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Abstract. Collaboratively maintained knowledge graphs like Wikidata
rely on property constraints to detect data inconsistencies. This paper sys-
tematically formalizes potential repairs for Wikidata constraint violations,
presenting a comprehensive taxonomy of repair strategies encompassing
both instance-level (A-box) and terminological-level (T-box) changes.
T-box repairs, which alter constraint definitions or Wikidata’s class hier-
archy, can simultaneously address multiple violations and, to the best of
our knowledge, have not been investigated in detail before. We observe
repairs over time and evaluate how specific patterns within our taxonomy
are applied in practice. Our analysis of historical data reveals insights
into the prevalence of repair patterns in Wikidata’s collaborative environ-
ment. The results indicate that T-box repairs are particularly relevant
for certain constraint types and the overall consolidation of Wikidata,
where modifying constraint definitions can reduce the number of recurring
violations.
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- Knowledge Graph Refinement.

1 Introduction

Knowledge Graphs (KGs) [9] power applications such as search engines, reasoning,
and data integration [2]. They model real-world knowledge as graphs, with entities
as nodes and relationships as edges. Despite their versatility, commonsense KGs
like Wikidata often suffer from data quality issues, undermining their usefulness.
Their large scale and collaborative nature make ensuring data correctness a
performance and scalability challenge [1,6,21].%

This paper focuses on RDF-based KGs [3] exported from Wikibase, such as
Wikidata (WD) [24] and the EU Knowledge Graph [4]. These graphs rely on

* This work was funded by the Austrian Science Fund (FWF) [10.55776/COE12].

4 As of July 2025, Wikidata contained approximately 118 million items and 2 billion
edits. Source: https://www.wikidata.org/wiki/Wikidata:Statistics. A full RDF
serialization of Wikidata amounts to over 14b triples [6].
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so-called property constraints, a common mechanism for detecting inconsistencies
by enforcing or prohibiting specific data patterns [16, 21]. Broadly, completeness
constraints require certain information (e.g., “an item used as place of birth
also must be of type location”), while consistency constraints prohibit specific
conflicting statements (e.g. explicitly forbidding certain items to be used as
country of citizenship). Items violating these constraints are considered violations.

Shape Expressions (ShEx) [26] and the W3C standard Shapes Constraint
Language (SHACL) [25] are the primary languages for expressing constraints in
RDF KGs. However, Wikidata established its own property constraint model —
developed within the Wikibase ecosystem — prior to the development of these
standards. Although not fully expressible in SHACL [6], WD’s property con-
straints have been formally studied using SPARQL [6] and MAPL [12]. These
constraint types have also been adopted by other Wikibase-based KGs, such
as the EU Knowledge Graph, highlighting the relevance of research on their
properties and repairs. Previous work [2,21] has explored instance (A-box) re-
pairs based on a simplified Description Logics (DL) formalization, but did not
address repairs involving modifications to constraint definitions or Wikidata’s
foundational “ontology axioms”. Building upon these efforts, this paper formally
defines both A-box and T-box repair patterns for WD property constraints,
leveraging existing formalizations in MAPL [12] and SPARQL [6]. Furthermore,
we analyze the impact of T-box repair patterns, which offer the potential to fix
multiple violations at once, contrasting with individual A-box repairs.

Our main contributions are as follows: (1) A complete formalization of possible
repair patterns covering both A-box and T-box repairs — to the best of our
knowledge, this is the first work to analyze T-box repairs in Wikidata; (2)
A systematic analysis of these repair patterns based on historical edits; (3)
Additionally, we provide an accompanying dataset of historical repairs performed
by the Wikidata community from Jun-2019 to May-2023 for further use, cf. the
Supplementary Material statement in the end of the paper.

The rest of the paper is structured as follows: Section 2 covers the Wiki-
data data model and its constraint representation. Section 3 defines constraint
violations. Section 4 presents our formalization of Wikidata constraint repairs,
covering both A-box and T-box, with general and constraint-specific repair pat-
terns. Section 5 details our experiments on Wikidata, tracking data evolution,
violations, and repair patterns. Section 6 explores data quality in KGs, including
inconsistency detection and formal constraint representation. Finally, Section 7
summarizes the findings and future directions.

2 Preliminaries

Wikidata’s KG consists of two primary components: items and properties. Items
represent concrete or abstract entities, e.g. Messi, Chemistry, or California. Prop-
erties denote relationships between items, such as date of birth or country of
citizenship. These relations are used to create direct claims, i.e., subject-property-
value triples, which we will also write as property(subject,value) predicates. Here,
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the subject is an item and a value can be either an item or a literal. Items and
properties are identified by alphanumeric IDs, where item IDs are of the form
Qz (e.g. Q615 for Messi) and property IDs of the form Px (e.g. P27 for country
of citizenship). Fig. 1 illustrates WD’s RDF data model in two layers: single-lined
edges depict direct claims as item- property-value triples, while the double-lined
edges incorporate a mechanism to add so-called statement qualifiers for ranks,
references and other metadata, using WD’s reification mechanism, such as the
date (start time property) on which an individual’s citizenship became effective
(country of citizenship property), for enhanced description. Further details can
be found in [6], which also explains the respective distinct namespaces used for
direct claims (wdt:) and qualifier statements (p:, ps:, pq:, etc.).

While Wikidata does not separate between A-Box and T-Box, we borrow from
this abstraction commonly made in Description Logics, to distinguish “assertional”
data (A-Box), i.e., statements made about individual instance entities, from
“terminology” definitions (T-Box), i.e., axioms about classes and properties, such
as Wikidata’s subclass hierarchy and property constraint definitions.’

A-Bozx. In analogy with standard RDF ontologies, we will call direct claims as

well as statement qualifiers related to these (depicted as single and double line
edges with A-tips in Fig. 1), the WD A-Box.

place of birth (wdt:P1

instance of
(wdt:P31)

place of
birth (p:P19) . | wds:Q615-02496AEE-FOA3-495D-
9584-25E2FE47EA51

prov:wasDerivedFrom
wadref:205eabdada2cf7d4f

8ede558f514fc289fb74afd .
country of Rosario

place of birth (ps:P19)

big city
(wd:Q1549591)

subclass of (wdt:P279)

Pwiki 1] (wd:Q52535) city
(p:P27) ikil ank (wd:Q515)
Messi country of citizenship
) . :P27)
(wd:Q615) wds:Q615-62E18BBD-7824-4F6F- (ps - Pl .
9A86-F860EB2B2127 & of (wdt:P279)+
start time A
. geographic
{pe:P350) 1987-01-01 T location
country of citi ip (wdt:P27) (wd:Q2221906)

(wd:Q414)

Fig. 1: Wikidata data model: single-line arrows indicate direct A-box (A-tips) and
T-box (A-tips) claims, respectively. Double line arrows denote A-box statement
qualifiers, i.e., contextual information.

T-Box. Similar, but slightly different to standard RDFS and OWL ontologies,
the parts of Wikidata’s terminology (or T-Box) relevant for property constraint
evaluation are described by special statements about classes and properties using

5 subproperties are not covered herein, because these are not considered by /relevant
for any Wikidata property constraint definitions.
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(b) Value-type constraint for place of birth.

(a) None-of constraint for country of citizen-  There must be at least one value that is
ship. Since the listed items are US territories, an instance or subclass of one of the items
US citizenship should be used instead. listed in the class qualifier.

Fig. 2: Examples of WD property constraint definitions (part of the T-Box)

a particular vocabulary: (1) items used in instance of (P31) A-box claims form
a class hierarchy: that is, we count all subclassOf (P279) direct claims (some of
which are illustrated in the righthand side of Fig. 1) part of the T-Box.

The second part of what we call WD’s T-Box herein are (2) property constraint
definitions, as illustrated in Fig. 2, which shows property constraints on the
properties country of citizenship and place of birth: each such definition comprises
a qualified property constraint (pc) type (P2303) statement along with additional,
constraint-type specific qualifiers: Fig. 2a shows a None-of constraint, stating
that none of the four item of property constraint (iopc) should be used when
describing citizenship. Such constraints may also contain hints for repairing, in
the form of additional constraint type specific qualifiers, such as replacement value
(P9729): since the prohibited entities are US territories, the value United States
of America should be used instead. Fig. 2b exemplifies a Value-type constraint
for property place of birth, where there must be at least one value that is an
instance or subclass of one of the listed class values. Other constraint types for
instance include ltem-requires-statement (IRS) or Value-requires-statement (VRS)
constraints; overall, 30+ property constraint types have been defined and are
constantly evolving in WD.5 We herein selected 13 constraint types — the 10
analyzed by Tanon et al. [21] and included three constraint types not previously
covered: the complement of One-of, which we refer to as None-of, and two qualifier-
based constraint types, Required qualifier and Allowed qualifiers, which shall show
the complementary aspects of our analysis with regards to earlier works.

The A-Box data in Fig. 1 complies to the consistency constraint in Fig. 2a, as
the single country of citizenship claim has none of the forbidden values. Likewise,
the A-Box claim place_of birth(Messi, Rosario) shown in Figure 1 conforms to
the completeness constraint in Fig. 2b since the additional claim instance of
(Rosario, bigcity) exists and there is a subclass path from big city to geographic
location; i.e., we see that for compliance checking of property constraints also the
subclass hierarchy part of the T-Box is relevant.

S https://www.wikidata.org/wiki/Help:Property_constraints_portal
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3 Defining Violations With Witness Patterns

We formally define constraint violations before discussing repairs. Here, we focus
on the constraint types used in earlier works and try to generalize, building on
these earlier formalizations [6,12, 14, 21].

Marx et al. [14] have introduced Multi-Attributed Relational Structures
(MARS), especially as a formal data model for generalized Property Graphs
like WD. They also developed Multi-Attributed Predicate Logic (MAPL) for
expressing semantic knowledge within these structures. MAPL extends First-
Order Logic (FOL) to support multi-valued attributes via set terms. Specifically,
MAPL enhances the standard components of FOL (constants, terms, atoms, and
formulae) as follows [12], where we only use binary predicates herein:

1. A set term is either a set variable or a set of attribute-value pairs {a; :
b1, ..., an : by}, where each a;, b; is an object term. Object terms are the usual
basic terms of FOL, and can be either constants or object variables.

2. A relational atom is written as p(a,b)@S, where p is a binary predicate, a,b
are object terms and S is a set term. Herein, we also allow SPARQL property
path expressions for p.”

3. A set atom is an expression (a : b) € S, where a, b are object terms and S is
a set term.

For further details, on the syntax and semantics of MAPL formulae, including
basic concepts such as models, entailment, satisfaction and consistency, we
refer to [14]. In the following, constants are denoted in a serifless font (e.g.
location, country of citizenship, etc.), object variables use lower case letters (e.g.,
x,y, 2, ...), and set variables are denoted by uppercase letters (e.g., S, @, ...).

To illustrate how we can use MAPL to formalize the semantics of particular
property constraint (pc) types, consider the None-of constraint from [12]:

pc(p, None-of)@C'Q A (iopc : v) € CQ — —3s.p(s,v)

This MAPL rule states that if a property p is constrained by a None-of
constraint, specified by constraint qualifiers CQ, and C'QQ includes the value v
as an item of the property constraint, then there should not exist any subject
s that has the value v for property p. As the rule ensures data consistency, its
logical negation, easily derivable via logical equivalences and De Morgan’s laws,
can be formulated as a conjunction reading all variables as existential to define
what we call a violation witness pattern:

p(s,v) A pc(p, None-of)@CQ A (iopc : v) € CQ

In MAPL, A WD statement p(s,v)@QSQ extends the basic p(s,v) claim by
incorporating statement qualifiers and references (SQ). To further analyze con-
straint violations, we will distinguish between: (1) the base statement, p(s,v)@QSQ,

" This slight extension of MAPL can be seen as a form of syntactic shorthand for
(linearly recursive) rules used to represent path expressions. See, for example, [19]
and rule (3) in [15].
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Table 1: Witness patterns in MAPL and SPARQL

Constr. Type

Witness Pattern

SPARQL Pattern

One-of p(s,v) A pc(p, One-of) @C'Q uwikibase-directClaim 7P; p:P2302 7CQJ. 7S 7P V.
(Q21510859) T FO B o eSiepaioess
A(iopc : v) ¢ CQ {2CQ pq:P2305 2V.}

None-of p(s,v) A pc(p, None-of)QCQ Lwik?base:directclaim ?P; p:P2302 7CQ].

=414 = -
(Q52558054) Aiope : v) € CQ zgg EZFF’)ZZ%%Q wd:Q52558054.
IRS c(p, IRS)@QCQ A (property : p.) € C kibase:directClaim ?P; p:P2302 7CQ]. 7S ?P ?V.
(Q21503247) pe(p, ) QA (property : pe) Q ['vgd :ssfvzgggtwda'cr>"21503p247 7CQ Pq]P2306 0

(no value)

Ap(s,v) A =Fve.pe(s, ve)

A=Tvceq.(iope : veq) € CQ

FILTER NOT EXISTS {7CQ pq:P2305 [|.}
FILTER NOT EXISTS { 7CQ
pq:P2306/wikibase:directClaim ?PC. 7S 7PC 7VC.}

IRS
(Q21503247)
(with value)

pe(p, IRS)@QCQ A (property : p.) € CQ
Ap(s,v) A =Fve.(pe(s, ve)A

(iopc : v.) € CQ)

[]wwk\base directClaim ?P; p:P2302 ?CQ]. 7S 7P 7V.
CQ ps:P2302 wd: Q21503247
7CQ pq:P2306/wikibase:directClaim 7PC.
7CQ pq:P2305 []. FILTER NOT EXISTS
{ 7S ?PC ?VC. 7CQ pq:P2305 ?VC.}

VRS
(Q21510865)

(no value)

pc(p, VRS)@QC'Q A (property : pc) € CQ
Ap(s,v) A =Fve.pe(v,ve)

A=Tveq.(iopc : veq) € CQ

wak\base directClaim ?P; p:P2302 7CQ]. 7S 7P ?V.
CQ ps:P2302 wd:Q21510865. 7CQ pq P2306 [].
FILTER NOT EXISTS 7CQ pq:P2305 [|.}

FILTER NOT EXISTS {7CQ

pq:P2306 /wikibase:directClaim ?PC. ?V ?PC ?VC}

VRS
(Q21510865)
(with value)

pc(p, VRS)@QCQ A (property : p.) € CQ
Ap(8,v) A =Fve.(pe(v, ve)A

(iopc : v.) € CQ)

[)W\k\base directClaim ?P; p:P2302 7CQ]. 7S 7P ?V.
CQ ps:P2302 wd:Q21510865.
7CQ pq:P2306/wikibase:directClaim 7PC.
?7CQ pq:P2305 []. FILTER NOT EXISTS
{?V 7PC ?VC. 7CQ pq:P2305 ?VC.}

Inverse pc(p, Inverse)QC'Q A (property : p.) € CQ [wikibase:directClaim 7P p:P2302 7CQJ. 75 7P V.
CQ ps:P2302 wd:Q21510855.
(Q21510855) Ap(s,v) A —pe(v, 5) e B e oo Claim 7PC.
RASILTA S FILTER NOT EXISTS {?V ?PC 7S}

Symmetric pc(p, Symmetric)QCQ A p(s,v) A =p(v, s) wak\base directClaim ?P; p:P2302 7CQ]. 7S 7P 7V.
ST CQ ps:P2302 wd:Q21510862.

(Q21510862) FILTER NOT EXISTS {7V 7P 75}

Conflicts-with c(p, Conflicts-with)@QC'Q A (property : eC kibase:directClaim ?P; p:P2302 ?CQ]. 7S 7P ?V.

(Q21502838) pe(p: ) QA lp p Y i pe) Q ngd ::;zérg;twdalrr)n21502%38 -

(TLO ’ualue) Aﬁ3v6q4(|opc : ch) € CQ  7€Q pq:P2306/wikibase:directClaim ?PC .

Ap(8,v) A pe(s,ve)

FILTER NOT EXISTS {?CQ pq:P2305 []}.
7S 7PC ?VC.

Conflicts-with
(Q21502838)
(with value)

pc(p, Conflicts-with)@QCQ A (property : p.) € CQ
A(iopc : v.) € CQ
Ap(s,v) A pe(s, ve)

[)wwk\base directClaim ?P; p:P2302 ?CQ ]. ?S ?P ?V.
CQ ps:P2302 wd:! Q2150 838.

7CQ pq:P2306/wikibase:directClaim ?PC .

2CQ pq:P2305 2VC.

7S 7PC ?VC.

Distinct-values
(Q21502410)

pc(p, Distinct-values)@QC'Q
Ap(s, v) Ap(sc,v) A s#sc

wak\base directClaim ?P; p:P2302 7CQ]. 7S ?P ?V.
CQ ps:P2302 wd:Q21502410.
?SC 7P ?V. FILTER (7S = 7SC).

Single-value
(Q19474404)
(no seperator)

pc(p, Single-value)QC'Q
A—3gq.(separator : q) € CQ
AB(5,) A p(s, ve) A v £ v

wikibase:claim 7PSQ p:P2302 7CQ]]
S 7PSQ 75Q,7SQC.

FILTER(str(7SQ) I= str(?SQC))

?7CQ ps:P2302 wd:Q19474404.

FILTER NOT EXISTS {?CQ pq:P4155 [|}

Single-value

pc(p, Single-value)@QC'Q A (separator : ¢) € CQ []wwk\base clagn 7F£)SQ p:P2302 7CQ.]

(Q19474404) ) 5 FILTER(str(?SQ) = str(?SQC)
(with Ap(s, v)@SQ A p,(f’ffc,)@SQc A (v # ve)A g 2CQ s(rftz%(oz?v)d Q159t4'744§4 ;CQ pq:P4155 [].
separator) F7ILT$R NOT EXISTS { 75Q 7Q 7VQ. 75QC ,
30,04 -((4:q) € SQA(4:ge) € SQC A vq #vge) QRS ICQ pgPilss wikibaseualer 10

Required pc(p, Required qualifier)QC'Q ['msul;wggséglsabm 7PSQ; p:P2302 7CQ).
qualifier . 7CQ ps:P2302 wd:Q21510856.
(Q21510856) A(property : q) € CQ ?cg g::P2306/vaik(i)base:%ualifi7er Q.

Ap(s, v)@SQ A —3vq.((g : vg) € SQ) FILTER NOT EXISTS { 5Q 7Q [| }
AIIo;x;gd pc(p, Allowed qualifiers)QC'Q [’\g\kvwgaés(s §|Sa.én ;ggQQp-stoz 7CQ).
qualimiers Ap(s,v)QSQ 7CQ ps:P2302 wd:Q21510851.
(Q21510851) 05 /7 FILTER NOT EXISTS {

/\(q . ’Uq) € SQA (property . q) 3 CQ) ?CQ pq:P2306/wikibase:qualifier ?Q }
Typerer p(s,v) A pe(p, Type)QC'Q wikibase:directClaim 7P p:P2302 7CQJ. 75 7P 7V.
(Q21508250) e e

A(relation : rel) € CQ
A—dec. ((class : ¢) € CQ A PATH (s, c))

FILTER NOT EXIST:
?7CQ pq:P2308 7C. 7S PAT H,..; 7C.}

Value-type,;
(Q21510865)

p(s,v) A pc(p, Value-type) QC'Q
A(relation : rel) € CQ
A=3c. ((class : ¢) € CQ AN PATH ¢ (v, ¢))

[iwwk\base directClaim 7P, p:P2302 ?CQ]. 7S 7P ?V.
CQ ps:P2302 wd: Q21510865

2CQ pq:P2309 wd:Q .

FILTER NOT EXISTS «?

7CQ pq:P2308 ?C. ?V PAT H,.,; 7C}
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Table 2: relation paths for Type and Value-type constraints described in Table 1.

rel PATH,., (MAPL) PATH,.; (SPARQL) Qrei
instance_ of P31(v, vc) AP279 * (v, ¢) (wdt:P31/wdt:P279*%) Q21503252
subclass_of P279 x (v, c) (wdt:P279%) Q21514624

instance _or_subclass_of (P31(v,v.)AP279 % (vc, ¢))V (P279 % (v, ¢)) (wdt:P31?/wdt:P279%) Q30208840

which directly violates a property constraint, and (2) a context statement, denoted
as pe(s, v:.)QSQ. or p.(v,v.)@SQ., which is an additional statement that pro-
vides supporting information about the subject s or value v of the base statement,
thereby aiding in violation identification. For example, identifying a Conflicts
with constraint violation requires the presence of a prohibited specific context
statement using a prohibited context property within the constraint definition
qualifiers. Likewise, for the Value-type constraint, a supporting instance of (P31)
statement may be required.

Definition 1 (Constraint Violation). A statement p(s,v)QSQ € A is con-
sidered a constraint violation if it satisfies at least one witness pattern defined in
Table 1.

Table 1 shows the complete list of witness patterns for all analyzed constraint
types, including their Wikidata IDs, with Table 2 further explaining different
relational paths for subtypes of Type and Value-type constraints. We “mark” dif-
ferent A-Box components within MAPL witness patterns with underlining, while
non-underlined elements represent T-Box (constraint definition) components:

base statement (S) base statement qualifier (SQ)
_ context statement (S.) ___ context statement qualifier (SQ.)

Additional note: truthy statements. As a notational shortcut in MAPL formulas
used within Table 1, we use p(s,v) (or p.(s,v.)) without the @SQ (or analogously,
@CQ) suffix, as a shorthand for wikidata:directClaims, which denote “truthy” state-
ments of the form p(s,v)@SQ. The omission of SQ indicates that SQ contains
an active rank attribute (i.e., rank:preferredRank, or, resp., rank:normalRank with-
out the existence of any other rank:preferredRank claims). Only these truthy
statements are accessible in Wikidata’s RDF serialization through property IDs
qualified by the wdt:-namespace.

By exploiting the introduced notational conventions, all MAPL witness pat-
terns can also be directly translated into SPARQL queries to detect constraint
violations [6], e.g., for the None-of running example:

[wikibase:directClaim ?P; p:P2302 7CQ]. Retrieve constraint definition node

and base statement property ?P.
?S 7P 7V. Select the base statement using 7P.
7CQ ps:P2302 wd:Q52558054. Filter for None-of constraint type.
?7CQ pq:P2305 7V. Match forbidden values.
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The unified MAPL (object and set) variable names and SPARQL variable
names in Tables1+2 illustrate the corresponding semantics. That is, the queries
presented in Table 1 resemble those introduced by [6] but have been adapted
in this paper to use a more uniform and standardized variable naming scheme
aligned with their corresponding witness pattern roles. However, the original
semantics are preserved.

We note the following for further explanation of the SPARQL queries: whereas
a pattern using wikibase:directClaim points to the direct claim’s wdt:-prefixed
predicate p, a blank node pattern using wikibase:claim yields the p:-prefixed
property that links entities to wds:-prefixed statement nodes representing SQ,
just as the variable 7CQ is bound (via p:P2302) to a wds:-prefixed statement
node representing the constraint C'Q); for further details, please refer to Figures 1
and 2 or the more in-depth explanations of Wikidata’s custom RDF reification
model in [6].

4 Formalizing Repairs

Completeness violation witness patterns check for the non-existence of required
information, which results in negated conjuncts in MAPL or FILTER NOT
EXISTS clauses in SPARQL, as for the Value-type constraint test. On the
contrary, witness patterns for consistency violations result in conjunctive queries
with only positive conjunctions to match existence of prohibited information.
This straightforwardly suggests a definition of repairs by the following insights:

1. Consistency violations can be repaired by deletions of statements or qualifiers
mentioned in positive MAPL witness pattern conjuncts (or, resp. SPARQL
NOT EXISTS patterns).

2. Completeness violations can be repaired by additions of statements or qual-
ifiers mentioned in MAPL witness pattern conjuncts under a — (negated)
scope, or, resp. within SPARQL NOT EXISTS patterns.

Based on this idea, we can further classify repairs by the (underlined vs.
non-underlined) components of witness patterns affected by such additions and
deletions, which we introduced in the previous section, distinguishing between
A-Box and T-Box repairs:

A-Box repairs encompass modifications of the base statement (5), context state-
ment (S¢), or their respective qualifiers (SQ, SQ.), falling into the following
repair types:

S~ — Base statement deletion: the deletion of the base statement obviously
fixes any constraint violation, since the base statement p(s,v) appears positively
in each witness pattern in Table 1.

S; — Context Statement deletion(s): the deletion of a “witnessing” context
statement p.(s,v.) fixes any consistency constraints which contain a positive

context statement in their witness pattern, i.e., this potentially affects Conflicts-
with, Distinct-values, and Single-Value constraints.
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ST — Context Statement addition(s): likewise, the addition of a “missing”
context statement fixes any completeness violations which contain a negated
context statement, i.e., IRS, VRS, Inverse, and Symmetric constraints, but also
includes instance of (P31) additions for Type and Value-Type constraint violations,
cf. Table 2.

S@Q~ — Base qualifier deletion: the deletion of a “witnessing” base statement
qualifier fixes any consistency violations for witness patterns with a positive,
(g : vq) € SQ qualifier in Table 1, i.e., a removal of a non-Allowed qualifiers.

SQ*' — Base qualifier addition: likewise, the addition of a “missing” base
statement qualifier fixes witness patterns with a negated, (¢ : vq) € SQ qualifier,

i.e., a separator addition for Single-Value, or an addition of a Required qualifier.
SQT - Context qualifier addition - the addition of a “missing” context state-
ment qualifier fixes consistency violations that contain a negated, (g. : v4c) € SQ.

qualifier, i.e., specifically this applies to the addition of a separator for Single-Value
(on the context statement).

Since no context statement qualifiers appear positively in witness patterns,
SQ7 is not a repair category in the discussed WD constraint types. We note here
that Tanon et al.’s work [21] (i) only considers A-Box modifications in terms of
base and context statement additions/deletions but not wrt. qualifiers, and (ii)
strictly distinguishes between consistency and completeness constraints. As for
(i), we additionaly consider qualifier repairs; and as for (ii), in our more general
considerations also considering qualifiers, we see that certain constraint types
could be viewed as both consistency or completeness constraints. For instance,
the Single-value constraint may be either fixed by removing a conflicting value
or by adding a separator (qualifier). Thus, we will rather than classifying single
constraint types as consistency or completeness constraints, distinguish “repair
goals” as consistency repairs by deleting (or deactivating) conflicting information
or completeness repairs by adding (or activating) missing information.

T-Boz repairs (not considered in [21]) concern changes in constraint definitions
and/or WD’s class hierarchy, i.e. concerning all the non-underlined parts in the
witness patterns of Table 1:

C~ — Constraint deletion: the removal of the constraint definition, i.e. the
qualified statement property constraint (P2302) CQ (within the “parent” property
definition) obviously fixes all constraint violations of this constraint instance.

CQ* - Constraint Qualifiers Addition: the addition of a constraint
qualifier matching a negated atom (g : v) € C'Q within a witness pattern could
affect several constraint types, i.e. Allowed qualifiers, One-of, Type, and Value-Type.
Note that there might be less obvious cases, for instance where an addition fixes
a violation of an IRS or VRS constraint by adding (iopc : v.) € CQ, which in
turn might “activate” a priorly non-matching context statement.

CQ~ — Constraint Qualifiers deletion: the removal of a “required” con-
straint qualifier fixes any constraint violations which contain a positive constraint
qualifier, i.e. for instance, Inverse, Conflicts-with, None-of, Required Qualifier.
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C* - Class Hierarchy addition: as per Table 2, subclass Of additions can
lead to repairs of a prior violation witness of Value-Type and Type constraints.

4.1 “Indirect” Repairs: Re-Ranking, Exceptions, and Replacements

Note that the discussion above streamlined and simplified the consideration of
repairs in some sense, wrt. leaving out to further, “indirect” repairs.

Re-Ranking. First, we did not explicitly consider re-ranking. Changes on the
rank of a statement (especially to rank:deprecatedRank) might implicitly remove
or even add direct claims related to matching truthy statements: as such, we
may view such rerankings as synonymous for additions/deletions, respectively,
and count them in the repair categories defined above. Extending our SPARQL
patterns to only consider truthy statements is straightforward, but would bloat
the patterns in Table 1 — we left this out for readability.

As an exception, we explicitly considered a very common type of re-ranking
that significantly impacted repairs in our experiments: constraint deprecations
(denoted C'?), which can also be viewed as a special form of constraint deletion.

Constraint Fxceptions. WD allows adding base statement subject items s as
exceptions using the exception to constraint (P2303) constraint qualifier in
constraint definitions: while this is in some sense a T-Box addition, marking
instance items as exceptions might intuitively be rather seen as part of the A-Box:
as such, we do not report those repairs as CQ* in our experiments, but rather
define an own category et for exceptions.

Value Replacements. So far we have classified all repairs as either additions and
deletions: yet, based on the Wikidata UI, value changes of triples (statements
or qualifiers) that can be done in one edit may rather be considered as a single
change, combining a deletion with an addition.

In many cases, constraint types can be fixed by a base statement value
replacement (S"), for instance One-of, None-of, but also VRS (by implicitly
changing the context statements to be considered).

Likewise, violations of Conflicts-with constraints with values can be fixed by a
context statement value replacement (ST).

Single-Value constraint violations, may be fixable by a base statement qualifier
value replacement (SQ") for the separator qualifier.

Finally, on the T-Box level, constraint qualifier replacements (CQ") may
induce repairs: i.e., (Value-)Type constraint violations could be fixed by changes
in the relation type or class qualifiers. Also, similar to the CQT example above,
changing to (property : prew) € CQ by replacing the constrained property poq
may fix an IRS constraint, by “activating” priorly “missing” context statements.
While we could classify such a repair as C'QQ~, arguably the mere addition of the
new property ppew — indirectly — would be sufficient to repair the violation.

Summarizing, repairs that are the effect of a statement or qualifier (value)
replacements will be marked as S”, S, SQ", and CQ", respectively.
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5 Experiments

We evaluated our repair patterns by analyzing historical Wikidata constraint
violations using the experimental setup described in this section. Figure 3 outlines
the process.

1. 2. 3.
Inconsistencies ——» Repair —> Repair —r)

Collector Violations Generator Repairs: Analyzer Classified

Repairs

Fig. 3: Three steps experiment pipeline.

The experiment involved three steps: first, using the witness patterns, we
extracted constraint violations from both 2019 and 2023 Wikidata HDT |[5],
denoted as Vit 2019, and Vit 2023 resp., per constraint type ct. Here, Vit year
should be understood as the set of variable bindings for the SPARQL queries in
Table 1. Secondly, we identified historical repairs by comparing the violations
detected on both snapshots, i.e., the set of repairs R = Vet 2019 — Ver, 2023 includes
those violations present in 2019 but no longer observed in 2023. Conversely, new
violations are identified as Nt = Vet 2023 — Vet,2019. Thirdly, we developed Python
scripts to analyze the repair types introduced in Section 4.

Table 3 summarizes the general statistics of our experiment. For constraint
types also analyzed by Tanon et al. [21], we also observe a significant increase
in data since 2018, reflected in the growing number of data items and detected
violations over time.®

Table 4 represents the share of each repair type, detected to fix constraint
violations between 2019 and 2023, distinguishing between T-Box, A-Box repairs,
and added exceptions, respectively. We note that the shares per row do not
necessarily add up to 100%, since some repairs might “overlap”, in the sense that
different actions might effect in repairing the same violation.

A-Bozx Repairs. The high share of A-Box repairs for None-of (92%) and Symmetric
(95%) constraints shows that deletions or reranks were frequently made to the
data by the community itself to correct violations. Value-type saw 52% of repairs
involve adding missing type statements, reflecting how evolving knowledge in
Wikidata often requires adding additional type-level information to maintain
consistency.

Following the line of adding missing statements, the Inverse constraint saw
81% of repairs consisting of adding the required inverse properties to statements.
Similarly, VRS witnessed the addition of required statements in 85% of the repairs.
As both constraint types had small sets of constraint deletions, this may indicate

8 Note that column #R.; is not comparable, since [21] does not count the total numbers
of repairs.
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Table 3: #constr: total constraints per type. #S: base statements using proper-
ties with this constraint type. # Vet 2019/#Vet,2023: number of violations 2019 vs.
2023. # R.;: identified corrections 19-23. Growth compared to columns #constr,
#triples, #violations of Table 3 in [21] is indicated by 1%.

Name in WD |#constr. |#5 | # Vet 2019 /#Ver 2023 |[#Ret
One-of 173 166.3% [23M  1538%]4.3k/202k  14950%]2.9k

None-of 432 - 314.5M - 1.9k/508k - 1.1k

IRS 11051 1256.2%(522M  151% |5.4M/16.7TM 1350% |3.7M
VRS 352 144.8% |47T0M  1452%(2.5M/4.7M  1249% |1.3M
Inverse 118 9.8M 322k /338k 256k
Symmetric 47 T13% 8.2M 1200% 3.7TM/253k T44% 3.7TM

Conflicts-with 2052 1241.4%|685M  152% |175k/1.8M 11167%|117k
Distinct-values  |7607 1178.8%|210M 1275%|386k/533k 1182% [259k

Single-value 7356 1165.3%|2656M  1211%|2.8M/95M  128K% |675k
Required qualifier|477 - 1M - 2M/4M - 612k
Allowed qualifiers|853 - 1B41M - 321k/6.8M - 222k
Type 7056 1174% |994M  1299%|3.1M/34.3M 1889% |2.6M
Value-type 1090 156.6% |246M  1267%)|636k/27.6M 1801% |517k

that most constraint instances of those types are mature and that an effort to fix
the A-box statements is in progress.

T-Bozx Repairs. Despite the significant number of A-Box repairs, T-Box repairs,
which have been mostly ignored in prior works, play an equally critical role. These
repairs indicate that the constraints are evolving alongside the data. Whether it
involves adding qualifiers, adjusting property hierarchies, or deleting outdated
constraints, T-Box repairs are vital for ensuring the knowledge graph remains
flexible and up-to-date with changes in both structure and terminology.

As we can see, T-Box repairs are quite significant for certain constraints,
reflecting how Wikidata’s terminology and understanding of the schema have
evolved. For instance, for the Conflicts-with constraint, 74% of the constraints
were deleted, and 80% involved removing a forbidden property or value (iopc),
indicating a major revision of constraints related to property conflicts. Similarly,
for the Allowed qualifiers constraint, 70% of the constraints were deleted, and 19%
saw qualifiers being added to the constraint definitions, which shows that the
terminology itself was refined to allow for a broader range of qualifiers.

The Single-value constraint also highlights significant T-Box repair activity,
with 73% of the violations being fixed by constraint deletions and 7% involving
additions of separators, reflecting gradual refinement of constraints incl. qualifiers
during their evolution/adoption. Some constraints indicate an ongoing effort to
refine how value-related constraints are interpreted, e.g. 62% of repairs of VRS
violations involve a change in the required value(s) at the T-Box level.

Lastly, also class hierarchy additions (Ct) seem to play a significant role,
contributing to roughly one-third of repairs for (Value-)Type constraints.
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Table 4: Share of repairs by type (cf. Sec. 4) in %. Values <0.01% shown as 0.

Name in WD A-Box Repairs T-Box Repairs

S7/S" SI/S7/S; SQY/SQT/SQE ¢ /Ct cQt/cQT/cQt ct eF
One-of 31/10 —/=/- —/—/- 12/69 10/—/— - 0
None-of 92/0 —/=/- —/=/- 11/0 -/11/- - 3
IRS 5/— 61/—/— —/=/- 39/10 —/-/3.3 - 0
VRS 13/0  85/-/ /—/ 8/3 /1.5/62 0
Inverse 40/- 81/—/— —/=/- 2/28 —/-/0.05 - 0
Symmetric 95/— 4/—/- —/—/- 0/0.01 —/—/- - 0
Conflicts-with 17/~ —/12/2 AS 74/3 ~/80/~ -0
Distinct-values 44 /- —/35/— —/=/— 16/8 -/=/— - 0.08
Single-value 24/ /16/ 0.9/-/2 73/5 7/-/0 0.04
Required qualifier 22/- —-/=/- 20/—/— 3/0.2 —/66/— - 0
Allowed qualifiers  6/— —/=/- —/38/— 70/0 19/-/- - 0
Type 4/- 12/~ /- RS 0.9/0 31/-/63 35 0
Value-type 14/~  52/—/- —/=/- 0.4/0 12/-/38 37 0

These overall trends seem to suggest that the meaning of WD’s terminology —
in particular through property constraints — observably evolves in tandem with
the data itself, ensuring that the graph’s semantics better align with the A-Box
data as it grows and changes.

Our method, as opposed to Tanon et al.’s [21] which tracks all historical
knowledge graph states from WD’s start, rather analyzes repairs between two
snapshots. While this makes it challenging to pinpoint the exact order in which
edits that led to repairs occurred, we can confidently assert that the identified
patterns were executed between the two timestamps and might have contributed
to the observed repairs. While Tanon et al.’s method offers finer-grained change
tracking, our two-snapshot approach is expected to be more resource-efficient and
scalable for large knowledge graphs like WD, as also confirmed by [21] results,
not reporting, for instance the actual total numbers of repairs. However, further
experiments are needed to validate the efficiency of this approach. In particular,
for the identification of single edit value replacements, so far we do not really
track these down to single edits, as we do not analyze the whole edit history, °
rather following a best effort approach: while this is also just an approximation,
we can identify statements with changed values having the same wds: statement
nodes in the graph but different values, when computing the set R.; (with slightly
expanded SPARQL patterns as opposed to Table 1 also returning those nodes).

5.1 Analysing most impactful T-box bulk repairs and new violations

While having analyzed T-Box changes on a coarse level, we would like to have a
closer look at two further aspects concerning “most impactful” changes, as well
as possible “side effects” of T-Box changes: note that we emphasize that T-box
changes could also induce new violations. To assess such effects of T-box “bulk”

9 Note that [21] also consider such replacements, but — based on personal communication
— do also not explicitly distinguish between “single edit” replacements or combinations
of additions and deletions.
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repairs in more detail, we have also analyzed the top-3 constraint types (with
the highest share of T-box-related repairs) (Conflicts with, Required Qualifier, and
VRS), in an attempt to identify schema changes behind historical repairs on
particular properties and examining newly emerged violations.

For Conflicts with constraints, out of the 80% CQ~ T-box repairs, most of
those constraints where eventually deleted (i.e. overlapping with the 74% C~
repairs; interestingly, almost half of those (48%) were related to only two Conflicts-
with constraints (both later deleted) on the properties located in the administrative
territorial entity (P131) and headquarters location (P159). New Conflicts with
violations largely stemmed from new constraints introduced post-2019 (8 of top
10), totaling 701k.

In Required qualifier constraints, T-box repairs mainly involved qualifier re-
moval (CQ~), but hardly any constraint deletions (C~). Notably, here 375k
repairs (93% of these repairs) stemmed from removal of the point in time (P585)
qualifier from the required qualifiers for position held (P39). Conversely, we note
that the addition of the language of work or name (P407) qualifier to a new Re-
quired qualifier constraint for official website (P856) and described at URL (P973)
properties after 2019 led to over 1.8 million new violations.

In VRS repairs, the two constrained properties most affected by T-box-based
repairs (cast member (P161) and director (P57)) also accounted for the highest
number of new violations between 2019 and 2023. Both require an additional
occupation (P106) statement. Changes in the list of allowed occupations (14 added
and 2 removed) for cast member caused 396k repairs, but 863k new violations.
Likewise, the VRS constraint on occupations for director saw 288k repairs, but
also 236k new violations from 8 added and 1 removed occupation.

Overall, our findings also indicate that the community frequently deletes
constraints that cause many violations, and most new violations stem from
newly created constraints. Developing approaches to help the community refine
constraints could reduce deletions, preserve historical evolution, and simplify
the assessment of constraint changes over time. This would support a more
sustainable and informed constraint management and schema evolution process.

6 Related Works and Discussion

WD’s constraint system arose from practical needs, not formal logic, with property
constraints remaining the most used mechanism due to their broader coverage
[6]. Other constraint mechanisms in WD include, for instance, entity schemas!?
and WShEx [7].

In general, there is a lack of systematic, longitudinal analyses of practical
KGs’ evolution [18], which we address by analyzing and classifying repairs over
time, adding a focus on schema/T-Box repairs and evolution. Other related works
have derived suggestions for repairs: in addition to their partial formalization
of WD A-Box repairs, Tanon et al. [21] propose a method based on rule mining

10 https://wuw.wikidata.org/wiki/Wikidata:WikiProject_Schemas
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to correct A-box constraint violations. Similarly, Chen et. al. [2] presented a
general correction framework combining lexical matching, semantic embedding,
soft constraint mining, and semantic consistency checks to correct entity/literal
assertions in DBpedia. Beyond correction methods, Shenoy et. al. [20] proposed
quality indicators based on removed statements, deprecated statements, and
constraint violations in WD. While we rely mostly on “vanilla” SPARQL, Tanon
et. al. [21] used a quad store to manipulate a sample of WD’s edit history, and
Shenoy et. al. [20] used the Knowledge Graph ToolKit !! to compute deprecation
and deletion metrics.

Regarding WD constraint formalization, Tanon et. al. [21] use DL to describe
10 different constraint types; however, as mentioned, the consideration of qualifiers
and T-Box repairs is missing. Therefore, as we show, some constraints were tested
without their full meaning. Martin and Patel-Schneider [12, 13] were the first
to use MAPL to express property constraints, which we build upon to express
violations (and repairs) more comprehensively. Lastly, Ferranti et. al. [6] similarly
have deployed SHACL as well as SPARQL queries as a declarative approach to
capture constraint violations through a WD RDF export for all the 32 constraint
types, noting that DL is insufficient to express e.g. Single-Value constraints
with separators. We put Martin et. al’s approach to use MAPL, and Ferranti et
al.’s SPARQL formalizations side by side, systematically naming the relevant
components of WD’s property constraint “language” to classify repairs. SPARQL,
which has already been deployed in earlier, use-case-specific works on constraint
checking in WD [23], also turns out to be computationally efficient enough to
compute constraint violations and repairs at scale in our experiments. While
SHACL has also been operationalized recently, e.g. by efficient compilation
techniques to SQL for usage on large KGs[10], this is not sufficient to express all
current property constraint types in WD, as noted by [6].

As for expressivity of WD’s property constraints, let us remark an interesting
observation: WD’s current property constraints seem inherently insufficient to
express all constraints checked in WD’s UI: for instance, particular constraint
types, such as IRS constraints are restricted to having exactly one context property
qualifier,'? whereas several context property qualifiers are allowed for Allowed
qualifiers constraint type definitions.'® As opposed to other constraint checks in
WD’s Ul, that seem to be backed up by property constraint definitions, these
ones seem to be checked/enforced independently in WD’s UI, and are clearly not
expressible as property constraints; discrepancies between property constraint
definitions and WD’s UI violation checks have already been reported earlier [6].

As for further related areas, works on pinpointing to (minimal sets of) axioms
responsible for justifying (unwanted) consequences in OWL DL [11, 16], which
could also be useful for finding repairs, are not directly related to what we
are doing here. Our work is about analyzing and understanding repairs under
constraints rather than finding repairs under deductive inference. Likewise, T-

" https:/ /usc-isi-i2.github.io/kgtk/

12 At time of writing, this was flagged as violation in WD’s UI, cf. https://wsw.wikidata.
org/w/index.php?title=Property:P582&01did=2345339934

13 f. https://www.wikidata.org/w/index.php?title=Property:P1476&01did=2342178751
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box repair methods for ontologies exploring minimal axiom weakening [22] do
not play a significant role in this setting: WD’s constraints are designed for
validation without additional inference. Therefore, while these approaches offer
conceptual parallels, they would require adaptation to WD’s specific framework.
Here, attempts to map WD’s properties to OWL[8] could be a potential, though
disputed starting point, as WD deliberately does not adopt DL or a predefined
formal ontology [17].

7 Conclusions

In this work, we have systematically formalized and analyzed property constraint
violations and subsequent repairs in Wikidata (WD), comparing snapshots of
the knowledge graph at two different points in time. We were not only able
to categorize the types of repair patterns most commonly applied, but could
also draw valuable insights on how both instance data (A-Box) repairs but also
T-Box repairs, i.e. changes of WD’s constraint definitions and class hierarchy,
determine the consolidation of WD’s terminology and its usage. To the best of
our knowledge, we are the first to systematically consider such T-Box repairs,
and additionally investigate the effects of qualifier changes at the A-Box level, by
separately considering the roles of statement changes, qualifier changes, property
constraint definitions, and changes in WD’s class hierarchy.

In comparison to earlier works, our analysis also shows a significant increase
in the adoption and repair activities related to property constraints in WD;
in some cases, the number of constraint violations is growing faster than the
number of triples added to WD properties instantiating the constraints. This
trend underscores the importance of tracking historical repairs to develop semi-
automatic refinement approaches to assist the Wikidata community in managing
and evolving its data. To this end, our fine-grained analysis of repairs offers a
comprehensive tool now not only to descriptively investigate past repairs, but —
as a next step — shall also help to derive recommendations for repairs, as we can
now systematically observe the effects of how data and schema evolve alongside.
By doing so, we hope to support the improvement of WD’s quality over time,
strengthening its role as a reliable and ever-growing knowledge base.

Our work is fully reproducible and extensible: as for future work, a more
comprehensive coverage of all 30+ current and evolving constraint types — which
we had to leave out also for space restrictions — is on our agenda. Also, we plan
to extend our current, illustrative investigation of two concrete WD snapshots
(2019 vs. 2023), towards a regular, constant monitoring tool, for longitudinal
analyses tracing WD’s historic development periodically, or based on the full edit
history, as it evolves.

Supplemental Material Statement: source code, queries and datasets used for our
evaluations are available at https://github.com/nicolasferranti/wikidata-repairs,
with the exception of historical WD HDT |[5] snapshots.'4

14 available at https://www.rdfhdt.org/datasets/
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