition of
NM-models in [16] coincides precisely with our Definition 3.

Table 4.3 summarises the different versions of hybrid knowledge bases introduced
in the literature.

5 Quantified Equilibrium Logic (QEL)
Equilibrium logic for propositional theories and logic programs was presented in [24]
as a foundation for answer set semantics, and extended to the first-order case in [26],
as well as, in slightly more general, modified form, in [27]. For a survey of the main
properties of equilibrium logic, see [25]. Usually in quantified equilibrium logic we
consider a full first-order language allowing function symbols and we include a second,
strong negation operator as occurs in several ASP dialects. For the present purpose of
drawing comparisons with approaches to hybrid knowledge bases, it will suffice to
consider the function-free language with a single negation symbol, ‘¬’. In particular,
we shall work with a quantified version of the logic HT of here-and-there. In other
respects we follow the treatment of [27].

5.1 General Structures for Quantified Here-and-There Logic
As before, we consider a function-free first order language L = 〈C,P 〉 built over
a set of constant symbols, C, and a set of predicate symbols, P . The sets of L-
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formulas, L-sentences and atomic L-sentences are defined in the usual way. Again,
we only work with sentences, and, as in Section 2, by an L-interpretation I over a
set D we mean a subset I of AtD(C,P ). A here-and-there L-structure with static
domains, or QHTs(L)-structure, is a tupleM = 〈(D,σ), Ih, It〉 where 〈(D,σ), Ih〉
and 〈(D,σ), It〉 are L-structures such that Ih ⊆ It.

We can think ofM as a structure similar to a first-order classical model, but having
two parts, or components, h and t that correspond to two different points or “worlds”,
‘here’ and ‘there’, in the sense of Kripke semantics for intuitionistic logic [32], where
the worlds are ordered by h ≤ t. At each world w ∈ {h, t} one verifies a set of atoms
Iw in the expanded language for the domain D. We call the model static, since, in
contrast to say intuitionistic logic, the same domain serves each of the worlds.8 Since
h ≤ t, whatever is verified at h remains true at t. The satisfaction relation forM is
defined so as to reflect the two different components, so we writeM, w |= ϕ to denote
that ϕ is true inM with respect to the w component. Evidently we should require that
an atomic sentence is true at w just in case it belongs to the w-interpretation. Formally,
if p(t1, . . . , tn) ∈ AtD then

M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw. (2)

Then |= is extended recursively as follows9:

• M, w |= ϕ ∧ ψ iffM, w |= ϕ andM, w |= ψ.

• M, w |= ϕ ∨ ψ iffM, w |= ϕ orM, w |= ψ.

• M, t |= ϕ→ ψ iffM, t 6|= ϕ orM, t |= ψ.

• M, h |= ϕ→ ψ iffM, t |= ϕ→ ψ andM, h 6|= ϕ orM, h |= ψ.

• M, w |= ¬ϕ iffM, t 6|= ϕ.

• M, t |= ∀xϕ(x) iffM, t |= ϕ(d) for all d ∈ D.

• M, h |= ∀xϕ(x) iffM, t |= ∀xϕ(x) andM, h |= ϕ(d) for all d ∈ D.

• M, w |= ∃xϕ(x) iffM, w |= ϕ(d) for some d ∈ D.

Truth of a sentence in a model is defined as follows: M |= ϕ iffM, w |= ϕ for
each w ∈ {h, t}. A sentence ϕ is valid if it is true in all models, denoted by |= ϕ. A
sentence ϕ is a consequence of a set of sentences Γ, denoted Γ |= ϕ, if every model of
Γ is a model of ϕ. In a modelM we often use the symbols H and T , possibly with
subscripts, to denote the interpretations Ih and It respectively; so, an L-structure may
be written in the form 〈U,H, T 〉, where U = (D,σ).

The resulting logic is called Quantified Here-and-There Logic with static domains,
denoted by QHTs. In terms of satisfiability and validity this logic is equivalent to

8Alternatively it is quite common to speak of a logic with constant domains. However this is slightly
ambiguous since it might suggest that the domain is composed only of constants, which is not intended here.

9The reader may easily check that the following correspond exactly to the usual Kripke semantics for
intuitionistic logic given our assumptions about the two worlds h and t and the single domainD, see e.g. [32]
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the logic introduced before in [26]. By QHTs
= we denote the version of QEL with

equality. The equality predicate in QHTs
= is interpreted as the actual equality in both

worlds, ieM, w |= t1 = t2 iff σ(t1) = σ(t2).
The logic QHTs

= can be axiomatised as follows. Let INT= denote first-order
intuitionistic logic [32] with the usual axioms for equality:

x = x,
x = y → (F (x)→ F (y)),

for every formula F (x) such that y is substitutable for x in F (x). To this we add the
axiom of Hosoi

α ∨ (¬β ∨ (α→ β)),

which determines 2-element here-and-there models in the propositional case, and the
axiom SQHT (static quantified here-and-there):

∃x(F (x)→ ∀xF (x)).

Lastly we add the “decidable equality” axiom:

x = y ∨ x 6= y.

For a completeness proof for QHTs
=, see [20].

As usual in first order logic, satisfiability and validity are independent from the
language. IfM = 〈(D,σ), H, T 〉 is an QHTs

=(L′)-structure and L ⊂ L′, we denote
byM|L the restriction ofM to the sublanguage L:M|L = 〈(D,σ|L), H|L, T |L〉.

Proposition 7 Suppose that L′ ⊃ L, Γ is a theory in L andM is an L′-structure such
M |= Γ. ThenM|L is a model of Γ in QHTs

=(L).

Proposition 8 Suppose that L′ ⊃ L and ϕ ∈ L. Then ϕ is valid (resp. satisfiable) in
QHTs

=(L) if and only if is valid (resp. satisfiable) in QHTs
=(L′).

Analogous to the case of classical models we can define special kinds of QHTs

(resp. QHTs
=) models. LetM = 〈(D,σ), H, T 〉 be an L-structure that is a model of

a universal theory T . Then, we callM a PNA-, UNA-, or SNA-model if the restriction
of σ to constants in C is surjective, injective or bijective, respectively.

5.2 Equilibrium Models
As in the propositional case, quantified equilibrium logic is based on a suitable notion
of minimal model.

Definition 6 Among QHTs
=(L)-structures we define the order � as: 〈(D,σ), H, T 〉�

〈(D′, σ′), H ′, T ′〉 if D = D′, σ = σ′, T = T ′ and H ⊆ H ′. If the subset relation is
strict, we write ‘�’.

Definition 7 Let Γ be a set of sentences andM = 〈(D,σ), H, T 〉 a model of Γ.
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1. M is said to be total if H = T .

2. M is said to be an equilibrium model of Γ (for short, we say: “M is in equilib-
rium”) if it is minimal under � among models of Γ, and it is total.

Notice that a total QHTs
= model of a theory Γ is equivalent to a classical first order

model of Γ.

Proposition 9 Let Γ be a theory inL andM an equilibrium model of Γ in QHTs
=(L′)

with L′ ⊃ L. ThenM|L is an equilibrium model of Γ in QHTs
=(L).

5.3 Relation to Answer Sets
The above version of QEL is described in more detail in [27]. If we assume all models
are UNA-models, we obtain the version of QEL found in [26]. There, the relation
of QEL to (ordinary) answer sets for logic programs with variables was established
(in [26, Corollary 7.7]). For the present version of QEL the correspondence can be
described as follows.

Proposition 10 ([27]) Let Γ be a universal theory in L = 〈C,P 〉. Let 〈U, T, T 〉 be a
total QHTs

= model of Γ. Then 〈U, T, T 〉 is an equilibrium model of Γ iff 〈T, T 〉 is a
propositional equilibrium model of grU (Γ).

By convention, when P is a logic program with variables we consider the models
and equilibrium models of its universal closure expressed as a set of logical formulas.
So, from Proposition 10 we obtain:

Corollary 11 Let P be a logic program. A total QHTs
= model 〈U, T, T 〉 of P is an

equilibrium model of P iff it is a generalised open answer set of P .

Proof: It is well-known that for propositional programs equilibrium models coincide
with answer sets [24]. Using Proposition 10 and Definition 4 for generalised open
answer sets, the result follows. 2

6 Relation between Hybrid KBs and QEL
In this section we show how equilibrium models for hybrid knowledge bases relate to
the NM models defined earlier and we show that QEL captures the various approaches
to the semantics of hybrid KBs in the literature [29, 30, 31, 16].

Given a hybrid KB K = (T ,P) we call T ∪ P ∪ st(T ) the stable closure of K,
where st(T ) = {∀x(p(x)∨¬p(x)) : p ∈ LT }.10 From now on, unless otherwise clear
from context, the symbol ‘|=’ denotes the truth relation for QHTs

=. Given a ground
program P and an L-structureM = 〈U,H, T 〉, the projection Π(P,M) is understood
to be defined relative to the component T ofM.

10Evidently T becomes stable in K in the sense that ∀ϕ ∈ T , st(T ) |= ¬¬ϕ→ ϕ. The terminology is
drawn from intuitionistic logic and mathematics.
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Lemma 12 LetM = 〈U,H, T 〉 be a QHTs
=-model of T ∪ st(T ). ThenM |= P iff

M|LP |= Π(grU (P),M).

Proof: By the hypothesisM |= {∀x(p(x)∨¬p(x)) : p ∈ LT }. It follows thatH|LT =
T |LT . Consider any r ∈ P , such that rΠ 6= ∅. Then there are four cases to consider.
(i) r has the form α→ β ∨ p(t), p(t) ∈ LT and p(σ(t)) 6∈ T , soM |= ¬p(t). W.l.o.g.
assume that α, β ∈ LP , so rΠ = α→ β and

M |= r ⇔M |= rΠ ⇔M|LP |= rΠ (3)

by the semantics for QHTs
= and Theorem 7. (ii) r has the form α→ β∨¬p(t), where

p(σ(t)) ∈ T ; so p(σ(t)) ∈ H andM |= p(t). Again it is easy to see that (3) holds.
Case (iii): r has the form α ∧ p(t)→ β and p(σ(t)) ∈ H,T , soM |= p(t). Case (iv):
r has the form α ∧ ¬p(t)→ β andM |= ¬p(t). Clearly for these two cases (3) holds
as well. It follows that ifM |= P thenM|LP |= Π(grU (P),M).

To check the converse condition we need now only examine the cases where rΠ =
∅. Suppose this arises because p(σ(t)) ∈ H,T , soM |= p(t). Now, if p(t) is in the
head of r, clearlyM |= r. Similarly if ¬p(t) is in the body of r, by the semanticsM |=
r. The cases where p(σ(t)) 6∈ T are analogous and left to the reader. Consequently if
M|LP |= Π(grU (P),M), thenM |= P . 2

We now state the relation between equilibrium models and NM-models.

Theorem 13 LetK = (T ,P) be a hybrid KB.M = 〈U, T, T 〉 is an equilibrium model
of the stable closure of K if and only if 〈U, T 〉 is an NM-model of K.

Proof: Assume the hypothesis and suppose thatM is in equilibrium. Since T contains
only predicates from LT andM |= T ∪ st(T ), evidently

M|LT |= T ∪ st(T ) (4)

and so in particular (U,M|LT ) is a model of T . By Lemma 12,

M |= P ⇔M|LP |= Π(grU (P),M). (5)

We claim (i) that M|LP is an equilibrium model of Π(grU (P),M). If not, there is
a model M′ = 〈H ′, T ′〉 with H ′ ⊂ T ′ = T |LP and M′ |= Π(grU (P),M). Lift
(U,M′) to a (first order) L-structure N by interpreting each p ∈ LT according toM.
SoN|LT =M|LT and by(4) clearlyN |= T ∪ st(T ). Moreover, by Lemma 12N |=
P and by assumption N �M, contradicting the assumption thatM is an equilibrium
model of T ∪ st(T )∪P . This establishes (i). Lastly, we note that since 〈T |LP , T |LP 〉
is an equilibrium model of Π(grU (P),M),M|LP is a generalised open answer set of
Π(grU (P),M) by Corollary 11, so thatM = 〈U, T, T 〉 is an NM-model of K.

For the converse direction, assume the hypothesis but suppose that M is not in
equilibrium. Then there is a modelM′ = 〈U,H, T 〉 of T ∪ st(T ) ∪ P , with H ⊂ T .
SinceM′ |= P we can apply Lemma 12 to conclude thatM′|LP |= Π(grU (P),M′).
But clearly

Π(grU (P),M′) = Π(grU (P),M).
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However, since evidentlyM′|LT = M|LT , thusM′|LP �M|LP , so this shows that
M|LP is not an equilibrium model of Π(grU (P),M) and therefore T |LP is not an
answer set of Π(grU (P),M) andM is not an NM- model of K. 2

This establishes the main theorem relating to the various special types of hybrid
KBs discussed earlier.

Theorem 14 (Main Theorem) (i) LetK = (T ,P) be a g-hybrid (resp. an r+-hybrid)
knowledge base. M = 〈U, T, T 〉 is an equilibrium model of the stable closure of K if
and only if 〈U, T 〉 is an NM-model (resp. r+-NM-model) of K.
(ii) Let K = (T ,P) be an r-hybrid knowledge base. Let M = 〈U, T, T 〉 be an
Herbrand model of the stable closure of K. Then M is in equilibrium in the sense
of [26] if and only if 〈U, T 〉 is an r-NM-model of K.

Example 5 Consider again the hybrid knowledge base K = (T ,P), with T and P as
in Example 1. The stable closure of K, st(K) = T ∪ st(T ) ∪ P is

∀x.PERSON(x)→ (AGENT (x) ∧ (∃y.HAS-MOTHER(x, y)))
∀x.(∃y.HAS-MOTHER(x, y))→ ANIMAL(x)
∀x.PERSON(x) ∨ ¬PERSON(x)
∀x.AGENT (x) ∨ ¬AGENT (x)
∀x.ANIMAL(x) ∨ ¬ANIMAL(x)
∀x, y.HAS-MOTHER(x, y) ∨ ¬HAS-MOTHER(x, y)
∀x.AGENT (x) ∧ ¬machine(x)→ PERSON(x)
AGENT (DaveBowman)

Consider the total HT-modelMHT = 〈U, I, I〉 of st(K), with U, I as in Example 4.
MHT is not an equilibrium model of st(K), since MHT is not minimal among all
models: 〈U, I ′, I〉, with I ′ = I\{machine(DaveBowman)}, is a model of st(K).
Furthermore, it is easy to verify that 〈U, I ′, I ′〉 is not a model of st(K).

Now, consider the total HT-modelM′HT = 〈U,M,M〉, with U as before, and

M ={AGENT (DaveBowman), PERSON(DaveBowman),
ANIMAL(DaveBowman), HAS-NAME(DaveBowman, k)}.

M′HT is an equilibrium model of st(K). Indeed, consider any M ′ ⊂ M . It is easy to
verify that 〈U,M ′,M〉 is not a model of st(K). 3

7 Discussion
We have seen that quantified equilibrium logic captures three of the main approaches
to integrating classical, first-order or DL knowledge bases with nonmonotonic rules
under the answer set semantics, in a modular, hybrid approach. However, QEL has a
quite distinct flavor from those of r-hybrid, r+-hybrid and g-hybrid KBs. Each of these
hybrid approaches has a semantics composed of two different components: a classical
model on the one hand and an answer set on the other. Integration is achieved by the
fact that the classical model serves as a pre-processing tool for the rule base. The style
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of QEL is different. There is one semantics and one kind of model that covers both
types of knowledge. There is no need for any pre-processing of the rule base. In this
sense, the integration is more far-reaching. The only distinction we make is that for that
part of the knowledge base considered to be classical and monotonic we add a stability
condition to obtain the intended interpretation.

There are other features of the approach using QEL that are worth highlighting.
First, it is based on a simple minimal model semantics in a known non-classical logic,
actually a quantified version of Gödel’s 3-valued logic. No reducts are involved and,
consequently, the equilibrium construction applies directly to arbitrary first-order the-
ories. The rule part P of a knowledge base might therefore comprise, say, a nested
logic program, where the heads and bodies of rules may be arbitrary boolean formu-
las, or perhaps rules permitting nestings of the implication connective. While answer
sets have recently been defined for such general formulas, more work would be needed
to provide integration in a hybrid KB setting.11 Evidently QEL in the general case is
undecidable, so for extensions of the rule language syntax for practical applications
one may wish to study restrictions analogous to safety or guardedness. Second, the
logic QHTs

= can be applied to characterise properties such as the strong equivalence
of programs and theories [20, 27]. While strong equivalence and related concepts have
been much studied recently in ASP, their characterisation in the case of hybrid KBs
remains uncharted territory. The fact that QEL provides a single semantics for hybrid
KBs means that a simple concept of strong equivalence is applicable to such KBs and
characterisable using the underlying logic, QHTs

=. In Section 9 below we describe
how QHTs

= can be applied in this context.

8 Hybrid KBs and the SM operator
Recently, Ferraris, Lee and Lifschitz [12] have presented a new definition of stable
models. It is applicable to sentences or finitely axiomatisable theories in first-order
logic. The definition is syntactical and involves an operator SM that resembles parallel
circumscription. The stable models of a sentence F are the structures that satisfy a
certain second-order sentence, SM[F ]. This new definition of stable model agrees with
equilibrium logic in the sense that the models of SM[F ] from [12] are essentially the
equilibrium models of F as defined in this article.

We shall now show that by slightly modifying the SM operator we can also cap-
ture the NM semantics of hybrid knowledge bases. First, we need to introduce some
notation, essentially following [20].

If p and q are predicate constants of the same arity then p = q stands for the formula

∀x(p(x)↔ q(x)),

and p ≤ q stands for
∀x(p(x)→ q(x)),

11For a recent extension of answer sets to first-order formulas, see [12], which is explained in more detail
in Section 8.
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where x is a tuple of distinct object variables. If p and q are tuples p1, . . . , pn and
q1, . . . , qn of predicate constants then p = q stands for the conjunction

p1 = q1 ∧ · · · ∧ pn = qn,

and p ≤ q for
p1 ≤ q1 ∧ · · · ∧ pn ≤ qn.

Finally, p < q is an abbreviation for p ≤ q ∧ ¬(p = q). The operator NM|P
defines second-order formulas and the previous notation can be also applied to tuples
of predicate variables.

NM|P [F ] = F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where p is the list of all predicate constants p1, . . . , pn 6∈ LT occurring in F , u is a list
of n distinct predicate variables u1, . . . , un. The NM|P operator works just like in the
SM operator from [12] except that the substitution of predicates pi is restricted to those
not in LT . Notice that in the definition of NM|P [F ] the second conjunct specifies the
minimality condition on interpretations while the third conjunct involves a translation
‘∗’ that provides a reduction of the non-classical here-and-there logic to classical logic.
This translation is recursively defined as follows:

• pi(t1, . . . , tm)∗ = ui(t1, . . . , tm) if pi 6∈ LT ;

• pi(t1, . . . , tm)∗ = pi(t1, . . . , tm) if pi ∈ LT ;

• (t1 = t2)∗ = (t1 = t2);

• ⊥∗ = ⊥;

• (F �G)∗ = F ∗ �G∗, where � ∈ {∧,∨};

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (QxF )∗ = QxF ∗, where Q ∈ {∀,∃}.

(There is no clause for negation here, because ¬F is treated as shorthand for F → ⊥.)

Theorem 15 M = 〈U, T 〉 is a NM-model of K = (T ,P) if and only if it satisfies T
and NM|P [P].

We assume here that both T andP are finite, so that the operator NM|P is well-defined.
Proof:

(⇒) If 〈U, T 〉, U = (D,σ), is a NM-model of K = (T ,P), then 〈U, T 〉 |= T , and
〈U, T 〉 |= P , and 〈U, T, T 〉 is an equilibrium model of T ∪ st(T ) ∪ P . So we
only need to prove that 〈U, T 〉 |= ¬∃u((u < p)∧P ∗(u)). For the contradiction,
let us assume that

〈U, T 〉 |= ∃u((u < p) ∧ P∗(u))
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This means that:
Fact 1: For every pi 6∈ LT , there exists pi ⊂ Dn such that (u < p) ∧ P∗(u) is
valid in the structure 〈U, T 〉 where ui is interpreted as pi.

If we consider the set

H = {pi(d1, . . . , dk) : (d1, . . . , dk) ∈ pi}∪
∪{pi(d1, . . . , dk) : pi ∈ LT , pi(d1, . . . , dk) ∈ T},

and ui is interpreted as pi, then u < p is valid in 〈U, T 〉 iff H ⊂ T and P∗(u)
is valid in 〈U, T 〉 iff 〈U,H〉 |= P∗(p); that is, the Fact 1 is equivalent to:

H ⊂ T and 〈U,H〉 |= P∗(p) (6)

Since T rH does not include predicate symbols of LT , 〈U,H, T 〉 |= T ∪st(T ).
So, to finish the proof, we need to prove the following for every formula ϕ:
Fact 2: 〈U,H, T 〉, h |= ϕ if and only if 〈U,H〉 |= ϕ∗(p).

As a consequence of Fact 2, we have that 〈U,H, T 〉 |= P and thus 〈U,H, T 〉 is
a model of the stable closure of K, which contradicts that 〈U, T, T 〉 is in equilib-
rium.

Fact 2 is proved by induction on ϕ:

(i) If ϕ = pi(d1, . . . , dk), then ϕ∗(p) = ϕ:

〈U,H, T 〉, h |= ϕ⇔ pi(d1, . . . , dk) ∈ H ⇔ 〈U,H〉 |= ϕ∗(p)

(ii) Let ϕ = ψ1 ∧ ψ2 and assume that, for i = 1, 2,

〈U,H, T 〉, h |= ψi iff 〈U,H〉 |= ψi
∗(p). (7)

∗ For ϕ = ψ1 ∧ ψ2 under assumption (7):

〈U,H, T 〉, h |= ψ1 ∧ ψ2 ⇔ 〈U,H, T 〉, h |= ψ1 and 〈U,H, T 〉, h |= ψ2

⇔ 〈U,H〉 |= ψ∗1(p) and 〈U,H〉 |= ψ∗2(p)
⇔ 〈U,H〉 |= (ψ1 ∧ ψ2)∗

∗ Similarly, for ϕ = ψ1 → ψ2 under assumption (7):

〈U,H, T 〉, h |= ψ1 → ψ2 ⇔
⇔ 〈U,H, T 〉, t |= ψ1 → ψ2 and

either 〈U,H, T 〉, h 6|= ψ1 or 〈U,H, T 〉, h |= ψ2

⇔ 〈U, T 〉 |= ψ1 → ψ2 and either 〈U,H〉 6|= ψ∗1(p) or 〈U,H〉 |= ψ∗2(p)
⇔ 〈U,H〉 |= (ψ1 → ψ2)∗

(⇐) If 〈U, T 〉, U = (D,σ), satisfies T and NM|P [P], then trivially 〈U, T, T 〉 is a
here-and-there model of the closure of K; we only need to prove that this model
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is in equilibrium. By contradiction, let us assume that 〈U,H, T 〉 is a here-and-
there model of the closure of K with H ⊂ T . For every pi 6∈ LT , we define

pi = {(di, . . . , dk) : pi(di, . . . , dk) ∈ H}

Fact 3: (u < p) ∧ P∗(u) is valid in the structure 〈U, T 〉 if the variables ui are
interpreted as pi.

As a consequence of Fact 3, we have that ∃u((u < p) ∧ P∗(u)) is satisfied by
〈U, T 〉 which contradicts that NM|P [P] is satisfied by the structure.

As in the previous item, Fact 3 is equivalent to

H ⊂ T and 〈U,H〉 |= P∗(p)

The first condition, H ⊂ T , is trivial by definition and the second one is a
consequence of Fact 2.

2

9 The Strong Equivalence of Knowledge Bases
Let us see how the previous results, notably Theorem 13, can be applied to charac-
terise a concept of strong equivalence between hybrid knowledge bases. It is important
to know when different reconstructions of a given body of knowledge or state of af-
fairs are equivalent and lead to essentially the same problem solutions. In the case of
knowledge reconstructed in classical logic, ordinary logical equivalence can serve as
a suitable concept when applied to theories formulated in the same vocabulary. In the
case where nonmonotonic rules are present, however, the situation changes: two sets
of rules may have the same answer sets yet behave very differently once they are em-
bedded in some larger context. Thus for hybrid knowledge bases one may also like to
know that equivalence is robust or modular. A robust notion of equivalence for logic
programs will require that programs behave similarly when extended by any further
programs. This leads to the following concept of strong equivalence: programs Π1 and
Π2 are strongly equivalent if and only if for any set of rules Σ, Π1 ∪ Σ and Π2 ∪ Σ
have the same answer sets. This concept of strong equivalence for logic programs in
ASP was introduced and studied in [19] and has given rise to a substantial body of
further work looking at different characterisations, new variations and applications of
the idea, as well as the development of systems to test for strong equivalence. Strong
equivalence has also been defined and studied for logic programs with variables and
first-order nonmonotonic theories under the stable model or equilibrium logic seman-
tics [22, 8, 20, 27]. In equilibrium logic we say that two (first-order) theories Π1 and
Π2 are strongly equivalent if and only if for any theory Σ, Π1 ∪Σ and Π2 ∪Σ have the
same equilibrium models [20, 27]. Under this definition we have:

Theorem 16 ([20, 27]) Two (first-order)
theories Π1 and Π2 are strongly equivalent if and only if they are equivalent in QHTs

=.
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Different proofs of Theorem 16 are given in [20] and [27]. For present purposes,
the proof contained in [27] is more useful. It shows that if theories are not strongly
equivalent, the set of formulas Σ such that Π1 ∪ Σ and Π2 ∪ Σ do not have the same
equilibrium models can be chosen to have the form of implications (A→ B) where A
and B are atomic. So if we are interested in the case where Π1 and Π2 are sets of rules,
Σ can also be regarded as a set of rules. We shall make use of this property below.

In the case of hybrid knowledge bases K = (T ,P), various kinds of equivalence
can be specified, according to whether one or other or both of the components T and
P are allowed to vary. The following form is rather general.

Definition 8 Let K1 = (T1,P1) and K2 = (T2,P2), be two hybrid KBs sharing the
same structural language, ie. LT 1 = LT 2. K1 and K2 are said to be strongly equiv-
alent if for any theory T and set of rules P , (T1 ∪ T ,P1 ∪ P) and (T2 ∪ T ,P2 ∪ P)
have the same NM-models.

Until further notice, let us suppose that K1 = (T1,P1) and K2 = (T2,P2) are hybrid
KBs sharing a common structural language L.

Proposition 17 K1 and K2 are strongly equivalent if and only if T1 ∪ st(T1)∪P1 and
T2 ∪ st(T2) ∪ P2 are logically equivalent in QHTs

=.

Proof: Let K1 = (T1,P1) and K2 = (T2,P2) be hybrid KBs such that LT 1 = LT 2 =
L. Suppose T1 ∪ st(T1)∪P1 and T2 ∪ st(T2)∪P2 are logically equivalent in QHTs

=.
Clearly (T1 ∪ T ∪ st(T1 ∪ T ) ∪ P1 ∪ P) and (T2 ∪ T ∪ st(T2 ∪ T ) ∪ P2 ∪ P) have
the same QHTs

=-models and hence the same equilibrium models. Strong equivalence
of K1 and K2 follows by Theorem 13.

For the ‘only-if’ direction, suppose that T1∪st(T1)∪P1 and T2∪st(T2)∪P2 are not
logically equivalent in QHTs

=, so there is.an QHTs
=-model of one of these theories

that is not an QHTs
= of the other. Applying the proof of Theorem 16 given in [27]

we can infer that there is a set P of rules of a simple sort such that the equilibrium
models of T1 ∪ st(T1) ∪ P1 ∪ P and T2 ∪ st(T2) ∪ P2 ∪ P do not coincide. Hence by
Theorem 13 K1 and K2 are not strongly equivalent. 2

Notice that from the proof of Proposition 17 it follows that the non-strong equiva-
lence of two hybrid knowledge bases can always be made manifest by choosing exten-
sions having a simple form, obtained by adding simple rules to the rule base.

We mention some conditions to test for strong equivalence and non-equivalence.

Corollary 18 (a)K1 andK2 are strongly equivalent if T1 and T2 are classically equiv-
alent and P1 and P2 are equivalent in QHTs

=.
(b) K1 and K2 are not strongly equivalent if T1 ∪P1 and T2 ∪P2 are not equivalent in
classical logic.

Proof:
(a) Assume the hypothesis. Since K1 = (T1,P1) and K2 = (T2,P2) share a common
structural language L, it follows that st(T1) = st(T2) = S, say. Since T1 and T2 are
classically equivalent, T1 ∪ S and T2 ∪ S have the same (total) QHTs

=-models and
so for any T also T1 ∪ T ∪ S ∪ st(T ) and T2 ∪ T ∪ S ∪ st(T ) have the same (total)
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QHTs
=-models. Since P1 and P2 are equivalent in QHTs

= it follows also that for any
P , (T1 ∪ T ∪S ∪ st(T )∪P1 ∪P) and (T2 ∪ T ∪S ∪ st(T )∪P2 ∪P) have the same
QHTs

=-models and hence the same equilibrium models. The conclusion follows by
Theorem 13.
(b) Suppose that T1 ∪ P1 and T2 ∪ P2 are not equivalent in classical logic. Assume
again that st(T1) = st(T2) = S, say. Then clearly T1 ∪ S ∪ P1 and T2 ∪ S ∪ P2 are
not classically equivalent and hence they cannot be QHTs

=-equivalent. Applying the
second part of the proof of Proposition 17 completes the argument. 2

Special cases of strong equivalence arise when hybrid KBs are based on the same
classical theory, say, or share the same rule base. That is, (T ,P1) and (T ,P2) are
strongly equivalent if P1 and P2 are QHTs

=-equivalent.12 Analogously:

(T1,P) and (T2,P) are strongly equivalent if T1 and T2 are classically equivalent.
(8)

Let us briefly comment on a restriction that we imposed on strong equivalence,
namely that the KBs in question share a common structural language. Intuitively the
reason for this is that the structural language LT associated with a hybrid knowledge
baseK = (T ,P) is part of its identity or ‘meaning’. Precisely the predicates in LT are
the ones treated classically. In fact, another KB,K′ = (T ′,P), where T ′ is completely
equivalent to T in classical logic, may have a different semantics if LT ′ is different
from LT . To see this, let us consider a simple example in propositional logic. Let
K1 = (T1,P1) and K2 = (T2,P2), be two hybrid KBs where P1 = P2 = {(p →
q)}, T1 = {(r ∧ (r ∨ p))}, T2 = {r}. Clearly, T1 and T2 are classically and even
QHTs

=-equivalent. However, K1 and K2 are not even in a weak sense semantically
equivalent. st(T1) = {r ∨ ¬r; p ∨ ¬p}, while st(T2) = {r ∨ ¬r}. It is easy to check
that T1 ∪ st(T1) ∪ P1 and T2 ∪ st(T2) ∪ P2 have different QHTs

=-models, different
equilibrium models and (hence) K1 and K2 have different NM-models. So we see
that without the assumption of a common structural language, the natural properties
expressed in Corollary 18 (a) and (8) would no longer hold.

It is interesting to note here that meaning-preserving relations among ontologies
have recently become a topic of interest in the description logic community where
logical concepts such as that of conservative extension are currently being studied and
applied [13]. A unified, logical approach to hybrid KBs such as that developed here
should lend itself well to the application of such concepts.

10 Related Work and Conclusions
We have provided a general notion of hybrid knowledge base, combining first-order
theories with nonmonotonic rules, with the aim of comparing and contrasting some
of the different variants of hybrid KBs found in the literature [29, 30, 31, 16]. We
presented a version of quantified equilibrium logic, QEL, without the unique names
assumption, as a unified logical foundation for hybrid knowledge bases. We showed
how for a hybrid knowledge base K there is a natural correspondence between the

12In [5] it was incorrectly stated in Proposition 7 that this condition was both necessary and sufficient for
strong equivalence, instead of merely sufficient.
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nonmonotonic models of K and the equilibrium models of what we call the stable
closure of K. This yields a way to capture in QEL the semantics of the g-hybrid KBs
of Heymans et al. [16] and the r-hybrid KBs of Rosati [30], where the latter is defined
without the UNA but for safe programs. Similarly, the version of QEL with UNA
captures the semantics of r-hybrid KBs as defined in [29, 31]. It is important to note
that the aim of this paper was not that of providing new kinds of safety conditions
or decidability results; these issues are ably dealt with in the literature reviewed here.
Rather our objective has been to show how classical and nonmonotonic theories might
be unified under a single semantical model. In part, as [16] show with their reduction of
DL knowledge bases to open answer set programs, this can also be achieved (at some
cost of translation) in other approaches. What distinguishes QEL is the fact that it is
based on a standard, nonclassical logic, QHTs

=, which can therefore provide a unified
logical foundation for such extensions of (open) ASP. To illustrate the usefulness of our
framework we showed how the logic QHTs

= also captures a natural concept of strong
equivalence between hybrid knowledge bases.

There are several other approaches to combining languages for Ontologies with
nonmonotonic rules which can be divided into two main streams [3]: approaches which
define integration of rules and ontologies (a) by entailment, ie. querying classical
knowledge bases through special predicates the rules body, and (b) on the basis of
single models, ie. defining a common notion of combined model.

The most prominent of the former kind of approaches are dl-programs [10] and
their generalization, HEX-programs [9]. Although these approaches both are based
on Answer Set programming like our approach, the orthogonal view of integration by
entailment can probably not be captured by a simple embedding in QEL. Another such
approach which allows querying classical KBs from a nonmonotonic rules language is
based on Defeasible Logic [33].

As for the second stream, variants of Autoepistemic Logic [4], and the logic of
minimal knowledge and negation as failure (MKNF) [23] have been recently proposed
in the literature. Similar to our approach, both these approaches embed a combined
knowledge base in a unifying logic. However, both purchase use modal logics fact
syntactically and semantically extend first-order logics. Thus, in these approaches,
embedding of the classical part of the theory is trivial, whereas the nonmonotonic rules
part needs to be rewritten in terms of modal formulas. Our approach is orthogonal,
as we use a non-classical logic where the nonmonotonic rules are trivially embedded,
but the stable closure guarantees classical behavior of certain predicates. In addition,
the fact that we include the stable closure ensures that the predicates from the classical
parts of the theory behave classically, also when used in rules with negation. In con-
trast, in both modal approaches occurrences of classical predicates are not interpreted
classically, as illustrated in the following example.

Example 6 Consider the theory T = {A(a)} and the program P = {r ← ¬A(b)}.
We have that there exists an NM-modelM of (T ,P) such thatM |= A(a), A(b) and
M 6|= A(a), A(b), and so r is not entailed. Consider now the embedding τHP of
logic programs into autoepistemic logic [4]. We have τHP (P) = {¬LA(b) → r}. In
autoepistemic logic, LA(b) is true iff A(b) is included in a stable expansion T , which
is essentially the set of all entailed formulas, assuming T . We have that A(b) is not
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entailed from T ∪ τHP (P) under any stable expansion, and so LA(b) is false, and
thus r is necessarily true in every model. We thus have that r is a consequence of
T ∪ τHP (P).
Similar for the hybrid MKNF knowledge bases by [23].

As shown by [6], adding classical interpretation axioms – essentially a modal version
of the stable closure axioms – to the theory T ∪ τHP (P) allows one to capture the
hybrid knowledge base semantics we considered in this paper.

In future work we hope to consider further aspects of applying QEL to the domain
of hybrid knowledge systems. Extending the language with functions symbols and
with strong negation is a routine task, since QEL includes these items already. We also
plan to consider in the future how QEL can be used to define a catalogue of logical
relations between hybrid KBs. Last, but not least, let us mention that in this paper we
exclusively dealt with hybrid combinations of classical theories with logic programs
under variants of the stable-model semantics. Recenty, also hybrid rule combinations
based on the well-founded semantics have been proposed by Drabent et al. [7] or Knorr
et al. [18], defining an analogous, modular semantics like hybrid knowledge bases
considered here. In this context, we plan to investigate whether a first-order version
of Partial Equilibrium Logic [2], which has been recently shown to capure the well-
founded semantics in the propositional case, can simlarly work as a foundation for
hybrid rule combintions à la Drabent et al. [7].

We believe that on the long run the general problem addressed by the theoretical
foundations layed in this paper could potentially provide essential insights for realistic
applications of Ontologies and Semantic Web technologies in general, since for most
of these applications current classical ontology languages provide too limited expre-
sivity and the addition of non-monotonic rules is key to overcome these limitations.
As an example let us mention the “clash” between the open world assumption in On-
tologies and the nonmonotonicity/closed world nature of typical Semantic Web query
languages such as SPARQL, which contains nonmonotonic constructs and in fact can
be translated to rules with nonmonotonic negation [28]. While some initial works ex-
ist in the direction of using SPARQL on top of OWL [17], the foundations and exact
semantic treatment of corner cases is still an open problem.13 As another example, let
us mention mappings between modular ontologies as for instance investigated by [11];
non-monotonic rules could provide a powerful tool to describe mappings between on-
tologies.
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Abstract

As the data and ontology layers of the Semantic Web stack have achieved a
certain level of maturity in standard recommendations such as RDF and OWL,
the current focus lies on two related aspects. On the one hand, the definition of
a suitable query language for RDF, SPARQL, is close to recommendation status
within the W3C. The establishment of the rules layer on top of the existing stack
on the other hand marks the next step to be taken, where languages with their roots
in Logic Programming and Deductive Databases are receiving considerable atten-
tion. The purpose of this paper is threefold. First, we discuss the formal semantics
of SPARQL extending recent results in several ways. Second, we provide transla-
tions from SPARQL to Datalog with negation as failure. Third, we propose some
useful and easy to implement extensions of SPARQL, based on this translation.
As it turns out, the combination serves for direct implementations of SPARQL on
top of existing rules engines as well as a basis for more general rules and query
languages on top of RDF.

Categories and Subject Descriptors: H.2.3[Languages]: Query Languages; H.3.5[Online
Information Services]: Web-based services
General Terms: Languages, Standardization
Keywords: SPARQL, Datalog, Rules

1 Introduction
After the data and ontology layers of the Semantic Web stack have achieved a certain
level of maturity in standard recommendations such as RDF and OWL, the query and
the rules layers seem to be the next building-blocks to be finalized. For the first part,
SPARQL [18], W3C’s proposed query language, seems to be close to recommenda-
tion, though the Data Access working group is still struggling with defining aspects
such as a formal semantics or layering on top of OWL and RDFS. As for the second
∗An extended technical report version of this article is available at

http://www.polleres.net/TRs/GIA-TR-2006-11-28.pdf. This work was
mainly conducted under a Spanish MEC grant at Universidad Rey Juan Carlos, Móstoles, Spain.
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part, the RIF working group 1, who is responsible for the rules layer, is just producing
first concrete results. Besides aspects like business rules exchange or reactive rules,
deductive rules languages on top of RDF and OWL are of special interest to the RIF
group. One such deductive rules language is Datalog, which has been successfully ap-
plied in areas such as deductive databases and thus might be viewed as a query language
itself. Let us briefly recap our starting points:
Datalog and SQL. Analogies between Datalog and relational query languages such as
SQL are well-known and -studied. Both formalisms cover UCQ (unions of conjunctive
queries), where Datalog adds recursion, particularly unrestricted recursion involving
nonmonotonic negation (aka unstratified negation as failure). Still, SQL is often viewed
to be more powerful in several respects. On the one hand, the lack of recursion has
been partly solved in the standard’s 1999 version [20]. On the other hand, aggregates or
external function calls are missing in pure Datalog. However, also developments on the
Datalog side are evolving and with recent extensions of Datalog towards Answer Set
Programming (ASP) – a logic programming paradigm extending and building on top of
Datalog – lots of these issues have been solved, for instance by defining a declarative
semantics for aggregates [9], external predicates [8].
The Semantic Web rules layer. Remarkably, logic programming dialects such as
Datalog with nonmonotonic negation which are covered by Answer Set Programming
are often viewed as a natural basis for the Semantic Web rules layer [7]. Current ASP
systems offer extensions for retrieving RDF data and querying OWL knowledge bases
from the Web [8]. Particular concerns in the Semantic Web community exist with
respect to adding rules including nonmonotonic negation [3] which involve a form of
closed world reasoning on top of RDF and OWL which both adopt an open world
assumption. Recent proposals for solving this issue suggest a “safe” use of negation as
failure over finite contexts only for the Web, also called scoped negation [17].
The Semantic Web query layer – SPARQL. Since we base our considerations in this
paper on the assumption that similar correspondences as between SQL and Datalog
can be established for SPARQL, we have to observe that SPARQL inherits a lot from
SQL, but there also remain substantial differences: On the one hand, SPARQL does
not deal with nested queries or recursion, a detail which is indeed surprising by the
fact that SPARQL is a graph query language on RDF where, typical recursive queries
such as transitive closure of a property might seem very useful. Likewise, aggregation
(such as count, average, etc.) of object values in RDF triples which might appear useful
have not yet been included in the current standard. On the other hand, subtleties like
blank nodes (aka bNodes), or optional graph patterns, which are similar but (as we
will see) different to outer joins in SQL or relational algebra, are not straightforwardly
translatable to Datalog.

The goal of this paper is to shed light on the actual relation between declarative
rules languages such as Datalog and SPARQL, and by this also provide valuable input
for the currently ongoing discussions on the Semantic Web rules layer, in particular its
integration with SPARQL, taking the likely direction into account that LP style rules
languages will play a significant role in this context.

1http://www.w3.org/2005/rules/wg
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Although the SPARQL specification does not seem 100% stable at the current
point, just having taken a step back from candidate recommendation to working draft,
we think that it is not too early for this exercise, as we will gain valuable insights
and positive side effects by our investigation. More precisely, the contributions of the
present work are:

• We refine and extend a recent proposal to formalize the semantics of SPARQL
from Pérez et al. [16], presenting three variants, namely c-joining, s-joining and
b-joining semantics where the latter coincides with [16], and can thus be con-
sidered normative. We further discuss how aspects such compositionality, or
idempotency of joins are treated in these semantics.

• Based on the three semantic variants, we provide translations from a large frag-
ment of SPARQL queries to Datalog, which give rise to implementations of
SPARQL on top of existing engines.

• We provide some straightforward extensions of SPARQL such as a set differ-
ence operator MINUS, and nesting of ASK queries in FILTER expressions.

• Finally, we discuss an extension towards recursion by allowing bNode-free-
CONSTRUCT queries as part of the query dataset, which may be viewed as
a light-weight, recursive rule language on top of of RDF.

The remainder of this paper is structured as follows: In Sec. 2 we first overview
SPARQL, discuss some issues in the language (Sec. 2.1) and then define its formal
semantics (Sec. 2.2). After introducing a general form of Datalog with negation as
failure under the answer set semantics in Sec. 3, we proceed with the translations of
SPARQL to Datalog in Sec. 4. We finally discuss the above-mentioned language ex-
tensions in Sec. 5, before we conclude in Sec. 6.

2 RDF and SPARQL
In examples, we will subsequently refer to the two RDF graphs in Fig. 1 which give
some information about Bob and Alice. Such information is common in FOAF files
which are gaining popularity to describe personal data. Similarities with existing ex-
amples in [18] are on purpose. We assume the two RDF graphs given in TURTLE [2]
notation and accessible via the IRIs ex.org/bob and alice.org2

We assume the pairwise disjoint, infinite sets I , B, L and V ar, which denote IRIs,
Blank nodes, RDF literals, and variables respectively. In this paper, an RDF Graph is
then a finite set, of triples from I∪B∪L×I×I∪B∪L,3 dereferenceable by an IRI. A
SPARQL query is a quadruple Q = (V, P,DS, SM), where V is a result form, P is a
graph pattern, DS is a dataset, and SM is a set of solution modifiers. We refer to [18]
for syntactical details and will explain these in the following as far as necessary. In this

2For reasons of legibility and conciseness, we omit the leading ’http://’ or other schema identifiers in
IRIs.

3Following SPARQL, we are slightly more general than the original RDF specification in that we allow
literals in subject positions.
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# Graph: ex.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker :a.
:a a foaf:Person ; foaf:name "Bob";

foaf:knows :b.

:b a foaf:Person ; foaf:nick "Alice".
<alice.org/> foaf:maker :b

# Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;
foaf:knows :c.

:c a foaf:Person ; foaf:name "Bob" ;
foaf:nick "Bobby".

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT?Y ?X
FROM <alice.org>
FROM <ex.org/bob>
WHERE { ?Y foaf:name ?X .}

?X ?Y
”Bob” :a
”Bob” :c
”Alice” alice.org#me

Figure 1: Two RDF graphs in TURTLE notation and a simple SPARQL query.

paper, we will ignore solution modifiers mostly, thus we will usually write queries as
triples Q = (V, P,DS), and will use the syntax for graph patterns introduced below.

Result Forms Since we will, to a large extent, restrict ourselves to SELECT queries,
it is sufficient for our purposes to describe result forms by sets variables. Other result
forms will be discussed in Sec. 5. For instance, let Q = (V, P,DS) denote the query
from Fig. 1, then V = {?X, ?Y }. Query results in SPARQL are given by partial,
i.e. possibly incomplete, substitutions of variables in V by RDF terms. In traditional
relational query languages, such incompleteness is usually expressed using null values.
Using such null values we will write solutions as tuples where the order of columns is
determined by lexicographically ordering the variables in V . Given a set of variables
V , let V denote the tuple obtained from lexicographically ordering V .

The query from Fig. 1 with result form V = (?X, ?Y ) then has solution tuples
(”Bob”, :a), (”Alice”, alice.org#me), (”Bob”, :c). We write substitutions in
sqare brackets, so these tuples correspond to the substitutions [?X → ”Bob”, ?Y →

: a], [?X → ”Alice”, ?Y → alice.org#me], and [?X → ”Bob”, ?Y → : c],
respectively.

Graph Patterns We follow the recursive definition of graph patterns P from [16]:

• a tuple (s, p, o) is a graph pattern where s, o ∈ I ∪ L ∪ V ar and p ∈ I ∪ V ar.4

• if P and P ′ are graph patterns then (P AND P ′), (P OPT P ′), (P UNION P ′),
(P MINUS P ′) are graph patterns.5

4We do not consider bNodes in patterns as these can be semantically equivalently replaced by variables
in graph patterns [6].

5Note that AND and MINUS are not designated keywords in SPARQL, but we use them here for reasons
of readability and in order to keep with the operator style definition of [16]. MINUS is syntactically not
present at all, but we will suggest a syntax extension for this particular keyword in Sec. 5.
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• if P is a graph pattern and i ∈ I ∪ V ar, then (GRAPH i P ) is a graph pattern.

• if P is a graph pattern and R is a filter expression then (P FILTER R) is a graph
pattern.

For any pattern P , we denote by vars(P ) the set of all variables occurring in P . As
atomic filter expression, SPARQL allows the unary predicates BOUND, isBLANK,
isIRI, isLITERAL, binary equality predicates ’=’ for literals, and other features such
as comparison operators, data type conversion and string functions which we omit
here, see [18, Sec. 11.3] for details. Complex filter expressions can be built using the
connectives ’¬’,’∧’,’∨’.

Datasets The dataset DS = (G, {(g1, G1), . . . (gk, Gk)}) of a SPARQL query is
defined by a default graph G plus a set of named graphs, i.e. pairs of IRIs and corre-
sponding graphs. Without loss of generality (there are other ways to define the dataset
such as in a SPARQL protocol query), we assume G given as the merge of the graphs
denoted by the IRIs given in a set of FROM and FROM NAMED clauses. For instance,
the query from Fig. 1 refers to the dataset which consists of the default graph obtained
from merging alice.org ] ex.org/bob plus an empty set of named graphs.

The relation between names and graphs in SPARQL is defined solely in terms of
that the IRI defines a resource which is represented by the respective graph. In this
paper, we assume that the IRIs represent indeed network-accessible resources where
the respective RDF-graphs can be retrieved from. This view has also be taken e.g.
in [17]. Particularly, this treatment is not to be confused with so-called named graphs
in the sense of [4]. We thus identify each IRI with the RDF graph available at this IRI
and each set of IRIs with the graph merge [13] of the respective IRIs. This allows us to
identify the dataset by a pair of sets of IRIsDS = (G,Gn) withG = {d1, . . . , dn} and
Gn = {g1, . . . , gk} denoting the (merged) default graph and the set of named graphs,
respectively. Hence, the following set of clauses

FROM <ex.org/bob>
FROM NAMED <alice.org>

defines the dataset DS = ({ex.org/bob}, {alice.org}).

2.1 Assumptions and Issues
In this section we will discuss some important issues about the current specification,
and how we will deal with them here.

First, note that the default graph if specified by name in a FROM clause is not
counted among the named graphs automatically [18, section 8, definition 1]. An un-
bound variable in the GRAPH directive, means any of the named graphs in DS, but
does NOT necessarily include the default graph.

Example 7 This issue becomes obvious in the following query with dataset DS =
({ex.org/bob}, ∅) which has an empty solution set.
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SELECT ?N WHERE {?G foaf:maker ?M .
GRAPH ?G { ?X foaf:name ?N } }

We will sometimes find the following assumption convenient to avoid such arguably
unintuitive effects:

Definition 9 (Dataset closedness assumption) Given a dataset DS = (G,Gn), Gn
implicitly contains (i) all graphs mentioned in G and (ii) all IRIs mentioned explicitly
in the graphs corresponding to G.

Under this assumption, the previous query has both (”Alice”) and (”Bob”) in its so-
lution set.

Some more remarks are in place concerning FILTER expressions. According to
the SPARQL specification “Graph pattern matching creates bindings of variables
[where] it is possible to further restrict solutions by constraining the allowable bind-
ings of variables to RDF Terms [with FILTER expressions].” However, it is not clearly
specified how to deal with filter constraints referring to variables which do not appear in
simple graph patterns. In this paper, for graph patterns of the form (P FILTER R) we
tacitly assume safe filter expressions, i.e. that all variables used in a filter expression R
also appear in the corresponding pattern P . This corresponds with the notion of safety
in Datalog (see Sec.3), where the built-in predicates (which obviously correspond to
filter predicates) do not suffice to safe unbound variables.

Moreover, the specification defines errors to avoid mistyped comparisons, or evalu-
ation of built-in functions over unbound values, i.e. “any potential solution that causes
an error condition in a constraint will not form part of the final results, but does not
cause the query to fail.” These errors propagate over the whole FILTER expression,
also over negation, as shown by the following example.

Example 8 Assuming the dataset does not contain triples for the foaf : dummy prop-
erty, the example query

SELECT ?X
WHERE { {?X a foaf:Person .

OPTIONAL { ?X foaf:dummy ?Y . } }
FILTER ( ¬(isLITERAL (?Y)) ) }

would discard any solution for ?X, since the unbound value for ?Y causes an error in
the isLITERAL expression and thus the whole FILTER expression returns an error.

We will take special care for these errors, when defining the semantics of FILTER
expressions later on.

2.2 Formal Semantics of SPARQL
The semantics of SPARQL is still not formally defined in its current version. This lack
of formal semantics has been tackled by a recent proposal of Pérez et al. [16]. We will
base on this proposal, but suggest three variants thereof, namely (a) bravely joining, (b)
cautiously-joining, and (c) strictly-joining semantics. Particularly, our definitions vary
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from [16] in the way we define joining unbound variables. Moreover, we will refine
their notion of FILTER satisfaction in order to deal with error propagation properly.

We denote by Tnull the union I ∪B ∪L∪{null}, where null is a dedicated constant
denoting the unknown value not appearing in any of I,B, or L, how it is commonly
introduced when defining outer joins in relational algebra.

A substitution θ from V ar to Tnull is a partial function θ : V ar → Tnull. We write
substitutions in postfix notation: For a triple pattern t = (s, p, o) we denote by tθ
the triple (sθ, pθ, oθ) obtained by applying the substitution to all variables in t. The
domain of θ, dom(θ), is the subset of V ar where θ is defined. For a substitution θ and
a set of variables D ⊆ V ar we define the substitution θD with domain D as follows:

xθD =
{
xθ if x ∈ dom(θ) ∩D
null if x ∈ D \ dom(θ)

Let θ1 and θ2 be substitutions, then θ1 ∪ θ2 is the substitution obtained as follows:

x(θ1 ∪ θ2) =

8><>:
xθ1 if xθ1 defined and xθ2 undefined
else: xθ1 if xθ1 defined and xθ2 = null
else: xθ2 if xθ2 defined
else: undefined

Thus, in the union of two substitutions defined values in one take precedence over
null values the other substitution. For instance, given the substitutions θ1 = [?X →
”Alice”, ?Y → : a, ?Z → null] and θ2 = [?U → ”Bob”, ?X → ”Alice”, ?Y →
null] we get: θ1 ∪ θ2 = [?U → ”Bob”, ?X → ”Alice”, ?Y → :a, ?Z → null]

Now, as opposed to [16], we define three notions of compatibility between substi-
tutions:

• Two substitutions θ1 and θ2 are bravely compatible (b-compatible) when for all
x ∈ dom(θ1) ∩ dom(θ2) either xθ1 = null or xθ2 = null or xθ1 = xθ2 holds.
i.e., when θ1 ∪ θ2 is a substitution over dom(θ1) ∪ dom(θ2).

• Two substitutions θ1 and θ2 are cautiously compatible (c-compatible) when they
are b-compatible and for all x ∈ dom(θ1) ∩ dom(θ2) it holds that xθ1 = xθ2.

• Two substitutions θ1 and θ2 are strictly compatible (s-compatible) when they are
c-compatible and for all x ∈ dom(θ1)∩dom(θ2) it holds that x(θ1∪θ2) 6= null.

Analogously to [16] we define join, union, difference, and outer join between two
sets of substitutions Ω1 and Ω2 over domainsD1 andD2, respectively, all except union
parameterized by x ∈ {b,c,s}:

Ω1 ./x Ω2 = {θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2, are x-compatible}
Ω1 ∪ Ω2 = {θ | ∃θ1 ∈ Ω1 with θ = θD1∪D2

1 or
∃θ2 ∈ Ω2 with θ = θD1∪D2

2 }
Ω1 −x Ω2 = {θ ∈ Ω1 | ∀θ2 ∈ Ω2, θ and θ2 not x-compatible}
Ω1A./x Ω2 = (Ω1 ./x Ω2) ∪ (Ω1 −x Ω2)

The semantics of a graph pattern P over dataset DS = (G,Gn), can now be
defined recursively by the evaluation function returning sets of substitutions.
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Definition 10 (Evaluation, extends [16, Def. 2]) Let t = (s, p, o) be a triple pattern,
P, P1, P2 graph patterns, DS = (G,Gn) a dataset, and i ∈ Gn, and v ∈ V ar, then
the x-joining evaluation [[·]]xDS is defined as follows:

[[t]]xDS = {θ | dom(θ) = vars(P ) and tθ ∈ G}
[[P1 AND P2]]xDS = [[P1]]xDS ./x [[P2]]xDS
[[P1 UNION P2]]xDS = [[P1]]xDS ∪ [[P2]]xDS
[[P1 MINUS P2]]xDS = [[P1]]xDS −x [[P2]]xDS
[[P1 OPT P2]]xDS = [[P1]]xDS A./x [[P2]]xDS
[[GRAPH i P ]]xDS = [[P ]]x(i,∅)
[[GRAPH v P ]]xDS = {θ∪[v→g] | g ∈ Gn, θ ∈ [[P [v→g] ]]x(g,∅)}
[[P FILTER R]]xDS = {θ ∈ [[P ]]xDS | Rθ = >}

Let R be a FILTER expression, u, v ∈ V ar, c ∈ I ∪ B ∪ L. The valuation of R
on substitution θ, written Rθ takes one of the three values {>,⊥, ε}6 and is defined as
follows.
Rθ = >, if:

(1) R = BOUND(v) with v ∈ dom(θ) ∧ vθ 6= null;
(2) R = isBLANK(v) with v ∈ dom(θ) ∧ vθ ∈ B;
(3) R = isIRI(v) with v ∈ dom(θ) ∧ vθ ∈ I;
(4) R = isLITERAL(v) with v ∈ dom(θ) ∧ vθ ∈ L;
(5) R = (v=c) with v ∈ dom(θ) ∧ vθ=c;
(6) R = (u=v) with u, v ∈ dom(θ) ∧ uθ=vθ ∧ uθ 6=null;
(7) R = (¬R1) with R1θ = ⊥;
(8) R = (R1 ∨R2) with R1θ = > ∨ R2θ = >;
(9) R = (R1 ∧R2) with R1θ = > ∧ R2θ = >.

Rθ = ε, if:

(1) R = isBLANK(v),R = isIRI(v),R = isLITERAL(v),
or R = (v=c) with v 6∈ dom(θ) ∨ vθ=null;

(2) R = (u=v) with u 6∈ dom(θ) ∨ uθ=null
∨ v 6∈ dom(θ) ∨ vθ=null;

(3) R = (¬R1) and R1θ = ε;
(4) R = (R1 ∨R2) and (R1θ 6= > ∧ R2θ 6= >) ∧

(R1θ = ε ∨ R2θ = ε);
(5) R = (R1 ∧R2) and R1θ = ε ∨ R2θ = ε.

Rθ = ⊥ otherwise.

We will now exemplify the three different semantics defined above, namely bravely
joining (b-joining), cautiously joining (c-joining), and strictly-joining (s-joining) se-
mantics. When taking a closer look to the AND and MINUS operators, one will realize
that all three semantics take a slightly differing view only when joining null. Indeed,

6> stands for “true”, ⊥ stands for “false” and ε stands for errors, see [18, Sec. 11.3] and Example 8 for
details.
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the AND operator behaves as the traditional natural join operator ./ in relational alge-
bra, when no null values are involved.

Take for instance,DS = ({ex.org/bob, alice.org}, ∅) andP = ((?X, name, ?Name)
AND (?X, knows, ?Friend)). When viewing each solution set as a relational table
with variables denoting attribute names, we can write:

?X ?Name
:a ”Bob”

alice.org#me ”Alice”
:c ”Bob”

./
?X ?Friend

:a :b
alice.org#me :c

=
?X ?Name ?Friend

:a ”Bob” :b
alice.org#me ”Alice” :c

Differences between the three semantics appear when joining over null-bound vari-
ables, as shown in the next example.

Example 9 Let DS be as before and assume the following query which might be con-
sidered a naive attempt to ask for pairs of persons ?X1, ?X2 who share the same name
and nickname where both, name and nickname are optional:

P = ( ((?X1, a, Person) OPT (?X1, name, ?N)) AND
((?X2, a, Person) OPT (?X2, nick, ?N)) )

Again, we consider the tabular view of the resulting join:
?X1 ?N
:a ”Bob”
:b null
:c ”Bob”

alice.org#me ”Alice”

./x

?X2 ?N
:a null
:b ”Alice”
:c ”Bobby”

alice.org#me null

Now, let us see what happens when we evaluate the join ./x with respect to the
different semantics. The following result table lists in the last column which tuples
belong to the result of b-, c- and s-join, respectively.

=

?X1 ?N X2
:a ”Bob” :a b
:a ”Bob” alice.org#me b
:b null :a b,c
:b ”Alice” :b b
:b ”Bobby” :c b
:b null alice.org#me b,c
:c ”Bob” :a b
:c ”Bob” alice.org#me b

alice.org#me ”Alice” :a b
alice.org#me ”Alice” :b b,c,s
alice.org#me ”Alice” alice.org#me b

Leaving aside the question whether the query formulation was intuitively broken, we
remark that only the s-join would have the expected result. At the very least we might
argue, that the liberal behavior of b-joins might be considered surprising in some cases.
The c-joining semantics acts a bit more cautious in between the two, treating null
values as normal values, only unifiable with other null values.

Compared to how joins over incomplete relations are treated in common relational
database systems, the s-joining semantics might be considered the intuitive behavior.
Another interesting divergence (which would rather suggest to adopt the c-joining se-
mantics) shows up when we consider a simple idempotent join.
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Example 10 Let us consider the following single triple dataset
DS = ({(alice.org#me, a, Person)}, ∅) and the following simple query pattern:

P = ((?X, a, Person) UNION (?Y, a, Person))

Clearly, this pattern, has the solution set

[[P ]]xDS = {(alice.org#me, null), (null, alice.org#me)}
under all three semantics. Surprisingly, P ′ = (P AND P ) has different solution sets
for the different semantics. First, [[P ′]]cDS = [[P ]]xDS , but [[P ′]]sDS = ∅, since null
values are not compatible under the s-joining semantics. Finally,

[[P ′]]bDS={(alice.org#me, null), (null, alice.org#me),
(alice.org#me, alice.org#me)}

As shown by this example, under the reasonable assumption, that the join operator
is idempotent, i.e., (P ./ P ) ≡ P , only the c-joining semantics behaves correctly.

However, the brave b-joining behavior is advocated by the current SPARQL docu-
ment, and we might also think of examples where this obviously makes a lot of sense.
Especially, when considering no explicit joins, but the implicit joins within the OPT
operator:

Example 11 Let DS = ({ex.org/bob, alice.org}, ∅) and assume a slight variant
of a query from [5] which asks for persons and some names for these persons, where
preferably the foaf : name is taken, and, if not specified, foaf : nick.

P = ((((?X, a, Person) OPT (?X, name, ?XNAME))
OPT (?X, nick, ?XNAME))

Only [[P ]]bDS contains the expected solution ( :b, ”Alice”) for the bNode :b.

All three semantics may be considered as variations of the original definitions
in [16], for which the authors proved complexity results and various desirable features,
such as semantics-preserving normal form transformations and compositionality. The
following proposition shows that all these results carry over to the normative b-joining
semantics:

Proposition 19 Given a dataset DS and a pattern P which does not contain GRAPH
patterns, the solutions of [[P ]]DS as in [16] and [[P ]]bDS are in 1-to-1 correspondence.

Proof. Given DS and P each substitution θ obtained by evaluation [[P ]]bDS can be
reduced to a substitution θ′ obtained from the evaluation [[P ]]DS in [16] by dropping
all mappings of the form v → null from θ. Likewise, each substitution θ′ obtained
from [[P ]]DS can be extended to a substitution θ = θ′vars(P ) for [[P ]]bDS . 2

Following the definitions from the SPARQL specification and [16], the b-joining
semantics is the only admissible definition. There are still advantages for gradually
defining alternatives towards traditional treatment of joins involving nulls. On the one
hand, as we have seen in the examples above, the brave view on joining unbound
variables might have partly surprising results, on the other hand, as we will see, the c-
and s-joining semantics allow for a more efficient implementation in terms of Datalog
rules.

Let us now take a closer look on some properties of the three defined semantics.
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Compositionality and Equivalences As shown in [16], some implementations have
a non-compositional semantics, leading to undesired effects such as non-commutativity
of the join operator, etc. A semantics is called compositional if for each P ′ sub-pattern
of P the result of evaluating P ′ can be used to evaluate P . Obviously, all three the c-,
s- and b-joining semantics defined here retain this property, since all three semantics
are defined recursively, and independent of the evaluation order of the sub-patterns.

The following proposition summarizes equivalences which hold for all three se-
mantics, showing some interesting additions to the results of Pérez et al.

Proposition 20 (extends [16, Prop. 1]) The following equivalences hold or do not hold
in the different semantics as indicated after each law:

(1) AND, UNION are associative and commutative. (b,c,s)
(2) (P1 AND (P2 UNION P3))
≡ ((P1 AND P2) UNION (P1 AND P3)). (b)

(3) (P1 OPT (P2 UNION P3))
≡ ((P1 OPT P2) UNION (P1 OPT P3)). (b)

(4) ((P1 UNION P2) OPT P3)
≡ ((P1 OPT P3) UNION (P2 OPT P3)). (b)

(5) ((P1 UNION P2) FILTER R)
≡ ((P1 FILTER R) UNION (P2 FILTER R)). (b,c,s)

(6) AND is idempotent, i.e. (P AND P ) ≡ P . (c)

Proof.[Sketch.] (1-5) for the b-joining semantics are proven in [16], (1): for
c-joining and s-joining follows straight from the definitions. (2)-(4): the substitu-
tion sets [[P1]]c,s = {[?X → a, ?Y → b]}, [[P2]]c,s = {[?X → a, ?Z → c]},
[[P3]]c,s = {[?Y → b, ?Z → c]} provide counterexamples for c-joining and s-joining
semantics for all three equivalences (2)-(4). (5): The semantics of FILTER expressions
and UNION is exactly the same for all three semantics, thus, the result for the b-joining
semantics carries over to all three semantics. (6): follows from the observations in Ex-
ample 10. 2

Ideally, we would like to identify a subclass of programs, where the three seman-
tics coincide. Obviously, this is the case for any query involving neither UNION nor
OPT operators. Pérez et al. [16] define a bigger class of programs, including “well-
behaving” optional patterns:

Definition 11 ([16, Def. 4]) A UNION-free graph pattern P is well-designed if for
every occurrence of a sub-pattern P ′ = (P1 OPT P2) of P and for every variable v
occurring in P , the following condition holds: if v occurs both in P2 and outside P ′

then it also occurs in P1.

As may be easily verified by the reader, neither Example 9 nor Example 11, which are
both UNION-free, satisfy the well-designedness condition. Since in the general case
the equivalences for Prop. 20 do not hold, we also need to consider nested UNION pat-
terns as a potential source for null bindings which might affect join results. We extend
the notion of well-designedness, which direclty leads us to another correspondence in
the subsequent proposition.
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Definition 12 A graph pattern P is well-designed if the condition from Def. 11 holds
and for every occurrence of a sub-pattern P ′ = (P1 UNION P2) of P and for every
variable v occurring in P ′, the following condition holds: if v occurs outside P ′ then
it occurs in both P1 and P2.

Proposition 21 On well-designed graph patterns the c-, s-, and b-joining semantics
coincide.

Proof.[Sketch.] Follows directly from the observation that all variables which are re-
used outsideP ′ must be bound to a value unequal to null inP ′ due to well-designedness,
and thus cannot generate null bindings which might carry over to joins. 2

Likewise, we can identify “dangerous” variables in graph patterns, which might
cause semantic differences:

Definition 13 Let P ′ a sub-pattern of P of either the form P ′ = (P1OPT P2) or
P ′ = (P1UNION P2). Any variable v in P ′ which violates the well-designedness-
condition is called possibly-null-binding in P .

Note that, so far we have only defined the semantics in terms of a pattern P and
dataset DS, but not yet taken the result form V of query Q = (V, P,DS) into account.

We now define solution tuples that were informally introduced in Sec. 2. Recall that
by V we denote the tuple obtained from lexicographically ordering a set of variables in
V . The notion V [V ′ → null] means that, after ordering V all variables from a subset
V ′ ⊆ V are replaced by null.

Definition 14 (Solution Tuples) Let Q = (V, P,DS) be a SPARQL query, and θ a
substitution in [[P ]]xDS , then we call the tuple V [(V \ vars(P ))→ null]θ a solution
tuple of Q with respect to the x-joining semantics.

Let us remark at this point, that as for the discussion of intuitivity of the different
join semantics discussed in Examples 9–11, we did not yet consider combinations of
different join semantics, e.g. using b-joins for OPT and c-joins for AND patterns. We
leave this for further work.

3 Datalog and Answer Sets
In this paper we will use a very general form of Datalog commonly referred to as
Answer Set Programming (ASP), i.e. function-free logic programming (LP) under the
answer set semantics [1, 11]. ASP is widely proposed as a useful tool for various prob-
lem solving tasks in e.g. Knowledge Representation and Deductive databases. ASP
extends Datalog with useful features such as negation as failure, disjunction in rule
heads, aggregates [9], external predicates[8], etc. 7

Let Pred, Const, V ar, exPr be sets of predicate, constant, variable symbols, and
external predicate names, respectively. Note that we assume all these sets except Pred

7We consider ASP, more precisely a simplified version of ASP with so-called HEX-programs [8] here,
since it is up to date the most general extension of Datalog.
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and Const (which may overlap), to be disjoint. In accordance with common nota-
tion in LP and the notation for external predicates from [7] we will in the following
assume that Const and Pred comprise sets of numeric constants, string constants be-
ginning with a lower case letter, or ’"’ quoted strings, and strings of the form 〈quoted-
string〉ˆˆ〈IRI〉, 〈quoted-string〉@〈valid-lang-tag〉, V ar is the set of string constants be-
ginning with an upper case letter. Given p ∈ Pred an atom is defined as p(t1, . . . , tn),
where n is called the arity of p and t1, . . . , tn ∈ Const ∪ V ar.

Moreover, we define a fixed set of external predicates exPr = {rdf , isBLANK,
isIRI , isLITERAL, =, != } All external predicates have a fixed semantics and
fixed arities, distinguishing input and output terms. The atoms isBLANK[c](val),
isIRI[c](val), isLITERAL[c](val) test the input term c ∈ Const ∪ V ar (in square
brackets) for being valid string representations of Blank nodes, IRI References or RDF
literals, returning an output value val ∈ {t, f, e}, representing truth, falsity or an er-
ror, following the semantics defined in [18, Sec. 11.3]. For the rdf predicate we write
atoms as rdf [i](s, p, o) to denote that i ∈ Const ∪ V ar is an input term, whereas
s, p, o ∈ Const ∪ V ar are output terms which may be bound by the external predi-
cate. The external atom rdf [i](s, p, o) is true if (s, p, o) is an RDF triple entailed by
the RDF graph which is accessibly at IRI i. For the moment, we consider simple RDF
entailment [13] only. Finally, we write comparison atoms ’t1 = t2’ and ’t1 != t2’ in
infix notation with t1, t2 ∈ Const ∪ V ar and the obvious semantics of (lexicographic
or numeric) (in)equality. Here, for = either t1 or t2 is an output term, but at least one
is an input term, and for != both t1 and t2 are input terms.

Definition 15 Finally, a rule is of the form

h :- b1, . . . , bm, not bm+1, . . . not bn. (1)

where h and bi (1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) are either atoms or external
atoms, and not is the symbol for negation as failure.

We use H(r) to denote the head atom h and B(r) to denote the set of all body literals
B+(r) ∪B−(r) of r, where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}.

The notion of input and output terms in external atoms described above denotes the
binding pattern. More precisely, we assume the following condition which extends the
standard notion of safety (cf. [21]) in Datalog with negation: Each variable appearing
in a rule must appear in B+(r) in an atom or as an output term of an external atom.

Definition 16 A (logic) program Π is defined as a set of safe rules r of the form (1).

The Herbrand base of a program Π, denoted HBΠ, is the set of all possible ground
versions of atoms and external atoms occurring in Π obtained by replacing variables
with constants from Const, where we define for our purposes by Const the union
of the set of all constants appearing in Π as well as the literals, IRIs, and distinct
constants for each blank node occurring in each RDF graph identified8 by one of the
IRIs in the (recursively defined) set I , where I is defined by the recursive closure of all

8By “identified” we mean here that IRIs denote network accessible resources which correspond to RDF
graphs.
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IRIs appearing in Π and all RDF graphs identified by IRIs in I .9 As long as we assume
that the Web is finite the grounding of a rule r, ground(r), is defined by replacing
each variable with the possible elements of HBΠ, and the grounding of program Π is
ground(Π) =

⋃
r∈Π ground(r).

An interpretation relative to Π is any subset I ⊆ HBΠ containing only atoms. We
say that I is a model of atom a ∈ HBΠ, denoted I |= a, if a ∈ I. With every external
predicate name lg ∈ exPr with arity n we associate an (n + 1)-ary Boolean function
flg (called oracle function) assigning each tuple (I, t1 . . . , tn) either 0 or 1. 10 We say
that I ⊆ HBΠ is a model of a ground external atom a = g[t1, . . . , tm](tm+1, . . . , tn),
denoted I |= a, iff flg(I, t1, . . . , tn) = 1.

The semantics we use here generalizes the answer-set semantics [11]11, and is de-
fined using the FLP-reduct [9], which is more elegant than the traditional GL-reduct [11]
of stable model semantics and ensures minimality of answer sets also in presence of
external atoms.

Let r be a ground rule. We define (i) I|=B(r) iff I |= a for all a ∈ B+(r) and
I 6|= a for all a ∈ B−(r), and (ii) I |= r iff I |= H(r) whenever I |= B(r). We say
that I is a model of a program Π, denoted I |= Π, iff I |= r for all r ∈ ground(Π).

The FLP-reduct [9] of Π with respect to I ⊆ HBΠ, denoted ΠI , is the set of all
r ∈ ground(Π) such that I |= B(r). I is an answer set of Π iff I is a minimal model
of ΠI .

We did not consider further extensions common to many ASP dialects here, namely
disjunctive rule heads, strong negation [11]. We note that for non-recursive programs,
i.e. where the predicate dependency graph is acyclic, the answer set is unique. For the
pure translation which we will give in Sec. 4 where we will produce such non-recursive
programs from SPARQL queries, we could equally take other semantics such as the
well-founded [10] semantics into account, which coincides with ASP on non-recursive
programs.

4 From SPARQL to Datalog
We are now ready to define a translation from SPARQL to Datalog which can serve
straightforwardly to implement SPARQL within existing rules engines. We start with
a translation for c-joining semantics, which we will extend thereafter towards s-joining
and b-joining semantics.

Translation Πc
Q Let Q = (V, P,DS), where DS = (G,Gn) as defined above. We

translate this query to a logic program Πc
Q defined as follows.

9We assume the number of accessible IRIs finite.
10The notion of an oracle function reflects the intuition that external predicates compute (sets of) outputs

for a particular input, depending on the interpretation. The dependence on the interpretation is necessary
for instance for defining the semantics of external predicates querying OWL [8] or computing aggregate
functions.

11In fact, we use slightly simplified definitions from [7] for HEX-programs, with the sole difference that
we restrict ourselves to a fixed set of external predicates.
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τ(V, (s, p, o), D, i) = answeri(V ,D) :- triple(s, p, o,D). (1)

τ(V, (P ′ AND P ′′), D, i) = τ(vars(P ′), P ′, D, 2 ∗ i) ∪ τ(vars(P ′′), P ′′, D, 2 ∗ i+ 1) ∪
answeri(V ,D) :- answer2∗i(vars(P ′), D), answer2∗i+1((vars(P ′′), D). (2)

τ(V, (P ′ UNION P ′′), D, i) = τ(vars(P ′), P ′, D, 2 ∗ i) ∪ τ(vars(P ′′), P ′′, D, 2 ∗ i+ 1) ∪
answeri(V [(V \ vars(P ′))→ null], D) :- answer2∗i(vars(P ′), D). (3)
answeri(V [(V \ vars(P ′′))→ null], D) :- answer2∗i+1(vars(P ′′), D). (4)

τ(V, (P ′ MINUS P ′′), D, i) = τ(vars(P ′), P ′, D, 2 ∗ i) ∪ τ(vars(P ′′), P ′′, D, 2 ∗ i+ 1) ∪
answeri(V [(V \ vars(P ′))→ null], D) :- answer2∗i(vars(P ′), D), (5)

not answer2∗i′(vars(P ′) ∩ vars(P ′′), D).

answer2∗i′(vars(P ′) ∩ vars(P ′′), D) :- answer2∗i+1(vars(P ′′), D). } (6)

τ(V, (P ′ OPT P ′′), D, i) = τ(V, (P ′ AND P ′′), D, i) ∪ τ(V, (P ′ MINUS P ′′), D, i)

τ(V, (P FILTER R), D, i) = τ(vars(P ), P,D, 2 ∗ i) ∪
LT (answeri(V ,D) :- answer2∗i(vars(P ), D), R.) (7)

τ(V, (GRAPH g P ), D, i) = τ(V, P, g, i) for g ∈ V ∪ I
answeri(V ,D) :- answeri(V , g), isIRI(g), not g = default. (8)

Alternate rules replacing (5)+(6):

answeri(V [(V \ vars(P ′))→ null], D) :- answer2∗i(vars(P ′), D), not answer2∗i′(vars(P ′), D) (5’)

answer2∗i′(vars(P ′), D) :- answer2∗i(vars(P ′), D), answer2∗i+1(vars(P ′′), D). (6’)

Figure 2: Translation Πc
Q from SPARQL queries semantics to Datalog.

Πc
Q ={triple(S, P,O, default) :- rdf[d](S, P,O). | d ∈ G}
∪ {triple(S, P,O, g) :- rdf[g](S, P,O). | g ∈ Gn}
∪ τ(V, P, default, 1)

The first two rules serve to import the relevant RDF triples from the dataset into a 4-
ary predicate triple. Under the dataset closedness assumption (see Def. 9) we may
replace the second rule set, which imports the named graphs, by:

triple(S, P,O,G) :- rdf[G](S, P,O), HU(G), isIRI(G).

Here, the predicate HU stands for “Herbrand universe”, where we use this name a bit
sloppily, with the intention to cover all the relevant part of C, recursively importing
all possible IRIs in order to emulate the dataset closedness assumption. HU , can be
computed recursively over the input triples, i.e.

HU(X) :- triple(X,P,O,D). HU(X) :- triple(S,X,O,D).
HU(X) :- triple(S, P,X,D). HU(X) :- triple(S, P,O,X).

The remaining program τ(V, P, default, 1) represents the actual query transla-
tion, where τ is defined recursively as shown in Fig. 2.

By LT (·) we mean the set of rules resulting from disassembling complex FILTER
expressions (involving ’¬’,’∧’,’∨’) according to the rewriting defined by Lloyd and
Topor [15] where we have to obey the semantics for errors, following Definition 10. In
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a nutshell, the rewriting LT − rewrite(·) proceeds as follows: Complex filters involv-
ing ¬ are transformed into negation normal form. Conjunctions of filter expressions
are simply disassembled to conjunctions of body literals, disjunctions are handled by
splitting the respective rule for both alternatives in the standard way. The resulting rules
involve possibly negated atomic filter expressions in the bodies. Here, BOUND(v)
is translated to v = null, ¬BOUND(v) to v! = null. isBLANK(v), isIRI(v),
isLITERAL(v) and their negated forms are replaced by their corresponding external
atoms (see Sec. 3) isBLANK[v](t) or isBLANK[v](f), etc., respectively.

The resulting program Πc
Q implements the c-joining semantics in the following

sense:

Proposition 22 (Soundness and completeness of Πc
Q) For each atom of the form

answer1(~s, default)

in the unique answer set M of Πc
Q, ~s is a solution tuple of Q with respect to the c-

joining semantics, and all solution tuples of Q are represented by the extension of
predicate answer1 in M .

Without giving a proof, we remark that the result follows if we convince ourselves that
τ(V, P,D, i) emulates exactly the recursive definition of [[P ]]xDS . Moreover, together
with Proposition 21, we obtain soundness and completeness of ΠQ for b-joining and
s-joining semantics as well for well-designed query patterns.

Corollary 23 For Q = (V, P,DS), if P is well-designed, then the extension of pred-
icate answer1 in the unique answer set M of Πc

Q represents all and only the solution
tuples for Q with respect to the x-joining semantics, for x ∈ {b, c, s}.

Now, in order to obtain a proper translation for arbitrary patterns, we obviously need to
focus our attention on the possibly-null-binding variables within the query pattern P .
Let vnull(P ) denote the possibly-null-binding variables in a (sub)pattern P . We need
to consider all rules in Fig. 2 which involve x-joins, i.e. the rules of the forms (2),(5)
and (6). Since rules (5) and (6) do not make this join explicit, we will replace them by
the equivalent rules (5’) and (6’) for Πs

Q and Πb
Q. The “extensions” to s-joining and

b-joining semantics can be achieved by rewriting the rules (2) and (6’). The idea is to
rename variables and add proper FILTER expressions to these rules in order to realize
the b-joining and s-joining behavior for the variables in VN = vnull(P )∩ vars(P ′)∩
vars(P ′′).

Translation Πs
Q The s-joining behavior can be achieved by adding FILTER expres-

sions
Rs = (

∧
v∈VN

BOUND(v) )

to the rule bodies of (2) and (6’). The resulting rules are again subject to the LT -
rewriting as discussed above for the rules of the form (7). This is sufficient to filter out
any joins involving null values, thus achieving s-joining semantics, and we denote the
program rewritten that way as Πs

Q.
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Translation Πb
Q Obviously, b-joining semantics is more tricky to achieve, since we

now have to relax the allowed joins in order to allow null bindings to join with any
other value. We will again achieve this result by modifying rules (2) and (6’) where we
first do some variable renaming and then add respective FILTER expressions to these
rules.

Step 1. We rename each variable v ∈ VN in the respective rule bodies to v′ or v′′,
respectively, in order to disambiguate the occurrences originally from sub-pattern P ′

or P ′′, respectively. That is, for each rule (2) or (6’), we rewrite the body to:

answer2∗i(vars(P ′)[VN → V ′N ], D),
answer2∗i+1(vars(P ′′)[VN → V ′′N ], D).

Step 2. We now add the following FILTER expressions Rb(2) and Rb(6′), respec-
tively, to the resulting rule bodies which “emulate” the relaxed b-compatibility:

Rb(2) =
∧
v∈V N ( ((v = v′) ∧ (v′ = v′′)) ∨

((v = v′) ∧ ¬BOUND(v′′)) ∨
((v = v′′) ∧ ¬BOUND(v′)) )

Rb(6′) =
∧
v∈V N ( ((v = v′) ∧ (v′ = v′′)) ∨

((v = v′) ∧ ¬BOUND(v′′)) ∨
((v = v′) ∧ ¬BOUND(v′)) )

The rewritten rules are again subject to the LT rewriting. Note that, strictly speaking
the filter expression introduced here does not fulfill the assumption of safe filter ex-
pressions, since it creates new bindings for the variable v. However, these can safely
be allowed here, since the translation only creates valid input/output term bindings for
the external Datalog predicate ’=’. The subtle difference between Rb(2) and Rb(6′) lies
in the fact that Rb(2) preferably “carries over” bound values from v′ or v′′ to v whereas
Rb(6′) always takes the value of v′. The effect of this becomes obvious in the translation
of Example 11 which we leave as an exercise to the reader. We note that the potential
exponential (with respect to |VN |) blowup of the program size by unfolding the fil-
ter expressions into negation normal form during the LT rewriting12 is not surprising,
given the negative complexity results in [16].

In total, we obtain a program which Πb
Q which reflects the normative b-joining

semantics. Consequently, we get sound and complete query translations for all three
semantics:

Corollary 24 (Soundness and completeness of Πx
Q) Given an arbitrary graph pat-

tern P , the extension of predicate answer1 in the unique answer set M of Πx
Q repre-

sents all and only the solution tuples for Q = (V, P,DS) with respect to the x-joining
semantics, for x ∈ {b, c, s}.

In the following, we will drop the superscript x in ΠQ implicitly refer to the normative
b-joining translation/semantics.

12Lloyd and Topor can avoid this potential exponential blowup by introducing new auxiliary predicates.
However, we cannot do the same trick, mainly for reasons of preserving safety of external predicates as
defined in Sec. 3.
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5 Possible Extensions
As it turns out, the embedding of SPARQL in the rules world opens a wide range of
possibilities for combinations. In this section, we will first discuss some straightfor-
ward extensions of SPARQL which come practically for free with the translation to
Datalog provided before. We will then discuss the use of SPARQL itself as a simple
RDF rules language13 which allows to combine RDF fact bases with implicitly spec-
ified further facts and discuss the semantics thereof briefly. We conclude this section
with revisiting the open issue of entailment regimes covering RDFS or OWL semantics
in SPARQL.

5.1 Additional Language Features
Set Difference As mentioned before, set difference is not present in the current
SPARQL specification syntactically, though hidden, and would need to be emulated
via a combination of OPTIONAL and FILTER constructs. As we defined the MINUS
operator here in a completely modular fashion, it could be added straightforwardly
without affecting the semantics definition.

Nested queries Nested queries are a distinct feature of SQL not present in SPARQL.
We suggest a simple, but useful form of nested queries to be added: Boolean queries
QASK = (∅, PASK, DSASK)) with an empty result form (denoted by the keyword ASK)
can be safely allowed within FILTER expressions as an easy extension fully compatible
with our translation. Given queryQ = (V, P,DS), with sub-pattern (P1 FILTER (ASK
QASK)) we can modularly translate such subqueries by extending ΠQ with ΠQ′ where
Q′ = (vars(P1) ∩ vars(PASK), PASK, DSASK)). Moreover, we have to rename pred-
icate names answeri to answerQ

′
i in ΠQ′ . Some additional considerations are nec-

essary in order to combine this within arbitrary complex filter expressions, and we
probably need to impose well-designedness for variables shared between P and PASK
similar to Def. 12. We leave more details as future work.

5.2 Result Forms and Solution Modifiers
We have covered only SELECT queries so far. As shown in the previous section,
we can consider ASK queries equally. A limited form of the CONSTRUCT result
form, which allows to construct new triples could be emulated in our approach as well.
Namely, we can allow queries of the form

QC = (CONSTRUCTPC, P,DS)

where PC is a graph pattern consisting only of bNode-free triple patterns. We can
model these by adding a rule

triple(s, p, o,C) :- answer1(vars(PC), default). (2)

13Thus, the “. . . (and back)” in the title of this paper!
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to ΠQ for each triple (s, p, o) in PC. The result graph is then naturally represented
in the answer set of the program extended that way in the extension of the predicate
triple.

5.3 SPARQL as a Rules Language
As it turns out with the extensions defined in the previous subsections, SPARQL itself
may be viewed as an expressive rules language on top of RDF. CONSTRUCT state-
ments have an obvious similarity with view definitions in SQL, and thus may be seen
as rules themselves.

Intuitively, in the translation of CONSTRUCT we “stored” the new triples in a
new triple outside the dataset DS. We can imagine a similar construction in order to
define the semantics of queries over datasets mixing such CONSTRUCT statements
with RDF data in the same turtle file.

Let us assume such a mixed file containing CONSTRUCT rules and RDF triples
web-accessible at IRI g, and a query Q = (V, P,DS), with DS = (G,Gn). The
semantics of a query over a dataset containing g may then be defined by recursively
adding ΠQC to ΠQ for any CONSTRUCT query QC in g plus the rules (2) above with
their head changed to triple(s, p, o, g). We further need to add a rule

triple(s, p, o, default) :- triple(s, p, o, g).

for each g ∈ G, in order not to omit any of the implicit triples defined by such
“CONSTRUCT rules”. Analogously to the considerations for nested ASK queries,
we need to rename the answeri predicates and default constants in every subprogram
ΠQC defined this way.

Naturally, the resulting programs possibly involve recursion, and, even worse, re-
cursion over negation as failure. Fortunately, the general answer set semantics, which
we use, can cope with this. For some important aspects on the semantics of such dis-
tributed rules and facts bases, we refer to [17], where we also outline an alternative
semantics based on the well-founded semantics. A more in-depth investigation of the
complexity and other semantic features of such a combination is on our agenda.

5.4 Revisiting Entailment Regimes
The current SPARQL specification does not treat entailment regimes beyond RDF
simple entailment. Strictly speaking, even RDF entailment is already problematic as a
basis for SPARQL query evaluation; a simple query pattern like P = (?X, rdf:type,
rdf:Property) would have infinitely many solutions even on the empty (sic!) dataset
by matching the infinitely many axiomatic triples in the RDF(S) semantics.

Finite rule sets which approximate the RDF(S) semantics in terms of positive Data-
log rules [17] have been implemented in systems like TRIPLE14 or JENA15. Similarly,
fragments and extensions of OWL [12, 3, 14] definable in terms of Datalog rule bases
have been proposed in the literature. Such rule bases can be parametrically combined

14http://triple.semanticweb.org/
15http://jena.sourceforge.net/
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with our translations, implementing what one might call RDFS− or OWL− entailment
at least. It remains to be seen whether the SPARQL working group will define such
reduced entailment regimes.

More complex issues arise when combining a nonmonotonic query language like
SPARQL with ontologies in OWL. An embedding of SPARQL into a nonmonotonic
rules language might provide valuable insights here, since it opens up a whole body of
work done on combinations of such languages with ontologies [7, 19].

6 Conclusions & Outlook
In this paper, we presented three possible semantics for SPARQL based on [16] which
differ mainly in their treatment of joins and their translations to Datalog rules. We
discussed intuitive behavior of these different joins in several examples. As it turned
out, the s-joining semantics which is close to traditional treatment of joins over incom-
plete relations and the c-joining semantics are nicely embeddable into Datalog. The
b-joining semantics which reflects the normative behavior as described by the current
SPARQL specification is most difficult to translate. We also suggested some extension
of SPARQL, based on this translation. Further, we hope to have contributed to clari-
fying the relationships between the Query, Rules and Ontology layers of the Semantic
Web architecture with the present work.

A prototype of the presented translation has been implemented on top of the dlvhex
system, a flexible framework for developing extensions for the declarative Logic Pro-
gramming Engine DLV16. The prototype is available as a plugin at http://con.
fusion.at/dlvhex/. The web-page also provides an online interface for evalua-
tion, where the reader can check translation results for various example queries, which
we had to omit here for space reasons. We currently implemented the c-joining and
b-joining semantics and we plan to gradually extend the prototype towards the fea-
tures mentioned in Sec. 5, in order to query mixed RDF+SPARQL rule and fact bases.
Implementation of further extensions, such as the integration of aggregates typical for
database query language, and recently defined for recursive Datalog programs in a
declarative way compatible with the answer set semantics [9], are on our agenda. We
are currently not aware of any other engine implementing the full semantics defined
in [16].
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Abstract

Lightweight ontologies in the form of RDF vocabularies such as SIOC, FOAF,
vCard, etc. are increasingly being used and exported by “serious” applications re-
cently. Such vocabularies, together with query languages like SPARQL also allow
to syndicate resulting RDF data from arbitrary Web sources and open the path to
finally bringing the Semantic Web to operation mode. Considering, however, that
many of the promoted lightweight ontologies overlap, the lack of suitable stan-
dards to describe these overlaps in a declarative fashion becomes evident. In this
paper we argue that one does not necessarily need to delve into the huge body of
research on ontology mapping for a solution, but SPARQL itself might — with
extensions such as external functions and aggregates — serve as a basis for declar-
atively describing ontology mappings. We provide the semantic foundations and a
path towards implementation for such a mapping language by means of a transla-
tion to Datalog with external predicates.

1 Introduction
As RDF vocabularies like SIOC,1 FOAF,2 vCard,3 etc. are increasingly being used
and exported by “serious” applications we are getting closer to bringing the Semantic
∗This research has been partially supported by the European Commission under the FP6 projects inCon-

text (IST-034718), REWERSE (IST 506779), and Knowledge Web (FP6-507482), by the Austrian Science
Fund (FWF) under project P17212-N04, as well as by Science Foundation Ireland under the Lion project
(SFI/02/CE1/I131).

1http://sioc-project.org/
2http://xmlns.com/foaf/0.1/
3http://www.w3.org/TR/vcard-rdf
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Web to operation mode. The standardization of languages like RDF, RDF Schema
and OWL has set the path for such vocabularies to emerge, and the recent advent of
an operable query language, SPARQL, gave a final kick for wider adoption. These
ingredients allow not only to publish, but also to syndicate and reuse metadata from
arbitrary distibuted Web resources in flexible, novel ways.

When we take a closer look at emerging vocabularies we realize that many of them
overlap, but despite the long record of research on ontology mapping and alignment, a
standard language for defining mapping rules between RDF vocabularies is still miss-
ing. As it turns out, the RDF query language SPARQL [27] itself is a promising
candidate for filling this gap: Its CONSTRUCT queries may themselves be viewed
as rules over RDF. The use of SPARQL as a rules language has several advantages:
(i) the community is already familiar with SPARQL’s syntax as a query language,
(ii) SPARQL supports already a basic set of built-in predicates to filter results and
(iii) SPARQL gives a very powerful tool, including even non-monotonic constructs
such as OPTIONAL queries.

When proposing the use of SPARQL’s CONSTRUCT statement as a rules language
to define mappings, we should first have a look on existing proposals for syntaxes
for rules languages on top of RDF(S) and OWL. For instance, we can observe that
SPARQL may be viewed as syntactic extension of SWRL [19]: A SWRL rule is of the
form ant ⇒ cons , where both antecedent and consequent are conjunctions of atoms
a1 ∧ . . . ∧ an. When reading these conjunctions as basic graph patterns in SPARQL
we might thus equally express such a rule by a CONSTRUCT statement:

CONSTRUCT { cons } WHERE { ant }
In a sense, such SPARQL “rules” are more general than SWRL, since they may be
evaluated on top of arbitrary RDF data and — unlike SRWL — not only on top of valid
OWL DL. Other rules language proposals, like WRL [8] or TRIPLE [9] which are
based on F-Logic [22] Programming may likewise be viewed to be layerable on top of
RDF, by applying recent results of De Bruijn et al. [6, 7]. By the fact that (i) expressive
features such as negation as failure which are present in some of these languages are
also available in SPARQL4 and (ii) F-Logic molecules in rule heads may be serialized
in RDF again, we conjecture that rules in these languages can similarly be expressed
as syntactic variants of SPARQL CONSTRUCT statements.5

On the downside, it is well-known that even a simple rules language such as SWRL
already lead to termination/undecidability problems when mixed with ontology vocab-
ulary in OWL without care. Moreover, it is not possible to express even very sim-
ple mappings between common vocabularies such as FOAF [5] and VCard [20] in
SPARQL only. In order to remedy this situation, we propose the following approach
to enable complex mappings over ontologies: First, we keep the expressivity of the
underlying ontology language low, restricting ourselves to RDFS, or, more strictly
speaking to, ρdf− [24] ontologies; second, we extend SPARQL’s CONSTRUCT by
features which are almost essential to express various mappings, namely: a set of use-
ful built-in functions (such as string-concatenation and arithmetic functions on numeric
literal values) and aggregate functions (min, max, avg). Third, we show that evaluating

4see [27, Section 11.4.1]
5with the exception of predicates with arbitrary arities
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SPARQL queries on top of ρdf− ontologies plus mapping rules is decidable by trans-
lating the problem to query answering over HEX-programs, i.e., logic programs with
external built-ins using the answer-set semantics, which gives rise to implementations
on top of existing rules engines such as dlvhex. A prototype of a SPARQL engine for
evaluating queries over combined datasets consisting of ρdf− and SPARQL mappings
has been implemented and is avaiblable for testing online.6

The remainder of this paper is structured as follows. We start with some moti-
vating examples of mappings which can and can’t be expressed with SPARQL CON-
STRUCT queries in Section 2 and suggest syntactic extensions of SPARQL, which
we call SPARQL++, in order to deal with the mappings that go beyond. In Section 3
we introduce HEX-programs, whereafter in Section 4 we show how SPARQL++ CON-
STRUCT queries can be translated to HEX-programs, and thereby bridge the gap to
implementations of SPARQL++. Next, we show how additional ontological inferences
by ρdf− ontologies can be itself viewed as a set of SPARQL++ CONSTRUCT “map-
pings” to HEX-programs and thus embedded in our overall framework, evaluating map-
pings and ontological inferences at the same level, while retaining decidability. After
a brief discussion of our current prototype and a discussion of related approaches, we
conclude in Section 6 with an outlook to future work.

2 Motivating Examples – Introducing SPARQL
Most of the proposals in the literature for defining mappings between ontologies use
subsumption axioms (by relating defining classes or (sub)properties) or bridge rules [3].
Such approaches do not go much beyond the expressivity of the underlying ontology
language (mostly RDFS or OWL). Nonetheless, it turns out that these languages are
insufficient for expressing mappings between even simple ontologies or when trying to
map actual sets of data from one RDF vocabulary to another one.

In Subsection 10.2.1 of the latest SPARQL specification [27] an example for such a
mapping from FOAF [5] to VCard [20] is explicitly given, translating the VCard prop-
erties into the respective FOAF properties most of which could equally be expressed
by simple rdfs:subPropertyOf statements. However, if we think the example a bit fur-
ther, we quickly reach the limits of what is expressible by subclass- or subproperty
statements.

Example 12 A simple and straightforward example for a mapping from VCard:FN
to foaf:name is given by the following SPARQL query:

CONSTRUCT { ?X foaf:name ?FN . } WHERE { ?X VCard:FN ?FN . FILTER isLiteral(?FN) }

The filter expression here reduces the mapping by a kind of additional “type check-
ing” where only those names are mapped which are not fully specified by a substruc-
ture, but merely given as a single literal.

Example 13 The situation quickly becomes more tricky for other terms, as for instance
mapping between VCard:n (name) and foaf:name, because VCard:n consists of

6http://kr.tuwien.ac.at/research/dlvhex/
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a substructure consisting of Family name, Given name, Other names, honorific Pre-
fixes, and honorific Suffixes. One possibility is to concatenate all these to constitute a
foaf:name of the respective person or entity:

CONSTRUCT { ?X foaf:name ?Name . }
WHERE { ?X VCard:N ?N .

OPTIONAL {?N VCard:Family ?Fam } OPTIONAL {?N VCard:Given ?Giv }
OPTIONAL {?N VCard:Other ?Oth } OPTIONAL {?N VCard:Prefix ?Prefix }
OPTIONAL {?N VCard:Suffix ?Suffix }
FILTER (?Name = fn:concat(?Prefix," ",?Giv, " ",?Fam," ",?Oth," ",?Suffix))

}

We observe the following problem here: First, we use filters for constructing a new
binding which is not covered by the current SPARQL specification, since filter ex-
pressions are not meant to create new bindings of variables (in this case the variable
?Name), but only filter existing bindings. Second, if we wanted to model the case where
e.g., several other names were provided, we would need built-in functions beyond what
the current SPARQL spec provides, in this case a string manipulation function such
as fn:concat. SPARQL provides a subset of the functions and operators defined by
XPath/XQuery, but these cover only boolean functions, like arithmetic comparison op-
erators or regular expression tests and basic arithmetic functions. String manipulation
routines are beyond the current spec. Even if we had the full range of XPath/XQuery
functions available, we would admittedly have to also slightly “extend” fn:concat
here, assuming that unbound variables are handled properly, being replaced by an
empty string in case one of the optional parts of the name structure is not defined.

Apart from built-in functions like string operations, aggregate functions such as
count, minimum, maximum or sum, are another helpful construct for many mappings
that is currently not available in SPARQL.

Finally, although we can query and create new RDF graphs by SPARQL CON-
STRUCT statements mapping one vocabulary to another, there is no well-defined way
to combine such mappings with arbitrary data, especially when we assume that (1) map-
pings are not restricted to be unidirectional from one vocabulary to another, but bidirec-
tional, and (2) additional ontological inferences such as subclass/subproperty relations
defined in the mutually mapped vocabularies should be taken into account when query-
ing over syndicated RDF data and mappings. We propose the following extensions of
SPARQL:

• We introduce an extensible set of useful built-in and aggregate functions.

• We permit function calls and aggregates in the CONSTRUCT clause,

• We further allow CONSTRUCT queries nested in FROM statements, or more
general, allowing CONSTRUCT queries as part of the dataset.

2.1 Built-in Functions and Aggregates in Result Forms
Considering Example 12, it would be more intuitive to carry out the string translation
from VCard:n to foaf:name in the result form, i.e., in the CONSTRUCT clause:
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CONSTRUCT {?X foaf:name fn:concat(?Prefix," ",?Giv," ",?Fam," ",?Oth," ",?Suffix).}
WHERE { ?X VCard:N ?N .

OPTIONAL {?N VCard:Family ?Fam } OPTIONAL {?N VCard:Given ?Giv }
OPTIONAL {?N VCard:Other ?Oth } OPTIONAL {?N VCard:Prefix ?Prefix }
OPTIONAL {?N VCard:Suffix ?Suffix } }

Another example for a non-trivial mapping is the different treatment of telephone num-
bers in FOAF and VCard.

Example 14 A VCard:tel is a foaf:phone – more precisely, VCard:tel is re-
lated to foaf:phone as follows. We have to create a URI from the RDF literal value
defining vCard:tel here, since vCard stores Telephone numbers as string literals,
whereas FOAF uses resources, i.e., URIs with the tel: URI-scheme:

CONSTRUCT { ?X foaf:phone rdf:Resource(fn:concat("tel:",fn:encode-for-uri(?T)) . }
WHERE { ?X VCard:tel ?T . }

Here we assumed the availability of a cast-function, which converts an xs:string
to an RDF resource. While the distinction between literals and URI references in RDF
usually makes perfect sense, this example shows that conversions between URI refer-
ences and literals become necessary by practical uses of RDF vocabularies.

The next example shall illustrate the need for aggregate functions in mappings.

Example 15 The DOAP vocabulary [10] contains revision, i.e. version numbers of
released versions of projects. With an aggregate function MAX, one can map DOAP
information into the RDF Open Source Software Vocabulary [32], which talks about
the latest release of a project, by picking the maximum value (numerically or lexico-
graphically) of the set of revision numbers specified by a graph pattern as follows:

CONSTRUCT { ?P os:latestRelease MAX(?V : ?P doap:release ?R. ?R doap:revision ?V) }
WHERE { ?P rdf:type doap:Project . }

Here, the WHERE clause singles out all projects, while the aggregate selects the
highest (i.e., latest) revision date of any available version for that project.

2.2 Nested CONSTRUCT Queries in FROM Clauses
The last example show another example of “aggregation” which is not possible with
SPARQL upfront, but may be realized by nesting CONSTRUCT queries in the FROM
clause of a SPARQL query.

Example 16 Imagine you want to map/infer from an ontology having co-author re-
lationships declared using dc:creator properties from the Dublin Core metadata
vocabulary to foaf:knows, i.e., you want to specify

If ?a and ?b have co-authored the same paper, then ?a knows ?b.

The problem here is that a mapping using CONSTRUCT clauses needs to introduce new
blank nodes for both ?a and ?b (since dc:creator is a datatype property usually just
giving the name string of the author) and then need to infer the knows relation, so what
we really want to express is a mapping
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If ?a and ?b are dc:creators of the same paper, then someone named
with foaf:name ?a foaf:knows someone with foaf:name ?b.

A first-shot solution could be:

CONSTRUCT { _:a foaf:knows _:b . _:a foaf:name ?n1 . _:b foaf:name ?n2 . }
FROM <g> WHERE { ?p dc:creator ?n1 . ?p dc:creator ?n2 . FILTER ( ?n1 != ?n2 ) }

Let us consider the present paper as example graph g:

g: <http://ex.org/papers#sparqlmappingpaper> dc:creator "Axel"
<http://ex.org/papers#sparqlmappingpaper> dc:creator "Roman"
<http://ex.org/papers#sparqlmappingpaper> dc:creator "Francois"

By the semantics of blank nodes in CONSTRUCT clauses — SPARQL creates new
blank node identifiers for each solutions set matching the WHERE clause — the above
would infer the following additional triples:

_:a1 foaf:knows _:b1. _:a1 foaf:name "Axel". _:b1 foaf:name "Roman".
_:a2 foaf:knows _:b2. _:a2 foaf:name "Axel". _:b2 foaf:name "Francois".
_:a3 foaf:knows _:b3. _:a3 foaf:name "Francois". _:b3 foaf:name "Roman".
_:a4 foaf:knows _:b4. _:a4 foaf:name "Francois". _:b4 foaf:name "Axel".
_:a5 foaf:knows _:b5. _:a5 foaf:name "Roman". _:b5 foaf:name "Axel".
_:a6 foaf:knows _:b6. _:a6 foaf:name "Roman". _:b6 foaf:name "Francois".

Obviously, we lost some information in this mapping, namely the corellations that
the “Axel” knowing “Francois” is the same “Axel” that knows “Roman”, etc. We
could remedy this situation by allowing to nest CONSTRUCT queries in the FROM
clause of SPARQL queries as follows:

CONSTRUCT { ?a knows ?b . ?a foaf:name ?aname . ?b foaf:name ?bname . }
FROM { CONSTRUCT { _:auth foaf:name ?n . ?p aux:hasAuthor _:auth . }

FROM <g> WHERE { ?p dc:creator ?n . } }
WHERE { ?p aux:hasAuthor ?a . ?a foaf:name ?aname .

?p aux:hasAuthor ?b . ?b foaf:name ?bname . FILTER ( ?a != ?b ) }

Here, the “inner” CONSTRUCT creates a graph with unique blank nodes for each
author per paper, whereas the outer CONSTRUCT then aggregates a more appropriate
answer graph, say:

_:auth1 foaf:name "Axel". _:auth2 foaf:name "Roman". _:auth3 foaf:name "Francois".
_:auth1 foaf:knows _:auth2. _:auth1 foaf:knows _:auth3.
_:auth2 foaf:knows _:auth1. _:auth2 foaf:knows _:auth3.
_:auth3 foaf:knows _:auth1. _:auth3 foaf:knows _:auth2.

In the following, we will extend SPARQL syntactically and semantically to deal
with these features. This extended version of the language, which we call SPARQL++

shall allow to evaluate SPARQL queries on top of RDF(S) data combined with map-
pings again expressed in SPARQL++.

3 Preliminaries – HEX-Programs
To evaluate SPARQL++ queries, we will translate them to so-called HEX-programs [12],
an extension of logic programs under the answer-set semantics.

Let Pred , Const , Var , exPr be mutually disjoint sets of predicate, constant, vari-
able symbols, and external predicate names, respectively. In accordance with common
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notation in LP and the notation for external predicates from [11] we will in the follow-
ing assume that Const comprises the set of numeric constants, string constants begin-
ning with a lower case letter, or double-quoted string literals, and IRIs.7 Var is the set
of string constants beginning with an uppercase letter. Elements from Const ∪Var are
called terms. Given p ∈ Pred an atom is defined as p(t1, . . . , tn), where n is called the
arity of p and t1, . . . , tn are terms. An external atom is of the form

g[Y1, . . . , Yn](X1, . . . , Xm),

where Y1, . . . , Yn is a list of predicates and terms and X1, . . . , Xm is a list of terms
(called input list and output list, respectively), and g ∈ exPr is an external predicate
name. We assume the input and output arities n and m fixed for g. Intuitively, an
external atom provides a way for deciding the truth value of an output tuple depending
on the extension of a set of input predicates and terms. Note that this means that
external predicates, unlike usual definitions of built-ins in logic programming, can not
only take constant parameters but also (extensions of) predicates as input.

Definition 17 A rule is of the form

h← b1, . . . , bm,not bm+1, . . .not bn (1)

where h and bi (m + 1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) are either atoms or
external atoms, and ‘not’ is the symbol for negation as failure.

We use H(r) to denote the head atom h and B(r) to denote the set of all body literals
B+(r) ∪B−(r) of r, where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}.

The notion of input and output terms in external atoms described above denotes the
binding pattern. More precisely, we assume the following condition which extends the
standard notion of safety (cf. [31]) in Datalog with negation.

Definition 18 (Safety) Each variable appearing in a rule must appear in a non-negated
body atom or as an output term of an external atom.

Finally, we define HEX-programs.

Definition 19 A HEX-program P is defined as a set of safe rules r of the form (1).

The Herbrand base of a HEX-programP , denoted HBP , is the set of all possible ground
versions of atoms and external atoms occurring in P obtained by replacing variables
with constants from Const . The grounding of a rule r, ground(r), is defined accord-
ingly, and the grounding of program P is ground(P ) =

⋃
r∈P ground(r).

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We
say that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I . With every external
predicate name e ∈ exPr we associate an (n+m+1)-ary Boolean function fe (called
oracle function) assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where
n/m are the input/output arities of e, I ⊆ HBP , xi ∈ Const , and yj ∈ Pred ∪ Const .

7For the purpose of this paper, we will disregard language-tagged and datatyped literals in the translation
to HEX-programs.
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We say that I ⊆ HBP is a model of a ground external atom a = e[y1, . . . , yn](x1, . . . ,
xm), denoted I |= a, iff fe(I, y1 . . ., yn, x1, . . . , xm) = 1.

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such
that I |= a, (ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r),
and (iii) I |= r iff I |= H(r) whenever I |= B(r). We say that I is a model of a
HEX-program P , denoted I |= P , iff I |= r for all r ∈ ground(P ).

The semantics we use here generalizes the answer-set semantics [16] and is defined
using the FLP-reduct [15], which is more elegant than the traditional Gelfond-Lifschitz
reduct of stable model semantics and ensures minimality of answer sets also in presence
of external atoms: The FLP-reduct of P with respect to I ⊆ HBP , denoted P I , is the
set of all r ∈ ground(P ) such that I |= B(r). I ⊆ HBP is an answer set of P iff I is
a minimal model of P I .

By the cautious extension of a predicate pwe denote the set of atoms with predicate
symbol p in the intersection of all answer sets of P .
For our purposes, we define a fixed set of external predicates exPr = {rdf , isBLANK ,
isIRI , isLITERAL,=, != ,REGEX ,CONCAT ,COUNT ,MAX ,MIN ,SK} with
a fixed semantics as follows. We take these external predicates as examples, which
demonstrate the HEX-programs are expressive enough to model all the necessary ingre-
dients for evaluating SPARQL filters (isBLANK , isIRI , isLITERAL,=, != ,REGEX )
and also for more expressive built-in functions and aggregates (CONCAT ,SK ,COUNT ,
MAX ,MIN ). Here, we take CONCAT just as an example built-in, assuming that
more XPath/XQuery functions could similarly be added.

For the rdf predicate we write atoms as rdf [i](s, p, o) to denote that i ∈ Const ∪
Var is an input term, whereas s, p, o ∈ Const are output terms which may be bound
by the external predicate. The external atom rdf [i](s, p, o) is true if (s, p, o) is an RDF
triple entailed by the RDF graph which is accessibly at IRI i. For the moment, here we
consider simple RDF entailment [18] only.

The atoms isBLANK [c](val), isIRI [c](val), isLITERAL[c](val) test input term
c ∈ Const ∪ Var (in square brackets) for being a valid string representation of a
blank node, IRI reference or RDF literal. The atom REGEX [c1, c2](val) test whether
c1 matches the regular expression given in c2. All these external predicates return
an output value val ∈ {t, f, e}, representing truth, falsity or an error, following the
semantics defined in [27, Sec. 11.3].

We write comparison atoms ‘t1 = t2’ and ‘t1 != t2’ in shorthand infix notation
with t1, t2 ∈ Const ∪ Var and the obvious semantics of (lexicographic or numeric)
(in)equality. Here, for = either t1 or t2 is an output term, but at least one is an input
term, and for != both t1 and t2 are input terms.

Apart from these truth-valued external atoms we add other external predicates
which mimic built-in functions an aggregates. As an example predicate for a built-in,
we chose the predicate CONCAT [c1, . . . , cn](cn+1) with variable input arity which
concatenates string constants c1, . . . , cn into cn+1 and thus implements the semantics
of fn:concat in XPath/XQuery [23].

Next, we define external predicates which mimic aggregate functions over a certain
predicate. Let p ∈ Pred with arity n, and x1, . . . , xn ∈ Const ∪ {mask} where mask
is a special constant not allowed to appear anywhere except in input lists of aggregate
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predicates.
Then COUNT [p, x1, . . . , xn](c) is true if c equals the number of distinct tuples

(t1, . . . , tn), such that I |= p(t1, . . . , tn) and for all xi different from the constant
mask it holds that ti = xi.

MAX [p, x1, . . . , xn](c) (and MIN [p, x1, . . . , xn](c), resp.) is true if among all
tuples (t1, . . . , tn), such that I |= p(t1, . . . , tn), c is the lexicographically greatest
(smallest, resp.) value among all the ti such that xi = mask .8

We will illustrate the use of these external predicates to express aggregations in
Section 4.4 below when discussing the actual translation from SPARQL++ to HEX-
programs.

Finally, the external predicate SK [id , v1, . . . , vn](skn+1) computes a unique, new
“Skolem”-like term id(v1, . . . , vn) from its input parameters. We will use this built-in
function in our translation of SPARQL queries with blank nodes in the CONSTRUCT
part. Similar to the aggregate functions mentioned before, when using SK we will
need to take special care in our translation in order to retain strong safety.

As widely known, for programs without external predicates, safety guarantees that
the number of entailed ground atoms is finite. Though, by external atoms in rule bodies,
new, possibly infinitly many, ground atoms could be generated, even if all atoms them-
selves are safe. In order to avoid this, a stronger notion of safety for HEX-programs is
defined in [30]: Informally, this notion says that a HEX-program is strongly safe, if no
external predicate recursively depends on itself, thus defining a notion of stratification
over external predicates. Strong safety guarantees finiteness of models as well as finite
computability of external atoms.

4 Extending SPARQL towards mappings
In Section 2 we have shown that an extension of the CONSTRUCT clause is needed
for SPARQL to be suitable for mapping tasks. In the following, we will formally
define extended SPARQL queries which allow to integrate built-in functions and ag-
gregates in CONSTRUCT clauses as well as in FILTER expressions. We will define the
semantics of such extended queries, and, moreover, we will provide a translation to
HEX-programs, building upon an existing translation presented in [26].

A SPARQL++ query Q = (R,P,DS ) consists of a result form R, a graph pattern
P , and an extended dataset DS as defined below.9 We refer to [27] for syntactical
details and will explain these in the following as far as necessary.

For a SELECT query, a result form R is simply a set of variables, whereas for a
CONSTRUCT query, the result form R is a set of triple patterns.

We assume the pairwise disjoint, infinite sets I , B, L and Var , which denote IRIs,
blank node identifiers, RDF literals, and variables respectively. I ∪ L ∪ Var is also
called the set of basic RDF terms. In this paper, we allow as blank node identifiers
nested ground terms similar to HiLog terms [4], such that B is defined recursively over
an infinite set of constant blank node identifiers Bc as follows:

8Note that in this definition we allow min/max to aggregate over several variables.
9As we deal mainly with CONSTRUCT queries here, we will ignore solution modifiers.
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• each element of Bc is a blank node identifier, i.e., Bc ⊆ B.

• for b ∈ B and t1, . . . , tn in I ∪B ∪ L, b(t1, . . . , tn) ∈ B.

Now, we extend the SPARQL syntax by allowing built-in functions and aggregates
in place of basic RDF terms in graph patterns (and thus also in CONSTRUCT clauses)
as well as in filter expressions. We define the set Blt of built-in terms as follows:

• All basic terms are built-in terms.

• If blt is a built-in predicate (e.g., fn:concat from above or another XPath/XQuery
functions), and c1, . . . , cn are built-in terms then blt(c1, . . . , cn) is a built-in
term.

• If agg is an aggregate function (e.g., COUNT , MIN , MAX ), P a graph pattern,
and V a tuple of variables appearing in P , then agg(V :P) is a built-in term.10

In the following we will introduce extended graph patterns that may include built-in
terms and extended datasets that can be constituted by CONSTRUCT queries.

4.1 Extended Graph Patterns
As for graph patterns, we follow the recursive definition from [25]:

• a triple pattern (s, p, o) is a graph pattern where s, o ∈ Blt and p ∈ I ∪ Var .11

Triple patterns which only contain basic terms are called basic triple patterns
and value-generating triple patterns otherwise.

• if P, P1 and P2 are graph patterns, i ∈ I ∪ V ar, and R a filter expression then
(P1 AND P2), (P1 OPT P2), (P1 UNION P2), (GRAPH i P ), and (P FILTER R)
are graph patterns.12

For any pattern P , we denote by vars(P ) the set of all variables occurring in P and
by vars(P ) the tuple obtained by the lexicographic ordering of all variables in P .
As atomic filter expression, we allow here the unary predicates BOUND (possibly with
variables as arguments), isBLANK, isIRI, isLITERAL, and binary equality predicates ‘=’
with arbitrary safe built-in terms as arguments. Complex filter expressions can be built
using the connectives ‘¬’, ‘∧’, and ‘∨’.

Similar to aggregates in logic programming, we use a notion of safety. First, given
a query Q = (R,P,DS ) we allow only basic triple patterns in P , ie. we only allow
built-ins and aggregates only in FILTERs or in the result pattern R. Second, a built-in
term blt occurring in the result form or in P in a query Q = (R,P,DS ) is safe if all
variables recursively appearing in blt also appear in a basic triple pattern within P .

10This aggregate syntax is adapted from the resp. definition for aggregates in LP from [15].
11We do not consider blanks nodes here as these can be equivalently replaced by variables [6].
12We use AND to keep with the operator style of [25] although it is not explicit in SPARQL.
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4.2 Extended Datasets
In order to allow the definition of RDF data side-by-side with implicit data defined
by mappings of different vocabularies or, more general, views within RDF, we define
an extended RDF graph as a set of RDF triples I ∪ L ∪ B × I × I ∪ L ∪ B and
CONSTRUCT queries. An RDF graph (or dataset, resp.) without CONSTRUCT queries
is called a basic graph (or dataset, resp.).

The dataset DS = (G, {(g1, G1), . . . (gk, Gk)}) of a SPARQL query is defined by
(i) a default graph G, i.e., the RDF merge [18, Section 0.3] of a set of extended RDF
graphs, plus (ii) a set of named graphs, i.e., pairs of IRIs and corresponding extended
graphs.

Without loss of generality (there are other ways to define the dataset such as in
a SPARQL protocol query), we assume DS defined by the IRIs given in a set of
FROM and FROM NAMED clauses. As an exception, we assume that any CONSTRUCT
query which is part of an extended graph G by default (i.e., in the absence of FROM
and FROM NAMED clauses) has the dataset DS = (G, ∅) For convenience, we allow
extended graphs consisting of a single CONSTRUCT statement to be written directly in
the FROM clause of a SPARQL++ query, like in Example 16.

We will now define syntactic restrictions on the CONSTRUCT queries allowed in
extended datasets, which retain finite termination on queries over such datasets. Let G
be an extended graph. First, for any CONSTRUCT queryQ = (R,P,DSQ) inG, DSQ
we allow only triple patterns tr = (s, p, o) in P or R where p ∈ I , i.e., neither blank
nodes nor variables are allowed in predicate positions in extended graphs, and, addi-
tionally, o ∈ I for all triples such that p = rdf:type. Second, we define a predicate-
class-dependency graph over an extended dataset DS = (G, {(g1, G1), . . . (gk, Gk)})
as follows. The predicate-class-dependency graph for DS has an edge p → r with
p, r ∈ I for any CONSTRUCT query Q = (R,P,DS ) in G with r (or p, resp.) ei-
ther (i) a predicate different from rdf:type in a triple in R (or P , resp.), or (ii)
an object in an rdf:type triple in R (or P , resp.). All edges such that r occurs in
a value-generating triple are marked with ‘∗’. We now say that DS is strongly safe
if its predicate-class-dependency graph does not contain any cycles involving marked
edges. As it turns out, in our translation in Section 4.4 below, this condition is suffi-
cient (but not necessary) to guarantee that any query can be translated to a strongly safe
HEX-program.

Like in [29] we assume that blank node identifiers in each query Q = (R,P,DS )
have been standardized apart, i.e., that no blank nodes with the same identifiers appear
in a different scope. The scope of a blank node identifier is defined as the graph or
graph pattern it appears in, where each WHERE or CONSTRUCT clause open a “fresh”
scope . For instance, take the extended graph dataset in Fig. 1(a), its standardized apart
version is shown in Fig. 1(b). Obviously, extended datasets can always be standardized
apart in linear time in a preprocessing step.

4.3 Semantics
The semantics of SPARQL++ is based on the formal semantics for SPARQL queries
by Pérez et al. in [25] and its translation into HEX-programs in [26].
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g1: :paper2 foaf:maker _:a.
_:a foaf:name "Jean Deau".

g2: :paper1 dc:creator "John Doe".
:paper1 dc:creator "Joan Dough".
CONSTRUCT {_:a foaf:knows _:b .

_:a foaf:name ?N1 .
_:b foaf:name ?N2 . }

WHERE {?X dc:creator ?N1,?N2.
FILTER( ?N1 != ?N2 ) }

(a)

g1: :paper2 foaf:maker _:b1.
_:b1 foaf:name "Jean Deau".

g2: :paper1 dc:creator "John Doe".
:paper1 dc:creator "Joan Dough".
CONSTRUCT {_:b2 foaf:knows _:b3 .

_:b2 foaf:name ?N1 .
_:b3 foaf:name ?N2 . }

WHERE {?X dc:creator ?N1,?N2.
FILTER( ?N1 != ?N2 ) }

(b)

Figure 1: Standardizing apart blank node identifiers in extended datasets.

We denote by Tnull the union I ∪B ∪L∪{null}, where null is a dedicated constant
denoting the unknown value not appearing in any of I,B, or L, how it is commonly
introduced when defining outer joins in relational database systems. A substitution θ
from Var to Tnull is a partial function θ : Var → Tnull. We write substitutions in
postfix notation in square brackets, i.e., if t, t′ ∈ Blt and v ∈ Var , then t[v/t′] is the
term obtained from replacing all occcurences of v in t by t’. The domain of θ, denoted
by dom(θ), is the subset of Var where θ is defined. The lexicographic ordering of this
subset is denoted by dom(Var). For a substitution θ and a set of variables D ⊆ Var
we define the substitution θD with domain D as follows

xθD =


xθ if x ∈ dom(θ) ∩D
null if x ∈ D \ dom(θ)

Let x ∈ Var , θ1, θ2 be substitutions, then θ1 ∪ θ2 is the substitution obtained as
follows:

x(θ1 ∪ θ2) =

8>><>>:
xθ1 if xθ1 defined and xθ2 undefined

else: xθ1 if xθ1 defined and xθ2 = null
else: xθ2 if xθ2 defined
else: undefined

Thus, in the union of two substitutions defined values in one take precedence over null
values the other substitution. Two substitutions θ1 and θ2 are compatible when for all
x ∈ dom(θ1) ∩ dom(θ2) either xθ1 = null or xθ2 = null or xθ1 = xθ2 holds, i.e.,
when θ1 ∪ θ2 is a substitution over dom(θ1) ∪ dom(θ2). Analogously to Pérez et al.
we define join, union, difference, and outer join between two sets of substitutions Ω1
and Ω2 over domains D1 and D2, respectively:

Ω1 ./ Ω2 = {θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2, θ1 and θ2 are compatible}
Ω1 ∪ Ω2 = {θ | ∃θ1 ∈ Ω1 with θ = θD1∪D2

1 or
∃θ2 ∈ Ω2 with θ = θD1∪D2

2 }
Ω1 − Ω2 = {θ ∈ Ω1 | for all θ2 ∈ Ω2, θ and θ2 not compatible}
Ω1A./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 − Ω2)

Next, we define the application of substitutions to built-in terms and triples: For a
built-in term t, by tθ we denote the value obtained by applying the substitution to all
variables in t. By evalθ(t) we denote the value obtained by (i) recursively evaluating
all built-in and aggregate functions, and (ii) replacing all bNode identifiers by complex
bNode identifiers according to θ, as follows:
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evalθ(fn:concat(c1, c2, . . . , cn)) Returns the xs:string that is the concatenation of the values of c1θ,. . . ,c1θ
after conversion. If any of the arguments is the empty sequence or null, the argu-
ment is treated as the zero-length string.

evalθ(COUNT(V : P )) Returns the number of distinct13answer substitutions for the query Q =

(V, Pθ,DS) where DS is the dataset of the encapsulating query.
evalθ(MAX(V : P )) Returns the maximum (numerically or lexicographically) of distinct answer sub-

stitutions for the queryQ = (V, Pθ,DS).
evalθ(MIN(V : P )) Analogous to MAX, but returns the minimum.

evalθ(t) Returns tθ for all t ∈ I ∪ L ∪ Var , and t(dom(θ)θ) for t ∈ B.14

Finally, for a triple pattern tr = (s, p, o) we denote by trθ the triple (sθ, pθ, oθ), and
by evalθ(tr) the triple (evalθ(s), evalθ(p), evalθ(o)).
The evaluation of a graph pattern P over a basic dataset DS = (G,Gn), can now be
defined recursively by sets of substitutions, extending the definitions in [25, 26].

Definition 20 Let tr = (s, p, o) be a basic triple pattern, P, P1, P2 graph patterns,
and DS = (G,Gn) a basic dataset, then the evaluation [[·]]DS is defined as follows:

[[tr ]]DS = {θ | dom(θ) = vars(P ) and trθ ∈ G}
[[P1 AND P2]]DS = [[P1]]DS ./ [[P2]]DS

[[P1 UNION P2]]DS = [[P1]]DS ∪ [[P2]]DS

[[P1 OPT P2]]DS = [[P1]]DS A./ [[P2]]DS

[[GRAPH i P ]]DS = [[P ]](i,∅), for i ∈ Gn
[[GRAPH v P ]]DS = {θ ∪ [v/g] | g ∈ Gn and θ ∈ [[P [v/g] ]](g,∅)}, for v ∈ Var
[[P FILTER R]]DS = {θ ∈ [[P ]]DS | Rθ = >}
Let R be a filter expression, u, v ∈ Blt . The valuation of R on a substitution θ, written Rθ
takes one of the three values {>,⊥, ε}15 and is defined as follows.
Rθ = >, if: (1) R = BOUND(v) with v ∈ dom(θ) ∧ evalθ(v) 6= null;

(2) R = isBLANK(v) with evalθ(v) ∈ B;
(3) R = isIRI(v) with evalθ(v) ∈ I;
(4) R = isLITERAL(v) with evalθ(v) ∈ L;
(5) R = (u = v) with evalθ(u) = evalθ(v) ∧ evalθ(u) 6= null;
(6) R = (¬R1) with R1θ = ⊥;
(7) R = (R1 ∨R2) with R1θ = > ∨ R2θ = >;
(8) R = (R1 ∧R2) with R1θ = > ∧ R2θ = >.

Rθ = ε, if: (1) R = isBLANK(v),R = isIRI(v),R = isLITERAL(v), or
R = (u = v) with (v ∈ Var ∧ v 6∈ dom(θ)) ∨ evalθ(v) = null ∨

(u ∈ Var ∧ u 6∈ dom(θ)) ∨ evalθ(u) = null;
(2) R = (¬R1) and R1θ = ε;
(3) R = (R1 ∨R2) and R1θ 6= > ∧ R2θ 6= > ∧ (R1θ = ε ∨ R2θ = ε);
(4) R = (R1 ∧R2) and R1θ = ε ∨ R2θ = ε.

Rθ = ⊥ otherwise.

In [26] we have shown that the semantics defined this way corresponds with the
original semantics for SPARQL defined in [25] without complex built-in and aggregate
terms and on basic datasets.16

Note that, so far we have only defined the semantics in terms of a pattern P and ba-
sic dataset DS , but neither taken the result form R nor extended datasets into account.

13Note that we give a set based semantics to the counting built-in, we do not take into account duplicate
solutions which can arise from the multi-set semantics in [27] when counting.

14For blank nodes evalθ constructs a new blank node identifier, similar to Skolemization.
16Our definition here only differs in in the application of evalθ on built-in terms in filter expressions which

does not make a difference if only basic terms appear in FILTERs.

83



As for the former, we proceed with formally define solutions for SELECT and CON-
STRUCT queries, respectively. The semantics of a SELECT query Q = (V, P,DS ) is
fully determined by its solution tuples [26].

Definition 21 Let Q = (R,P,DS ) be a SPARQL++ query, and θ a substitution in
[[P ]]DS , then we call the tuple vars(P )θ a solution tuple of Q.

As for a CONSTRUCT queries, we define the solution graphs as follows.

Definition 22 Let Q = (R,P,DS ) be a SPARQL CONSTRUCT query where blank
node identifiers in DS and R have been standardized apart and R = {t1, . . . , tn} is
the result graph pattern. Further, for any θ ∈ [[P ]]DS , let θ′ = θvars(R)∪vars(P ). The
solution graph for Q is then defined as the triples obtained from⋃

θin[[P ]]DS

{evalθ′(t1), . . . , evalθ′(tn)}

by eliminating all non-valid RDF triples.17

Our definitions so far only cover basic datasets. Extended datasets, which are implic-
itly defined bring the following additional challenges: (i) it is not clear upfront which
blank node identifiers to give to blank nodes resulting from evaluating CONSTRUCT
clauses, and (ii) extended datasets might involve recursive CONSTRUCT definitions
which construct new triples in terms of the same graph in which they are defined. As
for (i), we remedy the situation by constructing new identifier names via a kind of
Skolemization, as defined in the function evalθ, see the table on page 82. evalθ gener-
ates a unique blank node identifier for each solution θ. Regarding (ii) we avoid possibly
infinite datasets over recursive CONSTRUCT clauses by the strong safety restriction in
Section 4.2. Thus, we can define a translation from extended datasets to HEX-programs
which uniquely identifies the solutions for queries over extended datasets.

4.4 Translation to HEX-Programs
Our translation from SPARQL++ queries to HEX-programs is based on the transla-
tion for non-extended SPARQL queries outlined in [26]. Similar to the well-known
correspondence between SQL and Datalog, SPARQL++ queries can be expressed by
HEX-programs, which provide the additional machinery necessary for importing and
processing RDF data as well as evaluating built-ins and aggregates. The translation
consists of two basic parts: (i) rules that represent the query’s graph pattern (ii) rules
defining the triples in the extended datasets.

We have shown in [26] that solution tuples for any query Q can be generated by a
logic program and are represented by the extension of a designated predicate answerQ,
assuming that the triples of the dataset are available in a predicate tripleQ. We refer
to [26] for details and only outline the translation here by examples.

Complex graph patterns can be translated recursively in a rather straightforward
way, where unions and join of graph patterns can directly be expressed by appropriate
rule constructions, whereas OPTIONAL patterns involve negation as failure.

17That is, triples with null values or blank nodes in predicate position, etc.
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Example 17 Let query q select all persons who do not know anybody called “John
Doe” from the extended dataset DS = (g1 ∪ g2, ∅), i.e., the merge of the graphs in
Fig. 1(b).

SELECT ?P FROM <g1> FROM <g2>
WHERE { ?P rdf:type foaf:Agent . FILTER ( !BOUND(?P1) )

OPTIONAL { P? foaf:knows ?P1 . ?P1 foaf:name "John Doe" . } }

This query can be translated to the following HEX-program:

answerq(P) :- answer1q(P,P1), P1 = null.
answer1q(P,P1) :- answer2q(P), answerq3(P,P1).
answer1q(P,null) :- answer2q(P), not answer3q’(P).
answer2q(P) :- tripleq(P,rdf:type,foaf:Agent,def).
answer3q(P,P1) :- tripleq(P,foaf:knows,P1,def),triple(P1,foaf:name,"John Doe",def).
answer3q’(P) :- answer3q(P,P1).

More complex queries with nested patterns can be translated likewise by introduc-
ing more auxiliary predicates. The program part defining the tripleq predicate fixes
the triples of the dataset, by importing all explicit triples in the dataset as well as recur-
sively translating all CONSTRUCT clauses and subqueries in the extended dataset.

Example 18 The program to generate the dataset triples for the extended dataset
DS = (g1 ∪ g2, ∅) looks as follows:

tripleq(S,P,O,def) :- rdf["g1"](S,P,O).
tripleq(S,P,O,def) :- rdf["g2"](S,P,O).
tripleq(B2,foaf:knows,B3,def) :- SK[b2(X,N1,N2)](B2),SK[b3(X,N1,N2)](B3),

answerC1,g2(X,N1,N2).
tripleq(B2,foaf:name,N1,def) :- SK[b2(X,N1,N2)](B2), answerC1,g2(X,N1,N2).
tripleq(B3,foaf:knows,N2,def) :- SK[b3(X,N1,N2)](B3), answerC1,g2(X,N1,N2).
answerC1,g2(X,N1,N2) :- tripleq(X,dc:creator, N1,def),

tripleq(X,dc:creator,N2,def), N1 != N2.

The first two rules import all triples given explicitly in graphs g1, g2 by means of the
“standard” RDF import HEX predicate. The next three rules create the triples from the
CONSTRUCT in graph g2, where the query pattern is translated by an own subprogram
defining the predicate answerC1,g2, which in this case only consists of a single rule.

The example shows the use of the external function SK to create blank node ids
for each solution tuple as mentioned before, which we need to emulate the semantics
of blank nodes in CONSTRUCT statements.

Next, we turn to the use of HEX aggregate predicates in order to translate aggregate
terms. Let Q = (R,P,DS ) and a = agg(V :Pa) – here, V ⊆ vars(Pa) is the tuple
of variables we want to aggregate over – be an aggregate term appearing either in R
or in a filter expression in P . Then, the idea is that a can be translated by an external
atom agg [aux , vars(Pa)′[V/mask ] ](va) where

(i) vars(Pa)
′ is obtained from vars(Pa) by removing all the variables which only appear in Pa

but not elsewhere in P ,
(ii) the variable va takes the place of a,
(iii) auxa is a new predicate defined by a rule: auxa(vars(Pa)

′)← answera(vars(Pa)).
(iv) answera is the predicate defining the solution set of the query Qa = (vars(Pa), Pa,DS)

Example 19 The following rules mimic the CONSTRUCT query of Example 15:
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triple(P,os:latestRelease,Va) :- MAX[auxa,P,mask](Va),
triple(P,rdf:type,doap:Project,gr).

auxa(P,V) :- answera(P,R,V).
answera(P,R,V) :- triple(P,doap:release R,def), triple(R,doap:revision,V,def).

With the extensions the translation in [26] outlined here for extended datasets, ag-
gregate and built-in terms we can define the solution tuples of an SPARQL++ query
Q = (R,P,DS ) over an extended dataset now as precisely the set of tuples corre-
sponding to the cautious extension of the predicate answerq .

4.5 Adding ontological inferences by encoding ρdf− into SPARQL

Trying the translation sketched above on the query in Example 17 we observe that we
would not obtain any answers, as no triples in the dataset would match the triple pattern
?P rdf:type foaf:Agent in the WHERE clause. This still holds if we include the
vocabulary definition of FOAF at http://xmlns.com/foaf/spec/index.rdf to
the dataset, since the machinery introduced so far could not draw any additional infer-
ences from the triple foaf:maker rdfs:range foaf:Agent which would be nec-
essary in order to figure out that Jean Deau is indeed an agent. There are several open
issues on using SPARQL on higher entailment regimes than simple RDF entailment
which allow such inferences. One such problem is the presences of infinite axiomatic
triples in RDF semantics or several open compatibility issues with OWL semantics,
see also [11]. However, we would like to at least add some of the inferences of the
RDFS semantics. To this end, we will encode an small but very useful subset of RDFS,
called ρdf [24] into the extended dataset. ρdf, defined by Muñoz et al., restricts the
RDF vocabulary to its essentials by only focusing on the properties rdfs:subPropertyOf,
rdfs:subClassOf,rdf:type, rdfs:domain, and rdfs:range, ignoring other constituents of the
RDFS vocabulary. Most importantly, Muñoz et al. prove that (i) ρdf entailment cor-
responds to full RDF entailment on graphs not mentioning RDFS vocabulary outside
ρdf, and (ii) that ρdf entailment can be reduced to five axiomatic triples (concerned
with reflexivity of the subproperty relationship) and 14 entailment rules. Note that for
graphs which do not mention subclass or subproperty relationships, which is usually
the case for patterns in SPARQL queries or the mapping rules we encode here, even
a reflexive-relaxed version of ρdf that does not contain any axiomatic triples is suffi-
cient. We can write down all but one of the entailment rules of reflexive-relaxed ρdf as
CONSTRUCT queries which we consider implicitly present in the extended dataset:

CONSTRUCT {?A :subPropertyOf ?C} WHERE {?A :subPropertyOf ?B. ?B :subPropertyOf ?C.}
CONSTRUCT {?A :subClassOf ?C} WHERE { ?A :subClassOf ?B. ?B :subClassOf ?C. }
CONSTRUCT {?X ?B ?Y} WHERE { ?A :subPropertyOf ?B. ?X ?A ?Y. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :subClassOf ?B. ?X rdf:type ?A. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :domain ?B. ?X ?A ?Y. }
CONSTRUCT {?Y rdf:type ?B} WHERE { ?A :range ?B. ?X ?A ?Y. }
CONSTRUCT {?X rdf:type ?B} WHERE { ?A :domain ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}
CONSTRUCT {?Y rdf:type ?B} WHERE { ?A :range ?B. ?C :subPropertyOf ?A. ?X ?C ?Y.}

There is one more entailment rule for reflexive-relaxed ρdf concerning that blank node
renaming preserves ρdf entailment. However, it is neither straightforwardly possible,
nor desirable to encode this by CONSTRUCTs like the other rules. Blank node renam-
ing might have unintuitive effects on aggregations and in connection with OPTIONAL
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queries. In fact, keeping blank node identifiers in recursive CONSTRUCTs after stan-
dardizing apart is what keeps our semantics finite, so we skip this rule, and call the
resulting ρdf fragment encoded by the above CONSTRUCTs ρdf−. Some care is in or-
der concerning strong safety of the resulting dataset when adding ρdf−. To still ensure
strong safety of the translation, we complete the predicate-class-dependency graph by
additional edges between all pairs of resources connected by subclassOf or subProper-
tyOf, domain, or range relations and checking the same safety condition as before on
the graph extended in this manner.

4.6 Implementation
We implemented a prototype of a SPARQL++ engine based on on the HEX-program
solver dlvhex.18 The prototype exploits the rewriting mechanism of the dlvhex frame-
work, taking care of the translation of a SPARQL++ query into the appropriate HEX-
program, as laid out in Section 4.4. The system implements external atoms used in the
translation, namely (i) the RDF atom for data import, (ii) the aggregate atoms, and (iii)
a string concatenation atom implementing both the CONCAT function and the SK
atom for bNode handling. The engine can directly be fed with a SPARQL++ query.
The default syntax of a dlvhex results corresponds to the usual answer format of logic
programming engines, i.e., sets of facts, from which we generate an XML representa-
tion, which can subsequently be transformed easily to a valid RDF syntax by an XSLT
to export solution graphs.

5 Related work
The idea of using SPARQL CONSTRUCT queries is in fact not new, even some im-
plemented systems such as TopBraid Composer already seem to offer this feature, 19

however without a defined and layered semantics, and lacking aggregates or built-ins,
thus insufficient to express mappings such as the ones studied in this article.

Our notion of extended graphs and datasets generalizes so-called networked graphs
defined by Schenk and Staab [29] who also use SPARQL CONSTRUCT statements as
rules with a slightly different motivation: dynamically generating views over graphs.
The authors only permit bNode- and built-in free CONSTRUCTs whereas we addi-
tionally allow bNodes, built-ins and aggregates, as long as strong safety holds which
only restricts recursion over value-generating triples. Another differenece is that their
semantics bases on the well-founded instead of the stable model semantics.

PSPARQL [1], a recent extension of SPARQL, allows to query RDF graphs using
regular path expressions over predicates. This extension is certainly useful to represent
mappings and queries over graphs. We conjecture that we can partly emulate such path
expressions by recursive CONSTRUCTs in extended datasets.

As an interesting orthogonal approach, we mention iSPARQL [21] which proposes
an alternative way to add external function calls to SPARQL by introducing so called

18Available with dlvhex on http://www.kr.tuwien.ac.at/research/dlvhex/.
19http://composing-the-semantic-web.blogspot.com/2006/09/

ontology-mapping-with-sparql-construct.html
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virtual triple patterns which query a “virtual” dataset that could be an arbitrary service.
This approach does not need syntactic extensions of the language. However, an im-
plementation of this extension makes it necessary to know upfront which predicates
denote virtual triples. The authors use their framework to call a library of similarity
measure functions but do not focus on mappings or CONSTRUCT queries.

As already mentioned in the introduction, other approaches often allow only map-
pings at the level of the ontology level or deploy their own rules language such as
SWRL [19] or WRL [8]. A language more specific for ontology mapping is C-OWL [3],
which extends OWL with bridge rules to relate ontological entities. C-OWL is a for-
malism close to distributed description logics [2]. These approaches partially cover
aspects which we cannot handle, e.g., equating instances using owl:sameAs in SWRL
or relating ontologies based on a local model semantics [17] in C-OWL. None of these
approaches though offers aggregations which are often useful in practical applications
of RDF data syndication, the main application we target in the present work. The On-
tology Alignment Format [13] and the Ontology Mapping Language [28] are ongoing
efforts to express ontology mappings. In a recent work [14], these two languages were
merged and given a model-theoretic semantics which can be grounded to a particu-
lar logical formalism in order to be actually used to perform a mediation task. Our
approach combines rule and mapping specification languages using a more practical
approach than the above mentioned, exploiting standard languages, ρdf and SPARQL.
We keep the ontology language expressivity low on purpose in order to retain decid-
ability, thus providing an executable mapping specification format.

5.1 Differences with the Latest SPARQL Spec
We base our translation on the set-based semantics of [25, 26] whereas the algebra
for SPARQL defined in the latest candidate recommendation [27] defines a multiset
semantics. An extension of our translation towards multiset semantics is straighforward
based on the observation that duplicate solution tuples for SPARQL queries can only
arise from (i) projections in SELECT queries and (ii) from UNION patterns. Another
slight modification of pattern semantics and translation is necessary in order to mimic
the way the latest SPARQL spec deals with filters within OPTIONAL patterns that
refer to variables outside the OPTIONAL part.20 Our implementation allows to switch
between the semantics defined in this paper and the fully spec-compliant version.

6 Conclusions and Further Work
In this paper we have demonstrated the use of SPARQL++ as a rule language for defin-
ing mappings between RDF vocabularies, allowing CONSTRUCT queries — extended
with built-in and aggregate functions — as part of the dataset of SPARQL queries. We
mainly aimed at setting the theoretical foundations for SPARQL++. Our next steps will
involve to focus on scalability of our current prototype, by looking into how far evalua-
tion of SPARQL++ queries can be optimized, for instance, by pushing query evaluation

20see http://lists.w3.org/Archives/Public/public-rdf-dawg/2006OctDec/0115.html
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from our dlvhex as far as possible into more efficient SPARQL engines or possibly dis-
tributed SPARQL endpoints that cannot deal with extended datasets natively. Further,
we will investigate the feasibility of supporting larger fragments of RDFS and OWL.
Here, caution is in order as arbitrary combininations of OWL and SPARQL++ involve
the same problems as combining rules with ontologies (see[11]) in the general case.
We believe that the small fragment we started with is the right strategy in order to al-
low queries over networks of lightweight RDFS ontologies, connectable via expressive
mappings, which we will gradually extend.
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Abstract

RDF Schema (RDFS) as a lightweight ontology language is gaining popularity
and, consequently, tools for scalable RDFS inference and querying are needed.
SPARQL has become recently a W3C standard for querying RDF data, but it
mostly provides means for querying simple RDF graphs only, whereas querying
with respect to RDFS or other entailment regimes is left outside the current speci-
fication. In this paper, we show that SPARQL faces certain unwanted ramifications
when querying ontologies in conjunction with RDF datasets that comprise multi-
ple named graphs, and we provide an extension for SPARQL that remedies these
effects. Moreover, since RDFS inference has a close relationship with logic rules,
we generalize our approach to select a custom ruleset for specifying inferences to
be taken into account in a SPARQL query. We show that our extensions are tech-
nically feasible by providing benchmark results for RDFS querying in our proto-
type system GiaBATA, which uses Datalog coupled with a persistent Relational
Database as a back-end for implementing SPARQL with dynamic rule-based in-
ference. By employing different optimization techniques like magic set rewriting
our system remains competitive with state-of-the-art RDFS querying systems.
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1 Introduction
Thanks to initiatives such as DBPedia or the Linked Open Data project,1 a huge amount
of machine-readable RDF [1] data is available, accompanying pervasive ontologies
describing this data such as FOAF [2], SIOC [3], or YAGO [4].

A vast amount of Semantic Web data uses rather small and lightweight ontologies
that can be dealt with rule-based RDFS and OWL reasoning [5, 6, 7], in contrast to
the full power of expressive description logic reasoning. However, even if many prac-
tical use cases do not require complete reasoning on the terminological level provided
by DL-reasoners, the following tasks become of utter importance. First, a Semantic
Web system should be able to handle and evaluate (possibly complex) queries on large
amounts of RDF instance data. Second, it should be able to take into account implicit
knowledge found by ontological inferences as well as by additional custom rules in-
volving built-ins or even nonmonotonicity. The latter features are necessary, e.g., for
modeling complex mappings [8] between different RDF vocabularies. As a third point,
joining the first and the second task, if we want the Semantic Web to be a solution to –
as Ora Lassila formulated it – those problems and situations that we are yet to define,2

we need triple stores that allow dynamic querying of different data graphs, ontologies,
and (mapping) rules harvested from the Web. The notion of dynamic querying is in
opposition to static querying, meaning that the same dataset, depending on context,
reference ontology and entailment regime, might give different answers to the same
query. Indeed, there are many situations in which the dataset at hand and its supporting
class hierarchy cannot be assumed to be known upfront: think of distributed querying
of remotely exported RDF data.

Concerning the first point, traditional RDF processors like Jena (using the default
configuration) are designed for handling large RDF graphs in memory, thus reaching
their limits very early when dealing with large graphs retrieved from the Web. Cur-
rent RDF Stores, such as YARS [9], Sesame, Jena TDB, ThreeStore, AllegroGraph, or
OpenLink Virtuoso3 provide roughly the same functionality as traditional relational
database systems do for relational data. They offer query facilities and allow to im-
port large amounts of RDF data into their persistent storage, and typically support
SPARQL [10], the W3C standard RDF query language. SPARQL has the same expres-
sive power as non-recursive Datalog [11, 12] and includes a set of built-in predicates
in so called filter expressions.

However, as for the second and third point, current RDF stores only offer limited
support. OWL or RDF(S) inference, let alone custom rules, are typically fixed in com-
bination with SPARQL querying (cf. Section 2). Usually, dynamically assigning dif-
ferent ontologies or rulesets to data for querying is neither supported by the SPARQL
specification nor by existing systems. Use cases for such dynamic querying involve,
e.g., querying data with different versions of ontologies or queries over data expressed
in related ontologies adding custom mappings (using rules or “bridging” ontologies).

To this end, we propose an extension to SPARQL which caters for knowledge-
intensive applications on top of Semantic Web data, combining SPARQL querying with

1http://dbpedia.org/ and http://linkeddata.org/
2http://www.lassila.org/publications/2006/SCAI-2006-keynote.pdf
3See http://openrdf.org/, http://jena.hpl.hp.com/wiki/TDB/, http:

//threestore.sf.net/, http://agraph.franz.com/allegrograph/, http:
//openlinksw.com/virtuoso/, respectively.
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dynamic, rule-based inference. In this framework, we overcome some of the above
mentioned limitations of SPARQL and existing RDF stores. Moreover, our approach
is easily extensible by allowing features such as aggregates and arbitrary built-in predi-
cates to SPARQL (see [8, 14]) as well as the addition of custom inference and mapping
rules. The contributions of our paper are summarized as follows:
• We introduce two additional language constructs to the normative SPARQL lan-
guage. First, the directive using ontology for dynamically coupling a dataset with
an arbitrary RDFS ontology, and second extended dataset clauses, which allow to spec-
ify datasets with named graphs in a flexible way. The using ruleset directive can
be exploited for adding to the query at hand proper rulesets which might used for a va-
riety of applications such as encoding mappings between entities, or encoding custom
entailment rules, such as RDFS or different rule-based OWL fragments.

• We present the GiaBATA system [15], which demonstrates how the above exten-
sions can be implemented on a middle-ware layer translating SPARQL to Datalog and
SQL. Namely, the system is based on known translations of SPARQL to Datalog rules.
Arbitrary, possibly recursive rules can be added flexibly to model arbitrary ontological
inference regimes, vocabulary mappings, or alike. The resulting program is compiled
to SQL where possible, such that only the recursive parts are evaluated by a native Dat-
alog implementation. This hybrid approach allows to benefit from efficient algorithms
of deductive database systems for custom rule evaluation, and native features such as
query plan optimization techniques or rich built-in functions (which are for instance
needed to implement complex filter expressions in SPARQL) of common database
systems.

• We compare our GiaBATA prototype to well-known RDF(S) systems and provide
experimental results for the LUBM [16] benchmark. Our approach proves to be com-
petitive on both RDF and dynamic RDFS querying without the need to pre-materialize
inferences.

In the remainder of this paper we first introduce SPARQL along with RDF(S) and
partial OWL inference by means of some motivating example queries which existing
systems partially cannot deal in a reasonably manner in Section 2. Section 3 sketches
how the SPARQL language can be enhanced with custom ruleset specifications and ar-
bitrary graph merging specifications. We then briefly introduce our approach to trans-
late SPARQL rules to Datalog in Section 4, and how this is applied to a persistent
storage system. We evaluate our approach with respect to existing RDF stores in Sec-
tion 5, and then conclusions are drawn in Section 6.

2 SPARQL and some Motivating Examples
Similar in spirit to structured query languages like SQL, which allow to extract, com-
bine and filter data from relational database tables, SPARQL allows to extract, combine
and filter data from RDF graphs. The semantics and implementation of SPARQL in-
volves, compared to SQL, several peculiarities, which we do not focus on in this paper,
cf. [10, 18, 11, 19] for details. Instead, let us just start right away with some illustrating
example motivating our proposed extensions of SPARQL; we assume two data graphs
describing data about our well-known friends Bob and Alice shown in Fig. 1(b)+(c).
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@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix rel: <http://purl.org/vocab/relationship/>.
...
rel:friendOf rdfs:subPropertyOf foaf:knows.
foaf:knows rdfs:domain foaf:Person.
foaf:knows rdfs:range foaf:Person.
foaf:homepage rdf:type owl:inverseFunctionalProperty.
...

(a) GraphGM (<http://example.org/myOnt.rdfs>), a combination of the FOAF&Relationship ontologies.

<http://bob.org#me> foaf:name "Bob";
a foaf:Person;

foaf:homepage
<http://bob.org/home.html>;

rel:friendOf [ foaf:name "Alice";
rdfs:seeAlso

<http://alice.org> ].

(b) GraphGB (<http://bob.org>)

<http://alice.org#me> foaf:name "Alice";
a foaf:Person;
rel:friendOf [ foaf:name "Charles" ],

[ foaf:name "Bob";
foaf:homepage

<http://bob.org/home.html> ].

(c) GraphGA (<http://alice.org>)

Figure 1: An ontology and two data graphs

Both graphs refer to terms in a combined ontology defining the FOAF and Relation-
ship4 vocabularies, see Fig. 1(a) for an excerpt.

On this data the SPARQL query (1) intends to extract names of persons men-
tioned in those graphs that belong to friends of Bob. We assume that, by means of
rdfs:seeAlso statements, Bob provides links to the graphs associated to the persons
he is friend with.

select ?N from <http://example.org/myOnt.rdfs>
from <http://bob.org>
from named <http://alice.org>

where { <http://bob.org#me> foaf:knows ?X . ?X rdfs:seeAlso ?G .
graph ?G { ?P rdf:type foaf:Person; foaf:name ?N } }

(1)

Here, the from and from named clauses specify an RDF dataset. In general, the
dataset DS = (G,N) of a SPARQL query is defined by (i) a default graph G obtained
by the RDF merge [20] of all graphs mentioned in from clauses, and (ii) a set N =
{(u1, G1), . . . , (uk, Gk)} of named graphs, where each pair (ui, Gi) consists of an
IRI ui, given in a from named clause, paired with its corresponding graph Gi. For in-
stance, the dataset of query (1) would be DS 1 = (GM ]GB , {(<http://alice.org>,
GA)}), where ] denotes merging of graphs according to the normative specifications.

Now, let us have a look at the answers to query (1). Answers to SPARQL select
queries are defined in terms of multisets of partial variable substitutions. In fact the
answer to query (1) is empty when – as typical for current SPARQL engines – only
simple RDF entailment is taken into account, and query answering then boils down to
simple graph matching. Since neither of the graphs in the default graph contain any
triple matching the pattern <http://bob.org#me> foaf:knows ?X in the where
clause, the result of (1) is empty. When taking subproperty inference by the statements

4http://vocab.org/relationship/
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of the ontology in GM into account, however, one would expect to obtain three sub-
stitutions for the variable ?N: {?N/"Alice", ?N/"Bob", ?N/"Charles"}. We will
explain in the following why this is not the case in standard SPARQL.

In order to obtain the expected answer, firstly SPARQL’s basic graph pattern match-
ing needs to be extended, see [10, Section 12.6]. In theory, this means that the graph
patterns in the where clause needs to be matched against an enlarged version of the
original graphs in the dataset (which we will call the deductive closureCl(·)) of a given
entailment regime. Generic extensions for SPARQL to entailment regimes other than
simple RDF entailment are still an open research problem,5 due to various problems:
(i) for (non-simple) RDF entailment regimes, such as full RDFS entailment, Cl(G) is
infinite, and thus SPARQL queries over an empty graph G might already have infinite
answers, and (ii) it is not yet clear which should be the intuitive answers to queries over
inconsistent graphs, e.g. in OWL entailment, etc. In fact, SPARQL restricts extensions
of basic graph pattern matching to retain finite answers. Not surprisingly, many ex-
isting implementations implement finite approximations of higher entailment regimes
such as RDFS and OWL [6, 5, 21]. E.g., the RDF Semantics document [20] contains
an informative set of entailment rules, a subset of which (such as the one presented in
Section 3.2 below) is implemented by most available RDF stores. These rule-based
approximations, which we focus on in this paper, are typically expressible by means
of Datalog-style rules. These latter model how to infer a finite closure of a given RDF
graph that covers sound but not necessarily complete RDF(S) and OWL inferences. It
is worth noting that Rule-based entailment can be implemented in different ways: rules
could be either dynamically evaluated upon query time, or the closure wrt. ruleset R,
ClR(G), could be materialized when graph G is loaded into a store. Materialization of
inferred triples at loading time allows faster query responses, yet it has drawbacks: it is
time and space expensive and it has to be performed once and statically. In this setting,
it must be decided upfront

(a) which ontology should be taken into account for which data graph, and

(b) to which graph(s) the inferred triples “belong”, which particularly complicates the
querying of named graphs.

As for exemplifying (a), assume that a user agent wants to issue another query on
graph GB with only the FOAF ontology in mind, since she does not trust the Rela-
tionship ontology. In the realm of FOAF alone, rel:friendOf has nothing to deal
with foaf:knows. However, when materializing all inferences upon loading GM and
GB into the store, bob:me foaf:knows :a would be inferred from GM ] GB and
would contribute to such a different query. Current RDF stores prevent to dynamically
parameterize inference with an ontology of choice at query time, since indeed typically
all inferences are computed upon loading time once and for all.

As for (b), queries upon datasets including named graphs are even more problem-
atic. Query (1) uses GB in order to find the IRI identifiers for persons that Bob knows
by following rdfs:seeAlso links and looks for persons and their names in the named
RDF graphs found at these links. Even if rule-based inference was supported, the
answer to query (1) over dataset DS 1 is just {?N/"Alice"}, as “Alice” is the only
(explicitly) asserted foaf:Person in GA. Subproperty, domain and range inferences
over the GM ontology do not propagate to GA, since GM is normatively prescribed to

5For details, cf. http://www.polleres.net/sparqltutorial/, Unit 5b.
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be merged into the default graph, but not into the named graph. Thus, there is no way
to infer that "Bob" and "Charles" are actually names of foaf:Persons within the
named graph GA. Indeed, SPARQL does not allow to merge, on demand, graphs into
the named graphs, thus there is no way of combining GM with the named graph GA.

To remedy these deficiencies, we suggest an extension of the SPARQL syntax, in
order to allow the specification of datasets more flexibly: it is possible to group graphs
to be merged in parentheses in from and from named clauses. The modified query,
obtaining a dataset DS 2 = ( GM ]GB , {(http://alice.org, GM ]GA)}) looks as
follows:

select ?N
from (<http://example.org/myOnt.rdfs> <http://bob.org/>)
from named <http://alice.org>

(<http://example.org/myOnt.rdfs> <http://alice.org/>)
where { bob:me foaf:knows ?X . ?X rdfs:seeAlso ?G .

graph ?G { ?X foaf:name ?N . ?X a foaf:Person . } }

(2)

For ontologies which should apply to the whole query, i.e., graphs to be merged into
the default graph as well as any specified named graph, we suggest a more convenient
shortcut notation by adding the keyword using ontology in the SPARQL syntax:

select ?N
using ontology <http://example.org/myOnt.rdfs>
from <http://bob.org/>
from named <http://alice.org/>

where { bob:me foaf:knows ?X . ?X foaf:seeAlso ?G .
graph ?G { ?X foaf:name ?N . ?X a foaf:Person. } }

(3)

Hence, the using ontology construct allows for coupling the entire given dataset
with the terminological knowledge in the myOnt data schema. As our investigation of
currently available RDF stores (see Section 5) shows, none of these systems easily
allow to merge ontologies into named graphs or to dynamically specify the dataset of
choice.

In addition to parameterizing queries with ontologies in the dataset clauses, we
also allow to parameterize the ruleset which models the entailment regime at hand.
Per default, our framework supports a standard ruleset that “emulates” (a finite subset
of) the RDFS semantics. This standard ruleset is outlined in Section 3 below. Al-
ternatively, different rule-based entailment regimes, e.g., rulesets covering parts of
the OWL semantics á la ter Horst [5], de Bruijn [22, Section 9.3], OWL2 RL [17]
or other custom rulesets can be referenced with the using ruleset keyword. For
instance, the following query returns the solution {?X/<http://alice.org#me>,
?Y/<http://bob.org#me>}, by doing equality reasoning over inverse functional
properties such as foaf:homepage when the FOAF ontology is being considered:

select ?X ?Y
using ontology <http://example.org/myOnt.rdfs>
using ruleset rdfs
using ruleset <http://www.example.com/owl-horst>
from <http://bob.org/>
from <http://alice.org/>
where { ?X foaf:knows ?Y }

(4)

Query (4) uses the built-in RDFS rules for the usual subproperty inference, plus
a ruleset implementing ter Horst’s inference rules, which might be available at URL
http://www.example.com/owl-horst. This ruleset contains the following addi-
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tional rules, that will “equate” the blank node used inGA for “Bob” with <http://bob.org#me>:6

?P rdf:type owl:iFP . ?S1 ?P ?O . ?S2 ?P ?O . → ?S1 owl:sameAs ?S2.
?X owl:sameAs ?Y → ?Y owl:sameAs ?X.
?X ?P ?O . ?X owl:sameAs ?Y → ?Y ?P ?O.
?S ?X ?O . ?X owl:sameAs ?Y → ?S ?Y ?O.
?S ?P ?X . ?X owl:sameAs ?Y → ?S ?P ?Y.

(5)

3 A Framework for Using Ontologies and Rules in SPARQL
In the following, we will provide a formal framework for the SPARQL extensions
outlined above. In a sense, the notion of dynamic querying is formalized in terms
of the dependence of BGP pattern answers [[P ]]O,R from a variable ontology O and
ruleset R. For our exposition, we rely on well-known definitions of RDF datasets and
SPARQL. Due to space limitations, we restrict ourselves to the bare minimum and just
highlight some standard notation used in this paper.
Preliminaries. Let I , B, and L denote pairwise disjoint infinite sets of IRIs, blank
nodes, and RDF literals, respectively. A term is an element from I ∪ B ∪ L. An RDF
graph G (or simply graph) is defined as a set of triples from I ∪B× I ∪B× I ∪B∪L
(cf. [18, 12]); by blank(G) we denote the set of blank nodes of G.7

A blank node renaming θ is a mapping I ∪B ∪ L→ I ∪B ∪ L. We denote by tθ
the application of θ to a term t. If t ∈ I ∪ L then tθ = t, and if t ∈ B then tθ ∈ B. If
(s, p, o) is a triple then (s, p, o)θ is the triple (sθ, pθ, oθ). Given a graph G, we denote
byGθ the set of all triples {tθ | t ∈ G}. LetG andH be graphs. Let θGH be an arbitrary
blank node renaming such that blank(G) ∩ blank(HθGH) = ∅. The merge of G by H ,
denoted G ]H , is defined as G ∪HθGH .

An RDF dataset D = (G0, N) is a pair consisting of exactly one unnamed graph,
the so-called default graph G0, and a set N = {〈u1, G1〉, . . . , 〈un, Gn〉} of named
graphs, coupled with their identifying URIs. The following conditions hold: (i) each
Gi (0 ≤ i ≤ n) is a graph, (ii) each uj (1 ≤ j ≤ n) is from I , and (iii) for all i 6= j,
〈ui, Gi〉, 〈uj , Gj〉 ∈ N implies ui 6= uj and blank(Gi) ∩ blank(Gj) = ∅.

The syntax and semantics of SPARQL can now be defined as usual, cf. [10, 18, 12]
for details. For the sake of this paper, we restrict ourselves to select queries as shown
in the example queries (1)–(4) and just provide an overview of the necessary concepts.
A query in SPARQL can be viewed as a tuple Q = (V,D, P ), where V is the set of
variables mentioned in the select clause, D is an RDF dataset, defined by means of
from and from named clauses, and P is a graph pattern, defined in the where clause.

Graph patterns are in the simplest case sets of RDF triples (s, p, o), where terms
and variables from an infinite set of variables Var are allowed, also called basic graph
patterns (BGP). More complex graph patterns can be defined recursively, i.e., if P1 and
P2 are graph patterns, g ∈ I ∪Var and R is a filter expression, then P1 optional P2,
P1 union P2, P1 filter R, and graph g P1 are graph patterns.
Graph pattern matching. Queries are evaluated by matching graph patterns against
graphs in the dataset. In order to determine a query’s solution, in the simplest case
BGPs are matched against the active graph of the query, which is one particular graph
in the dataset, identified as shown next.

6We use owl:iFP as shortcut for owl:inverseFunctionalProperty.
7Note that we allow generalized RDF graphs that may have blank nodes in property position.
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Solutions of BGP matching consist of multisets of bindings for the variables men-
tioned in the pattern to terms in the active graph. Partial solutions of each subpattern are
joined according to an algebra defining the optional, union and filter operators,
cf. [10, 18, 12]. For what we are concerned with here, the most interesting operator
though is the graph operator, since it changes the active graph. That is, the active
graph is the default graph G0 for any basic graph pattern not occurring within a graph
sub pattern. However, in a subpattern graph g P1, the pattern P1 is matched against
the named graph identified by g, if g ∈ I , and against any named graph ui, if g ∈ Var ,
where the binding ui is returned for variable g. According to [12], for a RDF datasetD
and active graph G, we define [[P ]]DG as the multiset of tuples constituting the answer to
the graph pattern P . The solutions of a query Q = (V,D, P ) is the projection of [[P ]]DG
to the variables in V only.

3.1 SPARQL with Extended Datasets
What is important to note now is that, by the way how datasets are syntactically de-
fined in SPARQL, the default graph G0 can be obtained from merging a group of dif-
ferent source graphs, specified via several from clauses – as shown, e.g., in query (1) –
whereas in each from named clause a single, separated, named graph is added to the
dataset. That is, graph patterns will always be matched against a separate graph only.
To generalize this towards dynamic construction of groups of merged named graphs,
we introduce the notion of an extended dataset, which can be specified by enlarging
the syntax of SPARQL with two additional dataset clauses:

• For i, i1, . . . , im distinct IRIs (m ≥ 1), the statement “from named i(i1 . . . im)”
is called extended dataset clause. Intuitively, i1 . . . im constitute a group of
graphs to be merged: the merged graph is given i as identifying IRI.

• For o ∈ I we call the statement “using ontology o” an ontological dataset
clause. Intuitively, o stands for a graph that will merged with all graphs in a
given query.

Extended RDF datasets are thus defined as follows. A graph collection G is a set
of RDF graphs. An extended RDF dataset D is a pair (G0, {〈u1,G1〉, . . . , 〈un,Gn〉})
satisfying the following conditions: (i) each Gi is a nonempty graph collection (note
that {∅} is a valid nonempty graph collection), (ii) each uj is from I , and (iii) for
all i 6= j, 〈ui,Gi〉, 〈uj ,Gj〉 ∈ D implies ui 6= uj and for G ∈ Gi and H ∈ Gj ,
blank(G) ∩ blank(H) = ∅. We denote G0 as dg(D), the default graph collection of
D.

Let D and O be an extended dataset and a graph collection, resp. The ordinary
RDF dataset obtained from D and O, denoted D(D,O), is defined as( ⊎

g∈dg(D)

g ]
⊎
o∈O

o,
{
〈u,

⊎
g∈G

g ]
⊎
o∈O

o〉 | 〈u,G〉 ∈ D
})

.

We can now define the semantics of extended and ontological dataset clauses as
follows. Let F be a set of ordinary and extended dataset clauses, and O be a set of
ontological dataset clauses. Let graph(g) be the graph associated to the IRI g: the
extended RDF dataset obtained from F , denoted edataset(F ), is composed of:
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(1) G0 = {graph(g) | “from g” ∈ F}. If there is no from clause, then G0 = ∅.

(2) A named graph collection 〈u, {graph(u)}〉 for each “from named u” in F .

(3) A named graph collection 〈i, {graph(i1), . . . , graph(im)}〉 for each “from named
i(i1 . . . im)” in F .

The graph collection obtained from O, denoted ocollection(O), is the set {graph(o) |
“using ontology o”∈ O}. The ordinary dataset ofO andF , denoted dataset(F,O),
is the set D(edataset(F ), ocollection(O)).

LetD andO be as above. The evaluation of a graph pattern P overD andO having
active graph collection G, denoted [[P ]]D,OG , is the evaluation of P overD(D,O) having

active graph G =
⊎
g∈G g, that is, [[P ]]D,OG = [[P ]]D(D,O)

G .
Note that the semantics of extended datasets is defined in terms of ordinary RDF

datasets. This allows to define the semantics of SPARQL with extended and onto-
logical dataset clauses by means of the standard SPARQL semantics. Also note that
our extension is conservative, i.e., the semantics coincides with the standard SPARQL
semantics whenever no ontological clauses and extended dataset clauses are specified.

3.2 SPARQL with Arbitrary Rulesets
Extended dataset clauses give the possibility of merging arbitrary ontologies into any
graph in the dataset. The second extension herein presented enables the possibility of
dynamically deploying and specifying rule-based entailments regimes on a per query
basis. To this end, we define a genericR-entailment, that is RDF entailment associated
to a parametric rulesetRwhich is taken into account when evaluating queries. For each
such R-entailment regime we straightforwardly extend BGP matching, in accordance
with the conditions for such extensions as defined in [10, Section 12.6].

We define an RDF inference rule r as the pair (Ante, Con), where the antecedent
Ante and the consequent Con are basic graph patterns such that V(Con) and V(Ante)
are non-empty, V(Con) ⊆ V(Ante) and Con does not contain blank nodes.8 As in
Example (5) above, we typically write RDF inference rules as

Ante→ Con . (6)

We call sets of inference rules RDF inference rulesets, or rulesets for short.
Rule Application and Closure. We define RDF rule application in terms of the
immediate consequences of a rule r or a ruleset R on a graph G. Given a BGP P ,
we denote as µ(P ) a pattern obtained by substituting variables in P with elements of
I ∪B ∪ L. Let r be a rule of the form (6) and G be a set of RDF triples, then:

Tr(G) = {µ(Con) | ∃µ such that µ(Ante) ⊆ G}.
Accordingly, let TR(G) =

⋃
r∈R Tr(G). Also, let G0 = G and Gi+1 = Gi ∪ TR(Gi)

for i ≥ 0. It can be easily shown that there exists the smallest n such that Gn+1 = Gn;
we call then ClR(G) = Gn the closure of G with respect to rulesetR.

We can now further define R-entailment between two graphs G1 and G2, written
G1 |=R G2, as ClR(G1) |= G2. Obviously for any finite graph G, ClR(G) is finite.

8Unlike some other rule languages for RDF, the most prominent of which being CONSTRUCT statements
in SPARQL itself, we forbid blank nodes; i.e., existential variables in rule consequents which require the
“invention” of new blank nodes, typically causing termination issues.
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In order to define the semantics of a SPARQL query wrt. R-entailment we now extend
graph pattern matching in [[P ]]DG towards respectingR.

Definition 23 (extended basic graph pattern matching forR-entailment) LetD be
a dataset and G be an active graph. The solution of a BGP P wrt. R-entailment, de-
noted [[P ]]D,RG , is [[P ]]DClR(G).

The solution [[P ]]D,RG naturally extends to more complex patterns according to the
SPARQL algebra. In the following we will assume that [[P ]]D,RG is used for graph
pattern matching. Our extension of basic graph pattern matching is in accordance with
the conditions for extending BGP matching in [10, Section 12.6]. Basically, these
conditions say that any extension needs to guarantee finiteness of the answers, and
defines some conditions about a “scoping graph.” Intuitively, for our extension, the
scoping graph is just equivalent to ClR(G). We refer to [10, Section 12.6] for the
details.

To account for this generic SPARQL BGP matching extension parameterized by an
RDF inference rulesetRQ per SPARQL queryQ, we introduce another novel language
construct for SPARQL:

• For r ∈ I we call “using ruleset r” a ruleset clause.

Analogously to IRIs denoting graphs, we now assume that an IRI r ∈ I may not only
refer to graphs but also to rulesets, and denote the corresponding ruleset by ruleset(r).
Each queryQmay contain zero or more ruleset clauses, and we define the query ruleset
RQ =

⋃
r∈R ruleset(r), where R is the set of all ruleset clauses in Q.

The definitions of solutions of a query and the evaluation of a pattern in this query
on active graph G is now defined just as above, with the only difference that answer to
a pattern P are given by [[P ]]D,RQG .

We observe that whenever R = ∅, then R-entailment boils down to simple RDF
entailment. Thus, a query without ruleset clauses will just be evaluated using standard
BGP matching. In general, our extension preserve full backward compatibility.

Proposition 25 ForR = ∅ and RDF graph G, [[P ]]D,RG = [[P ]]DG .

Analogously, one might useR-entailment as the basis for RDFS entailment as follows.
We consider here the ρDF fragment of RDFS entailment [6]. Let RRDFS denote the
ruleset corresponding to the minimal set of entailment rules (2)–(4) from [6]:
?P rdfs:subPropertyOf ?Q . ?Q rdfs:subPropertyOf ?R . → ?P rdfs:subPropertyOf ?R.
?P rdfs:subPropertyOf ?Q . ?S ?P ?O . → ?S ?Q ?O.
?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?E . → ?C rdfs:subClassOf ?E.
?C rdfs:subClassOf ?D . ?S rdf:type ?C . → ?S rdf:type ?D.
?P rdfs:domain ?C . ?S ?P ?O . → ?S rdf:type ?C.
?P rdfs:range ?C . ?S ?P ?O . → ?O rdf:type ?C.

Since obviously G |=RDFS ClRRDFS
(G) and hence ClRRDFS

(G) may be viewed
as a finite approximation of RDFS-entailment, we can obtain a reasonable definition
for defining a BGP matching extension for RDFS by simply defining [[P ]]D,RDFS

G =
[[P ]]D,RRDFS

G . We allow the special ruleset clause using ruleset rdfs to conve-
niently refer to this particular ruleset. Other rulesets may be published under a Web
dereferenceable URI, e.g., using an appropriate RIF [23] syntax.

Note, eventually, that our rulesets consist of positive rules, and as such enjoy a
natural monotonicity property.
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Proposition 26 For rulesets R and R′, such that R ⊆ R′, and graph G1 and G2, if
G1 |=R G2 then G1 |=R′ G2.

Entailment regimes modeled using rulesets can thus be enlarged without retracting
former inferences. This for instance would allow to introduce tighter RDFS-entailment
approximations by extending RRDFS with further axioms, yet preserving inferred
triples.

4 Translating SPARQL into Datalog and SQL
Our extensions have been implemented by reducing both queries, datasets and rulesets
to a common ground which allows arbitrary interoperability between the three realms.
This common ground is Datalog, wherein rulesets naturally fit and SPARQL queries
can be reduced to. Subsequently, the resulting combined Datalog programs can be
evaluated over an efficient SQL interface to an underlying relational DBMS that works
as triple store.
From SPARQL to Datalog. A SPARQL queryQ is transformed into a corresponding
Datalog program DQ. The principle is to break Q down to a series of Datalog rules,
whose body is a conjunction of atoms encoding a graph pattern. DQ is mostly a plain
Datalog program in dlvhex [24] input format, i.e. Datalog with external predicates
in the dlvhex language. These are explained along with a full account of the transla-
tion in [11, 19]. Main challenges in the transformation from SPARQL to Datalog are
(i) faithful treatment of the semantics of joins over possibly unbound variables [11],
(ii) the multiset semantics of SPARQL [19], and also (iii) the necessity of Skolemiza-
tion of blank nodes in construct queries [8]. Treatment of optional statements
is carried out by means of an appropriate encoding which exploits negation as fail-
ure. Special external predicates of dlvhex are used for supporting some features of the
SPARQL language: in particular, importing RDF data is achieved using the external
&rdf predicate, which can be seen as a built-in referring to external data. Moreover,
SPARQL filter expressions are implemented using the dlvhex external &eval pred-
icate in DQ.

Let us illustrate this transformation step by an example: the following query A
asking for persons who are not named “Alice” and optionally their email addresses

select * from <http://alice.org/>
where { ?X a foaf:Person. ?X foaf:name ?N.

filter ( ?N != "Alice") optional { ?X foaf:mbox ?M } }
(7)

is translated to the program DA as follows:

(r1) "triple"(S,P,0,default) :- &rdf[ "alice.org" ](S,P,0).
(r2) answer1(X_N,X_X,default) :- "triple"(X_X,"rdf:type","foaf:Person",default),

"triple"(X_X,"foaf:name",X_N,default),
&eval[" ?N != ’Alice’ ","N", X_N ](true).

(r3) answer2(X_M,X_X,default) :- "triple"(X_X,"foaf:mbox",X_M,default).
(r4) answer_b_join_1(X_M,X_N,X_X,default) :- answer1(X_N,X_X,default),

answer2(X_M,X_X,default).
(r5) answer_b_join_1(null,X_N,X_X,default) :- answer1(X_N,X_X,default),

not answer2_prime(X_X,default).
(r6) answer2_prime(X_X,default) :- answer1(X_N,X_X,default),

answer2(X_M,X_X,default).
(r7) answer(X_M,X_N,X_X) :- answer_b_join1(X_M,X_N,X_X,default).
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where the first rule (r1) computes the predicate "triple" taking values from the
built-in predicate &rdf. This latter is generally used to import RDF statements from
the specified URI. The following rules (r2) and (r3) compute the solutions for the
filtered basic graph patterns {?X a foaf:Person. ?X foaf:name ?N. filter (?N

!= "Alice") } and {?X foaf:mbox ?M }. In particular, note here that the evaluation
of filter expressions is “outsourced” to the built-in predicate &eval, which takes a
filter expression and an encoding of variable bindings as arguments, and returns the
evaluation value (true, false or error, following the SPARQL semantics). In or-
der to emulate SPARQL’s optional patterns a combination of join and set difference
operation is used, which is established by rules (r4)–(r6). Set difference is simu-
lated by using both null values and negation as failure. According to the semantics of
SPARQL, one has to particularly take care of variables which are joined and possibly
unbound (i.e., set to the null value) in the course of this translation for the general
case. Finally, the dedicated predicate answer in rule (r7) collects the answer substi-
tutions for Q. DQ might then be merged with additional rulesets whenever Q contains
using ruleset clauses.
From Datalog to SQL. For this step we rely on the system DLVDB [25] that imple-
ments Datalog under stable model semantics on top of a DBMS of choice. DLVDB is
able to translate Datalog programs in a corresponding SQL query plan to be issued to
the underlying DBMS. RDF Datasets are simply stored in a database D, but the native
dlvhex &rdf and &eval predicates inDQ cannot be processed by DLVDB directly over
D. So, DQ needs to be post-processed before it can be converted into suitable SQL
statements.

Rule (r1) corresponds to loading persistent data into D, instead of loading triples
via the &rdf built-in predicate. In practice, the predicate "triple" occurring in pro-
gram DA is directly associated to a database table TRIPLE in D. This operation is
done off-line by a loader module which populates the TRIPLE table accordingly, while
(r1) is removed from the program. The &eval predicate calls are recursively broken
down into WHERE conditions in SQL statements, as sketched below when we discuss
the implementation of filter statements.

After post-processing, we obtain a program D′Q, which DLVDB allows to be exe-
cuted on a DBMS by translating it to corresponding SQL statements. D′Q is coupled
with a mapping file which defines the correspondences between predicate names ap-
pearing in D′Q and corresponding table and view names stored in the DBMS D.

For instance, the rule (r4) of DA, results in the following SQL statement issued
to the RDBMS by DLVDB :

INSERT INTO answer_b_join_1
SELECT DISTINCT answer2_p2.a1, answer1_p1.a1, answer1_p1.a2, ’default’
FROM answer1 answer1_p1, answer2 answer2_p2
WHERE (answer1_p1.a2=answer2_p2.a2)
AND (answer1_p1.a3=’default’)
AND (answer2_p2.a3=’default’)
EXCEPT (SELECT * FROM answer_b_join_1)

Whenever possible, the predicates for computing intermediate results such as answer1,
answer2, answer b join 1, . . . , are mapped to SQL views rather than materialized
tables, enabling dynamic evaluation of predicate contents on the DBMS side.9

9For instance, recursive predicates require to be associated with permanent tables, while remaining pred-
icates are normally associated to views.
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Schema rewriting. Our system allows for customizing schemes which triples are
stored in. It is known and debated [26] that in choosing the data scheme of D several
aspects have to be considered, which affect performance and scalability when handling
large-scale RDF data. A widely adopted solution is to exploit a single table storing
quadruples of form (s, p, o, c) where s, p, o and c are, respectively, the triple subject,
predicate, object and context the triple belongs to. This straightforward representation
is easily improved [27] by avoiding to store explicitly string values referring to URIs
and literals. Instead, such values are replaced with a corresponding hash value.

Other approaches suggest alternative data structures, e.g., property tables [27, 26].
These aim at denormalizing RDF graphs by storing them in a flattened representation,
trying to encode triples according to the hidden “schema” of RDF data. Similarly to
a traditional relational schema, in this approach D contains a table per each known
property name (and often also per class, splitting up the rdf:type table).

Our system gives sufficient flexibility in order to program different storage schemes:
while on higher levels of abstraction data are accessible via the 4-ary triple predicate,
a schema rewriter module is introduced in order to match D′Q to the current database
scheme. This module currently adapts D′Q by replacing constant IRIs and literals with
their corresponding hash value, and introducing further rules which translate answers,
converting hash values back to their original string representation.
Magic sets. Notably, DLVDB can post-process D′Q using the magic sets technique,
an optimization method well-known in the database field [28]. The optimized program
mD′Q tailors the data to be queried to an extent significantly smaller than the original
D′Q. The application of magic sets allows, e.g., to apply entailment rulesRRDFS only
on triples which might affect the answer to Q, preventing thus the full computation
and/or materialization of inferred data.
Implementation of filter statements. Evaluation of SPARQL filter statements
is pushed down to the underlying database D by translating filter expressions to appro-
priate SQL views. This allows to dynamically evaluate filter expressions on the DBMS
side. For instance, given a rule r ∈ DQ of the form

h(X,Y) :- b(X,Y), &eval[f_Y](bool).

where the &eval atom encodes the filter statement (f Y representing the filter ex-
pression), then r is translated to

h(X,Y) :- b’(X,Y).

where b’ is a fresh predicate associated via the mapping file to a database view. Such
a view defines the SQL code to be used for the computation of f Y , like

CREATE VIEW B’ AS ( SELECT X,Y FROM B WHERE F_Y )

where F Y is an appropriate translation of the SPARQL filter expression f Y at hand
to an SQL Boolean condition,10 whileB is the DBMS counterpart table of the predicate
b.

10A version of this translation can be found in [29].
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5 Experiments
In order to illustrate that our approach is practically feasible, we present a quantitative
performance comparison between our prototype system, GiaBATA, which implements
the approach outlined before, and some state-of-the-art triple stores. The test were done
on an Intel P4 3GHz machine with 1.5GB RAM under Linux 2.6.24. Let us briefly
outline the main features and versions of the triple stores we used in our comparison.
AllegroGraph works as a database and application framework for building Seman-
tic Web applications. The system assures persistent storage and RDFS++ reasoning, a
semantic extension including the RDF and RDFS constructs and some OWL constructs
(owl:sameAs, owl:inverseOf, owl:TransitiveProperty, owl:hasValue). We
tested the free Java edition of AllegroGraph 3.2 with its native persistence mecha-
nism.11

ARQ is a query engine implementing SPARQL under the Jena framework.12 It can
be deployed on several persistent storage layers, like filesystem or RDBMS, and it
includes a rule-based inference engine. Being based on the Jena library, it provides
inferencing models and enables (incomplete) OWL reasoning. Also, the system comes
with support for custom rules. We used ARQ 2.6 with RDBMS backend connected to
PostgreSQL 8.3.
GiaBATA [15] is our prototype system implementing the SPARQL extensions de-
scribed above. GiaBATA is based on a combination of the DLVDB [25] and dlvhex [24]
systems, and caters for persistent storage of both data and ontology graphs. The former
system is a variant of DLV [13] with built-in database support. The latter is a solver
for HEX-programs [24], which features an extensible plugin system which we used
for developing a rewriter-plugin able to translate SPARQL queries to HEX-programs.
The tests were done using development versions of the above systems connected to
PostgreSQL 8.3.
Sesame is an open source RDF database with support for querying and reasoning.13 In
addition to its in-memory database engine it can be coupled with relational databases or
deployed on top of file systems. Sesame supports RDFS inference and other entailment
regimes such as OWL-Horst [5] by coupling with external reasoners. Sesame provides
an infrastructure for defining custom inference rules. Our tests have been done using
Sesame 2.3 with persistence support given by the native store.

First of all, it is worth noting that all systems allow persistent storage on RDBMS.
All systems, with the exception of ours, implement also direct filesystem storage. All
cover RDFS (actually, disregarding axiomatic triples) and partial or non-standard OWL
fragments. Although all the systems feature some form of persistence, both reasoning
and query evaluation are usually performed in main memory. All the systems, except
AllegroGraph and ours, adopt a persistent materialization approach for inferring data.

All systems – along with basic inference – support named graph querying, but, with
the exception of GiaBATA, combining both features results in incomplete behavior as
described in Section 2. Inference is properly handled as long as the query ranges over
the whole dataset, whereas it fails in case of querying explicit default or named graphs.

11System available at http://agraph.franz.com/allegrograph/.
12Distributed at https://jena.svn.sourceforge.net/svnroot/jena/ARQ/.
13System available at http://www.openrdf.org/.
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Figure 2: Evaluation

That makes querying of named graphs involving inference impossible with standard
systems.

For performance comparison we rely on the LUBM benchmark suite [16]. Our tests
involve the test datasets LUBMn for n ∈ {1, 5, 10, 30} with LUBM30 having roughly
four million triples (exact numbers are reported in [16]). In order to test the additional
performance cost of our extensions, we opted for showing how the performance fig-
ures change when queries which require RDFS entailment rules (LUBM Q4-Q7) are
considered, w.r.t. queries in which rules do not have an impact (LUBM Q1-Q3, see
Appendix of [16] for the SPARQL encodings of Q1–Q7). Experiments are enough
for comparing performance trends, so we didn’t consider at this stage larger instances
of LUBM. Note that evaluation times include the data loading times. Indeed, while
former performance benchmarks do not take this aspect in account, from the semantic
point of view, pre-materialization-at-loading computes inferences needed for complete
query answering under the entailment of choice. On further reflection, dynamic query-
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ing of RDFS moves inference from this materialization to the query step, which would
result in an apparent advantage for systems that rely on pre-materialization for RDFS
data. Also, the setting of this paper assumes materialization cannot be performed una
tantum, since inferred information depends on the entailment regime of choice, and on
the dataset at hand, on a per query basis. We set a 120min query timeout limit to all
test runs.

Our test runs include the following system setup: (i) “Allegro (native)” and “Al-
legro (ordered)” (ii) “ARQ”; (iii) “GiaBATA (native)” and “GiaBATA (ordered)”; and
(iv) “Sesame”. For (i) and (iii), which apply dynamic inference mechanisms, we use
“(native)” and “(ordered)” to distinguish between executions of queries in LUBM’s
native ordering and in a optimized reordered version, respectively. The GiaBATA test
runs both use Magic Sets optimization. To appreciate the cost of RDFS reasoning for
queries Q4–Q7, the test runs for (i)–(iv) also include the loading time of the datasets,
i.e., the time needed in order to perform RDFS data materialization or to simply store
the raw RDF data.

The detailed outcome of the test results are summarized in Fig. 2. For the RDF test
queries Q1–Q3, GiaBATA is able to compete for Q1 and Q3. The systems ARQ and
Sesame turned out to be competitive for Q2 by having the best query response times,
while Allegro (native) scored worst. For queries involving inference (Q4–Q7) Alle-
gro shows better results. Interestingly, systems applying dynamic inference, namely
Allegro and GiaBATA, query pattern reordering plays a crucial role in preserving per-
formance and in assuring scalability; without reordering the queries simply timeout. In
particular, Allegro is well-suited for queries ranging over several properties of a sin-
gle class, whereas if the number of classes and properties increases (Q7), GiaBATA
exhibits better scalability. Finally, a further distinction between systems relying on
DBMS support and systems using native structures is disregarded, and since figures (in
logarithmic scale) depict overall loading and querying time, this penalizes in specific
cases those systems that use a DBMS.

6 Future Work and Conclusion
We presented a framework for dynamic querying of RDFS data, which extends SPARQL
by two language constructs: using ontology and using ruleset. The former
is geared towards dynamically creating the dataset, whereas the latter adapts the en-
tailment regime of the query. We have shown that our extension conservatively ex-
tends the standard SPARQL language and that by selecting appropriate rules in using
ruleset, we may choose varying rule-based entailment regimes at query-time. We
illustrated how such extended SPARQL queries can be translated to Datalog and SQL,
thus providing entry points for implementation and well-known optimization tech-
niques. Our initial experiments have shown that although dynamic querying does more
computation at query-time, it is still competitive for use cases that need on-the-fly
construction of datasets and entailment regimes. Especially here, query optimization
techniques play a crucial role, and our results suggest to focus further research in this
direction. Furthermore, we aim at conducting a proper computational analysis as it
has been done for Hypothetical datalog [30], in which truth of atoms is conditioned by
hypothetical additions to the dataset at hand. Likewise, our framework allows to add
ontological knowledge and rules to datasets before querying: note however that, in the
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spirit of [31], our framework allows for hypotheses (also called “premises”) on a per
query basis rather than a per atom basis.
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Abstract
In this paper we discuss the challenges of performing reasoning on large scale

RDF datasets from the Web. Using ter-Horst’s pD* fragment of OWL as a base, we
compose a rule-based framework for application to web data: we argue our deci-
sions using observations of undesirable examples taken directly from the Web. We
further temper our OWL fragment through consideration of “authoritative sources”
which counter-acts an observed behaviour which we term “ontology hijacking”:
new ontologies published on the Web re-defining the semantics of existing enti-
ties resident in other ontologies. We then present our system for performing rule-
based forward-chaining reasoning which we call SAOR: Scalable Authoritative
OWL Reasoner. Based upon observed characteristics of web data and reasoning
in general, we design our system to scale: our system is based upon a separation
of terminological data from assertional data and comprises of a lightweight in-
memory index, on-disk sorts and file-scans. We evaluate our methods on a dataset
in the order of a hundred million statements collected from real-world web sources
and present scale-up experiments on a dataset in the order of a billion statements
collected from the Web.

1 Introduction
Information attainable through the Web is unique in terms of scale and diversity. The
Semantic Web movement aims to bring order to this information by providing a stack
of technologies, the core of which is the Resource Description Framework (RDF) for
publishing data in a machine-readable format: there now exists millions of RDF data-
sources on the Web contributing billions of statements. The Semantic Web technol-
ogy stack includes means to supplement instance data being published in RDF with
∗A preliminary version of this article has been accepted at ASWC 2008 [24]. Compared to that version,

we have added significant material. The added contributions in this version include (i) a better formalisation
of authoritative reasoning, (ii) improvements in the algorithms, and (iii) respectively updated experimental
results with additional metrics on a larger dataset. We thank the anonymous reviewers of this and related
papers for their valuable feedback. This work has been supported by Science Foundation Ireland project
Lion (SFI/02/CE1/I131), European FP6 project inContext (IST-034718), COST Action “Agreement Tech-
nologies” (IC0801) and an IRCSET Postgraduate Research Scholarship.
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ontologies described in RDF Schema (RDFS) [4] and the Web Ontology Language
(OWL) [2, 41], allowing people to formally specify a domain of discourse, and provid-
ing machines a more sapient understanding of the data. In particular, the enhancement
of assertional data (i.e., instance data) with terminological data (i.e., structural data)
published in ontologies allows for deductive reasoning: i.e., inferring implicit knowl-
edge.

In particular, our work on reasoning is motivated by the requirements of the Seman-
tic Web Search Engine (SWSE) project: http://swse.deri.org/, within which
we strive to offer search, querying and browsing over data taken from the Semantic
Web. Reasoning over aggregated web data is useful, for example: to infer new asser-
tions using terminological knowledge from ontologies and therefore provide a more
complete dataset; to unite fractured knowledge (as is common on the Web in the ab-
sence of restrictive formal agreement on identifiers) about individuals collected from
disparate sources; and to execute mappings between domain descriptions and thereby
provide translations from one conceptual model to another. The ultimate goal here is
to provide a “global knowledge-base”, indexed by machines, providing querying over
both the explicit knowledge published on the Web and the implicit knowledge infer-
able by machine. However, as we will show, complete inferencing on the Web is an
infeasible goal, due firstly to the complexity of such a task and secondly to noisy web
data; we aim instead to strike a comprise between the above goals for reasoning and
what is indeed feasible for the Web.

Current systems have had limited success in exploiting ontology descriptions for
reasoning over RDF web data. While there exists a large body of work in the area of
reasoning algorithms and systems that work and scale well in confined environments,
the distributed and loosely coordinated creation of a world-wide knowledge-base cre-
ates new challenges for reasoning:

• the system has to perform on web scale, with implications on the completeness
of the reasoning procedure, algorithms and optimisations;

• the method has to perform on collaboratively created knowledge-bases, which
has implications on trust and the privileges of data publishers.

With respect to the first requirement, many systems claim to inherit their scala-
bility from the underlying storage – usually some relational database system – with
many papers having been dedicated to optimisations on database schemata and access
(c.f. [35, 44, 48, 25]). With regards the second requirement, there have been numer-
ous papers dedicated to the inter-operability of a small number of usually trustworthy
ontologies (c.f. [13, 31, 27]). We leave further discussion of related work to Section
6, except to state that the combination of web scale and web tolerant reasoning has
received little attention in the literature and that our approach is novel.

Our system, which we call “Scalable Authoritative OWL Reasoner” (SAOR), is
designed to accept as input a web knowledge-base in the form of a body of statements
as produced by a web crawl and to output a knowledge-base enhanced by forward-
chaining reasoning over a given fragment of OWL. In particular, we choose forward-
chaining to avoid the runtime complexity of query-rewriting associated with backward-
chaining approaches: in the web search scenario, the requirement for low query re-
sponse times and resource usage preclude the applicability of query-rewriting for many
reasoning tasks.
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SAOR adopts a standard rule-based approach to reasoning whereby each rule con-
sists of (i) an ‘antecedent’: a clause which identifies a graph pattern that, when matched
by the data, allows for the rule to be executed and (ii) a ‘consequent’: the statement(s)
that can be inferred given data that match the antecedent. Within SAOR, we view rea-
soning as a once-off rule-processing task over a given set of statements. Since the rules
are all known a-priori, and all require simultaneous execution, we can design a task-
specific system that offers much greater optimisations over more general rule engines.
Firstly, we categorise the known rules according to the composition of their antecedents
(e.g., with respect to arity, proportion of terminological and assertional patterns, etc.)
and optimise each group according to the observed characteristics. Secondly, we do
not use an underlying database or native RDF store and opt for implementation using
fundamental data-structures and primitive operations; our system is built from scratch
specifically (and only) for the purpose of performing pre-runtime forward-chaining
reasoning which gives us greater freedom in implementing appropriate task-specific
optimisations.

This paper is an extended version of [24], in which we presented an initial modus-
operandi of SAOR; we provided some evaluation of a set of rules which exhibited
linear scale and concluded that using dynamic index structures, in SAOR, for more
complex rulesets, was not a viable solution for a large-scale reasoner. In this paper,
we provide extended discussion of our fragment of OWL reasoning and additional mo-
tivation for our deliberate incompleteness in terms of computational complexity and
impediments posed by web data considerations. We also describe an implementation
of SAOR which abandons dynamic index structures in favour of batch processing tech-
niques known to scale: namely sorts and file-scans. We present new evaluation of the
adapted system over a dataset of 147m triples collected from 665k web sources and
also provide scale-up evaluation of our most optimised ruleset on a dataset of 1.1b
statements collected from 6.5m web sources.

Specifically, we make the following contributions in this paper:

• We discuss and apply a selected rule-based subset of OWL reasoning, i) to be
computationally efficient, ii) to avoid an explosion of inferred statements, iii) to
be tolerant to noisy web data and iv) to protect existing specifications from unde-
sirable contributions made in independent locations. That is, our system imple-
ments a positive fragment of OWL Full which has roots in ter Horst’s pD* [43]
entailment rules and our system includes analysis of the authority of sources to
counter-act the problem of ontology hijacking in web data (Section 3).

• We describe a scalable, optimised method for performing rule-based forward-
chaining reasoning for our fragment of OWL. In particular, we refine our algo-
rithm to capitalise on the similarities present in different rule antecedent patterns
and the low volume of terminological data relative to assertional data. We im-
plement the system using on-disk batch processing operations known to scale:
sorts and scans (Section 4).

• We show experimentally that a forward-chaining materialisation approach is fea-
sible on web data, showing that, by careful materialisation through our tailored
OWL ruleset, we can avoid an explosion of inferred statements. We present eval-
uation with respect to computation of our most expressive ruleset on a dataset
of 147m statements collected from 665k sources and present scale-up measure-
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ments by applying our most optimised ruleset on a dataset of 1.1b statements
collected from 6.5m sources. We also reveal that the most computationally ef-
ficient segment of our reasoning is the most productive with regards inferred
output statements (Section 5).

We discuss related work in Section 6 and conclude with Section 7.

2 Preliminaries
Before we continue, we briefly introduce some concepts prevalent throughout the pa-
per. We use notation and nomenclature as is popular in the literature, particularly from
[22].

RDF Term Given a set of URI references U , a set of blank nodes B, and a set of
literals L, the set of RDF terms is denoted by RDFT erm = U ∪ B ∪ L. The set of
blank nodes B is a set of existensially quantified variables. The set of literals is given
as L = Lp ∪ Lt, where Lp is the set of plain literals and Lt is the set of typed literals.
A typed literal is the pair l = (s,t), where s is the lexical form of the literal and t∈ U is
a datatype URI. The sets U , B, Lp and Lt are pairwise disjoint.

RDF Triple A triple t = (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an RDF
triple. In a triple (s, p, o), s is called subject, p predicate, and o object.

RDF Triple in Context/RDF Quadruple A pair (t, c) with a triple t = (s, p, o) and c
∈ U is called a triple in context c [16, 20]. We may also refer to (s, p, o, c) as the RDF
quadruple or quad q with context c.

We use the term ‘RDF statement’ to refer generically to triple or quadruple where
differentiation is not pertinent.

RDF Graph/Web Graph An RDF graph G is a set of RDF triples; that is, a subset
of (U ∪ B)× U × (U ∪ B ∪ L).

We refer to a web graph W as a graph derived from a given web location (i.e., a
given document). We call the pair (W, c) a web graphW in context c, where c is the
web location from which W is retrieved. Informally, (W, c) is represented as the set
of quadruples (tw, c) for all tw ∈ W .

Generalised Triple A triple t = (s, p, o) ∈ (U ∪B∪L)× (U ∪B∪L)× (U ∪B∪L)
is called a generalised triple.

The notions of generalised quadruple, generalised statement and generalised graph
follow naturally. Our definition of “generalised” is even more liberal than that de-
scribed in [43] wherein blank nodes are allowed in the predicate position: we also allow
literals in the subject and predicate position. Please note that we may refer generically
to a “triple”, “quadruple”, “graph” etc. where a distinction between the “generalised”
and “RDF” versions is not pertinent.
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Merge The merge M(S) of a set of graphs S is the union of the set of all graphs G′
for G ∈ S and G′ derived from G such that G′ contains a unique set of blank nodes for
S.

Web Knowledge-base Given a set SW of RDF web graphs, our view of a web
knowledge-base KB is taken as a set of pairs (W ′, c) for each W ∈ SW , where W ′
contains a unique set of blank nodes for SW and c denotes the URL location ofW .

Informally, KB is a set of quadruples retrieved from the Web wherein the set of
blank nodes are unique for a given document and triples are enhanced by means of
context which tracks the web location from which each triple is retrieved. We use the
abbreviated notation W ∈ KB or W ′ ∈ KB where we mean W ∈ SW for SW from
which KB is derived or (W ′, c) ∈ KB for some c.

Class We refer to a class as an RDF term which appears in either

• o of a triple t where p is rdf:type; or

• s of a triple t where p is rdf:type and o is rdfs:Class or :Class1.

Property We refer to a property as an RDF term which appears in either

• p of a triple t; or

• s of a triple t where p is rdf:type and o is rdf:Property.

Membership Assertion We refer to a triple t as a membership assertion of the prop-
erty mentioned in predicate position p. We refer to a triple t with predicate rdf:type
as a membership assertion of the class mentioned in the object o. For a class or property
v, we denote a membership assertion as m(v).

Meta-class A meta-class is a class of classes or properties; i.e., the members of a
meta-class are either classes or properties. The set of RDF(S) and OWL meta-classes
is as follows: {rdf:Property, rdfs:Class, rdfs:ContainerMembershipProp-
erty, :AnnotationProperty, :Class, :DatatypeProperty, :DeprecatedClass,
:DeprecatedProperty, :FunctionalProperty, :InverseFunctionalProperty,
:ObjectProperty, :OntologyProperty, :Restriction, :SymmetricProperty,
:TransitiveProperty }.

Meta-property A meta-property is one which has a meta-class as it’s domain. Meta-
properties are used to describe classes and properties. The set of RDFS and OWL meta-
properties is as follows: {rdfs:domain, rdfs:range, rdfs:subClassOf, rdfs:-
subPropertyOf, :allValuesFrom, :cardinality, :complementOf, :disjoint-
With, :equivalentClass, :equivalentProperty, :hasValue, :intersect-
ionOf, :inverseOf, :maxCardinality, :minCardinality, :oneOf, :onProp-
erty, :someValuesFrom, :unionOf}.

1Throughout this paper, we assume that http://www.w3.org/2002/07/owl# is the default
namespace with prefix “:”, i.e. we write e.g. just “:Class”, “:disjointWith”, etc. instead of us-
ing the commonly used owl: prefix. Other prefixes such as rdf:, rdfs:, foaf: are used as in other
common documents. Moreover, we often use the common abbreviation ‘a’ as a convenient shortcut for
rdf:type.
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Terminological Triple We define a terminological triple as one of the following:

1. a membership assertion of a meta-class;

2. a membership assertion of a meta-property;

3. a triple in a non-branching, non-cyclic path tr0, ..., t
r
n where tr0 = (s0, p0, o0) for

p0 ∈ {:intersectionOf, :oneOf, :unionOf }; trk = (ok−1, rdf:rest, ok)
for 1 ≤ k ≤ n, ok−1 ∈ B and on =rdf:nil; or a triple tfk = (ok, rdf:first,
ek) with ok for 0 ≤ k < n as before.

We refer to triples tr1, ..., t
r
n and all triples tfk as terminological collection triples, whereby

RDF collections are used in a union, intersection or enumeration class description.

Triple Pattern, Basic Graph Pattern A triple pattern is defined as a generalised
triple where, in all positions, variables from the infinite set V are allowed; i.e.: tp = (sv ,
pv , ov) ∈ (U ∪B ∪L∪V)× (U ∪B ∪L∪V)× (U ∪B ∪L∪V). A set (to be read as
conjunction) of triple patterns GP is also called a basic graph pattern.

We use – following SPARQL notation [38] – alphanumeric strings preceded by ‘?’
to denote variables in this paper: e.g., ?X. Following common notation, such as is used
in SPARQL [38] and Turtle2, we delimit triples in the same basic graph pattern by
‘.’ and we may group triple patterns with the same subject or same subject-predicate
using ‘;’ and ‘,’ respectively. Finally, we denote by V(tp) (or V(GP), resp.) the set of
variables appearing in tp (or in GP , resp.).

Instance A triple t = (s, p, o) (or, resp., a set of triples, i.e., a graph G) is an instance
of a triple pattern tp = (sv , pv , ov) (or, resp., of a basic graph pattern GP) if there
exists a mapping µ : V ∪ RDFT erm → RDFT erm which maps every element
of RDFT erm to itself, such that t = µ(tp) = (µ(sv), µ(pv), µ(ov)) (or, resp., and
slightly simplifying notation, G = µ(GP)).

Terminological/Assertional Pattern We refer to a terminological -triple/-graph pat-
tern as one whose instance can only be a terminological triple or, resp., a set thereof.
We denote a terminological collection pattern by ?x p (?e1, ..., ?en) . where
p ∈ {:intersectionOf, :oneOf, :unionOf } and ?ek is mapped by the object of a
terminological collection triple (ok, rdf:first, ek) for ok ∈ {o0, ..., on−1} as before.
An assertional pattern is any pattern which is not terminological.

Inference Rule We define an inference rule r as the pair (Ante, Con), where the
antecedent Ante and the consequent Con are basic graph patterns such that V(Con)
and V(Ante) are non-empty, V(Con) ⊆ V(Ante) and Con does not contain blank
nodes3. In this paper, we will typically write inference rules as:

Ante⇒ Con (1)
2http://www.dajobe.org/2004/01/turtle/
3Unlike some other rule systems for RDF, the most prominent of which being CONSTRUCT statements

in SPARQL, we forbid blank nodes; i.e., we forbid existential variables in rule consequents which would
require the “invention” of blank nodes.
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Rule Application and Closure We define a rule application in terms of the imme-
diate consequences of a rule r or a set of rules R on a graph G (here slightly abusing
the notion of the immediate consequence operator in Logic Programming: cf. for ex-
ample [30]). That is, if r is a rule of the form (1), and G is a set of RDF triples, then:

Tr(G) = {µ(Con) | ∃µ such that µ(Ante) ⊆ G}

and accordingly TR(G) =
⋃
r∈R Tr(G). Also, let Gi+1 = Gi ∪ TR(Gi) and G0 = G;

we now define the exhaustive application of the TR operator on a graph G as being
upto the least fixpoint (the smallest value for n) such that Gn = TR(Gn). We call Gn
the closure of G with respect to ruleset R, denoted as ClR(G). Note that we may also
use the intuitive notation ClR(KB), TR(KB) as shorthand for the more cumbersome
ClR(

⋃
W′∈KBW ′), TR(

⋃
W′∈KBW ′).

Ground Triple/Graph A ground triple or ground graph is one without existential
variables.

Herbrand Interpretation Briefly, a Herbrand interpretation of a graph G treats URI
references, blank nodes, typed literals and plain literals analogously as denoting their
own syntactic form. As such, a Herbrand interpretation represents a ground view of an
RDF graph where blank nodes are treated as Skolem names instead of existential vari-
ables; i.e., blank nodes are seen to represent the entities that they assert the existence
of, analogously to a URI reference. Henceforth, we view blank nodes as their Skolem
equivalents (this also applies to blank nodes as mentioned in the above notation) and
only treat the ground case of RDF graphs.

Let us elaborate in brief why this treatment of blank nodes as Skolem constants
is sufficient for our purposes. In our scenario, we perform forward-chaining materi-
alisation for query-answering and not “real” entailment checks between RDF graphs.
This enables us to treat all blank nodes as Skolem names [22]. It is well known that
simple entailment checking of two RDF graphs [22] – i.e., checking whether an RDF
graph G1 entails G2 – can be done using the ground “skolemised” version of G1. That is
G1 |= G2 iff sk(G1) |= G2. Likewise, given a set of inference rulesR, where we denote
entailment with respect to R as |=R, it is again well known that such entailment can
be reduced to simple entailment with prior computation of the inference closure with
respect to R. That is, G1 |=R G2 iff ClR(sk(G1)) |= G2, cf. [22, 18]. In this paper we
focus on the actual computation of ClR(sk(G1)) for a tailored ruleset R in between
RDFS and OWL Full.

3 Pragmatic Inferencing for the Web
In this section we discuss the inference rules which we use to approximate OWL se-
mantics and are designed for forward-chaining reasoning over web data. We justify
our selection of inferences to support in terms of observed characteristics and examples
taken from the Web. We optimise by restricting our fragment of reasoning according to
three imperatives: computational feasibility (CF) for scalability, reduced output state-
ments (RO) to ease the burden on consumer applications and, finally, web tolerance
(WT) for avoiding undesirable inferences given noisy data and protecting publishers
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from unwanted, independent third-party contributions. In particular, we adhere to the
following high-level restrictions:

1. we are incomplete (CF, RO, WT) - Section 3.1;

2. we deliberately ignore the explosive behaviour of classical inconsistency (CF,
RO, WT) - Section 3.1;

3. we follow a rule-based, finite, forward-chaining approach to OWL inference
(CF) - Section 3.2;

4. we do not invent new blank nodes (CF, RO, WT) - Section 3.2;

5. we avoid inference of extended-axiomatic triples (RO) - Section 3.2;

6. we focus on inference of non-terminological statements (CF) - Section 3.2;

7. we do not consider :sameAs statements as applying to terminological data (CF,
WT) - Section 3.2;

8. we separate and store terminological data in-memory (CF) - Section 3.3;

9. we support limited reasoning for non-standard use of the RDF(S) and OWL
vocabularies (CF, RO, WT) - Section 3.3;

10. we ignore non-authoritative (third-party) terminological statements from our
reasoning procedure to counter an explosion of inferred statements caused by
hijacking ontology terms (RO, WT) - Section 3.4.

3.1 Infeasibility of Complete Web Reasoning
Reasoning over RDF data is enabled by the description of RDF terms using the RDFS
and OWL standards; these standards have defined entailments determined by their se-
mantics. The semantics of these standards differs in that RDFS entailment is defined
in terms of “if” conditions (intensional semantics), and has a defined set of complete
standard entailment rules [22]. OWL semantics uses “iff” conditions (extensional se-
mantics) without a complete set of standard entailment rules. RDFS entailment has
been shown to be decidable and in P for the ground case [43], whilst OWL Full entail-
ment is known to be undecidable [26]. Thus, the OWL standard includes two restricted
fragments of OWL whose entailment is known to be decidable from work in descrip-
tion logics: (i) OWL DL whose worst-case entailment is in NEXPTIME (ii) OWL Lite
whose worst-case entailment is in EXPTIME [26].

Although entailment for both fragments is known to be decidable, and even aside
from their complexity, most OWL ontologies crawlable on the Web are in any case
OWL Full: idealised assumptions made in OWL DL are violated by even very com-
monly used ontologies. For example, the popular Friend Of A Friend (FOAF) vo-
cabulary [5] deliberately falls into OWL Full since, in the FOAF RDF vocabulary4,
foaf:name is defined as a sub-property of the core RDFS property rdfs:label
and foaf:mbox sha1sum is defined as both an :InverseFunctionalProperty
and a :DatatypeProperty: both are disallowed by OWL DL (and, of course,

4http://xmlns.com/foaf/spec/index.rdf
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OWL Lite). In [3], the authors identified and categorised OWL DL restrictions vio-
lated by a sample group of 201 OWL ontologies (all of which were found to be in
OWL Full); these include incorrect or missing typing of classes and properties, com-
plex object-properties (e.g., functional properties) declared to be transitive, inverse-
functional datatype properties, etc. In [46], a more extensive survey with nearly 1,300
ontologies was conducted: 924 were identified as being in OWL Full.

Taking into account that most web ontologies are in OWL Full, and also the unde-
cidability/computational infeasiblity of OWL Full, one could conclude that complete
reasoning on the Web is impractical. However, again for most web documents only cat-
egorisable as OWL Full, infringements are mainly syntactic and are rather innocuous
with no real effect on decidability ([46] showed that the majority of web documents
surveyed were in the base expressivity for Description Logics after patching infringe-
ments).

The main justification for the infeasibility of complete reasoning on the Web is
inconsistency.

Consistency cannot be expected on the Web; for instance, a past web crawl of ours
revealed the following:

w3:timbl a foaf:Person; foaf:homepage <http://w3.org/> .
w3:w3c a foaf:Organization; foaf:homepage <http://w3.org/>
.
foaf:homepage a :InverseFunctionalProperty .
foaf:Organization :disjointWith foaf:Person .

These triples together infer that Tim Berners-Lee is the same as the W3C and thus
cause an inconsistency.5 Aside from such examples which arise from misunderstand-
ing of the FOAF vocabulary, there might be cases where different parties deliberately
make contradictive statements; resolution of such contradictions could involve “choos-
ing sides”. In any case, the explosive nature of contradiction in classical logics suggests
that it is not desirable within our web reasoning scenario.

3.2 Rule-based Web Reasoning
As previously alluded to, there does not exist a standard entailment for OWL suitable
to our web reasoning scenario. However, incomplete (wrt. OWL Full) rule-based
inference (i.e., reasoning as performed by logic progamming or deductive database
engines) may be considered to have greater potential for scale, following the arguments
made in [12] and may be considered to be more robust with respect to preventing
explosive inferencing through inconsistencies. Several rule expressible non-standard
OWL fragments; namely OWL-DLP [15], OWL− [10] (which is a slight extension of
OWL-DLP), OWLPrime [47], pD* [42, 43], and Intensional OWL [9, Section 9.3];
have been defined in the literature and enable incomplete but sound RDFS and OWL
Full inferences.

In [42, 43], pD* was introduced as a combination of RDFS entailment, datatype
reasoning and a distilled version of OWL with rule-expressible intensional semantics:
pD* entailment maintains the computational complexity of RDFS entailment, which
is in NP in general and P for the ground case. Such improvement in complexity has

5Tim (now the same entity as the W3C) is asserted to be a member of the two disjoint classes:
foaf:Person and foaf:Organization.

119



obvious advantages in our web reasoning scenario; thus SAOR’s approach to reasoning
is inspired by the pD* fragment to cover large parts of OWL by positive inference rules
which can be implemented in a forward-chaining engine.

Table 1 summarises the pD* ruleset. The rules are divided into D*-entailment rules
and P-entailment rules. D*-entailment is essentially RDFS entailment [22] combined
with some datatype reasoning. P-entailment is introduced in [43] as a set of rules which
applies to a property-related subset of OWL.

Given pD*, we make some amendments so as to align the ruleset with our require-
ments. Table 2 provides a full listing of our own modified ruleset, which we compare
against pD* in this section. Note that this table highlights characteristics of the rules
which we will discuss in Section 3.3 and Section 3.4; for the moment we point out that
rule′ is used to indicate an amendment to the respective pD* rule. Please also note that
we use the notation rulex* to refer to all rules with the prefix rulex.

pD* rule where
D*-entailment rules

lg ?x ?P ?l .⇒ ?v ?P :bl . ?l∈ La

gl ?x ?P :bl .⇒ ?x ?P ?l . ?l∈ L
rdf1 ?x ?P ?y .⇒ ?P a rdf:Property .
rdf2-D ?x ?P ?l .⇒ :bl ?type ?t . ?l= (s, t) ∈ Lt
rdfs1 ?x ?P ?l .⇒ :bl a Literal . ?l∈ Lp
rdfs2 ?P rdfs:domain ?C . ?x ?P ?y .⇒ ?x a ?C .
rdfs3 ?P rdfs:range ?C . ?x ?P ?y .⇒ ?y a ?C . ?y ∈ U ∪ B
rdfs4a ?x ?P ?y .⇒ ?x a rdfs:Resource .
rdfs4b ?x ?P ?y .⇒ ?y a rdfs:Resource . ?y∈ U ∪ B
rdfs5 ?P rdfs:subProperty ?Q . ?Q rdfs:subProperty ?R .⇒ ?P rdfs:subProperty ?R .
rdfs6 ?P a rdf:Property .⇒ ?P rdfs:subProperty ?P .
rdfs7 ?P rdfs:subProperty ?Q . ?x ?P ?y .⇒ ?x ?Q ?y . ?Q∈ U ∪ B
rdfs8 ?C a rdfs:Class .⇒ ?C rdfs:subClassOf rdfs:Resource .
rdfs9 ?C rdfs:subClassOf ?D . ?x a ?C .⇒ ?x a ?D .
rdfs10 ?C a rdfs:Class .⇒ ?C rdfs:subClassOf ?C .
rdfs11 ?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?E .⇒ ?C rdfs:subClassOf ?E .
rdfs12 ?P a rdfs:ContainerMembershipProperty .⇒ ?P rdfs:subPropertyOf rdfs:member .
rdfs13 ?D a rdfs:Datatype .⇒ ?D rdfs:subClassOf rdfs:Literal .

P-entailment rules
rdfp1 ?P a :FunctionalProperty . ?x ?P ?y , ?z .⇒ ?y :sameAs ?z . ?y ∈ U ∪ B
rdfp2 ?P a :InverseFunctionalProperty . ?x ?P ?z . ?y ?P ?z .⇒ ?x :sameAs ?y .
rdfp3 ?P a :SymmetricProperty . ?x ?P ?y .⇒ ?y ?P ?x . ?y ∈ U ∪ B
rdfp4 ?P a :TransitiveProperty . ?x ?P ?y . ?y ?P ?z .⇒ ?x ?P ?z .
rdfp5a ?x ?P ?y .⇒ ?x :sameAs ?x .
rdfp5b ?x ?P ?y .⇒ ?y :sameAs ?y . ?y∈ U ∪ B
rdfp6 ?x :sameAs ?y .⇒ ?y :sameAs ?x . ?y∈ U ∪ B
rdfp7 ?x :sameAs ?y . ?y :sameAs ?z .⇒ ?x :sameAs ?z .
rdfp8a ?P :inverseOf ?Q . ?x ?P ?y .⇒ ?y ?Q ?x . ?y,?Q∈ U ∪ B
rdfp8b ?P :inverseOf ?Q . ?x ?Q ?y .⇒ ?y ?P ?x . ?y ∈ U ∪ B
rdfp9 ?C a :Class ; :sameAs ?D .⇒ ?C rdfs:subClassOf ?D .
rdfp10 ?P a :Property ; :sameAs ?Q .⇒ ?P rdfs:subPropertyOf ?Q .
rdfp11 ?x :sameAs ? x . ?y :sameAs ? y . ?x ?P ?y .⇒ ? x ?P ? y . ? x ∈ U ∪ B
rdfp12a ?C :equivalentClass ?D .⇒ ?C rdfs:subClassOf ?D .
rdfp12b ?C :equivalentClass ?D .⇒ ?D rdfs:subClassOf ?C . ?D∈ U ∪ B
rdfp12c ?C rdfs:subClassOf ?D . ?D rdfs:subClassOf ?C .⇒ ?C :equivalentClass ?D .
rdfp13a ?P :equivalentProperty ?Q .⇒ ?P rdfs:subPropertyOf ?Q .
rdfp13b ?P :equivalentProperty ?Q .⇒ ?Q rdfs:subPropertyOf ?P . ?Q∈ U ∪ B
rdfp13c ?P rdfs:subPropertyOf ?Q . ?Q rdfs:subPropertyOf ?P .⇒ ?P :equivalentProperty ?Q .
rdfp14a ?C :hasValue ?y ; :onProperty ?P . ?x ?P ?y .⇒ ?x a ?C .
rdfp14b ?C :hasValue ?y ; :onProperty ?P . ?x a ?C .⇒ ?x ?P ?y . ?P∈ U ∪ B
rdfp15 ?C :someValuesFrom ?D ; :onProperty ?P . ?x ?P ?y . ?y a ?D .⇒ ?x a ?C .
rdfp16 ?C :allValuesFrom ?D ; :onProperty ?P . ?x a ?C; ?P ?y .⇒ ?y a ?D . ?y∈ U ∪ B

Table 1: Ter-Horst rules from [42, 43] in Turtle-style syntax
a :bl is a surrogate blank node given by an injective function on the literal ?l
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SAOR rule where
R0 : only terminological patterns in antecedent

rdfc0 ?C :oneOf (?x1 ... ?xn) .⇒ ?x1 ... ?xn a ?C . ?C ∈ B

R1 : at least one terminological/only one assertional pattern in antecedent
rdfs2 ?P rdfs:domain ?C . ?x ?P ?y .⇒ ?x a ?C .
rdfs3′ ?P rdfs:range ?C . ?x ?P ?y .⇒ ?y a ?C .
rdfs7′ ?P rdfs:subPropertyOf ?Q . ?x ?P ?y .⇒ ?x ?Q ?y .
rdfs9 ?C rdfs:subClassOf ?D . ?x a ?C .⇒ ?x a ?D .
rdfp3′ ?P a :SymmetricProperty . ?x ?P ?y .⇒ ?y ?P ?x .
rdfp8a′ ?P :inverseOf ?Q . ?x ?P ?y .⇒ ?y ?Q ?x .
rdfp8b′ ?P :inverseOf ?Q . ?x ?Q ?y .⇒ ?y ?P ?x .
rdfp12a′ ?C :equivalentClass ?D . ?x a ?C .⇒ ?x a ?D .
rdfp12b′ ?C :equivalentClass ?D . ?x a ?D .⇒ ?x a ?C .
rdfp13a′ ?P :equivalentProperty ?Q . ?x ?P ?y .⇒ ?y ?Q ?x .
rdfp13b′ ?P :equivalentProperty ?Q . ?x ?Q ?y .⇒ ?y ?P ?x .
rdfp14a′ ?C :hasValue ?y ; :onProperty ?P . ?x ?P ?y .⇒ ?x a ?C . ?C ∈ B
rdfp14b′ ?C :hasValue ?y ; :onProperty ?P . ?x a ?C .⇒ ?x ?P ?y . ?C ∈ B
rdfc1 ?C :unionOf (?C1...?Ci...?Cn) . ?x a ?Cia .⇒ ?x a ?C . ?C ∈ B
rdfc2 ?C :minCardinality 1 ; :onProperty ?P . ?x ?P ?y .⇒ ?x a ?C . ?C ∈ B
rdfc3a ?C :intersectionOf (?C1 ... ?Cn) . ?x a ?C .⇒ ?x a ?C1, ..., ?Cn . ?C ∈ B
rdfc3b ?C :intersectionOf (?C1) . ?x a ?C1 .⇒ ?x a ?C . b ?C ∈ B

R2 : at least one terminological/multiple assertional patterns in antecedent
rdfp1′ ?P a :FunctionalProperty . ?x ?P ?y , ?z .⇒ ?y :sameAs ?z .
rdfp2 ?P a :InverseFunctionalProperty . ?x ?P ?z . ?y ?P ?z .⇒ ?x :sameAs ?y .
rdfp4 ?P a :TransitiveProperty . ?x ?P ?y . ?y ?P ?z .⇒ ?x ?P ?z .
rdfp15′ ?C :someValuesFrom ?D ; :onProperty ?P . ?x ?P ?y . ?y a ?D .⇒ ?x a ?C . ?C ∈ B
rdfp16′ ?C :allValuesFrom ?D ; :onProperty ?P . ?x a ?C ; ?P ?y .⇒ ?y a ?D . ?C ∈ B
rdfc3c ?C :intersectionOf (?C1 ... ?Cn) . ?x a ?C1, ..., ?Cn .⇒ ?x a ?C . ?C ∈ B
rdfc4a ?C :cardinality 1 ; :onProperty ?P . ?x a ?C ; ?P ?y , ?z .⇒ ?y :sameAs ?z . ?C ∈ B
rdfc4b ?C :maxCardinality 1 ; :onProperty ?P . ?x a ?C ; ?P ?y , ?z .⇒ ?y :sameAs ?z . ?C ∈ B

R3 : only assertional patterns in antecedent
rdfp6′ ?x :sameAs ?y .⇒ ?y :sameAs ?x .
rdfp7 ?x :sameAs ?y . ?y :sameas ?z .⇒ ?x :sameAs ?z .
rdfp11′ ?x :sameAs ? x ; ?P ?y .⇒ ? x ?P ?y . c

rdfp11′′ ?y :sameAs ? y . ?x ?P ?y .⇒ ?x ?P ? y . c

Table 2: Supported rules in Turtle-style syntax. Terminological patterns are underlined
whereas assertional patterns are not; further, rules are grouped according to arity of ter-
minological/assertional patterns in the antecedent. The source of a terminological pattern
instance must speak authoritatively for at least one boldface variable binding for the rule
to fire.

a?Ci ∈ {?C1, ..., ?Cn}
brdfs3b is a special case of rdfs3c with one A-Box pattern and thus falls underR1.
cOnly where ?p is not an RDFS/OWL property used in any of our rules (e.g., see PSAOR, Section 3.3)

pD* Rules Directly Supported From the set of pD* rules, we directly support rules
rdfs2, rdfs9, rdfp2, rdfp4, rdfp7, and rdfp17.

pD* Omissions: Extended-Axiomatic Statements We avoid pD* rules which specif-
ically produce what we term extended-axiomatic statements mandated by RDFS and
OWL semantics. Firstly, we do not infer the set of pD* axiomatic triples, which are
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listed in [43, Table 3] and [43, Table 6] for RDF(S) and OWL respectively; according
to pD*, these are inferred for the empty graph. Secondly, we do not materialise mem-
bership assertions for rdfs:Resource which would hold for every URI and blank
node in a graph. Thirdly, we do not materialise reflexive :sameAs membership as-
sertions, which again hold for every URI and blank node in a graph. We see such
statements as inflationary and orthogonal to our aim of reduced output.

pD* Amendments: :sameAs Inferencing From the previous set of omissions, we
do not infer reflexive :sameAs statements. However, such reflexive statements are
required by pD* rule rdfp11. We thus fragment the rule into rdfp11′ and rdfp11′′
which allows for the same inferencing without such reflexive statements.

In a related issue, we wittingly do not allow :sameAs inferencing to interfere
with terminological data: for example, we do not allow :sameAs inferencing to af-
fect properties in the predicate position of a triple or classes in the object position
of an rdf:type triple. In [23] we showed that :sameAs inferencing through :In-

verseFunctionalProperty reasoning caused fallacious equalities to be asserted
due to noisy web data. This is the primary motivation for us also omitting rules rdfp9,
rdfp10 and the reason why we place the restriction on ?p for our rule rdfp11′′; we
do not want noisy equality inferences to be reflected in the terminological segment
of our knowledge-base, nor to affect the class and property positions of membership
assertions.

pD* Omissions: Terminological Inferences From pD*, we also omit rules which
infer only terminological statements: namely rdf1, rdfs5, rdfs6, rdfs8, rdfs10, rdfs11,
rdfs12, rdfs13, rdfp9, rdfp10, rdfp12* and rdfp13*. As such, our use-case is query-
answering over assertional data; we therefore focus in this paper on materialising as-
sertional data.

We have already motivated omission of inference through :sameAs rules rdfp9
and rdfp10. Rules rdf1, rdfs8, rdfs12 and rdfs13 infer memberships of, or sub-
class/subproperty relations to, RDF(S) classes and properties; we are not interested
in these primarily syntactic statements which are not directly used in our inference
rules. Rules rdfs6 and rdfs10 infer reflexive memberships of rdfs:subPropertyOf
and rdfs:subClassOf meta-properties which are used in our inference rules; clearly
however, these reflexive statements will not lead to unique assertional inferences through
related rules rdfs7′ or rdfs9 respectively. Rules rdfs5 and rdfs11 infer transitive mem-
berships again of rdfs:subPropertyOf and rdfs:subClassOf; again however,
exhaustive application of rules rdfs7′ or rdfs9 respectively ensures that all possible
assertional inferences are materialised without the need for the transitive rules. Rules
rdfp12c and rdfp13c infer additional :equivalentClass/:equivalentProperty
statements from rdfs:subClassOf/rdfs:subPropertyOf statements where asser-
tional inferences can instead be conducted through two applications each of rules rdfs9
and rdfs7′ respectively.

pD* Amendments: Direct Assertional Inferences The observant reader may have
noticed that we did not dismiss inferencing for rules rdfp12a,rdfp12b/rdfp13a,rdfp13b
which translate :equivalentClass/:equivalentProperty to rdfs:subClassOf/
rdfs:subPropertyOf. In pD*, these rules are required to support indirect asser-
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tional inferences through rules rdfs9 and rdfs7 respectively; we instead support as-
sertional inferences directly from the :equivalentProperty/:equivalentClass
statements using symmetric rules rdfp12a′,rdfp12b′/rdfp13a′,rdfp13b′.

pD* Omissions: Existential Variables in Consequent We avoid rules with existen-
tial variables in the consequent; such rules would require adaptation of the Tr operator
so as to “invent” new blank nodes for each rule application, with undesireable effects
for forward-chaining reasoning regarding termination. For example, like pD*, we only
support inferences in one direction for :someValuesFrom and avoid a rule such as:

?C :someValuesFrom ?D ; :onProperty ?P . ?x a ?C ⇒ ?x ?P
:b . :b a ?D .

Exhaustive application of the rule to, for example, the following data (more generally
where ?D is a subclass of ?C):

ex:Person rdfs:subClassOf [:someValuesFrom ex:Person ;
:onProperty ex:mother .] .

_:Tim a ex:Person .

would infer infinite triples of the type:
:Tim ex:mother :b0 .
:b0 a ex:Person ; ex:mother :b1 .
:b1 a ex:Person ; ex:mother :b2 .
...

In fact, this rule is listed in [43] as rdf-svx which forms an extension of pD* en-
tailment called pD*sv. This rule is omitted from pD* and from SAOR due to obvious
side-effects on termination and complexity.

Unlike pD*, we also avoid inventing so called “surrogate” blank nodes for the pur-
poses of representing a literal in intermediary inferencing steps (Rules lg, gl, rdf2-D,
rdfs1 in RDFS/D* entailment). Thus, we also do not support datatype reasoning (Rule
rdf2-D) which involves the creation of surrogate blank nodes. Although surrogate
blank nodes are created according to a direct mapping from a finite set of literals (and
thus, do not prevent termination), we view “surrogate statements” as inflationary.

pD* Amendments: Relaxing Literal Restrictions Since we do not support surro-
gate blank nodes as representing literals, we instead relax restrictions placed on pD*
rules. In pD*, blank nodes are allowed in the predicate position of triples; however,
the restriction on literals in the subject and predicate position still applies: literals are
restricted from travelling to the subject or predicate position of a consequent (see where
column, Table 1). Thus, surrogate blank nodes are required in pD* to represent literals
in positions where they would otherwise not be allowed.

We take a different approach whereby we allow literals directly in the subject and
predicate position for intermediate inferences. Following from this, we remove pD* lit-
eral restrictions on rules rdfs3, rdfs7, rdfp1, rdfp3, rdfp6, rdfp8*, rdfp14b, rdfp16
for intermediate inferences and omit any inferred non-RDF statements from being writ-
ten to the final output.
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Additions to pD* In addition to pD*, we also include some “class based entailment”
from OWL, which we call C-entailment. We name such rules using the rdfc* stem,
following the convention from P-entailment. We provide limited support for enumer-
ated classes (rdfc0), union class descriptions (rdfc1), intersection class descriptions
(rdfc3*)6, as well as limited cardinality constraints (rdfc2, rdfc4*).

pD* Amendments: Enforcing OWL Abstract Syntax Restrictions Finally, unlike
pD*, we enforce blank nodes as mandated by the OWL Abstract Syntax [37], wherein
certain abstract syntax constructs (most importantly in our case: unionOf(description1

. . . descriptionn), intersectionOf(description1...descriptionn), oneOf(iID1...iIDn), re-
striction(ID allValuesFrom(range)), restriction(ID someValuesFrom(required)), restric-
tion(ID value(value)), restriction(ID maxCardinality(max)), restriction(ID minCardi-
nality(min)), restriction(ID cardinality(card)) and SEQ item1...itemn) are strictly mapped
to RDF triples with blank nodes enforced for certain positions: such mapping is neces-
sitated by the idiosyncrasies of representing OWL in RDF. Although the use of URIs
in such circumstances is allowed by RDF, we enforce the use of blank nodes for ter-
minological patterns in our ruleset; to justify, let us look at the following problematic
example of OWL triples taken from two sources:

Example 20 :
# FROM SOURCE <ex:>

ex:Person :onProperty ex:parent ; :someValuesFrom ex:Person .

# FROM SOURCE <ex2:>

ex:Person :allValuesFrom ex2:Human . 3

According to the abstract syntax mapping, neither of the restrictions should be iden-
tified by a URI (if blank nodes were used instead of ex:Person as mandated by the
abstract syntax, such a problem could not occur as each web-graph is given a unique set
of blank nodes). If we consider the RDF-merge of the two graphs, we will be unable to
distinguish which restriction the :onProperty value should be applied to. As above,
allowing URIs in these positions would enable “syntactic interference” between data
sources. Thus, in our ruleset, we always enforce blank-nodes as mandated by the OWL
abstract syntax; this specifically applies to pD* rules rdfp14*, rdfp15 and rdfp16 and
to all of our C-entailment rules rdfc*. We denote the restrictions in the where col-
umn of Table 2. Indeed, in our treatment of terminological collection statements, we
enforced blank nodes in the subject position of rdf:first/rdf:rest membership
assertions, as well as blank nodes in the object position of non-terminating rdf:rest

statements; these are analogously part of the OWL abstract syntax restrictions.

3.3 Separation of T-Box from A-Box
Aside from the differences already introduced, our primary divergence from the pD*
fragment and traditional rule-based approaches is that we separate terminological data

6In [43], rules using RDF collection constructs were not included (such as our rules rdfc0,rdfc1,rdfc3*)
as they have variable antecedent-body length and, thus, can affect complexity considerations. It was in-
formally stated that :intersectionOf and :unionOf could be supported under pD* through re-
duction into subclass relations; however no rules were explicitly defined and our rule rdfc3b could not be
supported in this fashion. We support such rules here since we are not so concerned for the moment with
theoretical worst-case complexity, but are more concerned with the practicalities of web reasoning.
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from assertional data according to their use of the RDF(S) and OWL vocabulary; these
are commonly known as the “T-Box” and “A-Box” respectively (loosely borrowing
Description Logics terminology). In particular, we require a separation of T-Box data
as part of a core optimisation of our approach; we wish to perform a once-off load of
T-Box data from our input knowledge-base into main memory.

Let PSAOR and CSAOR, resp., be the exact set of RDF(S)/OWL meta-properties
and -classes used in our inference rules; viz. PSAOR = { rdfs:domain, rdfs:ran-

ge, rdfs:subClassOf, rdfs:subPropertyOf, :allValuesFrom, :cardi-

nality, :equivalentClass, :equivalentProperty, :hasValue, :inter-

sectionOf, :inverseOf, :maxCardinality, :minCardinality, :oneOf,

:onProperty, :sameAs, :someValuesFrom, :unionOf } and, resp., CSAOR =
{ :FunctionalProperty, :InverseFunctionalProperty, :SymmetricPro-

perty, :TransitiveProperty }; our T-Box is a set of terminological triples re-
stricted to only include membership assertions for PSAOR and CSAOR and the set of
terminological collection statements. Table 2 identifies T-Box patterns by underlining.
Statements from the input knowledge-base that match these patterns are all of the T-
Box statements we consider in our reasoning process: inferred statements or statements
that do not match one of these patterns are not considered being part of the T-Box, but
are treated purely as assertional. We now define our T-Box:

Definition 24 (T-Box) Let TG be the union of all graph pattern instances from a graph
G for a terminological (underlined) graph pattern in Table 2; i.e., TG is itself a graph.
We call TG the T-Box of G.

Also, let PdomPSAOR = { rdfs:domain, rdfs:range, rdfs:subPropertyOf,

:equivalentProperty, :inverseOf } and PranPSAOR = { rdfs:subProperty-
Of, :equivalentProperty, :inverseOf, :onProperty }, We call φ a prop-
erty in T-Box T if there exists a triple t∈ T where

• s = φ and p∈ PdomPSAOR

• p∈ PranPSAOR and o = φ

• s = φ, p=rdf:type and o∈ CSAOR

Similarly, let PdomCSAOR = { rdfs:subClassOf, :allValuesFrom, :cardi-

nality, :equivalentClass, :hasValue, :intersectionOf, :maxCardi-

nality, :minCardinality, :oneOf, :onProperty, :someValuesFrom, :-

unionOf }, PranCSAOR = { rdf:first, rdfs:domain, rdfs:range, rdfs:sub-

ClassOf, :allValuesFrom, :equivalentClass, :someValuesFrom }. We
call χ a class in T-Box T if there exists a triple t∈ T where

• p∈ PdomCSAOR and s = χ

• p∈ PranCSAOR and o = χ

We define the signature of a T-Box T to be the set of all properties and classes in
T as above, which we denote by sig(T ).

For our knowledge-base KB, we define our T-Box T as the set of all pairs (TW′ , c)
where (W ′, c) ∈ KB and TW′ 6= ∅. Again, we may use the intuitive notation TW′ ∈
T. We define our A-Box A as containing all of the statements in KB, including T
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and the set of class and property membership assertions possibly using identifiers in
PSAOR ∪ CSAOR; i.e., unlike description logics, our A is synonymous with our KB.
We use the term A-Box to distinguish data that are stored on-disk (which includes
T-Box data also stored in memory).

We now define our notion of a T -split inference rule, whereby part of the an-
tecedent is a basic graph pattern strictly instantiated by a static T-Box T .

Definition 25 (T -split inference rule) We define a T -split inference rule as a triple
(AnteT ,AnteG , Con), where AnteT is a basic graph pattern matched by a static T-
Box T and AnteG is matched by data in the graph G, Con does not contain blank
nodes, V(Con) 6= ∅, V(Con) ⊆ V(AnteT ) ∪ V(AnteG); also, if both AnteT and
AnteG are non-empty, then V(AnteT ) ∩ V(AnteG) 6= ∅

We generally write (AnteT ,AnteG , Con) as AnteTAnteG ⇒ Con where Table 2
follows this convention. We callAnteT the terminological or T-Box antecedent pattern
and AnteG the assertional or A-Box antecedent pattern.

We now define three disjoint sets of T -split rules which consist of only a T-Box
graph pattern, both a T-Box and A-Box graph pattern and only an A-Box graph pattern:

Definition 26 (Rule-setsRT ,RT G ,RG) We define RT as the set of T -split rules for
which AnteT 6= ∅ and AnteG = ∅. We define RT G as the set of T -split rules for
which AnteT 6= ∅ and AnteG 6= ∅. We defineRG as the set of T -split rules for which
AnteT = ∅ and AnteG 6= ∅.

In Table 2, we categorise the T -split rules into four rulesets: R0 ⊂ RT ; R1 ⊂
RT G where |AnteG | = 1; R2 ⊂ RT G where |AnteG | > 1 and R0 ⊂ RG . We now
introduce the notion of a T -split inference rule application for a graph G w.r.t. a T-Box
T :

Definition 27 (T -split inference rule application) We define a T -split rule applica-
tion to be Tr(T ,G) for r = (AnteT ,AnteG , Con) as follows:

Tr(T ,G) = {µ(Con) | ∃µ such that µ(AnteT ) ⊆ T and µ(AnteG) ⊆ G}

Again, TR(T ,G) =
⋃
r∈R Tr(T ,G); also, given T as static, the exhaustive appli-

cation of the TR(T ,G) up to the least fixpoint is called the T -split closure of G, de-
noted asClR(T ,G). Again we use abbreviations such as TR(T,KB) andClR(T,KB),
where KB should be interpreted as

⋃
W′∈KBW ′ and T as

⋃
TW′∈T TW′ .

Please note that since we enforce blank nodes in all positions mandated by the
OWL abstract syntax for our rules, each instance of a given graph pattern AnteT can
only contain triples from one web graph W ′ where TW′ ∈ T. Let VB(GP) be the
set of all variables in a graph pattern GP which we restrict to only be instantiated
by a blank node according to the abstract syntax. For all AnteT in our rules where
|AnteT | > 1 let Ante−T be any proper non-empty subset of AnteT ; we can then say
that VB(Ante−T )∩VB(AnteT \Ante−T ) 6= ∅. In other words, since for every rule either
(i) AnteT = ∅; or (ii) AnteT consists of a single triple pattern; or otherwise (iii) no
sub-pattern of AnteT contains a unique set of blank-node enforced variables; then a
given instance of AnteT can only contain triples from one web-graph with unique
blank nodes as is enforced by our knowledge-base. For our ruleset, we can then say
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that TR(T,KB) = TR(
⋃
TW′∈T TW′ ,KB) =

⋃
TW′∈T TR(TW′ ,KB). In other words,

one web-graph cannot re-use structural statements in another web-graph to instantiate
a T-Box pattern in our rule; this has bearing on our notion of authoritative reasoning
which will be highlighted at the end of Section 3.4.

Further, a separate static T-Box within which inferences are not reflected has impli-
cations upon the completeness of reasoning w.r.t. the presented ruleset. Although, as
presented in Section 3.2, we do not infer terminological statements and thus can sup-
port most inferences directly from our static T-Box, SAOR still does not fully support
meta-modelling [33]: by separating the T-Box segment of the knowledge-base, we do
not support all possible entailments from the simultaneous description of both a class
(or property) and an indvidual. In other words, we do not fully support inferencing for
meta-classes or meta-properties defined outside of the RDF(S)/OWL specification.

However, we do provide limited reasoning support for meta-modelling in the spirit
of “punning” by conceptually separating the individual-, class- or property-meanings
of a resource (c.f. [14]). More precisely, during reasoning we not only store the T-Box
data in memory, but also store the data on-disk in the A-Box. Thus, we perform pun-
ning in one direction: viewing class and property descriptions which form our T-Box
also as individuals. Interestingly, although we do not support terminological reasoning
directly, we can through our limited punning perform reasoning for terminological data
based on the RDFS descriptions provided for the RDFS and OWL specifications. For
example, we would infer the following by storing the three input statements in both the
T-Box and the A-Box:

rdfs:subClassOf rdfs:domain rdfs:Class; rdfs:range rdfs:Class
.
ex:Class1 rdfs:subClassOf ex:Class2 . ⇒
ex:Class1 a rdfs:Class . ex:Class2 a rdfs:Class .

However, again our support for meta-modelling is limited; SAOR does not fully
support so-called “non-standard usage” of RDF(S) and OWL: the use of properties
and classes which make up the RDF(S) and OWL vocabularies in locations where
they have not been intended, cf. [6, 34]. We adapt and refine the definition of non-
standard vocabulary use for our purposes according to the parts of the RDF(S) and
OWL vocabularies relevant for our inference ruleset:

Definition 28 (Non-Standard Vocabulary Usage) An RDF triple t has non-standard
vocabulary usage if one of the following conditions holds:

1. a property in PSAOR appears in a position different from the predicate position.

2. a class in CSAOR appears in a position different from the object position of an
rdf:type triple.

Continuing, we now introduce the following example wherein the first input state-
ment is a case of non-standard usage with rdfs:subClassOf∈ PSAOR in the object
position:7

ex:subClassOf rdfs:subPropertyOf rdfs:subClassOf .
ex:Class1 ex:subClassOf ex:Class2 . ⇒
ex:Class1 rdfs:subClassOf ex:Class2 .

7A similar example from the Web can be found at http://thesauri.cs.vu.nl/wordnet/
rdfs/wordnet2b.owl.
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We can see that SAOR provides inference through rdfs:subPropertyOf as per
usual; however, the inferred triple will not be reflected in the T-Box, thus we are in-
complete and will not translate members of ex:Class1 into ex:Class2. As such,
non-standard usage may result in T-Box statements being produced which, according
to our limited form of punning, will not be reflected in the T-Box and will lead to
incomplete inference.

Indeed, there may be good reason for not fully supporting non-standard usage of
the ontology vocabulary: non-standard use could have unpredictable results even under
our simple rule-based entailment if we were to fully support meta-modelling. One
may consider a finite combination of only four non-standard triples that, upon naive
reasoning, would explode all web resources R by inferring |R|3 triples, namely:

rdfs:subClassOf rdfs:subPropertyOf rdfs:Resource.
rdfs:subClassOf rdfs:subPropertyOf rdfs:subPropertyOf.
rdf:type rdfs:subPropertyOf rdfs:subClassOf.
rdfs:subClassOf rdf:type :SymmetricProperty.

The exhaustive application of standard RDFS inference rules plus inference rules
for property symmetry together with the inference for class membership in rdfs:
Resource for all collected resources in typical rulesets such as pD* lead to inference
of any possible triple (r1 r2 r3) for arbitrary r1, r2, r3 ∈ R.

Thus, although by maintaining a separate static T-Box we are incomplete w.r.t non-
standard usage, we show that complete support of such usage of the RDFS/OWL vo-
cabularies is undesirable for the Web.8

3.4 Authoritative Reasoning against Ontology Hijacking
During initial evaluation of a system which implements reasoning upon the above rule-
set, we encountered a behaviour which we term “ontology hijacking”, symptomised by
a perplexing explosion of materialised statements. For example, we noticed that for a
single foaf:Person membership assertion, SAOR inferred in the order of hundreds
of materialised statements as opposed to the expected six. Such an explosion of state-
ments is orthogonal to the aim of reduced materialised statements we have outlined for
SAOR; thus, SAOR is designed to annul the diagnosed problem of ontology hijack-
ing through anaylsis of the authority of web sources for T-Box data. Before formally
defining ontology hijacking and our proposed solution, let us give some preliminary
definitions:

Definition 29 (Authoritative Source) A web-graphW from source (context) c speaks
authoritatively about an RDF term n iff:

1. n ∈ B; or

2. n ∈ U and c coincides with, or is redirected to by, the namespace9 of n.

8In any case, as we will see in Section 3.4, our application of authoritative analysis would not allow such
arbitrary third-party re-definition of core RDF(S)/OWL constructs.

9Here, slightly abusing XML terminology, by “namespace” of a URI we mean the prefix of the URI
obtained from stripping off the final NCname.
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Firstly, all graphs are authoritative for blank nodes defined in that graph (remember
that according to the definition of our knowledge-base, all blank nodes are unique to
a given graph). Secondly, we support namespace redirects so as to conform to best
practices as currently adopted by web ontology publishers.10

For example, as taken from the Web:

• Source http://usefulinc.com/ns/doap is authoritative for all classes and
properties which are within the http://usefulinc.com/ns/doap names-
pace; e.g., http://usefulinc.com/ns/doap#Project.

• Source http://xmlns.com/foaf/spec/ is authoritative for all classes and
properties which are within the http://xmlns.com/foaf/0.1/ namespace;
e.g., http://xmlns.com/foaf/0.1/knows; since the property http://xmlns.
com/foaf/0.1/knows redirects to http://xmlns.com/foaf/spec/.

We consider the authority of sources speaking about classes and properties in our
T-Box to counter-act ontology hijacking; ontology hijacking is the assertion of a set of
non-authoritative T-Box statements such that could satisfy the T-Box antecedent pattern
of a rule in RTG (i.e., those rules with at least one terminological and at least one
assertional triple pattern in the antecedent). Such third-party sources can then cause
arbitrary inferences on membership assertions of classes or properties (contained in
the A-Box) for which they speak non-authoritatively. We can say that only rules in
RTG are relevant to ontology hijacking since: (i) inferencing on RG, which does not
contain any T-Box patterns, cannot be affected by non-authoritative T-Box statements;
and (ii) the RT ruleset does not contain any A-Box antecedent patterns and therefore,
cannot directly hijack assertional data (i.e., in our scenario, the :oneOf construct can
be viewed as directly asserting memberships, and is unable, according to our limited
support, to directly redefine sets of individuals). We now define ontology hijacking:

Definition 30 (Ontology Hijacking) Let TW be the T-Box extracted from a web-graph
W and let ŝig(W) be the set of classes and properties for whichW speaks authorita-
tively; then if ClRT G (TW ,G) 6= G for any G not mentioning any element of ŝig(W),
we say that web-graphW is performing ontology hijacking.

In other words, ontology hijacking is the contribution of statements about classes
and/or properties in a non-authoritative source such that reasoning on those classes
and/or properties is affected. One particular method of ontology hijacking is defining
new super-classes or properties of third-party classes or properties.

As a concrete example, if one were to publish today a description of a property
in an ontology (in a location non-authoritative for foaf: but authoritative for my:),
my:name, within which the following was stated: foaf:name rdfs:subPropertyOf

my:name ., that person would be hijacking the foaf:name property and effecting
the translation of all foaf:name statements in the web knowledge-base into my:name

statements as well.
However, if the statement were my:name rdfs:subPropertyOf foaf:name.

instead, this would not constitute a case of ontology hijacking but would be a valid ex-
ample of translating from a local authoritative property into an external non-authoritative
property.

10See Appendix A&B of http://www.w3.org/TR/swbp-vocab-pub/

129



Ontology hijacking is problematic in that it vastly increases the amount of state-
ments that are materialised and can potentially harm inferencing on data contributed
by other parties. With respect to materialisation, the former issue becomes promi-
nent: members of classes/properties from popular/core ontologies get translated into a
plethora of conceptual models described in obscure ontologies; we quantify the prob-
lem in Section 5. However, taking precautions against harmful ontology hijacking is
growing more and more important as the Semantic Web features more and more atten-
tion; motivation for spamming and other malicious activity propagates amongst certain
parties with ontology hijacking being a prospective avenue. With this in mind, we as-
sign sole responsibility for classes and properties and reasoning upon their members to
those who maintain the authoritative specification.

Related to the idea of ontology hijacking is the idea of “non-conservative exten-
sion” described in the Description Logics literature: cf. [13, 31, 27]. However, the
notion of a “conservative extension” was defined with a slightly different objective in
mind: according to the notion of deductively conservative extensions, a graph Ga is
only considered malicious towards Gb if it causes additional inferences with respect to
the intersection of the signature of the original Gb with the newly inferred statements.
Returning to the former my:name example from above, defining a super-property of
foaf:name would still constitute a conservative extension: the closure without the
non-authoritative foaf:name rdfs:subPropertyOf my:name . statement is the
same as the closure with the statement after all of the my:name membership assertions
are removed. However, further stating that my:name a :InverseFunctionalPro-

perty. would not satisfy a model conservative extension since members of my:name
might then cause equalities in other remote ontologies as side-effects, independent from
the newly defined signature. Summarising, we can state that every non-conservative ex-
tension (with respect to our notion of deductive closure) constitutes a case of ontology
hijacking, but not vice versa; non-conservative extension can be considered “harmful”
hijacking whereas the remainder of ontology hijacking cases can be considered “infla-
tionary”.

To negate ontology hijacking, we only allow inferences through authoritative rule
applications, which we now define:

Definition 31 (Authoritative Rule Application) Again let ŝig(W) be the set of classes
and properties for whichW speaks authoritatively and let TW be the T-Box ofW . We
define an authoritative rule application for a graph G w.r.t. the T-Box TW to be a
T -split rule application Tr(TW ,G) where additionally, if both AnteT and AnteG are
non-empty (r ∈ RT G), then for the mapping µ of Tr(TW ,G) there must exist a variable
v ∈ (V(AnteT ) ∩ V(AnteG)) such that µ(v) ∈ ŝig(W). We denote an authoritative
rule application by Tbr(TW ,G).

In other words, an authoritative rule application will only occur if the rule consists
of only assertional patterns (RG); or the rules consists of only terminological patterns
(RT ); or if in application of the rule, the terminological pattern instance is from a web-
graph authoritative for at least one class or property in the assertional pattern instance.
The T bR operator follows naturally as before for a set of authoritative rules R̂, as does
the notion of authoritative closure which we denote byCl bR(TW ,G). We may also refer
to, e.g., T bR(T,KB) and Cl bR(T,KB) as before for a T -split rule application.

Table 2 identifies the authoritative restrictions we place on our rules wherein the
underlined T-Box pattern is matched by a set of triples from a web-graph W iff W
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speaks authoritatively for at least one element matching a boldface variable in Table 2;
i.e., again, for each rule, at least one of the classes or properties matched by the A-Box
pattern of the antecedent must be authoritatively spoken for by an instance of the T-Box
pattern. These restrictions only apply toR1 andR2 (which are both a subset ofRT G).
Please note that, for example in rule rdfp14b′ where there are no boldface variables,
the variables enforced to be instantied by blank nodes will always be authoritatively
spoken for: a web-graph is always authoritative for its blank nodes.

We now make the following proposition relating to the prevention of ontology-
hijacking through authoritative rule application:

Proposition 27 Given a T-Box TW extracted from a web-graph W and any graph G
not mentioning any element of ŝig(W), then ClR̂T G (TW ,G) = G.

Proof: Informally, our proposition is that the authoritative closure of a graph G w.r.t.
some T-Box TW will not contain any inferences which constitute ontology hijacking,
defined in terms of ruleset RT G . Firstly, from Definition 26, for each rule r ∈ RT G ,
AnteT 6= ∅ and AnteG 6= ∅. Therefore, from Definitions 27 & 31, for an authori-
tative rule application to occur for any such r, there must exist (i) a mapping µ such
that µ(AnteT , ) ⊆ TW and µ(AnteG) ⊆ G; and (ii) a variable v ∈ (V(AnteT ) ∩
V(AnteG)) such that µ(v) ∈ ŝig(W). However, since G does not mention any element
of ŝig(W), then there is no such mapping µ where µ(v) ∈ ŝig(W) for v ∈ V(AnteG),
and µ(AnteG) ⊆ G. Hence, for r ∈ RT G , no such application Tbr(TW ,G) will occur;
it then follows that TR̂T G (TW ,G) = ∅ and ClR̂T G (TW ,G) = G. 2

The above proposition and proof holds for a given web-graphW; however, given
a set of web-graphs where an instance of AnteT can consist of triples from more that
one graph, it is possible for ontology hijacking to occur whereby some triples in the
instance come from a non-authoritative graph and some from an authoritative graph.
To illustrate we refer to Example 20, wherein (and without enforcing abstract syntax
blank nodes) the second source could cause ontology hijacking by interfering with the
authoritative definition of the class restriction in the first source as follows:

Example 21 :

# RULE (adapted so that ?C need not be a blank node)
?C :allValuesFrom ?D ; :onProperty ?P . ?x a ?C ; ?P ?y . ⇒ ?y a ?D .

# FROM SOURCE <ex:>

ex:Person :onProperty ex:parent .

# FROM SOURCE <ex2:>

ex:Person :allValuesFrom ex2:Human .

# ASSERTIONAL
:Jim a ex:Person ; ex:parent :Jill .

⇒ :Jill a ex2:Human . 3

Here, the above inference is authoritative according to our definition since the instance
of AnteT (specifically the first statement from source <ex:>) speaks authorita-
tively for a class/property in the assertional data; however, the statement from source

<ex2:> is causing inferences on assertional data not containing a class or property for
which source <ex2:> is authoritative .
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As previously discussed, for our ruleset, we enforce the OWL abstract syntax and
thus we enforce that µ(AnteT ) ⊆ TW′ where TW′ ∈ T. However, where this condi-
tion does not hold (i.e., an instance ofAnteT can comprise of data from more than one
graph), then an authoritative rule application should only occur if each web-graph con-
tributing to an instance of AnteT speaks authoritatively for at least one class/property
in the AnteG instance.

4 Reasoning Algorithm
In the following we first present observations on web data that influenced the design of
the SAOR algorithm, then give an overview of the algorithm, and next discuss details
of how we handle T-Box information, perform statement-wise reasoning, and deal with
equality for individuals.

4.1 Characteristics of Web Data
Our algorithm is intended to operate over a web knowledge-base as retrieved by means
of a web crawl; therefore, the design of our algorithm is motivated by observations on
our web dataset:

1. Reasoning accesses a large slice of data in the index: we found that approxi-
mately 61% of statements in the 147m dataset and 90% in the 1.1b dataset pro-
duced inferred statements through authoritative reasoning.

2. Relative to assertional data, the volume of terminological data on the Web is
small: <0.9% of the statements in the 1.1b dataset and <1.7% of statements in
the 147m dataset were classifiable as SAOR T-Box statements11.

3. The T-Box is the most frequently accessed segment of the knowledge-base for
reasoning: although relatively small, all but the rules in R3 require access to
T-Box information.

Following from the first observation, we employ a file-scan batch-processing ap-
proach so as to enable sequential access over the data and avoid disk-lookups and
dynamic data structures which would not perform well given high disk latency; also
we avoid probing the same statements repeatedly for different rules at the low cost of
scanning a given percentage of statements not useful for reasoning.

Following from the second and third observations, we optimise by placing T-Box
data in a separate data structure accessible by the reasoning engine.

Currently, we hold all T-Box data in-memory, but the algorithm can be generalised
to provide for a caching on-disk structure or a distributed in-memory structure as needs
require.12

To be able to scale, we try to minimise the amount of main memory needed, given
that main memory is relatively expensive and that disk-based algorithms are thus more
economical [29]. Given high disk latency, we avoid using random-access on-disk data

11Includes some RDF collection fragments which may not be part of a class description
12We expect that a caching on-disk index would work well considering the distribution of membership

assertions for classes and properties in web data; there would be a high hit-rate for the cache.
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structures. In our previous work, a disk-based updateable random-access data structure
(a B+-Tree) proved to be the bottleneck for reasoning due to a high volume of inserts,
leading to frequent index reorganisations and hence inadequate performance. As a
result, our algorithms are now build upon two disk-based primitives known to scale:
file scanning and sorting.

4.2 Algorithm Overview
The SAOR algorithm performs a fixpoint computation by iteratively applying the rules
in Table 2. Figure 1 outlines the architecture. The reasoning process can be roughly
divided into the following steps:

Create
T-BoxKB T

Run R1 
Rules

Initial
Output

Consolidate 
(R3 Rules)

R3
Index

R2 
Index

Cl ( , )

Run R2/R3 
Rules Processing 

step

Data
structure

Data flow

Update R2/
R3 Indices

Section 4.3

Section 4.4

Section 4.5

Section 4.6

^

Run R0 
Rules

Figure 1: High-level architecture

1. Separate T from KB, build in-memory representation T, and apply ruleset R0
(Section 4.3).

2. Perform reasoning over KB in a statement-wise manner (Section 4.4):

• Execute rules with only a single A-Box triple pattern in the antecedent
(R1): join A-Box pattern with in-memory T-Box; recursively execute steps
over inferred statements; write inferred RDF statements to output file.

• Write on-disk files for computation of rules with multiple A-Box triple
patterns in the antecedent (R2); when a statement matches one of the A-
Box triple patterns for these rules and the necessary T-Box join exists, the
statement is written to the on-disk file for later rule computation.
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• Write on-disk equality file for rules which involve equality reasoning (R3);
:sameAs statements found during the scan are written to an on-disk file
for later computation.

3. Execute ruleset R2 ∪ R3: on-disk files containing partial A-Box antecedent
matches for rules in R2 and R3 are sequentially analysed producing further
inferred statements. Newly inferred statements are again subject to step 2 above;
fresh statements can still be written to on-disk files and so the process is iterative
until no new statements are found (Section 4.5).

4. Finally, consolidate source data along with inferred statements according to :sameAs
computation (R3) and write to final output (Section 4.6).

In the following sections, we discuss the individual components and processes in
the architecture as highlighted, whereafter, in Section 4.7 we show how these elements
are combined to achieve closure.

4.3 Handling Terminological Data
In the following, we describe how to separate the T-Box data and how to create the data
structures for representing the T-Box.

T-Box data from RDFS and OWL specifications can be acquired either from con-
ventional crawling techniques, or by accessing the locations pointed to by the derefer-
enced URIs of classes and properties in the data. We assume for brevity that all of the
pertinent terminological data have already been collected and exist in the input data.
If T-Box data are sourced separately via different means we can build an in-memory
representation directly, without requiring the first scan of all input data.

We apply the following algorithm to create the T-Box in-memory representation,
which we will analyse in the following sections:

1. FULL SCAN 1: separate T-Box information as described in Definition 24.

2. TBOX SCAN 1 & 2: reduce irrelevant RDF collection statements.

3. TBOX SCAN 3: perform authoritative analysis of the T-Box data and load in-
memory representation.

4.3.1 Separating and Reducing T-Box Data

Firstly, we wish to separate all possible T-Box statements from the main bulk of data.
PSAOR and CSAOR are stored in memory and then the data dump is scanned. Quadru-
ples with property ∈ PSAOR ∪ {rdf:first, rdf:rest } or rdf:type statements
with object ∈ CSAOR (which, where applicable, abide by the OWL abstract syntax) are
buffered to a T-Box data file.

However, the T-Box data file still contains a large amount of RDF collection state-
ments (property ∈ { rdf:first, rdf:rest }) which are not related to reasoning.
SAOR is only interested in such statements wherein they form part of a :unionOf,
:intersectionOf or :oneOf class description. Later when the T-Box is being
loaded, these collection fragments are reconstructed in-memory and irrelevant collec-
tion fragments are discarded; to reduce the amount of memory required we can quickly
discard irrelevant collection statements through two T-Box scans:
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• scan the T-Box data and store contexts of statements where the property ∈ {
:unionOf, :intersectionOf, :oneOf }.

• scan the T-Box data again and remove statements for which both hold:

– property ∈ { rdf:first, rdf:rest }
– the context does not appear in those stored from the previous scan.

These scans quickly remove irrelevant collection fragments where a :unionOf,
:intersectionOf, :oneOf statement does not appear in the same source as the frag-
ment (i.e., collections which cannot contribute to the T-Box pattern of one of our rules).

4.3.2 Authoritative Analysis

We next apply authoritative analysis to the T-Box and load the results into our in-
memory representation; in other words, we build an authoritative T-Box which pre-
computes authority of T-Box data. We denote our authoritative T-Box by T̂, whereby
Cl bR(T,KB) = ClR(T̂,KB); for each rule, T̂ only contains T-Box pattern instances for
AnteT which can lead to an authoritative rule application.

Each statement read is initially matched without authoritative analysis against the
patterns enumerated in Table 3. If a pattern is initially matched, the positions required
to be authoritative, as identified in boldface, are checked. If one such authoritative
check is satified, the pattern is loaded into the T-Box. Indeed the same statement may
be matched by more than one T-Box pattern for different rules with different author-
itative restrictions; for example the statement foaf:name :equivalentProperty

my:name . retrieved from my: namespace matches the T-Box pattern of rules rdfp13a′
& rdfp13b′, but only conforms to the authoritative restriction for rule rdfp13b′. There-
fore, we only store the statement in such a fashion as to apply to rule rdfp13b′; that is,
the authoritative T-Box stores T-Box pattern instances separately for each rule, accord-
ing to the authoritative restrictions for that rule.

Checking the authority of a source for a given namespace URI, as presented in
Definition 29, may require a HTTP connection to the namespace URI so as to deter-
mine whether a redirect exists to the authoritative document (HTTP Response Code
303). Results of accessing URIs are cached once in-memory so as to avoid establish-
ing repetitive connections. If the pattern is authoritatively matched, the statement is
reflected in the in-memory T-Box. Alternatively, where available, a crawler can pro-
vide a set of redirect pairs which can be loaded into the system to avoid duplicating
HTTP lookups; we presume for generality that such information is not provided.

4.3.3 In-Memory T-Box

Before we proceed, we quickly discuss the storage of :oneOf constructs in the T-
Box for rule rdfc0. Individuals (?x1 ... ?xn) are stored with pointers to the
one-of class ?C. Before input data are read, these individuals are asserted to be of
the rdf:type of their encompassing one-of class.

Besides the one-of support, for the in-memory T-Box we employ two separate
hashtables, one for classes and another for properties, with RDF terms as key and
a Java representation of the class or property as value. The representative Java ob-
jects contain labelled links to related objects as defined in Table 3. The property and
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R0

rdfc0 ?C :oneOf (?x1 ... ?xn) . (?x1 ... ?xn) rdfc0→ ?C

R1

rdfs2 ?P rdfs:domain ?C . ?P rdfs2→ ?C
rdfs3′ ?P rdfs:range ?C . ?P rdfs3′→ ?C
rdfs7′ ?P rdfs:subPropertyOf ?Q . ?P rdfs7′→ ?Q
rdfs9 ?C rdfs:subClassOf ?D . ?C rdfs9→ ?D
rdfp3′ ?P a :SymmetricProperty . ?P rdfp3′→ TRUE

rdfp8a′ ?P :inverseOf ?Q . ?P rdfp8a′→ ?Q
rdfp8b′ ?P :inverseOf ?Q . ?Q rdfp8b′→ ?P
rdfp12a′ ?C :equivalentClass ?D . ?C rdfp12a′→ ?D
rdfp12b′ ?C :equivalentClass ?D . ?D rdfp12b′→ ?C
rdfp13a′ ?P :equivalentProperty ?Q . ?P rdfp13a′→ ?Q
rdfs13b′ ?P :equivalentProperty ?Q . ?Q rdfs13b′→ ?P

rdfp14a′ ?C :hasValue ?y ; :onProperty ?P . ?P rdfp14a′→ { ?C, ?y }
rdfp14b′ ?C :hasValue ?y ; :onProperty ?P . ?C

rdfp14b′→ { ?P, ?y }
rdfc1 ?C :unionOf (?C1...?Ci...?Cn) . ?Ci

rdfc1→ ?C
rdfc2 ?C :minCardinality 1 ; :onProperty ?P . ?P rdfc2→ ?C
rdfc3a ?C :intersectionOf (?C1 ... ?Cn) . ?C rdfc3a→ { ?C1, ..., ?Cn }
rdfc3b ?C :intersectionOf (?C1) . ?C1

rdfc3b→ ?C

R2

rdfp1′ ?P a :FunctionalProperty . ?P rdfp1′→ TRUE

rdfp2 ?P a :InverseFunctionalProperty . ?P rdfp2→ TRUE

rdfp4 ?P a :TransitiveProperty . ?P rdfp4→ TRUE

rdfp15′ ?C :someValuesFrom ?D ; :onProperty ?P . ?P rdfp15′↔ ?D rdfp15′→ ?C
rdfp16′ ?C :allValuesFrom ?D ; :onProperty ?P . ?P

rdfp16′↔ ?C
rdfp16′→ ?D

rdfc3c ?C :intersectionOf (?C1 ... ?Cn) . { ?C1, ..., ?Cn }
rdfc3c→ ?C

rdfc4a ?C :cardinality 1 ; :onProperty ?P . ?C rdfc4a↔ ?P
rdfc4b ?C :maxCardinality 1 ; :onProperty ?P . ?C rdfc4b↔ ?P

Table 3: T-Box statements and how they are used to wire the concepts contained in the
in-memory T-Box.

class objects are designed to contain all of the information required for reasoning on a
membership assertion of that property or class: that is, classes/properties satisfying the
A-Box antecedent pattern of a rule are linked to the classes/properties appearing in the
consequent of that rule, with the link labelled according to that rule. During reasoning,
the class/property identifier used in the membership assertion is sent to the correspond-
ing hashtable and the returned internal object used for reasoning on that assertion. The
objects contain the following:

• Property objects contain the property URI and references to objects representing
domain classes (rdfs2), range classes (rdfs3′), super properties (rdfs7′), inverse
properties (rdfs8*) and equivalent properties (rdfp13*). References are kept to
restrictions where the property in question is the object of an :onProperty
statement (rdfp14a, rdfp16′, rdfc2, rdfc4*). Where applicable, if the prop-
erty is part of a some-values-from restriction, a pointer is kept to the some-
values-from class (rdfp15′). Boolean values are stored to indicate whether the
property is functional (rdfp1′), inverse-functional (rdfp2), symmetric (rdfp3′)
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and/or transitive (rdfp4).

• Class objects contain the class URI and references to objects representing super
classes (rdfs9), equivalent classes (rdfp12*) and classes for which this class
is a component of a union (rdfc1) or intersection (rdfc3b/c). On top of these
core elements, different references are maintained for different types of class
description:

– intersection classes store references to their constituent class objects (rdfc3a)

– restriction classes store a reference to the property the restriction applies
to (rdfp14b′, rdfp15′, rdfc2, rdfc4*) and also, if applicable to the type of
restriction:

∗ the values which the restriction property must have (rdfp14b′)
∗ the class for which this class is a some-values-from restriction value

(rdfp15′)

Figure 2 provides a UML-like representation of our T-Box, including multiplicities of
the various links present between classes, properties and individuals labelled according
to Table 3 for each rule.

Class Property

RDFTerm n

RDFTerm n

bool isFunct (rdfp1')
bool isInvFunct (rdfp2)
bool isSym (rdfp3')
bool isTrans (rdfp4)

rdfc4*,rdfp16'

rdfs2,rdfs3'

rdfs9,rdfp12*,
rdfc1,rdfc3a,rdfc3c

0…* 0...1

0…* 0…*

rdfp14a',rdfc2
0…10…*

rdfp15'
0…* 0…*

rdfp14b'
0…10…*

0…* 0…*

rdfs7',rdfp13*,
rdfp8a',rdfp8b'

0…* 0…*

rdfc3b

0…* 0...1

Class
Hashtable

RDFTerm n
......

... ...

1

1

Property
Hashtable

RDFTerm n
......

... ...

1

1

Individual
Hashtable

RDFTerm n
......

... ... 1

1

Individual
RDFTerm n

rdfc0
0…*

0…*

rdfp14b'
0…1

0…*

rdfp14a'

0…1

0…*

Figure 2: In-memory T-Box structure

The algorithm must also performs in-memory joining of collection segments ac-
cording to rdf:first and rdf:rest statements found during the scan for the pur-
poses of building union, intersection and enumeration class descriptions. Again, any
remaining collections not relevant to the T-Box segment of the knowledge-base (i.e.,
not terminological collection statements) are discarded at the end of loading the input
data; we also discard cyclic and branching lists as well as any lists not found to end
with the rdf:nil construct.

We have now loaded the final T-Box for reasoning into memory; this T-Box will
remain fixed throughout the whole reasoning process.
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4.4 Initial Input Scan
Having loaded the terminological data, SAOR is now prepared for reasoning by statement-
wise scan of the assertional data.

Figure 3: ReasonStatement(s)

We provide the high-level flow for reasoning over an input statement s in Func-
tion ReasonStatement(s), cf. Figure 3. The reasoning scan process can be described
as recursive depth-first reasoning whereby each unique statement produced is again
input immediately for reasoning. Statements produced thus far for the original input
statement are kept in a set to provide uniqueness testing and avoid cycles; a uniquing
function is also maintained for a common subject group in the data, ensuring that state-
ments are only produced once for that statement group. Once all of the statements
produced by a rule have been themselves recursively analysed, the reasoner moves on
to analysing the proceeding rule and loops until no unique statements are inferred. The
reasoner then processes the next input statement.

There are three disjoint categories of statements which require different handling:
namely (i) rdf:type statements, (ii) :sameAs statements, (iii) all other statements.
We assume disjointness between the statement categories: we do not allow any ex-
ternal extension of the core rdf:type/:sameAs semantics (non-standard use / non-
authoritative extension). Further, the assertions about rdf:type in the RDFS specifi-
cation define the rdfs:domain and rdfs:range of rdf:type as being rdfs:Resource
and rdfs:Class; since we are not interested in inferring membership of such RDFS
classes we do not subject rdf:type statements to property-based entailments. The
only assertions about :sameAs from the OWL specification define domain and range
as :Thing which we ignore by the same justification.

The rdf:type statements are subject to class-based entailment reasoning and re-
quire joins with class descriptions in the T-Box. The :sameAs statements are handled
by ruleset R3, which we discuss in Section 4.6. All other statements are subject to
property-based entailments and thus requires joins with T-Box property descriptions.

Ruleset R2 ∪ R3 cannot be computed solely on a statement-wise basis. Instead,
for each rule, we assign an on-disk file (blocked and compressed to save disk space).
Each file contains statements which may contribute to satisfying the antecedent of its
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pertinent rule. During the scan, if an A-Box statement satisfies the necessary T-Box
join for a rule, it is written to the index for that rule. For example, when the statement

ex:me foaf:isPrimaryTopicOf ex:myHomepage .

is processed, the property object for foaf:isPrimaryTopicOf is retrieved from the
T-Box property hashtable. The object states that this property is of type :InverseFunc-

tionalProperty (
rdfp2→ TRUE). The rule cannot yet be fired as this statement alone does

not satisfy the A-Box segment of the antecedent of rdfp2 and the method is privy to
only one A-Box statement at a time. When, later, the statement:

ex:me2 foaf:isPrimaryTopicOf ex:myHomepage .

is found, it also is written to the same file – the file now contains sufficient data to
(although it cannot yet) fire the rule and infer:

ex:me :sameAs ex:me2 .

During the initial scan and inferencing, all files for rulesetR2 ∪R3 are filled with
pertinent statements analogously to the example above. After the initial input state-
ments have been exhausted, these files are analysed to infer, for example, the :sameAs
statement above.

4.5 On-Disk A-Box Join Analysis
In this section, we discuss handling of the on-disk files containing A-Box statements
for ruleset R2 ∪ R3. We firstly give a general overview of the execution for each rule
using an on-disk file and then look at the execution of each rule.

R2
rdfp1′ ?x ?P ?y , ?z . SPOC
rdfp2 ?x ?P ?z . ?y ?P ?z . OPSC
rdfp4 ?x ?P ?y . ?y ?P ?z . SPOC & OPSC
rdfp15′ ?x ?P ?y . ?y a ?D . SPOC / OPSC
rdfp16′ ?x a ?C ; ?P ?y . SPOC
rdfc3c ?x a ?C1, ..., ?Cn . SPOC
rdfc4a ?x a ?C ; ?P ?y , ?z . SPOC
rdfc4b ?x a ?C ; ?P ?y , ?z . SPOC

R3
rdfp7 ?x :sameAs ?y . ?y :sameas ?z . SPOC & OPSC
rdfp11′ ?x :sameAs ? x ; ?P ?y . SPOC
rdfp11′′ ?y :sameAs ? y . ?x ?P ?y . SPOC / OPSC

Table 4: Table enumerating the A-Box joins to be computed using the on-disk files with
key join position in boldface font and sorting order required for statements to compute
join.

Table 4 presents the joins to be executed via the on-disk files for each rule: the key
join variables, used for computing the join, are shown in boldface. In this table we
refer to SPOC and OPSC sorting order: these can be intuitively interpreted as quads
sorted according to subject, predicate, object, context (natural sorting order) and object,
predicate, subject, context (inverse sorting order) respectively. For the internal index
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files, we use context to encode the sorting order of a statement and the iteration in
which it was added; only joins with at least one new statement from the last iteration
will infer novel output.

Again, an on-disk file is dedicated for each rule/join required. The joins to be
computed are a simple “star shaped” join pattern or “one-hop” join pattern (which we
reduce to a simple star shaped join computation by inverting one one or more patterns
to inverse order). The statements in each file are initially sorted according to the key
join variable. Thus, common bindings for the key join variable are grouped together
and joins can be executed by means of sequential scan for common key join variable
binding groups.

We now continue with a more detailed description of the process for each rule
beginning with the more straightforward rules.

4.5.1 Functional Property Reasoning - Rule rdfp1′

From the initial input scan, we have a file containing only statements with functional
properties in the predicate position (as described in Section 4.4). As can be seen from
Table 4, the key join variable is in the subject position for all A-Box statements in the
pattern. Thus, we can sort the file according to SPOC (natural) order. The result is a file
where all statements are grouped according to a common subject, then predicate, then
object. We can now scan this file, storing objects with a common subject-predicate.
We can then fire the rule stating equivalence between these objects.

4.5.2 Inverse Functional Reasoning - Rule rdfp2

Reasoning on statements containing inverse functional properties is conducted analo-
gously to functional property reasoning. However, the key join variable is now in the
object position for all A-Box statements in the pattern. Thus, we instead sort the file
according to OPSC (inverse) order and scan the file inferring equivalence between the
subjects for a common object-predicate group.

4.5.3 Intersection Class Reasoning - Rule rdfc3c

The key join variable for rule rdfc3c is in the subject position for all A-Box triple
patterns. Thus we can sort the file for the rule (filled with memberships assertions
for classes which are part of some intersection) according to SPOC order. We can
scan common subject-predicate (in any case, the predicates all have value rdf:type)
groups storing the objects (all types for the subject resource which are part of an inter-
section). The containing intersection for each type can then be retrieved (through rdfc3c→ )
and the intersection checked to see if all of it’s constituent types have been satisfied. If
so, membership of the intersection is inferred.

4.5.4 All-Values-From Reasoning - Rule rdfp16′

Again, the key join variable for rule rdfp16′ is in the subject position for all A-Box
triple patterns and again we can sort the file according to SPOC order. For a common
subject group, we store rdf:type values and also all predicate/object edges for the
given subject. For every member of an all-values-from restriction class (as is given by
all of the rdf:type statements in the file according to the join with the T-Box on the
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?C position), we wish to infer that objects of the :onProperty value (as is given by
all the non-rdf:type statements according to the T-Box join with ?P – where ?P is

linked from ?C with
rdfp16′→ ) are of the all-values-from class. Therefore, for each re-

striction membership assertion, the objects of the corresponding :onProperty-value
membership-assertions are inferred to be members of the all-values-from object class
(?D).

4.5.5 Some-Values-From Reasoning - Rule rdfp15′

For some-values-from reasoning, the key join variable is in the subject position for
rdf:type statements (all membership assertions of a some-values-from object class)
but in the object position for the :onProperty value membership assertions. Thus,
we order class membership assertions in the file according to natural SPOC order and
property membership assertions according to inverse OPSC order. In doing so, we
can scan common ?y binding groups in the file, storing rdf:type values and also all
predicate/subject edges. For every member of a some-values-from object class (as is
given by all of the rdf:type statements in the file according to the join with the T-Box
on the ?D position), we infer that subjects of the :onProperty-value statements (as
is given by all the non-rdf:type statements according to the T-Box join with ?P) are
members of the restriction class (?C).

4.5.6 Transitive Reasoning (Non-Symmetric) - Rule rdfp4

Transitive reasoning is perhaps the most challenging to compute: the output of rule
rdfp4 can again recursively act as input to the rule. For closure, recursive application
of the rule must be conducted in order to traverse arbitrarily long transitive paths in the
data.

Firstly, we will examine sorting order. The key join variable is in the subject po-
sition for one pattern and in the object position for the second pattern. However, both
patterns are identical: a statement which matches one pattern will obviously match the
second. Thus, every statement in the transitive reasoning file is duplicated with one
version sorted in natural SPOC order, and another in inverse OPSC.

Take, for example, the following triples where ex:comesBefore is asserted in the
T-Box as being of type :TransitiveProperty:

# INPUT:

ex:a ex:comesBefore ex:b .
ex:b ex:comesBefore ex:c .
ex:c ex:comesBefore ex:d .

In order to compute the join, we must write the statements in both orders, using the
context to mark which triples are in inverse order, and sort them accordingly (for this
internal index, we temporarily relax the requirement that context is a URI).

# SORTED FILE - ITERATION 1:13

ex:a ex:comesBefore ex:b :spoc1 .
ex:b ex:comesBefore ex:a :opsc1 .
ex:b ex:comesBefore ex:c :spoc1 .
ex:c ex:comesBefore ex:b :opsc1 .

13In N-Quads format: c.f. http://sw.deri.org/2008/07/n-quads/
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ex:c ex:comesBefore ex:d :spoc1 .
ex:d ex:comesBefore ex:c :opsc1 .

The data, as above, can then be scanned and for each common join-binding/predicate
group (e.g., ex:b ex:comesBefore), the subjects of statements in inverse order (e.g.,
ex:a) can be linked to the object of naturally ordered statements (e.g., ex:c) by the
transitive property. However, such a scan will only compute a single one-hop join.
From above, we only produce:

# OUTPUT - ITERATION 1 / INPUT - ITERATION 2

ex:a ex:comesBefore ex:c .
ex:b ex:comesBefore ex:d .

We still not have not computed the valid statement ex:a ex:comesBefore ex:d

. which requires a two hop join. Thus we must iteratively feedback the results from
one scan as input for the next scan. The output from the first iteration, as above, is also
reordered and sorted as before and merge-sorted into the main SORTED FILE.

# SORTED FILE - ITERATION 2:

ex:a ex:comesBefore ex:b :spoc1 .
ex:a ex:comesBefore ex:c :spoc2 .
ex:b ex:comesBefore ex:a :opsc1 .
ex:b ex:comesBefore ex:c :spoc1 .
ex:b ex:comesBefore ex:d :spoc2 .
ex:c ex:comesBefore ex:a :opsc2 .
ex:c ex:comesBefore ex:b :opsc1 .
ex:c ex:comesBefore ex:d :spoc1 .
ex:d ex:comesBefore ex:b :opsc2 .
ex:d ex:comesBefore ex:c :opsc1 .

The observant reader may already have noticed from above that we also mark the
context with the iteration for which the statement was added. In every iteration, we only
compute inferences which involve the delta from the last iteration; thus the process is
comparable to semi-naı̈ve evaluation. Only joins containing at least one newly added
statement are used to infer new statements for output. Thus, from above, we avoid
repeat inferences from ITERATION 1 and instead infer:

# OUTPUT - ITERATION 2:

ex:a ex:comesBefore ex:d .

A fixpoint is reached when no new statements are inferred. Thus we would require
another iteration for the above example to ensure that no new statements are inferable.
The number of iterations required is in O(log n) according to the longest unclosed
transitive path in the input data. Since the algorithm requires scanning of not only the
delta, but also the entire data, performance using on-disk file scans alone would be
sub-optimal. For example, if one considers that most of the statements constitute paths
of, say ≤8 vertices, one path containing 128 vertices would require four more scans
after the bulk of the paths have been closed.

With this in mind, we accelerate transitive closure by means of an in-memory tran-
sitivity index. For each transitive property found, we store sets of linked lists which
represent the graph extracted for that property. From the example INPUT from above,
we would store.

ex:comesBefore -- ex:a -> ex:b -> ex:c -> ex:d
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From this in-memory linked list, we would then collapse all paths of length ≥2 (all
paths of length 1 are input statements) and infer closure at once:

# OUTPUT - ITERATION 1 / INPUT - ITERATION 2

ex:a ex:comesBefore ex:c .
ex:a ex:comesBefore ex:d .
ex:b ex:comesBefore ex:d .

Obviously, for scalability requirements, we do not expect the entire transitive body
of statements to fit in-memory. Thus, before each iteration we calculate the in-memory
capacity and only store a pre-determined number of properties and vertices. Once the
in-memory transitive index is full, we infer the appropriate statements and continue
by file-scan. The in-memory index is only used to store the delta for a given iteration
(everything for the first iteration). Thus, we avoid excess iterations to compute closure
of a small percentage of statements which form a long chain and greatly accelerate the
fixpoint calculation.

4.5.7 Transitive Reasoning (Symmetric) - Rules rdfp3′/rdfp4

We use a separate on-disk file for membership assertions of properties which are both
transitive and symmetric. A graph of symmetric properties is direction-less, thus the
notion of direction as evident above though use of inverted ordered statements is un-
necessary. Instead, all statements and their inverses (computed from symmetric rule
rdfp3′) are written in natural SPOC order and direct paths are inferred between all
objects in a common subject/predicate group. The in-memory index is again similar to
above; however, we instead use a direction-less doubly-linked list.

4.6 Equality Reasoning
Thus far, we have not considered :sameAs entailment, which is supported in SAOR
through rules inR3. Prior to executing rules rdfp11′ & rdfp11′′, we must first perform
symmetric transitive closure on the list of all :sameAs statements (rules rdfp6′ &
rdfp7). Thus, we use an on-disk file analogous to that described in Section 4.5.7.

However, for rules rdfp6′ & rdfp7, we do not wish to experience an explosion
of inferencing through long equivalence chains (lists of equivalent individuals where
there exists a :sameAs path from each individual to every other individual). The clo-
sure of a symmetric transitive chain of n vertices results in n(n−1) edges or statements
(ignoring reflexive statements). For example, in [23] we found a chain of 85,803 equiv-
alent individuals inferable from a web dataset.14 Naı̈vely applying symmetric transitive
reasoning as discussed in Section 4.5.7 would result in a closure of 7.362b :sameAs

statements for this chain alone.
Similarly, :sameAs entailment, as according to rules rdfp11′ & rdfp11′′, dupli-

cates data for all equivalent individuals which could result in a massive amount of du-
plicate data (particularly when considering uniqueness on a quad level: i.e., including
duplicate triples from different sources). For example, if each of the 85,803 equivalent
individuals had attached an average of 8 unique statements, then this could equate to
8*85,803*85,803 = 59b inferred statements.

14This is from incorrect use of the FOAF ontology by prominent exporters. We refer the interested reader
to [23]
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Obviously, we must avoid the above scenarios, so we break from complete infer-
ence with respect to the rules inR3. Instead, for each set of equivalent individuals, we
chose a pivot identifier to use in rewriting the data. The pivot identifier is used to keep
a consistent identifier for the set of equivalent individuals: the alphabetically highest
pivot is chosen for convenience of computation. For alternative choices of pivot iden-
tifiers on web data see [23]. We use the pivot identifier to consolidate data by rewriting
all occurrences of equivalent identifiers to the pivot identifier (effectively merging the
equivalent set into one individual).

Thus, we do not derive the entire closure of :sameAs statements as indicated in
rules rdfp6′ & rdfp7 but instead only derive an equivalence list which points from
equivalent identifiers to their pivots. As highlighted, use of a pivot identifier is nec-
essary to reduce the amount of output statements, effectively compressing equivalent
resource descriptions: we hint here that a fully expanded view of the descriptions could
instead be supported through backward-chaining over the semi-materialised data.

To achieve the pivot compressed inferences we use an on-disk file containing :sameAs
statements. Take for example the following statements:

# INPUT

ex:a :sameAs ex:b .
ex:b :sameAs ex:c .
ex:c :sameAs ex:d .

We only wish to infer the following output for the pivot identifier ex:a:
# OUTPUT PIVOT EQUIVALENCES

ex:b :sameAs ex:a .
ex:c :sameAs ex:a .
ex:d :sameAs ex:a .

The process is the same as that for symmetric transitive reasoning as described
before: however, we only close transitive paths to nodes with the highest alphabetical
order. So, for example, if we have already materialised a path from ex:d to ex:a we
ignore inferring a path from ex:d to ex:b as ex:b > ex:a.

To execute rules rdfp11′ & rdfp11′′ and perform “consolidation” (rewriting of
equivalent identifiers to their pivotal form), we perform a zig-zag join: we sequentially
scan the :sameAs inference output as above and an appropriately sorted file of data,
rewriting the latter data according to the :sameAs statements. For example, take the
following statements to be consolidated:

# UNCONSOLIDATED DATA

ex:a foaf:mbox <mail@example.org> .
...
ex:b foaf:mbox <mail@example.org> .
ex:b foaf:name "Joe Bloggs" .
...
ex:d :sameAs ex:b .
...
ex:e foaf:knows ex:d .

The above statements are scanned sequentially with the closed :sameAs pivot out-
put from above. For example, when the statement ex:b foaf:mbox <mailto:mail-

@example.org> . is first read from the unconsolidated data, the :sameAs index is
scanned until ex:b :sameAs ex:a . is found (if ex:b is not found in the:sameAs
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file, the scan is paused when an element above the sorting order of ex:b is found).
Then, ex:b is rewritten to ex:a.

# PARTIALLY CONSOLIDATED DATA
ex:a foaf:mbox <mail@example.org> .
...
ex:a foaf:mbox <mail@example.org> .
ex:a foaf:name "Joe Bloggs" .
...
ex:a :sameAs ex:b .
...
ex:e foaf:knows ex:d .

We have now executed rule rdfp11′ and have the data partially consolidated as
shown. However, the observant reader will notice that we have not consolidated the
object of the last two statements. We must sort the data again according to inverse
OPSC order and again sequentially scan both the partially consolidated data and the
:sameAs pivot equivalences, this time rewriting ex:b and ex:d in the object position
to ex:a and producing the final consolidated data. This equates to executing rule
rdfp11′′.

For the purposes of the on-disk files for computing rules requiring A-Box joins,
we must consolidate the key join variable bindings according to the :sameAs state-
ments found during reasoning. For example consider the following statements in the
functional reasoning file:

ex:a ex:mother ex:m1 .
ex:b ex:mother ex:m2 .

Evidently, rewriting the key join position according to our example pivot file will
lead to inference of:

ex:m1 :sameAs ex:m2 .

which we would otherwise miss. Thus, whenever the index of :sameAs statements
is changed, for the purposes of closure it is necessary to attempt to rewrite all join index
files according to the new :sameAs statements. Since we are, for the moment, only
concerned with consolidating on the join position we need only apply one consolidation
scan.

The final step in the SAOR reasoning process is to finalise consolidation of the
initial input data and the newly inferred output statements produced by all rules from
scanning and on-disk file analysis. Although we have provided exhaustive application
of all inferencing rules, and we have the complete set of :sameAs statements, elements
in the input and output files may not be in their equivalent pivotal form. Therefore, in
order to ensure proper consolidation of all of the data according to the final set of
:sameAs statements, we must firstly sort both input and inferred sets of data in SPOC
order, consolidate subjects according to the pivot file as above; sort according to OPSC
order and consolidate objects.

However, one may notice that :sameAs statements in the data become consoli-
dated into reflexive statements: i.e., from the above example ex:a :sameAs ex:a.
Thus, for the final output, we remove any :sameAs statements in the data and in-
stead merge the statements contained in our final pivot :sameAs equivalence index,
and their inverses, with the consolidated data. These statements retain the list of all
possible identifiers for a consolidated entity in the final output.
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4.7 Achieving Closure
We conclude this section by summarising the approach, detailing the overall fixpoint
calculations (as such, putting the jigsaw together) and detailing how closure is achieved
using the individual components. Along these lines, in Figure 4 we provide a summary
of the algorithmic steps seen so far and, in particular, show the fixpoint calculations
involved for exhaustive application of rulesetR2∪R3; we compute one main fixpoint
over all of the operations required, within which we also compute two local fixpoints.

Firstly, since all rules in R2 are dependant on :sameAs equality, we perform
:sameAs inferences first. Thus, we begin closure onR2∪R3 with a local equality fix-
point which (i) executes all rules which produce :sameAs inferences (rdfp1′,rdfp2,rdfc4*);
(ii) performs symmetric-transitive closure using pivots on all :sameAs inferences; (iii)
rewrites rdfp1′, rdfp2 and rdfc4* indexes according to :sameAs pivot equivalences
and (iv) repeats until no new :sameAs statements are produced.

Next, we have a local transitive fixpoint for recursively computing transitive prop-
erty reasoning: (i) the transitive index is rewritten according to the equivalences found
through the above local fixpoint; (ii) a transitive closure iteration is run, output in-
ferences are recursively fed back as input; (iii) ruleset R1 is also recursively applied
over output from previous step whereby the output from ruleset R1 may also write
new statements to any R2 index. The local fixpoint is reached when no new transitive
inferences are computed.

Finally, we conclude the main fixpoint by running the remaining rules: rdfp15′,
rdfp16′ and rdfc3c. For each rule, we rewrite the corresponding index according to
the equivalences found from the first local fixpoint, run the inferencing over the index
and send output for reasoning through rulesetR1. Statements inferred directly from the
rule index, or through subsequent application of rulesetR1, may write new statements
for R2 indexes. This concludes one iteration of the main fixpoint, which is run until
no new statements are inferred.

For each rulesetR0− 3, we now justify our algorithm in terms of our definition of
closure with respect to our static T-Box. Firstly, closure is achieved immediately upon
ruleset R0, which requires only T-Box knowledge, from our static T-Box. Secondly,
with respect to the given T-Box, every input statement is subject to reasoning according
to rulesetR1, as is every statement inferred from rulesetR0, those recursively inferred
from ruleset R1 itself, and those recursively inferred from on-disk analysis for ruleset
R1 ∪ R2. Next, every input statement is subject to reasoning according to ruleset R2
with respect to our T-Box; these again include all inferences from R0, all statements
inferred through R1 alone, and all inferences from recursive application of ruleset
R1 ∪R2.

Therefore, we can see that our algorithm applies exhaustive application of ruleset
R0 ∪ R1 ∪ R2 with respect to our T-Box, leaving only consideration of equality rea-
soning in rulesetR3. Indeed, our algorithm is not complete with respect to rulesetR3
since we choose pivot identifiers for representing equivalent individuals as justified in
Section 4.6. However, we still provide a form of “pivotal closure” whereby backward-
chaining support of rules rdfp11′ and rdfp11′′ over the output of our algorithm would
provide a view of closure as defined; i.e., our output contains all of the possible infer-
ences according to our notion of closure, but with equivalent individuals compressed
in pivotal form.

Firstly, for rules rdfp6′ and rdfp7, all statements where p = :sameAs from the
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Figure 4: SAOR reasoning algorithm
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original input or as produced byR0 ∪R1 ∪R2 undergo on-disk symmetric-transitive
closure in pivotal form. Since both rules only produce more :sameAs statements, and
according to the standard usage restriction of our closure, they are not applicable to
reasoning underR0∪R1∪R2. Secondly, we loosely apply rules rdfp11′ and rdfp11′′
such as to provide closure with respect to joins in rulesetR2; i.e., all possible joins are
computed with respect to the given :sameAs statements. Equivalence is clearly not
important to R0 since we strictly do not allow :sameAs statements to affect our T-
Box; R1 inferences do not require joins and, although the statements produced will
not be in pivotal form, they will be output and rewritten later; inferences fromR2 will
be produced as discussed, also possibly in non-pivotal form. In the final consolidation
step, we then rewrite all statements to their pivotal form and provide incoming and
outgoing :sameAs relations between pivot identifiers and their non-pivot equivalent
identifiers. This constitutes our output, which we call pivotal authoritative closure.

5 Evaluation and Discussion
We now provide evaluation of the SAOR methodology firstly with quantitative analysis
of the importance of authoritative reasoning, and secondly we provide performance
measurements and discussion along with insights into the fecundity of each rule w.r.t.
reasoning over web data. All experiments are run on one machine with a single Opteron
2.2 GHz CPU and 4 GB of main memory. We provide evaluation on two datasets:
we provide complete evaluation for a dataset of 147m statements collected from 665k
sources and scale-up experiments running scan-reasoning (rules in R0 ∪ R1) on a
dataset of 1.1b statements collected from 6.5m sources; both datasets are from web-
crawls using MultiCrawler [21].

We create a unique set of blank nodes for each graphW ′ ∈M(Sw) using a function
on c and the original blank node label which ensures a one-to-one mapping from the
original blank node labels and uniqueness of the blank nodes for a given context c.

To show the effects of ontology hijacking we constructed two T-Boxes with and
without authoritative analysis for each dataset. We then ran reasoning on single mem-
bership assertions for the top five classes and properties found natively in each dataset.
Table 5 summarises the results. Taking foaf:Person as an example, with an au-
thoritative T-Box, six statements are output for every input rdf:type foaf:Person

statement in both datasets. With the non-authoritative T-Box, 388 and 4,631 statements
are output for every such input statement for the smaller and larger datasets respec-
tively. Considering that there are 3.25m and 63.33m such statements in the respective
datasets, overall output for rdf:type foaf:Person input statements alone approach
1.26b and 293b statements for non-authoritative reasoning respectively. With authori-
tative reasoning we only produce 19.5m and 379.6m statements, a respective saving of
65x and 772x on output statement size.15

It should be noted that reasoning on a membership assertion of the top level class
(:Thing/rdfs:Resource) is very large for both the 147m (234 inferences) and the
1.1b dataset (4251 inferences). For example, in both datasets, there are many :unionOf

15For example, the document retrievable from http://pike.kw.nl/files/documents/
pietzwart/RDF/PietZwart200602.owl defines super-classes/-properties for all of the FOAF vo-
cabulary.
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147m Dataset
C |ClR1(bT, {m(C)})| |ClR1(T, {m(C)})| n n|ClR1(bT, {m(C)})| n|ClR1(T, {m(C)})|
rss:item 0 356 3,558,055 0 1,266,667,580
foaf:Person 6 388 3,252,404 19,514,424 1,261,932,752
rdf:Seq 2 243 1,934,852 3,869,704 470,169,036
foaf:Document 1 354 1,750,365 1,750,365 619,629,210
wordnet:Person 0 236 1,475,378 0 348,189,208
TOTAL 9 1,577 11,971,054 25,134,493 3,966,587,786

P |ClR1({bT,m(P )})| |ClR1(T, {m(P )})| n n|ClR1({bT,m(P )})| n|ClR1(T, {m(P )})|
dc:title* 0 14 5,503,170 0 77,044,380
dc:date* 0 377 5,172,458 0 1,950,016,666
foaf:name* 3 418 4,631,614 13,894,842 1,936,014,652
foaf:nick* 0 390 4,416,760 0 1,722,536,400
rss:link* 1 377 4,073,739 4,073,739 1,535,799,603
TOTAL 4 1,576 23,797,741 17,968,581 7,221,411,701

1.1b Dataset
C |ClR1(bT, {m(C)})| |ClR1(T, {m(C)})| n n|ClR1(bT, {m(C)})| n|ClR1(T, {m(C)})|
foaf:Person 6 4,631 63,271,689 379,630,134 293,011,191,759
foaf:Document 1 4,523 6,092,322 6,092,322 27,555,572,406
rss:item 0 4,528 5,745,216 0 26,014,338,048
oboInOwl:DbXref 0 0 2,911,976 0 0
rdf:Seq 2 4,285 2,781,994 5,563,988 11,920,844,290
TOTAL 9 17,967 80,803,197 391,286,444 358,501,946,503

P |ClR1(bT, {m(P )})| |ClR1(T, {m(P )})| n n|ClR1(bT, {m(P )})| n|ClR1(T, {m(P )})|
rdfs:seeAlso 2 8,647 113,760,738 227,521,476 983,689,101,486
foaf:knows 14 9,269 77,335,237 1,082,693,318 716,820,311,753
dc:title* 0 4,621 71,321,437 0 329,576,360,377
foaf:nick* 0 4,635 65,855,264 0 305,239,148,640
foaf:weblog 7 9,286 55,079,875 385,559,125 511,471,719,250
TOTAL 23 36,458 383,352,551 1,695,773,919 2,846,796,641,506

Table 5: Comparison of authoritative and non-authoritative reasoning for the number of unique
inferred RDF statements produced (w.r.t. ruleset R1) over the five most frequently occurring
classes and properties in both input datasets. ‘*’ indicates a datatype property where the ob-
ject of m(P ) is a literal. The amount of statements produced for authoritative reasoning for

a single membership assertion of the class or property is denoted by
˛̨̨
ClR1(bT, {m(C)})

˛̨̨
and˛̨̨

ClR1(bT, {m(P )})
˛̨̨

respectively. Non-authoritative counts are given by |ClR1(T, {m(C)})|
and |ClR1(T, {m(P )})|. n is the number of membership assertions for the class C or property
P in the given dataset.

149



class descriptions with :Thing as a member;16 for the 1.1b dataset, many inferences
on the top level classes stem from, for example, the OWL W3C Test Repository17. Of
course we do not see such documents as being malicious in any way, but clearly they
would cause inflationary inferences when naı̈vely considered as part of web knowledge-
base.

Next, we present some metrics regarding the first step of reasoning: the separation
and in-memory construction of the T-Box. For the 1.1b dataset, the initial scan of all
data found 9,683,009 T-Box statements (0.9%). Reducing the T-Box by removing col-
lection statements as described in Section 4.3.1 dropped a further 1,091,698 (11% of
total) collection statements leaving 733,734 such statements in the T-Box (67% collec-
tion statements dropped) and 8,591,311 (89%) total. Table 6 shows, for membership
assertions of each class and property in CSAOR and PSAOR, the result of applying
authoritative analysis. Of the 33,157 unique namespaces probed, 769 (2.3%) had a
redirect, 4068 (12.3%) connected but had no redirect and 28,320 (85.4%) did not con-
nect at all. In total, 14,227,116 authority checks were performed. Of these, 6,690,704
(47%) were negative and 7,536,412 (53%) were positive. Of the positive, 4,236,393
(56%) were blank-nodes, 2,327,945 (31%) were a direct match between namespace
and source and 972,074 (13%) had a redirect from the namespace to the source. In
total, 2,585,708 (30%) statements were dropped as they could not contribute to a valid
authoritative inference. The entire process of separating, analysing and loading the T-
Box into memory took 6.47 hours: the most costly operation here is the large amount
of HTTP lookups required for authoritative analysis, with many connections unsuc-
cessful after our five second timeout. The process required ∼3.5G of Java heap-space
and ∼10M of stack space.

For the 147m dataset, 2,649,532 (1.7%) T-Box statements were separated from the
data, which was reduced to 1,609,958 (61%) after reducing the amount of irrelevant
collection statements; a further 536,564 (33%) statements were dropped as they could
not contribute to a valid authoritative inference leaving 1,073,394 T-Box statements
(41% of original). Loading the T-Box into memory took approximately 1.04 hours.

We proceed by evaluating the application of reasoning over all rules on the 147m
dataset with respect to throughtput of statements written and read.

Figure 5 shows performance for reaching an overall fixpoint for application of all
rules. Clearly, the performance plateaus after 79 mins. At this point the input state-
ments have been exhausted, with rules in R0 and R1 having been applied to the input
data and statements written to the on-disk files for R2 and R3. SAOR now switches
over to calculating a fixpoint over the on-disk computed R2 and R3 rules, the results
of which become the new input for R1 and further recursive input to the R2 and R3
files.

Figure 6 shows performance specifically for achieving closure on the on-disk R2
and R3 rules. There are three pronounced steps in the output of statements. The
first one shown at (a) is due to inferencing of :sameAs statements from rule rdfp2
(:InverseFunctionalProperty - 2.1m inferences). Also part of the first step are
:sameAs inferences from rules rdfp1′ (:FunctionalProperty - 31k inferences)
and rules rdfc4* (:cardinality/:maxCardinality - 449 inferences). For the first

16Fifty-five such :unionOf class descriptions can be found in http://lsdis.cs.uga.edu/

˜oldham/ontology/wsag/wsag.owl; 34 are in http://colab.cim3.net/file/work/
SICoP/ontac/reference/ProtegeOntologies/COSMO-Versions/TopLevel06.owl.

17http://www.w3.org/2002/03owlt/
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Figure 5: Performance of applying entire ruleset on the 147m statements dataset (with-
out final consolidation step)
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Figure 6: Performance of inferencing over R2 and R3 on-disk indexes for the 147m
statements dataset (without final consolidation)
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Property AuthSub AuthObj AuthBoth AuthNone Total Drop
rdfs:subClassOf 25,076 583,399 1,595,850 1,762,414 3,966,739 2,345,813
:onProperty 1,041,873 - 97,921 - 1,139,843 -
:someValuesFrom 681,968 - 217,478 - 899,446 -
rdf:first 273,805 - 392,707 - 666,512 -
rdf:rest 249,541 - 416,946 - 666,487 -
:equivalentClass 574 189,912 162,886 3,198 356,570 3,198
:intersectionOf - - 216,035 - 216,035 -
rdfs:domain 5,693 7,788 66,338 79,748 159,567 87,536
rdfs:range 32,338 4,340 37,529 75,338 149,545 79,678
:hasValue 9,903 0 82,853 0 92,756 -
:allValuesFrom 51,988 - 22,145 - 74,133 -
rdfs:subPropertyOf 3,365 147 22,481 26,742 52,734 26,888
:maxCardinality 26,963 - - - 26,963 -
:inverseOf 75 52 6,397 18,363 24,887 18,363
:cardinality 20,006 - - - 20,006 -
:unionOf - - 21,671 - 21,671 -
:minCardinality 15,187 - - - 15,187 -
:oneOf - - 6,171 - 6,171 -
:equivalentProperty 105 24 187 696 1,012 696
Class
:FunctionalProperty 9,616 - - 18,111 27,727 18,111
:InverseFunctionalProperty 872 - - 3,080 3,952 3,080
:TransitiveProperty 807 - - 1,994 2,801 1,994
:SymmetricProperty 265 - - 351 616 351
OVERALL 2,450,020 785,661 3,365,595 1,990,035 8,591,311 2,585,708

Table 6: Authoritative analysis of T-Box statements in 1.1b dataset for each primitive
where dropped statements are highlighted in bold
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plateau shown at (b), the :sameAs equality file is closed for the first time and a local
fixpoint is being calculated to derive the initial :sameAs statements for future rules;
also during the plateau at (b), the second iteration for the :sameAs fixpoint (which, for
the first time, consolidates the key join variables in files for rules rdfp2, rdfp1′, rdfc4a,
rdfc4b according to all :sameAs statements produced thus far) produces 1,018 new
such statements, with subsequent iterations producing 145, 2, and 0 new statements
respectively.

The second pronounced step at (c) is attributable to 265k transitive inferences, fol-
lowed by 1.7k symmetric-transitive inferences. The proceeding slope at (d) is caused
by inferences on rdfc3c (:intersectionOf - 265 inferences) and rdfp15′ (:someVa-
luesFrom - 36k inferences), with rule rdfp16′ (:allValuesFrom - 678k inferences)
producing the final significant step at (e). The first complete iteration of the overall
fixpoint calculation is now complete.

Since the first local :sameAs fixpoint, 22k mostly rdf:type statements have been
written back to the cardinality rule files, 4 statements to the :InverseFunctional-
Property file and 14 to the :FunctionalProperty file. Thus, the :sameAs fix-
point is re-executed at (f), with no new statements found. The final, minor, staggered
step at (g) occurs after the second :sameAs fixpoint when, most notably, rule rdfp4
(:TransitiveProperty) produces 24k inferences, rule rdfc3c (:intersectionOf)
produces 6.7k inferences, and rule rdfp16′ (:allValuesFrom) produces 7.3k new
statements.

The final, extended plateau at (h) is caused by rules which produce/consume rdf:type
statements. In particular, the fixpoint encounters :allValuesFrom inferencing pro-
ducing a minor contribution of statements (≤ 2) which lead to an update and re-
execution of :allValuesFrom inferencing and :intersectionOf reasoning. In
particular, :allValuesFrom required 66 recursive iterations to reach a fixpoint. We
identified the problematic data as follows:

@prefix veml: <http://www.icsi.berkeley.edu/˜snarayan/VEML.owl#>
@prefix verl: <http://www.icsi.berkeley.edu/˜snarayan/VERL.owl#>
@prefix data: <http://www.icsi.berkeley.edu/˜snarayan/meeting01.owl#>
...

# FROM veml: (T-BOX)
veml:sceneEvents rdfs:range veml:EventList .
veml:EventList rdfs:subClassOf :r1 ; rdfs:subClassOf :r2 .
:r1 :allValuesFrom verl:Event ; :onProperty rdf:first .
:r2 :allValuesFrom veml:EventList ; :onProperty rdf:rest .

# FROM data: (A-BOX)
data:scene veml:sceneEvents ( data:1 , ..., data:65 ) .

# EXAMPLE COLLECTION SNIPPET
:cN rdf:first data:N ; rdf:rest :cN+1 .

From the above data, each iteration of :allValuesFrom reasoning and subsequent
subclass reasoning produced:

# INPUT TO ALL-VALUES-FROM, ITERATION 0
# FROM INPUT
( :c1... :c65) rdf:first (data:1 ... data:65) .
# FROM RANGE
:c1 a veml:EventList .

# OUTPUT ALL-VALUES-FROM, ITERATION N
:dataN a verl:Event .
:cN+1 a veml:EventList .
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Figure 7: Performance of applying rulesetR0 ∪R1 on the 1.1b dataset

# FROM SUBCLASS ON ABOVE
# ADDED TO ALL-VALUES-FROM, ITERATION N+1
:cN+1 rdf:type :r1 ; rdf:type :r2 .

In particular, a small contribution of input statements requires a merge-sort and
re-scan of the file in question. This could indeed be solved by implementing binary-
search lookup functionality over the sorted files for small input from a previous round;
however, this would break with our initial aim of performing reasoning using only the
primitives of file-scanning and multi-way merge-sort.

Finally in the reasoning process, we must perform consolidation of the input data
and the output inferred statements according to the :sameAs index produced in the
previous step. The first step involves sorting the input and inferred data according to
natural SPOC order; the process took 6.4 hours and rewrote 35.4m statements into
pivotal form. The second step involves subsequent sorting of the data according to
inverse OPSC order; the process took 8.2 hours and rewrote 8.5m statements. The
expense of these steps is primarily attributable to applying multi-way merge-sorting
over all data in both sorting orders.

Although the degradation of performance related to the on-disk fixpoint computa-
tion of ruleset R2 ∪ R3 is significant, if one is prepared to trade completeness (as we
define it) for computational efficiency, the fixpoint calculation can be restrained to only
perform a small, known amount of iterations (e.g., inferencing of the majority of state-
ments in Figure 6 takes place over approx. 3 hours). Only minute amounts of inferred
statements are produced in latter iterations of the fixpoint. Further
still, most inferences are produced after the initial scan which takes approx. 79 min-
utes. Thus, even after application of onlyR0 andR1 rules, the majority of inferencing
has been conducted. This simpler more practical reasoning subset exhibits linear scale,
as is visible for the first stage of Figure 5 prior to the on-disk computations. Along
these lines, we present in Figure 7 the performance of applying rulesR0 andR1 to the
1.1b statement dataset, in one scan, with respect to the T-Box derived from that dataset
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as described above. In particular, we refer to the linear trend present; upon inspection,
one can see that minor slow-down in the rate of statements read is attributable to an
increased throughput in terms of output statements (disk write operations).

Finally, Table 7 lists the number of times each rule was fired for reasoning on the
1.1b dataset, reasoning using only R0 ∪ R1 on the 147m dataset and also of applying
all rules to the 147m dataset. Again, from both Figure 5 and Table 7 we can deduce that
the bulk of current web reasoning is covered by those rules (R0 ∪ R1) which exhibit
linear scale.

Rule 1.1b -R0− 1 147M -R0− 1 147M -R0− 3

R0

rdfc0 35,157 6,084 6,084
R1

rdfs2 591,304,476 30,203,111 30,462,570
rdfs3′ 596,661,696 31,789,905 32,048,477
rdfs7′ 156,744,587 27,723,256 27,882,492
rdfs9 1,164,619,890 64,869,593 65,455,001
rdfp3′ 562,426 483,204 483,204
rdfp8a′ 231,661,554 9,404,319 9,556,544
rdfp8b′ 231,658,162 9,404,111 9,556,336
rdfp12a′ 8,153,304 23,869 38,060
rdfp12b′ 57,116 17,769 25,362
rdfp13a′ 5,667,464 11,478 11,478
rdfp13b′ 6,642 4,350 4,350
rdfp14a′ 98,601 39,422 39,902
rdfp14b′ 104,780 43,886 44,390
rdfc1 15,198,615 1,492,395 1,595,293
rdfc2 584,913 337,141 337,279
rdfc3a 115,416 3,075 17,224
rdfc3b 54 8 8

R2

rdfp1′ - - 31,174
rdfp2 - - 2,097,007
rdfp4 - - 291,048
rdfp15′ - - 42,098
rdfp16′ - - 685,738
rdfc3c - - 6,976
rdfc4a - - 211
rdfc4b - - 246

Table 7: Count of number of statements inferred for applying the given ruleset on the
given dataset.

6 Related Work
OWL reasoning, specifically query answering over OWL Full, is not tackled by typical
DL Reasoners; such as FaCT++ [45], RACER [19] or Pellet [40]; which focus on
complex reasoning tasks such as subsumption checking and provable completeness of
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reasoning. Likewise, KAON2 [32], which reports better results on query answering, is
limited to OWL-DL expressivity due to completeness requirements. Despite being able
to deal with complex ontologies in a complete manner, these systems are not tailored
for the particular challenges of processing large amounts of RDF data and particularly
large A-Boxes.

Systems such as TRIPLE [39], JESS18, or Jena19 support rule representable RDFS
or OWL fragments as we do, but only work in-memory whereas our framework is
focused on conducting scalable reasoning using persistent storage.

The OWLIM [28] family of systems allows reasoning over a version of pD* using
the TRREE: Triple Reasoning and Rule Entailment Engine. Besides the in-memory
version SwiftOWLIM, which uses TRREE, there is also a version offering query-
processing over a persistent image of the repository, BigOWLIM, which comes closest
technically to our approach. In evaluation on 2 x Dual-Core 2GHz machines with
16GB of RAM, BigOWLIM is claimed to index over 1 bn triples from the LUBM
benchmark [17] in just under 70 hours [1]; however, this figure includes indexing of
the data for query-answering, and is not directly comparable with our results, and in
any case, our reasoning approach strictly focuses on sensible reasoning for web data.

Some existing systems already implement a separation of T-Box and A-Box for
scalable reasoning, where in particular, assertional data are stored in some RDBMS;
e.g. DLDB [35], Minerva [48] and OntoDB [25]. Similar to our approach of reasoning
over web data, [36] demonstrates reasoning over 166m triples using the DLDB system.
Also like us, (and as we had previously introduced in [23]) they internally choose pivot
identifiers to represent equivalent sets of individuals. However, they use the notion of
perspectives to support inferencing based on T-Box data; in their experiment they man-
ually selected nine T-Box perspectives, unlike our approach that deals with arbitrary
T-Box data from the Web. Their evaluation was performed on a workstation with dual
64-bit CPUs and 10GB main memory on which they loaded 760k documents / 166m
triples (14% larger than our 147m statement dataset) in about 350 hrs; however, unlike
our evaluation, the total time taken includes indexing for query-answering.

In a similar approach to our authoritative analysis, [8] introduced restrictions for
accepting sub-class and equivalent-class statements from third-party sources; they fol-
low similar arguments to that made in this paper. However, their notion of what we call
authoritativeness is based on hostnames and does not consider redirects; we argue that
in both cases, e.g., use of PURL services20 is not properly supported: (i) all documents
using the same service (and having the same namespace hostname) would be ‘author-
itative’ for each other, (ii) the document cannot be served directly by the namespace
location, but only through a redirect. Indeed, further work presented in [7] introduced
the notion of an authoritative description which is very similar to ours. In any case, we
provide much more extensive treatment of the issue, supporting a much more varied
range of RDF(S)/OWL constructs.

One promising alternative to authoritative reasoning for the Web is the notion of
“context-dependant” or “quarantined reasoning” introduced in [11], whereby inference
results are only considered valid within the given context of a document. As opposed to
our approach whereby we construct one authoritative model for all web data, their ap-
proach uses a unique model for each document, based on implicit and explicit imports

18http://herzberg.ca.sandia.gov/
19http://jena.sourceforge.net/
20http://purl.org/
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of the document; thus, they would infer statements within the local context which we
would consider to be non-authoritative. However, they would miss inferences which
can only be conducted by considering a merge of documents, such as transitive closure
or equality inferences based on inverse-functional properties over multiple documents.
Their evaluation was completed on three machines with quad-core 2.33GHz and 8GB
main memory; they claimed to be able to load, on average, 40 documents per second.

7 Conclusion and Future Work
We have presented SAOR: a system for performing reasoning over web data based on
primitives known to scale: file-scan and sorting. We maintain a separate optimised
T-Box index for our reasoning procedure. To keep the resulting knowledge-base man-
ageable, both in size and quality, we made the following modifications to traditional
reasoning procedures:

• only consider a positive fragment of OWL reasoning;

• analyse the authority of sources to counter ontology hijacking;

• use pivot identifiers instead of full materialisation of equality.

We show in our evaluation that naı̈ve inferencing over web data leads to an ex-
plosion of materialised statements and show how to prevent this explosion through
analysis of the authority of data sources. We also present metrics relating to the most
productive rules with regards inferencing on the Web.

Although SAOR is currently not optimised for reaching full closure, we show that
our system is suitable for optimised computation of the approximate closure of a web
knowledge-base w.r.t. the most commonly used RDF(S) and OWL constructs. In our
evaluation, we showed that the bulk of inferencing on web data can be completed with
two scans of an unsorted web-crawl.

Future work includes investigating possible distribution methods: indeed, by lim-
iting our tool-box to file scans and sorts, our system can be implemented on multiple
machines, as-is, according to known distribution methods for our foundational opera-
tions.
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Abstract

With currently available tools and languages, translating between an existing
XML format and RDF is a tedious and error-prone task. The importance of this
problem is acknowledged by the W3C GRDDL working group who faces the is-
sue of extracting RDF data out of existing HTML or XML files, as well as by
the Web service community around SAWSDL, who need to perform lowering and
lifting between RDF data from a semantic client and XML messages for a Web
service. However, at the moment, both these groups rely solely on XSLT trans-
formations between RDF/XML and the respective other XML format at hand. In
this paper, we propose a more natural approach for such transformations based on
merging XQuery and SPARQL into the novel language XSPARQL. We demon-
strate that XSPARQL provides concise and intuitive solutions for mapping be-
tween XML and RDF in either direction, addressing both the use cases of GRDDL
and SAWSDL. We also provide and describe an initial implementation of an XS-
PARQL engine, available for user evaluation.

1 Introduction
There is a gap within the Web of data: on one side, XML provides a popular format for
data exchange with a rapidly increasing amount of semi-structured data available. On
the other side, the Semantic Web builds on data represented in RDF, which is optimized
∗This material is based upon works supported by the European FP6 projects inContext (IST-034718) and

TripCom (IST-4-027324-STP), and by Science Foundation Ireland under Grant No. SFI/02/CE1/I131.
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@prefix alice: <alice/> .
@prefix foaf: <...foaf/0.1/> .

alice:me a foaf:Person.
alice:me foaf:knows :c.
:c a foaf:Person.
:c foaf:name "Charles".

<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">

<foaf:Person rdf:about="alice/me">
<foaf:knows>
<foaf:Person foaf:name="Charles"/>
</foaf:knows>

</foaf:Person>
</rdf:RDF>

(a) (b)
<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">
<rdf:Description rdf:nodeID="x">
<rdf:type

rdf:resource=".../Person"/>
<foaf:name>Charles</foaf:name>
</rdf:Description>
<rdf:Description

rdf:about="alice/me">
<rdf:type

rdf:resource=".../Person"/>
<foaf:knows rdf:nodeID="x"/>
</rdf:Description>

</rdf:RDF>

<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">

<rdf:Description rdf:about="alice/me">
<foaf:knows rdf:nodeID="x"/>

</rdf:Description>
<rdf:Description rdf:about="alice/me">
<rdf:type rdf:resource=".../Person"/>

</rdf:Description>
<rdf:Description rdf:nodeID="x">
<foaf:name>Charles</foaf:name>

</rdf:Description>
<rdf:Description rdf:nodeID="x">
<rdf:type rdf:resource=".../Person"/>

</rdf:Description>
</rdf:RDF>

(c) (d)
Figure 1: Different representations of the same RDF graph

for data interlinking and merging; the amount of RDF data published on the Web is also
increasing, but not yet at the same pace. It would clearly be useful to enable reuse of
XML data in the RDF world and vice versa. However, with currently available tools
and languages, translating between XML and RDF is not a simple task.

The importance of this issue is currently being acknowledged within the W3C in
several efforts. The Gleaning Resource Descriptions from Dialects of Languages [11]
(GRDDL) working group faces the issue of extracting RDF data out of existing (X)HTML
Web pages. In the Semantic Web Services community, RDF-based client software
needs to communicate with XML-based Web services, thus it needs to perform trans-
formations between its RDF data and the XML messages that are exchanged with
the Web services. The Semantic Annotations for WSDL (SAWSDL) working group
calls these transformations lifting and lowering (see [14, 16]). However, both these
groups propose solutions which rely solely on XSL transformations (XSLT) [12] be-
tween RDF/XML [2] and the respective other XML format at hand. Using XSLT for
handling RDF data is greatly complicated by the flexibility of the RDF/XML format.
XSLT (and XPath) were optimized to handle XML data with a simple and known hier-
archical structure, whereas RDF is conceptually different, abstracting away from fixed,
tree-like structures. In fact, RDF/XML provides a lot of flexibility in how RDF graphs
can be serialized. Thus, processors that handle RDF/XML as XML data (not as a set
of triples) need to take different possible representations into account when looking
for pieces of data. This is best illustrated by a concrete example: Fig. 1 shows four
versions of the same FOAF (cf. http://www.foaf-project.org) data.1 The first
version uses Turtle [3], a simple and readable textual format for RDF, inaccessible to
pure XML processing tools though; the other three versions are all RDF/XML, ranging
from concise (b) to verbose (d).

The three RDF/XML variants look very different to XML tools, yet exactly the
same to RDF tools. For any variant we could create simple XPath expressions that

1In listings and figures we often abbreviate well-known namespace URIs (http://www.w3.org/1999/
02/22-rdf-syntax-ns#, http://xmlns.com/foaf/0.1/, etc.) with “. . . ”.
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extract for instance the names of the persons known to Alice, but a single expression
that would correctly work in all the possible variants would become more involved.
Here is a list of particular features of the RDF data model and RDF/XML syntax that
complicate XPath+XSLT processing:

• Elements denoting properties can directly contain value(s) as nested XML, or
reference other descriptions via the rdf:resource or rdf:nodeID attributes.

• References to resources can be relative or absolute URIs.

• Container membership may be expressed as rdf:li or rdf: 1, rdf: 2, etc.

• Statements about the same subject do not need to be grouped in a single element.

• String-valued property values such as foaf:name in our example (and also val-
ues of rdf:type) may be represented by XML element content or as attribute
values.

• The type of a resource can be represented directly as an XML element name,
with an explicit rdf:type XML element, or even with an rdf:type attribute.

This is not even a complete list of the issues that complicate the formulation of adequate
XPath expressions that cater for every possible alternative in how one and the same
RDF data might be structured in its concrete RDF/XML representation.

Apart from that, simple reasoning (e.g., RDFS materialization) improves data queries
when accessing RDF data. For instance, in FOAF, every Person (and Group and Orga-
nization etc.) is also an Agent, therefore we should be able to select all the instances of
foaf:Agent. If we wanted to write such a query in XPath+XSLT, we literally would
need to implement an RDFS inference engine within XSLT. Given the availability of
RDF tools and engines, this seems to be a dispensable exercise.

Recently, two new languages have entered the stage for processing XML and RDF
data: XQuery [7] is a W3C Recommendation since early last year and SPARQL [22]
has finally received W3C’s Recommendation stamp in January 2008. While both lan-
guages operate in their own worlds – SPARQL in the RDF- and XQuery in the XML-
world – we show in this paper that the merge of both in the novel language XSPARQL
has the potential to finally bring XML and RDF closer together. XSPARQL provides
concise and intuitive solutions for mapping between XML and RDF in either direction,
addressing both the use cases of GRDDL and SAWSDL. As a side effect, XSPARQL
may also be used for RDF to RDF transformations beyond the capabilities of “pure”
SPARQL. We also describe an implementation of XSPARQL, available for user evalu-
ation.

In the following, we elaborate a bit more in depth on the use cases of lifting and
lowering in the contexts of both GRDDL and SAWSDL in Section 2 and discuss how
they can be addressed by XSLT alone. Next, in Section 3 we describe the two starting
points for an improved lifting and lowering language – XQuery and SPARQL – before
we announce their happy marriage to XSPARQL in Section 4. Particularly, we extend
XQuery’s FLWOR expressions with a way of iterating over SPARQL results. We
define the semantics of XSPARQL based on the XQuery semantics in [9], and describe
a rewriting algorithm that translates XSPARQL to XQuery. By this we can show that
XSPARQL is a conservative extension of both XQuery and SPARQL. We wrap up
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@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:b1 a foaf:Person; 
     foaf:name "Alice";
     foaf:knows _:b2;
     foaf:knows _:b3.
_:b2 a foaf:Person; foaf:name "Bob";
     foaf:knows _:b3.
_:b3 a foaf:Person; foaf:name "Charles".

  <relations>
    <person name="Alice">
      <knows>Bob</knows>
      <knows>Charles</knows>
    </person>
    <person name="Bob">
      <knows>Charles</knows>
    </person>
    <person name="Charles"/>
  </relations>

Lowering

Lifting

relations.xml

relations.rdf

Figure 2: From XML to RDF and back: “lifting” and “lowering”

the paper with an outlook to related and future works and conclusions to be drawn in
Section 5 and 6.

2 Motivation – Lifting and Lowering
As a running example throughout this paper we use a mapping between FOAF data
and a customized XML format as shown in Fig. 2. The task here in either direction
is to extract for all persons the names of people they know. In order to keep things
simple, we use element and attribute names corresponding to the respective classes
and properties in the FOAF vocabulary (i.e., Person, knows, and name). We assume
that names in our XML file uniquely identify a person which actually complicates the
transformation from XML to RDF, since we need to create a unique, distinct blank
node per name. The example data is a slight variant of the data from Fig. 1, where
Alice knows both Bob and Charles, Bob knows Charles, and all parties are identified
by blank nodes.

Because semantic data in RDF is on a higher level of abstraction than semi-structured
XML data, the translation from XML to RDF is often called “lifting” while the opposite
direction is called “lowering,” as also shown in Fig. 2.

Lifting in GRDDL.

The W3C Gleaning Resource Descriptions from Dialects of Languages (GRDDL)
working group has the goal to complement the concrete RDF/XML syntax with a
mechanism to relate to other XML dialects (especially XHTML or “microformats”) [11].
GRDDL focuses on the lifting task, i.e., extracting RDF from XML. To this end, the
working group recently published a finished Recommendation which specifies how
XML files or XML Schema namespace documents can reference transformations that
are then processed by a GRDDL-aware application to extract RDF from the respective
source file. Typically – due to its wide support – XSLT [12] is the language of choice
to describe such transformations. However, writing XSLT can be cumbersome, since
it is a general-purpose language for producing XML without special support for cre-
ating RDF. For our running example, the XSLT in Fig. 3(a) could be used to generate
RDF/XML from the relations.xml file in Fig. 2 in an attempt to solve the lifting step.
Using GRDDL, we can link this XSLT file mygrddl.xsl from relations.xml by changing
the root element of the latter to:
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<xsl:stylesheet
xmlns:xsl="...XSL/Transform"
xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#"
version="2.0">

<xsl:template match="/relations">
<rdf:RDF>

<xsl:apply-templates />
</rdf:RDF>

</xsl:template>

<xsl:template match="person">
<foaf:Person>

<foaf:name>
<xsl:value-of

select="./@name"/>
</foaf:name>
<xsl:apply-templates/>

</foaf:Person>
</xsl:template>

<xsl:template match="knows">
<foaf:knows><foaf:Person>

<foaf:name>
<xsl:apply-templates/>
</foaf:name>

</foaf:Person></foaf:knows>
</xsl:template>

</xsl:stylesheet>

<rdf:RDF xmlns:rdf="...rdf-syntax-ns#"
xmlns:foaf="...foaf/0.1/">

<foaf:Person>
<foaf:name>Alice</foaf:name>
<foaf:knows><foaf:Person>

<foaf:name>Bob</foaf:name>
</foaf:Person></foaf:knows>
<foaf:knows><foaf:Person>

<foaf:name>Charles</foaf:name>
</foaf:Person></foaf:knows>

</foaf:Person>
<foaf:Person>
<foaf:name>Bob</foaf:name>
<foaf:knows><foaf:Person>

<foaf:name>Charles</foaf:name>
</foaf:Person></foaf:knows>

</foaf:Person>
<foaf:Person>
<foaf:name>Charles</foaf:name>

</foaf:Person>
</rdf:RDF>

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
:b1 a foaf:Person; foaf:name "Alice";

foaf:knows :b2; foaf:knows :b3.
:b2 a foaf:Person; foaf:name "Bob".
:b3 a foaf:Person; foaf:name "Charles".
:b4 a foaf:Person; foaf:name "Bob";

foaf:knows :b5 .
:b5 a foaf:Person; foaf:name "Charles" .
:b6 a foaf:Person; foaf:name "Charles".

(a) mygrddl.xsl (b) Result of the GRDDL transform
in RDF/XML (up) and Turtle (down)

Figure 3: Lifting attempt by XSLT

<relations xmlns:grddl="http://www.w3.org/2003/g/data-view#"
grddl:transformation="mygrddl.xsl"> ...

The RDF/XML result of the GRDDL transformation is shown in the upper part of
Fig. 3(b). However, if we take a look at the Turtle version of this result in the lower
part of Fig. 3(b) and compare it with the relations.rdf file in Fig. 2 we see that this
transformation creates too many blank nodes, since this simple XSLT does not merge
equal names into the same blank nodes.

XSLT is a Turing-complete language, and theoretically any conceivable transfor-
mation can be programmed in XSLT; so, we could come up with a more involved
stylesheet that creates unique blank node identifiers per name to solve the lifting task
as intended. However, instead of attempting to repair the stylesheet from Fig. 3(a)
let us rather ask ourselves whether XSLT is the right tool for such transformations.
The claim we make is that specially tailored languages for RDF-XML transformations
like XSPARQL which we present in this paper might be a more suitable alternative to
alleviate the drawbacks of XSLT for the task that GRDDL addresses.

Lifting/Lowering in SAWSDL.

While GRDDL is mainly concerned with lifting, in SAWSDL (Semantic Annotations
for WSDL and XML Schema) there is a strong need for translations in the other direc-
tion as well, i.e., from RDF to arbitrary XML.

SAWSDL is the first standardized specification for semantic description of Web
services. Semantic Web Services (SWS) research aims to automate tasks involved in
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Web serviceXML messages

SOAP communication

Client RDF data

lowering

lifting

Figure 4: RDF data lifting and lowering for WS communication

the use of Web services, such as service discovery, composition and invocation. How-
ever, SAWSDL is only a first step, offering hooks for attaching semantics to WSDL
components such as operations, inputs and outputs, etc. Eventually, SWS shall enable
client software agents or services to automatically communicate with other services by
means of semantic mediation on the RDF level. The communication requires both low-
ering and lifting transformations, as illustrated in Fig. 4. Lowering is used to create the
request XML messages from the RDF data available to the client, and lifting extracts
RDF from the incoming response messages.

As opposed to GRDDL, which provides hooks to link XSLT transformations on
the level of whole XML or namespace documents, SAWSDL provides a more fine-
grained mechanism for “semantic adornments” of XML Schemas. In WSDL, schemata
are used to describe the input and output messages of Web service operations, and
SAWSDL can annotate messages or parts of them with pointers to relevant semantic
concepts plus links to lifting and lowering transformations. These links are created us-
ing the sawsdl:liftingSchemaMapping and sawsdl:loweringSchemaMapping
attributes which reference the transformations within XSL elements (xsl:element,
xsl:attribute, etc.) describing the respective message parts.

SAWSDL’s schema annotations for lifting and lowering are not only useful for
communication with web services from an RDF-aware client, but for service media-
tion in general. This means that the output of a service S1 uses a different message
format than service S2 expects as input, but it could still be used if services S1 and
S2 provide lifting and lowering schema mappings, respectively, which map from/to the
same ontology, or, respectively, ontologies that can be aligned via ontology mediation
techniques (see [13]).

Lifting is analogous to the GRDDL situation – the client or an intermediate media-
tion service receives XML and needs to extract RDF from it –, but let us focus on RDF
data lowering now. To stay within the boundaries of our running example, we assume
a social network site with a Web service for querying and updating the list of a user’s
friends. The service accepts an XML format à la relations.xml (Fig. 2) as the message
format for updating a user’s (client) list of friends.

Assuming the client stores his FOAF data (relations.rdf in Fig. 2) in RDF/XML in
the style of Fig. 1(b), the simple XSLT stylesheet mylowering.xsl in Fig. 5 would per-
form the lowering task. The service could advertise this transformation in its SAWSDL
by linking mylowering.xsl in the sawsdl:loweringSchemaMapping attribute of the
XML Schema definition of the relations element that conveys the message payload.
However, this XSLT will break if the input RDF is in any other variant shown in Fig. 1.
We could create a specific stylesheet for each of the presented variants, but creating
one that handles all the possible RDF/XML forms would be much more complicated.

In recognition of this problem, SAWSDL contains a non-normative example which
performs a lowering transformation as a sequence of a SPARQL query followed by
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<xsl:stylesheet version="1.0" xmlns:rdf="...rdf-syntax-ns#"
xmlns:foaf="...foaf/0.1/" xmlns:xsl="...XSL/Transform">

<xsl:template match="/rdf:RDF">
<relations><xsl:apply-templates select=".//foaf:Person"/></relations>

</xsl:template>
<xsl:template match="foaf:Person"><person name="./@foaf:name">
<xsl:apply-templates select="./foaf:knows"/>

</person></xsl:template>
<xsl:template match="foaf:knows[@rdf:nodeID]"><knows>

<xsl:value-of select="//foaf:Person[@rdf:nodeID=./@rdf:nodeID]/@foaf:name"/>
</knows></xsl:template>
<xsl:template match="foaf:knows[foaf:Person]">
<knows><xsl:value-of select="./foaf:Person/@foaf:name"/></knows>

</xsl:template>
</xsl:stylesheet>

Figure 5: Lowering attempt by XSLT (mylowering.xsl)

an XSLT transformation on SPARQL’s query results XML format [8]. Unlike XSLT
or XPath, SPARQL treats all the RDF input data from Fig. 1 as equal. This approach
makes a step in the right direction, combining SPARQL with XML technologies. The
detour through SPARQL’s XML query results format however seems to be an unnec-
essary burden. The XSPARQL language proposed in this paper solves this problem:
it uses SPARQL pattern matching for selecting data as necessary, while allowing the
construction of arbitrary XML (by using XQuery) for forming the resulting XML struc-
tures.

As more RDF data is becoming available on the Web which we want to integrate
with existing XML-aware applications, SAWSDL will obviously not remain the only
use case for lowering.

3 Starting Points: XQuery and SPARQL
In order to end up with a better suited language for specifying translations between
XML and RDF addressing both the lifting and lowering use cases outlined above, we
can build up on two main starting points: XQuery and SPARQL. Whereas the for-
mer allows a more convenient and often more concise syntax than XSLT for XML
query processing and XML transformation in general, the latter is the standard for
RDF querying and construction. Queries in each of the two languages can roughly
be divided in two parts: (i) the retrieval part (body) and (ii) the result construction
part (head). Our goal is to combine these components for both languages in a unified
language, XSPARQL, where XQuery’s and SPARQL’s heads and bodies may be used
interchangeably. Before we go into the details of this merge, let us elaborate a bit on
the two constituent languages.

3.1 XQuery
As shown in Fig. 6(a) an XQuery starts with a (possibly empty) prolog (P) for names-
pace, library, function, and variable declarations, followed by so called FLWOR ex-
pressions, denoting body (FLWO) and head (R) of the query. We only show namespace
declarations in Fig. 6 for brevity.

As for the body, for clauses (F) can be used to declare variables looping over
the XML nodeset returned by an XPath expression. Alternatively, to bind the entire
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Prolog: P declare namespace
prefix="namespace-URI"

Body: F for var in XPath-expression
L let var := XPath-expression
W where XPath-expression
O order by XPath-expression

Head: R return XML+ nested XQuery

(a) Schematic view on XQuery

Prolog: P prefix prefix: <namespace-URI>
Head: C construct { template }
Body: D from /from named <dataset-URI>

W where { pattern }
M order by expression

limit integer> 0
offset integer> 0

(b) Schematic view on SPARQL

Prolog: P declare namespace prefix="namespace-URI"
or prefix prefix: <namespace-URI>

Body: F for var in XPath-expression
L let var := XPath-expression
W where XPath-expression
O order by expression or
F’ for varlist
D from /from named <dataset-URI>
W where { pattern }
M order by expression

limit integer> 0 offset integer> 0

Head: C construct
{ template (with nested XSPARQL) } or

R return XML+ nested XSPARQL

(c) Schematic view on XSPARQL

Figure 6: An overview of XQuery, SPARQL, and XSPARQL

result of an XPath query to a variable, let assignments can be used. The where part
(W) defines an XPath condition over the current variable bindings. Processing order of
results of a for can be specified via a condition in the order by clause (O).

In the head (R) arbitrary well-formed XML is allowed following the return key-
word, where variables scoped in an enclosing for or let as well as nested XQuery
FLWOR expressions are allowed. Any XPath expression in FLWOR expressions
can again possibly involve variables defined in an enclosing for or let, or even
nested XQuery FLWOR expressions. Together with a large catalogue of built-in func-
tions [17], XQuery thus offers a flexible instrument for arbitrary transformations. For
more details, we refer the reader to [7, 9].

The lifting task of Fig. 2 can be solved with XQuery as shown in Fig. 7(a). The
resulting query is quite involved, but completely addresses the lifting task, including
unique blank node generation for each person: We first select all nodes containing per-
son names from the original file for which a blank node needs to be created in variable
$p (line 3). Looping over these nodes, we extract the actual names from either the
value of the name attribute or from the knows element in variable $n. Finally, we com-
pute the position in the original XML tree as blank node identifier in variable $id. The
where clause (lines 12–14) filters out only the last name for duplicate occurrences of
the same name. The nested for (lines 19–31) to create nested foaf:knows elements
again loops over persons, with the only differences that only those nodes are filtered
out (line 25), which are known by the person with the name from the outer for loop.

While this is a valid solution for lifting, we still observe the following drawbacks:
(1) We still have to build RDF/XML “manually” and cannot make use of the more
readable and concise Turtle syntax; and

(2) if we had to apply XQuery for the lowering task, we still would need to cater for
all kinds of different RDF/XML representations. As we will see, both these drawbacks
are alleviated by adding some SPARQL to XQuery.

3.2 SPARQL
Fig. 6(b) shows a schematic overview of the building blocks that SPARQL queries
consist of. Again, we do not go into details of SPARQL here (see [22, 19, 20] for
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10
11
12
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14
15
16
17
18
19
20
21
22
23
24
25
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27
28
29
30
31
32
33
34
35

declare namespace foaf="...foaf/0.1/";
declare namespace rdf="...-syntax-ns#";
let $persons := //*[@name or ../knows]
return
<rdf:RDF>
{
for $p in $persons
let $n := if( $p[@name] )

then $p/@name else $p
let $id :=count($p/preceding::*)

+count($p/ancestor::*)
where
not(exists($p/following::*[

@name=$n or data(.)=$n]))
return
<foaf:Person rdf:nodeId="b{$id}">
<foaf:name>{data($n)}</foaf:name>
{
for $k in $persons
let $kn := if( $k[@name] )

then $k/@name else $k
let $kid :=count($k/preceding::*)

+count($k/ancestor::*)
where
$kn = data(//*[@name=$n]/knows) and
not(exists($kn/../following::*[

@name=$kn or data(.)=$kn]))
return
<foaf:knows>
<foaf:Person rdf:nodeID="b{$kid}"/>
</foaf:knows>
}
</foaf:Person>
}

</rdf:RDF>

declare namespace foaf="...foaf/0.1/";
declare namespace rdf="...-syntax-ns#";
let $persons := //*[@name or ../knows]
return

for $p in $persons
let $n := if( $p[@name] )

then $p/@name else $p
let $id :=count($p/preceding::*)

+count($p/ancestor::*)
where
not(exists($p/following::*[

@name=$n or data(.)=$n]))
construct {
:b{$id} a foaf:Person;

foaf:name {data($n)}.
{
for $k in $persons
let $kn := if( $k[@name] )

then $k/@name else $k
let $kid :=count($k/preceding::*)

+count($k/ancestor::*)
where
$kn = data(//*[@name=$n]/knows) and
not(exists($kn/../following::*[

@name=$kn or data(.)=$kn]))
construct {

:b{$id} foaf:knows :b{$kid}.
:b{$kid} a foaf:Person.

}
}
}

(a) XQuery (b) XSPARQL

Figure 7: Lifting using XQuery and XSPARQL

formal details), since we do not aim at modifying the language, but concentrate on the
overall semantics of the parts we want to reuse. Like in XQuery, namespace prefixes
can be specified in the Prolog (P). In analogy to FLWOR in XQuery, let us define
so-called DWMC expressions for SPARQL.

The body (DWM) offers the following features. A dataset (D), i.e., the set of source
RDF graphs, is specified in from or from named clauses. The where part (W) –
unlike XQuery – allows to match parts of the dataset by specifying a graph pattern
possibly involving variables, which we denote vars(pattern). This pattern is given in
a Turtle-based syntax, in the simplest case by a set of triple patterns, i.e., triples with
variables. More involved patterns allow unions of graph patterns, optional matching of
parts of a graph, matching of named graphs, etc. Matching patterns on the conceptual
level of RDF graphs rather than on a concrete XML syntax alleviates the pain of having
to deal with different RDF/XML representations; SPARQL is agnostic to the actual
XML representation of the underlying source graphs. Also the RDF merge of several
source graphs specified in consecutive from clauses, which would involve renaming
of blank nodes at the pure XML level, comes for free in SPARQL. Finally, variable
bindings matching the where pattern in the source graphs can again be ordered, but
also other solution modifiers (M) such as limit and offset are allowed to restrict
the number of solutions considered in the result.

In the head, SPARQL’s construct clause (C) offers convenient and XML-inde-
pendent means to create an output RDF graph. Since we focus here on RDF construc-
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prefix vc: <...vcard-rdf/3.0#>
prefix foaf: <...foaf/0.1/>
construct {$X foaf:name $FN.}
from <vc.rdf>
where { $X vc:FN $FN .}

prefix vc: <...vcard-rdf/3.0#>
prefix foaf: <...foaf/0.1/>
construct { :b foaf:name

{fn:concat($N," ",$F)}.}
from <vc.rdf>
where { $P vc:Given $N. $P vc:Family $F.}

(a) (b)

Figure 8: RDF-to-RDF mapping in SPARQL (a) and an enhanced mapping in XS-
PARQL (b)

<relations>
{
for $Person $Name from <relations.rdf>
where { $Person foaf:name $Name }
order by $Name
return

<person name="{$Name}">
{

for $FName from <relations.rdf>
where { $Person foaf:knows $Friend.

$Person foaf:name $Name.
$Friend foaf:name $Fname }

return <knows>{$FName}</knows>
}

</person>
}

</relations>

Figure 9: Lowering using XSPARQL

tion, we omit the ask and select SPARQL query forms in Fig. 6(b) for brevity. A
construct template consists of a list of triple patterns in Turtle syntax possibly in-
volving variables, denoted by vars(template), that carry over bindings from the where
part. SPARQL can be used as transformation language between different RDF formats,
just like XSLT and XQuery for transforming between XML formats. A simple example
for mapping full names from vCard/RDF (http://www.w3.org/TR/vcard-rdf) to
foaf:name is given by the SPARQL query in Fig. 8(a).

Let us remark that SPARQL does not offer the generation of new values in the
head which on the contrary comes for free in XQuery by offering the full range of
XPath/XQuery built-in functions. For instance, the simple query in Fig. 8(b) which
attempts to merge family names and given names into a single foaf:name is be-
yond SPARQL’s capabilities. As we will see, XSPARQL will not only make reuse of
SPARQL for transformations from and to RDF, but also aims at enhancing SPARQL
itself for RDF-to-RDF transformations enabling queries like the one in Fig. 8(b).
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4 XSPARQL
Conceptually, XSPARQL is a simple merge of SPARQL components into XQuery. In
order to benefit from the more intuitive facilities of SPARQL in terms of RDF graph
matching for retrieval of RDF data and the use of Turtle-like syntax for result con-
struction, we syntactically add these facilities to XQuery. Fig. 6(c) shows the result of
this “marriage.” First of all, every native XQuery query is also an XSPARQL query.
However we also allow the following modifications, extending XQuery’s FLWOR ex-
pressions to what we call (slightly abusing nomenclature) FLWOR’ expressions: (i) In
the body we allow SPARQL-style F’DWM blocks alternatively to XQuery’s FLWO
blocks. The new F’ for clause is very similar to XQuery’s native for clause, but
instead of assigning a single variable to the results of an XPath expression it allows the
assignment of a whitespace separated list of variables (varlist) to the bindings for these
variables obtained by evaluating the graph pattern of a SPARQL query of the form:
select varlist DWM. (ii) In the head we allow to create RDF/Turtle directly using
construct statements (C) alternatively to XQuery’s native return (R).

These modifications allows us to reformulate the lifting query of Fig. 7(a) into its
slightly more concise XSPARQL version of Fig. 7(b). The real power of XSPARQL in
our example becomes apparent on the lowering part, where all of the other languages
struggle. Fig. 9 shows the lowering query for our running example.

As a shortcut notation, we allow also to write “for *” in place of “for [list of
all variables appearing in the where clause]”; this is also the default value for the F’
clause whenever a SPARQL-style where clause is found and a for clause is miss-
ing. By this treatment, XSPARQL is also a syntactic superset of native SPARQL
construct queries, since we additionally allow the following: (1) XQuery and
SPARQL namespace declarations (P) may be used interchangeably; and

(2) SPARQL-style construct result forms (R) may appear before the retrieval
part; note that we allow this syntactic sugar only for queries consisting of a single
FLWOR’ expression, with a single construct appearing right after the query pro-
log, as otherwise, syntactic ambiguities may arise. This feature is mainly added in
order to encompass SPARQL style queries, but in principle, we expect the (R) part to
appear in the end of a FLWOR’ expression. This way, the queries of Fig. 8 are also
syntactically valid for XSPARQL.2

4.1 XSPARQL Syntax
The XSPARQL syntax is – as sketched above – a simple extension of the grammar pro-
duction rules in [7]. To simplify the definition of XSPARQL, we inherit the grammar
productions of SPARQL [22] and XQuery [7] and add the prime symbol (′) to the rules
which have been modified. We only have two fresh productions: ReturnClause and
SparqlForClause (which loosely reflect lifting and lowering).

The basic elements of the XSPARQL syntax are the following:

[33] FLWORExpr’ ::= (ForClause | LetClause | SparqlForClause)+
WhereClause? OrderByClause? ReturnClause

[33a] SparqlForClause ::= "for" ("$" VarName ("$" VarName)* | "*") DatasetClause
"where" GroupGraphPattern SolutionModifier

[33b] ReturnClause ::= "return" ExprSingle | "construct" ConstructTemplate’

2In our implementation, we also allow select and ask queries, making SPARQL a real syntactic
subset of XSPARQL.
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ConstructTemplate’ is defined in the same way as the production Construct-
Template in SPARQL [22], but we additionally allow XSPARQL nested FLWORExpr’
in subject, verb, and object place. These expressions need to evaluate to a valid RDF
term, i.e.:

• an IRI or blank node in the subject position;

• an IRI in the predicate position;

• a literal, IRI or blank node in the object position.

To define this we use the SPARQL grammar rules as a starting point and replace
the following productions:

[42] VarOrTerm’ ::= Var’ | GraphTerm’ | literalConstruct
[43] VarOrIRIref’ ::= Var’ | IRIref | iriConstruct
[44] Var’ ::= VAR2
[45] GraphTerm’ ::= IRIref | RDFLiteral | NumericLiteral

| BooleanLiteral | BlankNode | NIL
| bnodeConstruct | iriConstruct

[42a] literalConstruct ::= "{" FLWORExpr’ "}"
[43a] iriConstruct ::= "<{" FLWORExpr’ "}>"

| ("{" FLWORExpr’ "}")? ":" ("{" FLWORExpr’ "}")?
[45a] bnodeConstruct ::= " :{" FLWORExpr’ "}"

4.1.1 Syntactic restrictions of XSPARQL

Without loss of generality, we make two slight restrictions on variable names in XS-
PARQL compared with Xquery and SPARQL. Firstly, we disallow variable names that
start with ‘ ’; we need this restriction in XSPARQL to distinguish new auxiliary vari-
ables which we introduce in the semantics definition and in our rewriting algorithm and
avoid ambiguity with user-defined variables. Secondly, in SPARQL-inherited parts we
only allow variable names prefixed with ‘$’ in order to be compliant with variable
names as allowed in XQuery. Pure SPARQL allows variables of this form, but addi-
tionally allows ‘?’ as a valid variable prefix.

Likewise, we also disallow other identifier names to start with ‘ ’, namely names-
pace prefixes, function identifiers, and also blank node identifiers, for similar consid-
erations: In our rewriting we generate fixed namespaces (e.g. we always need the
namespace prefix sparql result: associated with the namespace-URI http://
www.w3.org/2005/sparql-results#, which when overridden by the user might
create ambiguities in our rewriting. Similarly, we use underscores in our rewriting to
disambiguate blank node identifiers created from constructs from those extracted
from a query result, by appending ‘ ’ to the latter. As for function names, we use un-
derscores to denote auxiliary functions defined in our rewriting algorithm, which again
we do not want to be overridden by user-defined functions.
In total, we restrict the SPARQL grammar by redefining VARNAME to disallow leading
underscores:

[97] VARNAME’ ::= ( PN CHARS U - ’ ’ | [0-9] ) ( PN CHARS U | [0-9] | #x00B7 |
[#x0300-#x036F] | [#x203F-#x2040] )*
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And likewise in the XQUERY grammar we do not allow underscores in the beginning
of NCNames (defined in [5]), i.e. we modify:

[6] NCNameStartChar’ ::= Letter

4.2 XSPARQL Semantics
The semantics of XSPARQL follows the formal treatment of the semantics given for
XQuery [9]. We follow the notation provided there and define XSPARQL semantics
by means of normalization mapping rules and inference rules.

We defined a new dynamic evaluation inference rules for a new built-in function
fs:sparql, which evaluates SPARQL queries. Other modifications include normaliza-
tion of the XSPARQL constructs to XQuery expressions. This means that we do do not
need new grammar productions but only those defined in the XQuery Core syntax.

For the sake of brevity, we do note handle namespaces and base URIs here, i.e., we
do not “import” namespace declarations from construct templates, and do not push
down XQuery namespace declarations to SPARQL select queries. Conceptually,
they can always be parsed from the XQuery document and appended where needed.

4.2.1 FLWOR’ Expressions

Our XSPARQL syntax defines, together with the XQuery FLWOR expression, a new
for-loop for iterating over SPARQL results: SparqlForClause. This object stands
at the same level as XQuery’s for and let expressions, i.e., such type of clauses
are allowed to start new FLWOR’ expressions, or may occur inside deeply nested XS-
PARQL queries.

To this end, our new normalization mapping rules [[·]]Expr ′ inherit from the definition
of XQuery’s [[·]]Expr mapping rules and overload some expressions to accommodate
XSPARQL’s new syntactic objects. The semantics of XSPARQL expressions hence
stands on top of XQuery’s semantics.

A single SparqlForClause is normalized as follows:
»»

for $VarName1 · · · $VarNamen DatasetClause where
GroupGraphPattern SolutionModifier ReturnClause

––
Expr′

==26666666666664

26666666666664

let $ aux queryresult :=»»
$VarName1 · · · $VarNamen DatasetClause where
GroupGraphPattern SolutionModifier

––
SparqlQuery

for $ aux result in $ aux queryresult// sparql result:result
[[VarName1]]SparqlResult

...
[[VarNamen]]SparqlResult

ReturnClause

37777777777775

37777777777775
Expr

Here, [[·]]SparqlQuery and [[·]]SparqlResult are auxiliary mapping rules for expanding the
expressions:

[[$VarName]]SparqlResult

==

let $ VarName Node := $ aux result/ sparql result:binding[@name="VarName"]
let $VarName := data($ VarName Node/*)
let $ VarName NodeType := name($ VarName Node/*)
let $ VarName RDFTerm := rdf term($ VarName Node)
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and

»»
$VarName1 · · · $VarNamen DatasetClause
where GroupGraphPattern SolutionModifier

––
SparqlQuery

==

fs:sparql

 »»
fn:concat("SELECT $VarName1 · · · $VarNamen DataSetClause where { ",

fn:concat(GroupGraphPattern), " } SolutionModifier")

––
Expr′

!

The rdf term($ VarName Node) function is defined in the following way:

statEnv ` $ VarName Node bound

statEnv `

[[ rdf term($ VarName Node)]]Expr =264
264 if ($ VarName NodeType="literal") then fn:concat("""",$VarName,"""")

else if ($ VarName NodeType="bnode") then fn:concat(" :", $VarName)
else if ($ VarName NodeType="uri") then fn:concat("<", $VarName, ">")

else ""

375
375

Expr

We now define the meaning of fs:sparql. It is, following the style of [9], an abstract
function which returns a SPARQL query result XML document [8] when applied a
proper SPARQL select query, i.e., fs:sparql conforms to the XML Schema defini-
tion http://www.w3.org/2007/SPARQL/result.xsd:3

fs:sparql($query as xs:string) as document-node(schema-element(_sparql_result:sparql))

Static typing rules applies here according to the rules given in the XQuery seman-
tics.

Since this function must be evaluated according to the SPARQL semantics, we need
to get the value of fs:sparql in the dynamic evaluation semantics of XSPARQL.

The built-in function fs:sparql applied to Value1 yields Value

dynEnv ` function fs:sparql with types (xs:string) on values (Value1) yields Value

In case of error (for instance, the query string is not syntactically correct, or the
DatasetClause cannot be accessed), fs:sparql issues an error:

Value1 cannot be evaluated according to SPARQL semantics

dynEnv ` function fs:sparql with types (xs:string) on values (Value1) yields fn:error()

The only remaining part is defining the semantics of a GroupGraphPattern us-
ing our extended [[·]]Expr ′ . This mapping rule takes care that variables in scope of
XSPARQL expressions are properly substituted using the evaluation mechanism of
XQuery. To this end, we assume that [[·]]Expr ′ takes expressions in SPARQL’s Group-
GraphPattern syntax and constructs a sequence of strings and variables, by applying
the auxiliary mapping rule [[·]]VarSubst to each of the graph pattern’s variables. This
rule looks up bound variables from the static environment and possibly replaces them
to variables or to a string expression, where the value of the string is the name of the
variable. This has the effect that unbound variables in GroupGraphPattern will be
evaluated by SPARQL instead of XQuery. The statical semantics for [[·]]VarSubst is de-
fined below using the next inference rules. They use the new judgement $VarName
bound, which holds if the variable $VarName is bound in the current static environ-
ment.

3We assume that this XML schema is imported and into the sparql result: namespace.

174



statEnv ` $ VarName RDFTerm bound
statEnv ` [[$VarName]]VarSubst = [[$ VarName RDFTerm]]Expr

statEnv ` $VarName bound statEnv ` not($ VarName RDFTerm bound)

statEnv ` [[$VarName]]VarSubst = [[$VarName]]Expr

statEnv ` not($VarName bound) statEnv ` not($ VarName RDFTerm bound)

statEnv ` [[$VarName]]VarSubst = [["$VarName"]]Expr

Next, we define the normalization of for expressions. In order to handle blank
nodes appropriately in construct expressions, we need to decorate the variables of
standard XQuery for-expressions with position variables. First, we must normalize
for-expressions to core for-loops:

»»
for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in Expr1, · · · ,
$VarNamen OptTypeDeclarationn OptPositionalVarn in Exprn ReturnClause

––
Expr′

==26664
26664

for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in Expr1 return

...
for $VarNamen OptTypeDeclarationn OptPositionalVarn in Exprn
ReturnClause

37775
37775

Expr′

Now we can apply our decoration of the core for-loops (without position vari-
ables) recursively:

ˆ̂
for $VarNamei OptTypeDeclarationi in Expri ReturnClause

˜̃
Expr′

==ˆ̂
for $VarNamei OptTypeDeclarationi at $ VarNamei Pos in [[Expri]]Expr′ [[ReturnClause]]Expr′

˜̃
Expr

Similarly, let expressions must be normalized as follows:

»»
let $VarName1 OptTypeDeclaration1 := Expr1, · · · ,
$VarNamen OptTypeDeclarationn := Exprn ReturnClause

––
Expr′

==26664
26664

let $VarName1 OptTypeDeclaration1 := Expr1 return

...
let $VarNamen OptTypeDeclarationn := Exprn
ReturnClause

37775
37775

Expr′

Now we can recursively apply [[·]]Expr ′ on the core let-expressions:

ˆ̂
let $VarNamei OptTypeDeclarationi := Expri ReturnClause

˜̃
Expr′

==ˆ̂
let $VarNamei OptTypeDeclarationi := [[Expri]]Expr′ [[ReturnClause]]Expr′

˜̃
Expr

We do not specify where and order by clauses here, as they can be handled
similarly as above let and for expressions.
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4.2.2 CONSTRUCT Expressions

We define now the semantics for the ReturnClause. Expressions of form return
Expr are evaluated as defined in the XQuery semantics. Stand-alone construct-
clauses are normalized as follows:

ˆ̂
construct ConstructTemplate′

˜̃
Expr′

==hh
return (

ˆ̂
ConstructTemplate′

˜̃
SubjPredObjList

)
ii

Expr

The auxiliary mapping rule [[·]]SubjPredObjlist rewrites variables and blank nodes
inside of ConstructTemplate’s using the normalization mapping rules [[·]]Subject ,
[[·]]PredObjList , and [[·]]ObjList . They use the judgements expr valid subject, valid predi-
cate, and valid object, which holds if the expression expr is, according to the SPARQL
construct syntax, a valid subject, predicate, and object, resp: i.e., subjects must be
bound and not literals, predicates, must be bound, not literals and not blank nodes,
and objects must be bound. If, for any reason, one criterion fails, the triple contain-
ing the ill-formed expression will be removed from the output. Free variables in the
construct are unbound, hence triples containing such variables must be removed
too. The boundedness condition can be checked at runtime by wrapping each variable
and FLWOR’ into a fn:empty() assertion, which removes the corresponding triple from
the ConstructTemplate output.

Next we define the semantics of validSubject, validPredicate and validObject:
statEnv ` $ VarName Node bound

statEnv `
[[validSubject($ VarName Node)]]Expr =

[[ if (validBnode($ VarName Node) or validUri($ VarName Node)) then fn:true() else fn:false() ]]Expr

statEnv ` $ VarName Node bound

statEnv `
[[validPredicate($ VarName Node)]]Expr =

[[ if (validUri($ VarName Node)) then fn:true() else fn:false() ]]Expr

statEnv ` $ VarName Node bound

statEnv `
[[validObject($ VarName Node)]]Expr =»»

if (validBnode($ VarName Node) or validLiteral($ VarName Node) or validUri($ VarName Node))
then fn:true() else fn:false()

––
Expr

The definitions for validBnode, validUri and validLiteral are the following:
statEnv ` $ VarName NodeType bound

statEnv ` [[validBnode($VarName)]]Expr =

264
264 if ($ VarName NodeType = "blank")

then fn:true() else
if (fn:matches($VarName, "ˆ :[a-z]([a-z|0-9| ])*$")
then fn:true() else fn:false()

375
375

Expr

statEnv ` $ VarName NodeType bound

statEnv ` [[validUri($VarName)]]Expr =

264
264 if ($ VarName NodeType = "uri")

then fn:true() else
if (fn:matches($VarName, "ˆ<([ˆ>])*>$"))
then fn:true() else fn:false()

375
375

Expr

We follow the URI definition of the N3 syntax (according to the regular expression
available at http://www.w3.org/2000/10/swap/grammar/n3-report.
html#explicituri) as opposed to the more extensive definition in [4].
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statEnv ` $ VarName NodeType bound

statEnv ` [[validLiteral($VarName)]]Expr =

26664
26664

if (fn:empty($ VarName NodeType = "literal"))
then fn:true()
if (fn:starts−with($VarName, ”””) and

fn:ends−with($VarName, "’’")
then fn:true() else fn:false()

37775
37775

Expr

Finally, some of the normalization rules are presented; the missing rules should be
clear from the context:

statEnv ` validSubject(VarOrTerm)

statEnv `
[[VarOrTerm PropertyListNotEmpty]]SubjPredObjList =hh

fn:concat( [[VarOrTerm]]Subject , [[PropertyListNotEmpty]]PredObjlist )
ii

Expr

[[ [ PropertyListNotEmpty ] ]]SubjPredObjList

==

statEnv `
hh
( "[ ", [[PropertyListNotEmpty]]PredObjectList , " ]" )

ii
Expr

statEnv `Verb is valid predicate
statEnv `Object1 is valid object

...
statEnv `Objectn is valid object

statEnv `
[[ Verb Object1, . . . ,Objectn . ]]PredObjectList =hh

( [[Verb]]Expr′ ,",", [[Object1]]Expr′ ,",", . . . ,",", [[Objectn]]Expr′ ,".")
ii

Expr

Otherwise, if one of the premises is not true, we suppress the generation of this
triple. One of the negated rules is the following:

statEnv ` not (VarOrTerm is valid subject)
statEnv ` [[VarOrTerm PropertyListNotEmpty]]SubjPredObjList = [[""]]Expr

The normalization for subjects, verbs, and objects according to [[·]]Expr ′ is similar to
GroupGraphPattern: all variables in it will be replaced using [[·]]VarSubst .

Blank nodes inside of construction templates must be treated carefully by adding
position variables from surrounding for expressions. To this end, we use [[·]]BNodeSubst .
Since we normalize every for-loop by attaching position variables, we just need
to retrieve the available position variables from the static environment. We assume
a new static environment component statEnv.posVars which holds – similar to the
statEnv.varType component – all in-context positional variables in the given static en-
vironment, that is, the variables defined in the at clause of any enclosing for loop.

statEnv ` statEnv.posVars = VarName1 Pos, · · · ,VarNamen Pos

statEnv ` [[ :BNodeName]]BNodeSubst = [[fn:concat(" :",BNodeName, " ", ",VarName1 Pos, · · · ,VarNamen Pos) ]]Expr

4.2.3 SPARQL Filter Operators

SPARQL filter expressions in WHERE GroupGraphPattern are evaluated using fs:sparql.
But we additionally allow the following functions inherited from SPARQL in XS-
PARQL:
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BOUND($A as xs:string) as xs:boolean
isIRI($A as xs:string) as xs:boolean
isBLANK($A as xs:string) as xs:boolean
isLITERAL($A as xs:string) as xs:boolean
LANG($A as xs:string) as xs:string
DATATYPE($A as xs:string) as xs:anyURI

The semantics of above functions is defined as follows:

statEnv ` $ VarName Node bound
statEnv ` [[BOUND($VarName)]]Expr′ = [[if (fn:empty($ VarName Node)) then fn:false() else fn:true()]]Expr

statEnv ` $ VarName NodeType bound

statEnv ` [[isIRI($VarName)]]Expr′ =
»»

if (fn:empty($ VarName NodeType = "uri"))
then fn:false() else fn:true()

––
Expr

statEnv ` $ VarName NodeType bound

statEnv ` [[isBLANK($VarName)]]Expr′ =
»»

if (fn:empty($ VarName NodeType = "blank"))
then fn:false() else fn:true()

––
Expr

statEnv ` $ VarName NodeType bound

statEnv ` [[isLITERAL($VarName)]]Expr′ =
»»

if (fn:empty($ VarName NodeType = "literal"))
then fn:false() else fn:true()

––
Expr

statEnv ` $ VarName Node bound
statEnv ` [[LANG($VarName)]]Expr′ = [[fn:string($ VarName Node/@xml:lang)]]Expr

statEnv ` $ VarName Node bound
statEnv ` [[DATATYPE($VarName)]]Expr′ = [[$ VarName Node/@datatype]]Expr

4.3 Implementation
As we have seen above, XSPARQL syntactically subsumes both XQuery and SPARQL.
Concerning semantics, XSPARQL equally builds on top of its constituent languages.
We have extended the formal semantics of XQuery [9] by additional rules which reduce
each XSPARQL query to XQuery expressions; the resulting FLWORs operate on the
answers of SPARQL queries in the SPARQL XML result format [8]. Since we add
only new reduction rules for SPARQL-like heads and bodies, it is easy to see that each
native XQuery is treated in a semantically equivalent way in XSPARQL.

In order to convince the reader that the same holds for native SPARQL queries,
we will illustrate our reduction in the following. We restrict ourselves here to a more
abstract presentation of our rewriting algorithm, as we implemented it in a prototype.4

The main idea behind our implementation is translating XSPARQL queries to cor-
responding XQueries which possibly use interleaved calls to a SPARQL endpoint. The
architecture of our prototype shown in Fig. 10 consists of three main components:

(1) a query rewriter, which turns an XSPARQL query into an XQuery;
(2) a SPARQL endpoint, for querying RDF from within the rewritten XQuery; and
(3) an XQuery engine for computing the result document.

4http://xsparql.deri.org/
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Figure 10: XSPARQL architecture

Figure 11: XQuery encoding of Example 8(b)

The rewriter algorithm (Fig. 12) takes as input a full XSPARQL QueryBody [9]
q (i.e., a sequence of FLWOR’ expressions), a set of bound variables b and a set of
position variables p, which we explain below. For a FL (or F’, resp.) clause s, we
denote by vars(s) the list of all newly declared variables (or the varlist, resp.) of
s. For the sake of brevity, we only sketch the core rewriting function rewrite() here;
additional machinery handling the prolog including function, variable, module, and
namespace declarations is needed in the full implementation. The rewriting is initiated
by invoking rewrite(q, ∅, ∅) with empty bound and position variables, whose result is
an XQuery. Fig. 11 shows the output of our translation for the construct query
in Fig. 8(b) which illustrates both the lowering and lifting parts.5 Let us explain the
algorithm using this sample output.

After generating the prolog (lines 1–9 of the output), the rewriting of the Query-
Body is performed recursively following the syntax of XSPARQL. During the traversal
of the nested FLWOR’ expressions, SPARQL-like heads or bodies will be replaced by
XQuery expressions, which handle our two tasks. The lowering part is processed first:
Lowering The lowering part of XSPARQL, i.e., SPARQL-like F’DWM blocks, is “en-

5We provide an online interface where other example queries can be found and tested along with a
downloadable version of our prototype at http://www.polleres.net/xsparql/.
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coded” in XQuery with interleaved calls to an external SPARQL endpoint. To this end,
we translate F’DWM blocks into equivalent XQuery FLWO expressions which re-
trieve SPARQL result XML documents [1] from a SPARQL engine; i.e., we “push”
each F’DWM body to the SPARQL side, by translating it to a native select query
string. The auxiliary function sparql() in line 6 of our rewriter provides this func-
tionality, transforming the where {pattern} part of F’DWM clauses to XQuery ex-
pressions which have all bound variables in vars(pattern) replaced by the values of
the variables; “free” XSPARQL variables serve as binding variables for the SPARQL
query result. The outcome of the sparql() function is a list of expressions, which is
concatenated and URI-encoded using XQuery’s XPath functions, and wrapped into a
URI with http scheme pointing to the SPARQL query service (lines 10–12 of the out-
put), cf. [8]. Then we create a new XQuery for loop over variable $aux result to
iterate over the query answers extracted from the SPARQL XML result returned by
the SPARQL query processor (line 13). For each variable $xi ∈ vars(s) (i.e., in the
(F’) for clause of the original F’DWM body), new auxiliary variables are defined in
separate let-expressions extracting its node, content, type (i.e., literal, uri, or blank),
and RDF-Term ($xi Node, $xi, $xi NodeType, and $xi RDFTerm, resp.) by appro-
priate XPath expressions (lines 14–22 of Fig. 11); the auxvars() helper in line 6 of the
rewriter algorithm (Fig. 12) is responsible for this.
Lifting For the lifting part, i.e., SPARQL-like constructs in the R part, the trans-
formation process is straightforward. Before we rewrite the QueryBody q, we process
the prolog (P) of the XSPARQL query and output every namespace declaration as Tur-
tle string literals “@prefix ns: <URI>.” (line 10 of the output). Then, the rewriter
algorithm (Fig. 12) is called on q and recursively decorates every for $Var expression
by fresh position variables (line 13 of our example output); ultimately, construct
templates are rewritten to an assembled string of the pattern’s constituents, filling in
variable bindings and evaluated subexpressions (lines 23–24 of the output).

Blank nodes in constructs need special care, since, according to SPARQL’s se-
mantics, these must create new blank node identifiers for each solution binding. This
is solved by “adorning” each blank node identifier in the construct part with the
above-mentioned position variables from any enclosing for-loops, thus creating a
new, unique blank node identifier in each loop (line 23 in the output). The auxiliary
function rewrite-template() in line 8 of the algorithm provides this functionality by sim-
ply adding the list of all position variable p as expressions to each blank node string; if
there are nested expressions in the supplied construct {template}, it will return a
sequence of nested FLWORs with each having rewrite() applied on these expressions
with the in-scope bound and position variables.

Expressions involving constructs create Turtle output. Generating RDF/XML
output from this Turtle is optionally done as a simple postprocessing step supported by
using standard RDF processing tools.

4.4 Correspondence between XSPARQL and XQuery
As we have seen above, XSPARQL syntactically subsumes both XQuery and SPARQL.
Concerning semantics, XSPARQL equally builds on top of its constituent languages.
We have extended the formal semantics of XQuery from [9] by additional reduction
rules which reduce each XSPARQL query to XQuery expressions which operate on
results of SPARQL queries in the SPARQL’s XML result format [8].
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Figure 12: Algorithm to Rewrite XSPARQL q to an XQuery

Since we add only new reduction rules for SPARQL-like heads and bodies, it is
easy to see that each native XQuery is treated in a semantically equivalent way in
XSPARQL.

Lemma 28 Let q be an XSPARQL query. Then, the result of applying q to the algo-
rithm in Fig. 12 is an XQuery, i.e., rewrite(q, ∅, ∅) is an XQuery.

Proof. This can be shown straightforwardly by structural induction of q.
Induction base: If q consists of a single XQuery expression i.e. the expression does

not use any of the changed grammar rules from Section 4.2, the result of applying
rewrite is also an XQuery.

If q is composed of several XSPARQL expressions s1, . . . , sn and si is an XQuery
(from the induction base), si+1 can be of the following cases (presented in Sections 4.2.1
and 4.2.2):

1. If si+1 is in the form of a SparqlForClause, the mapping rule[[
for $VarName1 · · · $VarNamen DatasetClause where
GroupGraphPattern SolutionModifier ReturnClause

]]
Expr ′

will convert the XSPARQL query into XQuery;

2. If si+1 is in the form of a ReturnClause, by the mapping rule
[[construct ConstructTemplate ′]]Expr ′ it will be converted into XQuery.

2

Proposition 29 XSPARQL is a conservative extension of XQuery.

Proof.[Sketch] From Lemma 28, we know that the output, given an XSPARQL query
falling in the XQuery fragment is again an XQuery. Note that, however, even this frag-
ment, our additional rewriting rules do change the original query in some cases. More
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concretely, what happens is that by our “decoration” rule from p.175 each position-
variable free for loop (i.e., that does not have an at clause) is decorated with a new
position variable. As these new position variables begin with an underscore they cannot
occur in the original query, so this rewriting does not interfere with the semantics of
the original query. The only rewriting rules which use the newly created position vari-
ables are those for rewriting blanknodes in construct parts, i.e., the [[·]]BNodeSubst

rule. However, this rule only applies to XSPARQL queries which fall outside the native
XQuery fragment, obviously. 2

In order to convince the reader that a similar correspondence holds for native
SPARQL queries, let us now sketch the proof showing the equivalence of XSPARQL’s
semantics and the evaluation of rewritten SPARQL queries into native XQuery. Intu-
itively, we “inherit” the SPARQL semantics from the fs:sparql “oracle.”

Let Ω denote a solution sequence of a an abstract SPARQL query q = (E,DS,R)
where E is a SPARQL algebra expression, DS is an RDF Dataset and R is a set of
variables called the query form (cf. [22]). Then, by SPARQLResult(Ω) we denote
the SPARQL result XML format representation of Ω.

We are now ready to state some important properties about our transformations.
The following proposition states that any SPARQL select query can be equivalently
viewed as an XSPARQL F’DWMR query.

Proposition 30 Let q = (EWM, DS, $x1, . . . , $xn) be a SPARQL query of the form
select $x1, . . . , $xn DWM, where we denote by DS the RDF dataset (cf. [22])
corresponding to the DataSetClause (D), by G the respective default graph of DS,
and by EWM the SPARQL algebra expression corresponding to WM and P be the
pattern defined in the where part (W). If eval(DS(G), q) = Ω1, and

statEnv; dynEnv ` for $x1 · · · $xn fromD(G) whereP return ($x1, . . . , $xn)⇒ Ω2.

Then, Ω1 ≡ Ω2 modulo representation.6

Proof.[Sketch] By the rule

[[for $x1 · · · $xn from D(G) where P return ($x1, . . . , $xn)]]Expr′

==hh
let $ aux queryresult := [[·]]SparqlQuery · · · for · · · [[·]]SparqlResult · · · return ($x1, . . . , $xn)

ii
Expr′

[[·]]SparqlQuery builds q as string without replacing any variable, since all variables in
vars(P ) are free. Then, the resulting string is applied to fs:sparql , which – since q was
unchanged – by definition returns exactly SPARQLResult(Ω1), and thus the return
part return ($x1, . . . , $xn) which extracts Ω2 is obviously just a representational
variant of Ω1.

2

By similar arguments, we can see that SPARQL’s construct queries are treated
semantically equivalent in XSPARQL and in SPARQL. The idea here is that the rewrit-
ing rules constructs from Section 4.2.2 extract exactly the triples from the solution
sequence from the body defined as defined in the SPARQL semantics [22].

6Here, by equivalence (≡) modulo representation we mean that both Ω1 and Ω2 represent the same
sequences of (partial) variable bindings.
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5 Related Works
Albeit both XML and RDF are nearly a decade old, there has been no serious effort
on developing a language for convenient transformations between the two data models.
There are, however, a number of apparently abandoned projects that aim at making it
easier to transform RDF data using XSLT. RDF Twig [23] suggests XSLT extension
functions that provide various useful views on the “sub-trees” of an RDF graph. The
main idea of RDF Twig is that while RDF/XML is hard to navigate using XPath, a
subtree of an RDF graph can be serialized into a more useful form of RDF/XML. Tree-
Hugger7 makes it possible to navigate the graph structure of RDF both in XSLT and
XQuery using XPath-like expressions, abstracting from the actual RDF/XML structure.
rdf2r3x8 uses an RDF processor and XSLT to transform RDF data into a predictable
form of RDF/XML also catering for RSS. Carroll and Stickler take the approach of
simplifying RDF/XML one step further, putting RDF into a simple TriX [6] format,
using XSLT as an extensibility mechanism to provide human-friendly macros for this
syntax.

These approaches rely on non-standard extensions or tools, providing implementa-
tions in some particular programming language, tied to specific versions of XPath or
XSLT processors. In contrast, RDFXSLT9 provides an XSLT preprocessing stylesheet
and a set of helper functions, similar to RDF Twig and TreeHugger, yet implemented
in pure XSLT 2.0, readily available for many platforms.

All these proposals focus on XPath or XSLT, by adding RDF-friendly extensions,
or preprocessing the RDF data to ease the access with stock XPath expressions. It
seems that XQuery and SPARQL were disregarded previously because XQuery was
not standardized until 2007 and SPARQL – which we suggest to select relevant parts of
RDF data instead of XPath – has only very recently received W3C’s recommendation
stamp.

As for the use of SPARQL, Droop et al. [10] suggest, orthogonal to our approach,
to compile XPath queries into SPARQL. Similarly, encoding SPARQL completely into
XSLT or XQuery [15] seems to be an interesting idea that would enable to compile
down XSPARQL to pure XQuery without the use of a separate SPARQL engine. How-
ever, scalability results in [15] so far do not yet suggest that such an approach would
scale better than the interleaved approach we took in our current implementation.

Finally, related to our discussion in Section 2, the SPARQL Annotations for WSDL
(SPDL) project (http://www.w3.org/2005/11/SPDL/) suggests a direct integra-
tion of SPARQL queries into XML Schema, but is still work in progress. We expect
SPDL to be subsumed by SAWSDL, with XSPARQL as the language of choice for
lifting and lowering schema mappings.

6 Conclusion and Future Plans
We have elaborated on use cases for lifting and lowering, i.e., mapping back and forth
between XML and RDF, in the contexts of GRDDL and SAWSDL. As we have seen,
XSLT turned out to provide only partially satisfactory solutions for this task. XQuery

7http://rdfweb.org/people/damian/treehugger/index.html
8http://wasab.dk/morten/blog/archives/2004/05/30/transforming-rdfxml-with-xslt
9http://www.wsmo.org/TR/d24/d24.2/v0.1/20070412/rdfxslt.html
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and SPARQL, each in its own world, provide solutions for the problems we encoun-
tered, and we presented XSPARQL as a natural combination of the two as a proper
solution for the lifting and lowering tasks. Moreover, we have seen that XSPARQL
offers more than a handy tool for transformations between XML and RDF. Indeed, by
accessing the full library of XPath/XQuery functions, XSPARQL opens up extensions
such as value-generating built-ins or even aggregates in the construct part, which have
been pointed out missing in SPARQL earlier [21].

As we have seen, XSPARQL is a conservative extension of both of its constituent
languages, SPARQL and XQuery. The semantics of XSPARQL was defined as an
extension of XQuery’s formal semantics adding a few normalization mapping rules.
We provide an implementation of this transformation which is based on reducing XS-
PARQL queries to XQuery with interleaved calls to a SPARQL engine via the SPARQL
protocol. There are good reasons to abstract away from RDF/XML and rely on native
SPARQL engines in our implementation. Although one could try to compile SPARQL
entirely into an XQuery that caters for all different RDF/XML representations, that
would not solve the use which we expect most common in the nearer future: many
online RDF sources will most likely not be accessible as RDF/XML files, but rather
via RDF stores that provide a standard SPARQL interface.

Our resulting XSPARQL preprocessor can be used with any available XQuery and
SPARQL implementation, and is available for user evaluation along with all examples
of this paper at http://xsparql.deri.org/.

As mentioned briefly in the introduction, simple reasoning – which we have not yet
incorporated – would significantly improve queries involving RDF data. SPARQL en-
gines that provide (partial) RDFS support could immediately address this point and
be plugged into our implementation. But we plan to go a step further: integrat-
ing XSPARQL with Semantic Web Pipes [18] or other SPARQL extensions such as
SPARQL++ [21] shall allow more complex intermediate RDF processing than RDFS
materialization.

We also plan to apply our results for retrieving metadata from context-aware ser-
vices and for Semantic Web service communication, respectively, in the EU projects in-
Context (http://www.in-context.eu/) and TripCom (http://www.tripcom.
org/).
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