
Formalizing Property Constraints in Wikidata
Nicolas Ferranti1, Axel Polleres1,2, Jairo Francisco de Souza3 and Shqiponja Ahmetaj1

1Vienna University of Economics and Business, Vienna, Austria
2Complexity Science Hub Vienna, Vienna, Austria
3Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil

Abstract
Constraints play an important role to ensure data integrity. While the Shapes Constraint Language
(SHACL) provides a W3C recommendation for validating RDF Knowledge Graphs (KG) against such
constraints, real-world KG have adopted their own constraint formalisms. Wikidata (WD), one of
the largest collaboratively Open Data Knowledge Graphs available on the Web, represents property
constraints through its own RDF data model, within its own authoritative namespaces, which might be
an indication that the nature of WD property constraints is different from other Knowledge Graphs. In
this paper we investigate the semantics of WD constraints, and unambiguously formalize all current
constraints using SPARQL to retrieve violations; we also discuss the expressiveness of WD constraint
language compared with SHACL core and discuss the evolution of constraint violations. We found that,
while all current WD property constraint types can be expressed using SPARQL, only 86% (26 out of
30) can be expressed using SHACL core: the rest face issues related to using separator properties and
arithmetic expressions.

1. Introduction

KG is a computational structure that uses a graph-based model to represent real-world entities,
their attributes, and relationships [1]. Since its creation by Wikimedia Foundation in 2012,
Wikidata (WD) is continuously growing, and has become one of the largest open KG available
on the Web: with more than 13.7B triples1. WD has grown larger than DBpedia, one of the main
and most central Linked Open Data (LOD) KGs that contains 9.5B triples2. One of the main
reasons for this growth is WD’s user community, with more than 24k active users, humans
and bots with different purposes driving the KG’s growth in several directions. The large
user community is primarily motivated by Wikipedia, as the vast majority of Wikipedia pages
incorporate content from WD [2].

There are several ways to create a KG [1]. They can be curated like Cyc [3], extracted
from semi-structured web knowledge bases like DBpedia [4] and YAGO [5], collaboratively
maintained by a community of users like WD, or extracted from unstructured/semi-structured

Wikidata’22: Wikidata workshop at ISWC 2022
$ nicolas.ferranti@wu.ac.at (N. Ferranti); axel.polleres@wu.ac.at (A. Polleres); jairo.souza@ice.ufjf.br
(J. F. d. Souza); shqiponja.ahmetaj@wu.ac.at (S. Ahmetaj)
� 0000-0002-5574-1987 (N. Ferranti); 0000-0001-5670-1146 (A. Polleres); 0000-0002-0911-7980 (J. F. d. Souza);
0000-0003-3165-3568 (S. Ahmetaj)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://w.wiki/5myX, as from October 2022
2https://lod-cloud.net/dataset/dbpedia, as from March 2022

mailto:nicolas.ferranti@wu.ac.at
mailto:axel.polleres@wu.ac.at
mailto:jairo.souza@ice.ufjf.br
mailto:shqiponja.ahmetaj@wu.ac.at
https://orcid.org/0000-0002-5574-1987
https://orcid.org/0000-0001-5670-1146
https://orcid.org/0000-0002-0911-7980
https://orcid.org/0000-0003-3165-3568
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


sources like NELL [6]. Usually, the organization responsible for the KG development has to
choose a trade-off between accuracy and coverage, the more content they try to cover the
greater the margin for including errors. Therefore, it is common to apply refinement techniques
after the KG construction. The focus of graph refinement techniques are the data layer (instance
level) or the terminology layer (concept level) [1].

The WD community approach is focused on the data layer with the terminology layer evolving
as data evolves “on the side”, whereas other KGs typically deploy separately defined ontologies
or schemas. That is, WD does not have a predefined formal ontology [7]. Rather, in order to
reinforce consistent usage of the community-developed terminology, separate WD projects
have emerged to specify constraints, which serve as a means to identify errors in the data layer.
However, none of these projects deploys the current W3C recommendation for validating RDF
graphs against constraints, namely, the Shapes Constraint Language (SHACL): instead, Wikidata
uses its own representation model for what they call property constraints. Indeed, WD’s property
constraint language could be argued to predate SHACL: the first property constraint was created
on WD in 2015, when SHACL was still only a W3C working draft.

While SHACL relies on standardised validators to identify inconsistencies, WD violation
reports are calculated within an ad-hoc extension of Wikibase [8], in particular, the Property
Constraints project3 which we focus on in this paper. Differences between representation models,
as well as this informal/operational definition of WD constraints (with unfortunately even
partially unavailable source code) obfuscate the formal semantics of WD’s property constraints,
and whether these actually differ from what is expressible on common RDF graphs using SHACL.
To close this gap, we investigate the semantics of WD property constraints (WDPC), compare
their representation and expressiveness with SHACL, and finally take a look at the extent of
constraint violations (CVs) within WD. Our two main contributions are: (1) we argue whether
and how WDPC could be expressed as SHACL constraints using SHACL-core language, and
discuss expressiveness issues comparing SHACL’s and Wikidata’s approaches to define property
constraints. With translating a large part of WD’s property constraints to SHACL, we also
contribute a large-scale testbed for SHACL. (2) We then unambiguously formalize all WDPC as
SPARQL queries, which provide a declarative means to express constraints while being also
operationalizable.

This paper is structured as follows. Section 2 discusses how to represent the semantics of
WDPC in SHACL-core; since this is not possible in all cases, in Section 3 we present a complete
mapping of property constraints to SPARQL instead. We briefly discuss how WDPC have
evolved over time, arguing that our SPARQL formalization could be used for operationalizing
such analyses. After discussing related works on constraint formalization and quality analysis
for KGs in Section 4, we conclude in Section 5 with pointers to future research directions.

2. Expressing Wikidata Constraints with SHACL

A number of dedicated, authoritative [9] RDF namespaces are used to represent different aspects
of the same property - and therefore also in the representation of property constraints - in WD,
as illustrated in Fig. 1.

3https://www.wikidata.org/wiki/Wikidata:WikiProject_property_constraints

https://www.wikidata.org/wiki/Wikidata:WikiProject_property_constraints


wdt:P2302

p:P2302

propID

p:PID
wd:PID

wikibase:claim

pq:PIDwikibase:qualifier

wdt:PIDwikibase:directClaim

(assigns a unique statementID)

wd:QIDsubj

ps:PID

wds:QID-statementID

wd:QIDobj

wd:Qobject_qualifierID

p:PID

wdt:PID

pq:P...

Wikidata Statement

Constraint definition

wd:QconstraintType_ID

ps:P2302

pq:P...

pq:P...

wds:PID-constraint_

definition_statementID

wd:Qobject_qualifierID

Literal

Figure 1: The Wikidata meta-model based on dedicated namespaces

Fig. 2 shows a concrete example of item-requires-statement constraint for the “FIFA player
ID” property. WD concepts are specified using the prefix wd, used for entities like “Neymar”
(Q142794) but also properties like “FIFA player ID” (P1469), i.e., both entities and properties
can be “referred to as concepts”.

Triples using (wd-prefixed) concepts in subject or object positions comprise facts about
these concepts, where the wdt namespace (used for a property id in predicate position) is
used to reference a direct relationship between concepts. The wd prefix is never used in the
predicate position. In Fig. 2(a), the triple {wd:Q142794 wdt:P106 wd:Q937857} establishes
a direct relation between two items: a football player and his occupation, P106 (occupation)
which is referred to as a relation using the wdt prefix. Relationships can also be qualified,
i.e. statements about a particular factual (wdt) relationship between concepts can be further
described, introducing a reification (see also [10]) mechanism through the consistent use of
the dedicated namespaces p and wds, which facilitates to refer to the statements made on a
particular subject, as illustrated on an abstract level in Fig. 1, and again, in the concrete example
of Fig. 2(c). WD also allows the use of qualifiers on this statement level, i.e., metadata can
be added to describe statements more accurately. Qualifiers are represented with pq prefix,
exclusively used on statements (i.e. for properties of subject URLS with the prefix wds).

WDPC refer to particular, community-defined constraint types, such as for instance an item-
requires-statement constraint, where specific instantiations of this constraint type are defined
as qualified statements on a particular property that should fulfill this constraint. For instance
an item-requires constraint (Q21503247) for the property “FIFA player ID” (P1469) is illustrated
in Fig. 2(c): the constraint states that if an item has a “FIFA player ID” (P1469), the same item
should also have as occupation (P106) one of the following items: association football player
(Q937857), futsal player (Q18515558), beach soccer player (Q21057452), or association football
manager (Q628099). These concrete restrictions are defined through qualifiers specific to the
particular constraint type and property; we discuss property constraint qualifiers in detail in



Neymar (wd:Q142794)

FIFA player ID
(wdt:P1469)

https://web.archive.org/web/*/https://static.fifa.com/fifa-
tournaments/players-coaches/people=314197/index.html

occupation

(wdt:P106)

association football player

(wd:Q937857)

(a) Data graph complying to the constraint

Thiago Neves (wd:Q370014)

FIFA player ID
(wdt:P1469)

https://web.archive.org/web/*/https://static.fifa.com/fifa-
tournaments/players-coaches/people=289960/index.html

occupation

(wdt:P106)

Sport Club do Recife

(wd:Q219098)

(b) Data graph not complying to the constraint

p:P2302

wds:P1469-667F9488-5C36-4E3B-BEAA-6FD5834885ED

(wd:Q21503247)

(wd:P106)

(wd:Q937857)

(wd:Q18515558)

(wd:Q21057452)

(wd:Q628099)

(pq:P2306)

(pq:P2305)

FIFA player ID (wd:P1469)

(c) Wikidata property constraint representation format

Figure 2: Example of a WD constraint and data graphs with different behaviors (as in 2022-03-29)

Section 2.1.
To model our concrete constraint from Fig. 2, first the triple

{wd:P1469 p:P2302 wds:P1469-667F9488-5C36-4E3B-BEAA-6FD5834885ED} connects
the property “FIFA player ID” (wd:P1469) to a statement node that is the bridge to the qualifiers;
here, the p prefix is used by property “property constraint” (P2302) to describe a relation between
an entity (wd) and a statement (wds): this statement (consisting of several claims) then is used
to specify concrete constraint requirements by means of particular qualifiers. Properties that
implement a constraint can use different values in the qualifiers to customize the constraint
type (in our case item-requirements-statement constraint) to the particular property (in our case
the “FIFA player ID”): as shown in Fig. 2(c), here the wds statement has as “target” property
(pq:P2306) the item “occupation” (wd:P106), and lists allowed values for this property as “item
of property constraint” (pq:P2305).

Fig. 2(a) and 2(b) present two different data graphs: the first one complying with item-requires-
statement constraint and the second one violating it. Both subjects have “FIFA player ID” but
only “Neymar” (Q142794) has a valid “occupation”, whereas “Thiago Neves” (Q370014) does not.

The WD community has defined a wide range of such property constraint types, some of



which resemble known RDFS axioms, for instance the type constraint (Q21503250) which is
similar in spirit to the constraint reading of an rdfs:domain statement. Other property constraint
types describe more complex relationships, such as for instance the contemporary constraint
(Q25796498) which defines that if two entities are connected by a specific property, both of
them must coexist at some point in time [11].

2.1. Property Constraint Types and Qualifiers

To date, WD defines 30 property constraint types represented as subclasses (P279) of property
constraint (Q21502402). Table 1 gives an overview of all the constraint types. One can also find
in this overview the number of different properties that use each constraint (from March 2022)
and the list of all property qualifiers that can be used by each contraint type.

In the following we will present the results of a one-by-one analysis of these constraint types,
discussing expressibility in terms of mappings to SHACL and SPARQL. Before we turn to the
actual mappings, we need to discuss the common qualifiers used to define property constraints,
which we will use for test compliance. For instance, recall from Fig. 2(c), where the property
and item of property constraint qualifiers were used to express the property and allowed values
that should present to fulfill the item-requires-statement constraint. Finding ways to represent
the semantics of qualifiers will be fundamental to understand which particular constraint types
can or cannot be expressed declaratively in SHACL-core. The set of qualifiers we will use to
characterize the semantics of property constraints on a particular property (PID) is as follows:

• Format as a regular expression (P1793): used only by the format constraint to express
that the value of PID should comply with a predefined regular expression. In SHACL, it
can be expressed through sh:pattern.

• Property (P2306): used to check the availability of an (additional) property 𝑃 ′ on the
subjects of PID; it is usually complemented by Item of property constraint which restricts
the objects of 𝑃 ′. Property (P2306) can be represented through SHACL’s (more generic)
sh:path which represents the path to be taken until the node to be tested.

• Item of property constraint (P2305): checks items expected as values of either PID or
the property 𝑃 ′ indicated by P2306. SHACL has a set of components to restrict values
that can be used to express the same meaning, for instance, sh:hasvalue and sh:in.

• Separator (P4155): A qualifier used by constraints to express that multiple statements for
PID can exist as long as the values of the separator properties are distinct: the separator as
such implements a “composite key” for constraint validation. To the best of our knowledge,
there is no equivalent SHACL component to model composite keys.

• Relation (P2309) and Class (P2308): Relation and Class are qualifiers used together.
Relation represents the relationship expected between the subject or object and a set
of predefined items described by Class (P2308). The possible relationships are: instance
of, subclass of, and instance or subclass of.4 SHACL component sh:class can be used to
check the type of an item, and it also includes hierarchical reasoning to check subclasses.

4We note that in WD, it is not explicitly specified whether such subclass of relationships should be interpreted
transitively, or whether instance of relationships should also affect instances of subclasses. In our encodings, we
took a choice encoding these as property paths, similar to [12].



However, the subclasses mechanism is based on rdfs:subClassOf and rdf:type and requires
an adaptation to work with WD’s wdt:P279 and wdt:P31. sh:path can also be used together
with sh:hasValue or sh:in to combine the path expected and the object values expected at
the end of this path.

• Range checking qualifiers: Minimum value (P2313), Maximum value (P2312), maximum
date (P2311), and minimum date (P2310): these all describe ranges of values or dates. The
most similar properties in SHACL to represent range restriction are sh:minExclusive and
sh:maxExclusive for open intervals, and sh:minInclusive and sh:maxInclusive for closed
intervals.

• Exception to the constraint (P2303): is the set of PID’s subjects that should not be
tested by the constraint. SHACL has no direct component for exceptions; however, it is
possible to combine within sh:or component two acceptance clauses as follows: either
the subject is within (sh:in) the listed exceptions or it must conform to the constraint
(example in Section 2.2).

• Constraint Scope (P4680): Defines the scope where the constraint should be checked.
Scopes can be identified according to the namespace used by a property in a triple, such
as “as main values” (wdt) or “as qualifiers” (pq). When creating a corresponding SHACL
Shape for a constraint using this qualifier, we explicitly refer to the respective prefix(es).

There are six qualifiers for constraints not discussed in this paper because they do not repre-
sent information relevant for constraint checking, but supplementary constraint information:
Syntax Clarification (P2916), Constraint Clarification (P6607), Replacement Property (P6824),
Replacement Value (P9729), Constraint status (P2316), and Reason for deprecated rank (P2241).

2.2. Mapping WD Property constraints to SHACL

Fig. 3 exemplifies the translation of constraints into a SHACL shapes graph for our running
example. The shape in Fig. 3(a) is applied to all nodes that are subjects of wdt:FifaPlayerId (line
8), there must be at least one path from these nodes using the property wdt:Occupation (lines
10 and 11) to one of the items listed in sh:in (line 12). This shape clarifies that it is possible to
encode allowed values in SHACL, something considered uncertain in [8]. Shenoy et al. [8] also
argue that it is unclear if SHACL can encode exceptions in property constraints. If we take
our previous example in Fig. 2, suppose that Thiago Neves (Q370014) is an exception to the
constraint. In this case, the graph complies when one of the two conditions is satisfied: either
the subject is an exception – in our case only Thiago Neves (Q370014) – or the subject has one
of the required Occupations (P106); Fig. 3(b) details the SHACL shape for this example.

Table 1 presents the entire set of analyzed constraint types, their WD IDs, as well as a column
to state whether it was possible to map the constraint type to SHACL (and SPARQL, respectively,
see Section 3 below). The particular SHACL encodings can be found in an online repository5.
SHACL has many components to express constraints. Core components are recognisable by any
SHACL validator, however there are additional components that are not necessarily recognized
by validators (e.g. sh:sparql). In this work, the expressiveness of WD constraints in SHACL is
discussed in terms of core components only.

5https://github.com/nicolasferranti/wikidata-constraints-formalization



Constraints requiring the existence of a specific statement, e.g. item-requires-statement,
required qualifier, and one-of are naturally captured by SHACL Core constraint components
due to the main forms of construction that are based on choosing a target node, verifying
the existence of a path and, possibly, verifying the existence of a value. Table 1 shows that
the vast majority of WD constraints can be rewritten in SHACL (86%), some could only be
partially written (7%), and some can not be represented in SHACL (7%). The group of partially
representable constraints consists of constraints that use separator (P4155) qualifiers: while it is
straightforwardly possible to verify the uniqueness of a property value with respect to the claim
subject, when a separator qualifier property is used, it could be understood as a “composite
key”; however since it is not possible to compare the values of different paths that correspond
to unique combinations of separators in SHACL, that is, to distinguish different nodes matching
the same regular path expression, these cannot be expressed in SHACL core. Concerning the
7% that could not be represented, the difference-within-range constraint (Q21510854) requires
the difference between two values to be calculated and compared to a predefined range: while
SHACL core has components to check for equalities (sh:equals), inequality (sh:disjoint, and
sh:lessThan), arithmetic operations are not included. Finally, Single-best-value (Q52060874)
constraints could again not be expressed due to the absence of operators to check the existence
of multiple equal values obtained by different paths following the same regular expression
(similar to the problem with separator qualifiers mentioned above).

We note that beyond its core language, SHACL provides means to refine constraints in terms
of full SPARQL queries through a SPARQL-based constraint component (sh:sparql); indeed using
full SPARQL, all WDPC can be represented.

3. Operationalizing Wikidata Constraints with SPARQL

While the previous section showed partial expressibility of WDPC in SHACL, we still lack
a fully operationalizable formalization: a constraint representation formalism needs, in our
opinion, both to be (i) operationalizable – in the sense of being able to compute and report
inconsistencies – as well as (ii) declarative – in the sense of an unambiguous, exchangeable
formalization, capable of understanding the meaning of constraints.

The availability of WD’s database reports web page6 which presents statistics about the
number of violations of a set of properties for all property constraints types, demonstrates that
it is indeed in the interest of the Wikidata community that inconsistencies are identified and
resolved, and it also indicates that indeed there is an operationalized workflow to check these
constraints.

The property pages can be accessed where one can take a detailed look at the inconsistent
claims per violated property.7 Unfortunately, the result of the operationalization on WD’s
database reports is only available in HTML format, and moreover, the code behind is not
publicly available. To close this gap, we can use SPARQL: since WD as an RDF graph can be

6https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/Summary
7For instance, our example item-requires statement constraint on FIFA player ID is reported at https://www.

wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1469, reporting 7 violations, retrieved 05
May 2022.

https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1469
https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/P1469


(a)

(b)

Figure 3: SHACL Shape for “FIFA Player ID” and item-requires-statement constraint. (a) is the original
shape and (b) is the example enconding exceptions

queried through a SPARQL query service, if we manage to express CVs per constraint type as
SPARQL queries, we can benefit from the query language’s declarative nature both providing a
declarative and operationalizable constraint specification.

3.1. Expressing and validating WD property constraints in SPARQL

Based on Fig. 2, we illustrate the structure of our constraint validation using SPARQL queries to
capture the semantics of WDPC and provide a formal interpretation, and at the same time shall
enable retrieval of inconsistent data. Fig. 4 represents the query for the item-requires-statement
constraint: for this constraint type a required property and its required value(s) needs to be
checked. The query structure of Fig. 4 is divided into groups as follows.



Group 1 represents data returned by the query, usually it is composed by the claim containing
the property that is violating the constraint (line 2), and extra information about the claim or
the constraint – in our case, the property missing for the subject – and, if given, the constraint
status or reason for deprecation (line 3). Group 2 is the beginning of where clause, matching
properties (and associated statements) that use the particular constraint (lines 5 and 6) – in our
case for the item-requires-statement (Q21503247): to retrieve properties using another specific
property constraint type, it is only necessary to change the constraint id in line 6.

Group 3: statements from Group 2 are then used to retrieve relevant constraint qualifiers
for the specific constraint type (lines 7 and 8), i.e., in our case the required value (line 7) and
property 𝑃 ′ (line 8), as explained in Section 2.1 above, plus optional qualifiers such as the
constraint status or information about constraint deprecation (lines 9+10). Group 4 matches
the actual triples that will be checked for compliance (line 13): as we can see in this example,
we need to navigate between the different property namespaces described in Fig. 1 above before
matching subject and object (line 12). Group 5 combines the statement qualifiers values from
Group 3 and the triples from Group 4 to create the violation patterns, for item-requires-statement
constraint the goal is to remove from the results all triples that have required property along
with the required value (lines 15 and 16) and remove also the exceptions to the constraint (line
18).

Group 1

Group 2

Group 3

Group 4

Group 5

Figure 4: Query for item-requires-statement constraint with a required value.

We have encoded all 30 current constraint types (some of which in separate queries for
different variations) in queries following similar patterns corresponding to Group1–Group 5
in our example where these queries are designed to retrieve information about any violations
(somewhat orthogonal to the SHACL encodings that model conformance instead). The full list
of these SPARQL queries (containing examples for checking particular properties per constraint
type) can be found – as shortcut-links to WD’s query service – in Table 1, and also in the
repository (cf. Footnote 5). For instance, our query https://w.wiki/58KM implementing the FIFA
Player ID’s item-requires-statement constraint returned 8 violations, as opposed to the 7 on

https://w.wiki/58KM


WD’s database report page (cf. Footnote 7) at the time of writing: our formalization captures
a violation not reported on the DB page; upon checking back, the “new” violation was added
after the batch report generation, but is immediately captured by our “realtime” query.

4. Related Work

In this paper, we target the formalization of WDPC using SPARQL and discuss expressiveness
when compared to SHACL. Various other prior works have already sought solutions to improve
the data quality of KGs, by defining constraints or by means of ontological reasoning.

Data restrictions within WD are also discussed by the community and implemented through
other projects using some pre-established technologies. For instance, the Wikidata Schemas
project8 relies on the Shape Expressions language (ShEx) [13]. ShEx is a formal modeling
and validation language for RDF data, which allows the declaration of expected properties,
cardinalities, and the type and structure of their objects. As opposed to property constraints,
the Schemas Project is focused on defining entity (Wikidata concepts) restrictions.

Erxleben et al. [2] exploit properties describing taxonomic relations in WD to extract an OWL
ontology. They propose the extraction of schematic information from property constraints and
discuss their expressibility in terms of OWL axioms. Whereas we focus herein concretely on
covering all property constraints as a means to find possible violations in the data, Erxleben
and colleagues rather stress the value of their corresponding OWL ontology as a (declarative)
high-level description of the data, without claiming complete coverage of all WDPC.

Abián et al. [11] propose a definition of contemporary constraint that was later adopted by
WDPC. Shenoy et al. [8] present a quality analysis of WD focusing on correctness, checking
for weak statements under three main indicators: CV, community agreement, and deprecation.
The premise is that a statement receives a low quality score when it violates some constraint,
highlighting the importance of constraints for KG refinement. Boneva et al. [14] present a tool
for designing/editing shape constraints in SHACL and ShEx suggesting WD as a potential use
case, but – to the best of our knowledge – without exhaustively covering or discussing the
existing WDPC.

Apart from works specifically on WD, in [15] the authors try to identify systematic errors in
the construction of DBpedia, their method uses the DOLCE ontology as background knowledge
to find inconsistencies in the assertional axioms. First, the target information is extracted from
DBpedia and linked to the DOLCE ontology, then a reasoner check if this new data creates
inconsistency. Before, Bischof et al. [12] already highlighted logical inconsistencies in DBpedia
which can be detected using OWL QL, rewritten to SPARQL1.1 property paths.

5. Conclusions

We have formalized the current 30 different property constraint types of WD using SPARQL
and discussed ways to encode them with W3C’s standard recommendation mechanism for
formalizing constraints over RDF Knowledge Graphs, SHACL. This study made it possible to

8https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas

https://www.wikidata.org/wiki/Wikidata:WikiProject_Schemas


#I
D

#N
am

e
#S

H
A
C
L

#P
ro
pC

ou
nt

#S
PA

R
Q
L

#Q
ua

lif
ie

rs

Q
52

00
41

25
al

lo
w

ed
en

ti
ty

ty
pe

s
Ye

s
84

46

ht
tp

s:
//

w
.w

ik
i/

58
K

4
(W

ik
ib

as
e

it
em

Q
29

93
42

00
)

ht
tp

s:
//

w
.w

ik
i/

58
M

n
(W

ik
ib

as
e

pr
op

er
ty

Q
29

93
42

18
)

ht
tp

s:
//

w
.w

ik
i/

58
M

q
(W

ik
ib

as
e

le
xe

m
e

Q
51

88
57

71
)

ht
tp

s:
//

w
.w

ik
i/

58
M

r
(W

ik
ib

as
e

fo
rm

Q
54

28
51

43
)

ht
tp

s:
//

w
.w

ik
i/

58
M

t
(W

ik
ib

as
e

se
ns

e
Q

54
28

57
15

)

P2
30

3;
P2

30
5;

P2
31

6;
P4

68
0;

P6
60

7

Q
21

51
08

51
al

lo
w

ed
qu

al
ifi

er
s

Ye
s

72
5

ht
tp

s:
//

w
.w

ik
i/

58
M

R
P2

24
1;

P2
30

3;
P2

30
4;

P2
30

6;
P2

31
6;

P6
60

7
Q

21
51

43
53

al
lo

w
ed

un
it

s
Ye

s
49

2
ht

tp
s:

//
w

.w
ik

i/
58

K
k

P2
30

3;
P2

30
5;

P2
31

6;
P6

60
7

Q
54

55
40

25
ci

ta
ti

on
ne

ed
ed

Ye
s

33
8

ht
tp

s:
//

w
.w

ik
i/

58
M

T
P2

30
3;

P2
31

6;
P6

60
7

Q
21

51
08

52
C

om
m

on
s

lin
k

Ye
s

78
ht

tp
s:

//
w

.w
ik

i/
58

LW
P2

30
7;

P2
31

6
Q

21
50

28
38

co
nf

lic
ts

-w
it

h
Ye

s
40

96
ht

tp
s:

//
w

.w
ik

i/
58

LU
P2

30
3;

P2
30

4;
P2

30
5;

P2
30

6;
P2

31
6;

P2
91

6;
P6

60
7;

P6
82

4;
P9

72
9

Q
25

79
64

98
co

nt
em

po
ra

ry
Ye

s
12

4
ht

tp
s:

//
w

.w
ik

i/
58

M
L

P2
30

3;
P2

31
6;

P6
60

7
Q

21
51

08
54

di
ff

er
en

ce
-w

it
hi

n-
ra

ng
e

N
o

10
ht

tp
s:

//
ap

i.t
ri

pl
yd

b.
co

m
/s

/r
8S

K
2s

O
8L

P2
30

3;
P2

30
6;

P2
31

2;
P2

31
3;

P2
31

6;
P4

68
0;

P6
60

7
Q

21
50

24
10

di
st

in
ct

-v
al

ue
s

Pa
rt

ia
lly

66
01

ht
tp

s:
//

w
.w

ik
i/

58
LT

P2
30

3;
P2

30
4;

P2
31

6;
P2

91
6;

P4
15

5;
P6

60
7

Q
21

50
24

04
fo

rm
at

Ye
s

72
35

ht
tp

s:
//

w
.w

ik
i/

58
LP

P1
79

3;
P2

24
1;

P2
30

3;
P2

31
6;

P2
91

6;
P4

68
0;

P6
60

7
Q

52
84

84
01

in
te

ge
r

Ye
s

16
5

ht
tp

s:
//

w
.w

ik
i/

58
LN

P2
30

3;
P2

31
6

Q
21

50
32

47
it

em
-r

eq
ui

re
s-

st
at

em
en

t
Ye

s
52

15
ht

tp
s:

//
w

.w
ik

i/
58

LJ
(o

nl
y

re
q.

pr
op

.)
ht

tp
s:

//
w

.w
ik

i/
58

LM
(a

ls
o

re
q.

va
l.)

P2
24

1;
P2

30
3;

P2
30

4;
P2

30
5;

P2
30

6;
P2

31
6;

P2
91

6;
P4

68
0;

P6
60

7

Q
10

81
39

34
5

la
be

li
n

la
ng

ua
ge

Ye
s

12
9

ht
tp

s:
//

w
.w

ik
i/

58
LG

P2
31

6;
P4

24
Q

55
81

91
06

le
xe

m
e

re
qu

ir
es

la
ng

ua
ge

Ye
s

97
ht

tp
s:

//
w

.w
ik

i/
58

LF
P2

30
5;

P6
60

7
Q

55
81

90
78

le
xe

m
e

re
qu

ir
es

le
xi

ca
lc

at
eg

or
y

Ye
s

9
ht

tp
s:

//
w

.w
ik

i/
58

LZ
P2

30
5

Q
64

00
67

92
le

xe
m

e
va

lu
e

re
qu

ir
es

le
xi

ca
lc

at
eg

or
y

Ye
s

1
ht

tp
s:

//
w

.w
ik

i/
58

Lb
P2

30
5

Q
21

51
08

57
m

ul
ti

-v
al

ue
Ye

s
31

ht
tp

s:
//

w
.w

ik
i/

58
Lf

P2
30

4;
P2

31
6;

P6
60

7
Q

51
72

37
61

no
-b

ou
nd

s
Ye

s
74

ht
tp

s:
//

w
.w

ik
i/

58
Le

P2
30

3;
P2

31
6

Q
52

55
80

54
no

ne
-o

f
Ye

s
39

ht
tp

s:
//

w
.w

ik
i/

58
Lk

P2
30

3;
P2

30
4;

P2
30

5;
P2

31
6;

P2
91

6;
P6

10
4;

P6
60

7;
P6

82
4;

P9
72

9
Q

21
51

08
59

on
e-

of
Ye

s
20

8
ht

tp
s:

//
w

.w
ik

i/
58

Lm
P2

24
1;

P2
30

3;
P2

30
5;

P2
31

6;
P2

91
6;

P6
60

7
Q

52
71

23
40

on
e-

of
qu

al
ifi

er
va

lu
e

pr
op

er
ty

Ye
s

5
ht

tp
s:

//
w

.w
ik

i/
58

Ln
P2

30
5;

P2
30

6

Q
53

86
95

07
pr

op
er

ty
sc

op
e

Ye
s

14
70

3
ht

tp
s:

//
w

.w
ik

i/
58

M
i(

as
m

ai
n

va
lu

e)
ht

tp
s:

//
w

.w
ik

i/
58

M
k

(a
s

qu
al

ifi
er

)
ht

tp
s:

//
w

.w
ik

i/
58

M
m

(a
s

re
fe

re
nc

e)
P2

30
3;

P2
30

4;
P2

31
6;

P2
91

6;
P4

68
0;

P5
31

4;
P6

60
7

Q
21

51
08

60
ra

ng
e

Ye
s

34
5

ht
tp

s:
//

w
.w

ik
i/

58
M

b
(f

or
va

lu
es

)
ht

tp
s:

//
w

.w
ik

i/
58

M
g

(f
or

da
te

s)
P2

30
3;

P2
31

0;
P2

31
1;

P2
31

2;
P2

31
3;

P2
31

6;
P6

60
7

Q
21

51
08

56
re

qu
ir

ed
qu

al
ifi

er
Ye

s
38

2
ht

tp
s:

//
w

.w
ik

i/
58

Lo
P2

24
1;

P2
30

3;
P2

30
4;

P2
30

6;
P2

31
6;

P4
68

0;
P6

60
7

Q
52

06
08

74
si

ng
le

-b
es

t-
va

lu
e

N
o

15
9

ht
tp

s:
//

w
.w

ik
i/

58
Lz

P2
30

3;
P2

31
6;

P4
15

5;
P4

68
0;

P6
60

7
Q

19
47

44
04

si
ng

le
-v

al
ue

Pa
rt

ia
lly

64
83

ht
tp

s:
//

w
.w

ik
i/

58
M

4
P2

24
1;

P2
30

3;
P2

30
4;

P2
31

6;
P2

91
6;

P4
15

5;
P4

68
0;

P6
60

7
Q

21
51

08
62

sy
m

m
et

ri
c

Ye
s

45
ht

tp
s:

//
w

.w
ik

i/
58

N
A

P2
30

3;
P2

31
6

Q
21

50
32

50
ty

pe
Ye

s
60

33
ht

tp
s:

//
w

.w
ik

i/
58

M
X

(in
st

an
ce

O
f)

ht
tp

s:
//

w
.w

ik
i/

58
M

V
(s

ub
cl

as
sO

f)
ht

tp
s:

//
w

.w
ik

i/
58

M
W

(in
st

an
ce

O
rS

ub
cl

as
sO

f)
P2

24
1;

P2
30

3;
P2

30
4;

P2
30

8;
P2

30
9;

P2
31

6;
P4

68
0;

P6
60

7

Q
21

51
08

64
va

lu
e-

re
qu

ir
es

-s
ta

te
m

en
t

Ye
s

37
0

ht
tp

s:
//

w
.w

ik
i/

58
M

9
(o

nl
y

re
q.

pr
op

.)
ht

tp
s:

//
w

.w
ik

i/
58

M
7

(a
ls

o
re

q.
va

l.)
P2

24
1;

P2
30

3;
P2

30
4;

P2
30

5;
P2

30
6;

P2
31

6;
P4

68
0;

P6
60

7

Q
21

51
08

65
va

lu
e-

ty
pe

Ye
s

10
25

ht
tp

s:
//

w
.w

ik
i/

58
M

E
(in

st
an

ce
O

f)
ht

tp
s:

//
w

.w
ik

i/
58

M
F

(s
ub

cl
as

sO
f)

ht
tp

s:
//

w
.w

ik
i/

58
M

N
(in

st
an

ce
O

rS
ub

cl
as

s)
P2

30
3;

P2
30

4;
P2

30
8;

P2
30

9;
P2

31
6;

P2
91

6;
P6

60
7

Table 1
Wikidata property constraints set



clarify to which extent SHACL can represent constraints of a widely used real-world KG: one of
our results is a collection of practical SHACL constraints that can be used in a large and growing
real world dataset; indeed the non-avilability of practical SHACL performance benchmarks has
already been emphasized by [16], where we believe our work could be a significant step forward.
Other results we presented include clarifications of heretofore uncertain issues, such as the
representability of permitted entities and exceptions in WDPC within SHACL [8]. We also could
argue the non-expressibility of certain WD constraints, due to the impossibility to compare
values obtained through different paths matching the same regular path expression within
SHACL-core. These issues could be addressed when we used SPARQL to validate constraints,
where indeed all 30 constraints could be formalized, including additional constraint types
Citation needed (Q54554025) and Single best value (Q52060874) that are not even yet reported by
WD’s official constraint reporting tool, cf. Footnote 6 above.

The formalization and operationalization of property constraints establishes a mutual relation-
ship with the WD community: analyzing the formalization helps to enrich the way constraints
are modeled and vice versa. We hope that this article stimulates discussions in the community
to enrich the representation of constraints that still might have subjective interpretations, as
well as support the evolution of validation approaches in SHACL as WD can now be considered
as a large benchmark dataset for SHACL validators.

As future work, we plan to use the results of this paper to systematically collect/analyse the
kinds of CVs in WD and study their patterns. Understanding violations and their evolution is
fundamental to identify modeling or other systematic data quality issues and propose further
refinements, especially in collaboratively and dynamically created KGs such as WD. Proposing
refinements is a process that can be envisioned when taking into account the repair information
declaratively represented in and retrievable through operationalizable constraints.

Acknowledgments

Axel Polleres’ work is supported by funding in the European Commission’s Horizon 2020
Research Program under Grant Agreement Number 957402 (TEAMING.AI).

References

[1] H. Paulheim, Knowledge graph refinement: A survey of approaches and evaluation
methods, Semantic web 8 (2017) 489–508.

[2] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, D. Vrandečić, Introducing wikidata to
the linked data web, in: International semantic web conference, Springer, 2014, pp. 50–65.

[3] D. B. Lenat, Cyc: A large-scale investment in knowledge infrastructure, Communications
of the ACM 38 (1995) 33–38.

[4] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. Van Kleef, S. Auer, et al., Dbpedia–a large-scale, multilingual knowledge
base extracted from wikipedia, Semantic web 6 (2015) 167–195.

[5] M. Fabian, K. Gjergji, W. Gerhard, et al., Yago: A core of semantic knowledge unifying



wordnet and wikipedia, in: 16th International world wide web conference, WWW, 2007,
pp. 697–706.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, T. M. Mitchell, Toward an
architecture for never-ending language learning, in: Twenty-Fourth AAAI conference on
artificial intelligence, 2010.

[7] A. Piscopo, E. Simperl, Who models the world? collaborative ontology creation and user
roles in wikidata, Proceedings of the ACM on Human-Computer Interaction 2 (2018) 1–18.

[8] K. Shenoy, F. Ilievski, D. Garijo, D. Schwabe, P. Szekely, A study of the quality of wikidata,
Journal of Web Semantics 72 (2022) 100679.

[9] A. Haller, A. Polleres, D. Dobriy, N. Ferranti, S. Rodríguez Méndez, An analysis of links in
wikidata, in: ESWC 2022-19th European Semantic Web Conference, 2022.

[10] D. Hernández, A. Hogan, M. Krötzsch, Reifying RDF: what works well with wikidata?, in:
Proceedings of the 11th International Workshop on Scalable Semantic Web Knowledge
Base Systems, volume 1457 of CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 32–47.
URL: http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf.

[11] D. Abián, J. Bernad, R. Trillo-Lado, Using contemporary constraints to ensure data
consistency, in: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
2019, pp. 2303–2310.

[12] S. Bischof, M. Krötzsch, A. Polleres, S. Rudolph, Schema-agnostic query rewriting in sparql
1.1, in: International semantic web conference, Springer, 2014, pp. 584–600.

[13] S. Staworko, I. Boneva, J. E. L. Gayo, S. Hym, E. G. Prud’Hommeaux, H. Solbrig, Complexity
and expressiveness of shex for rdf, in: 18th International Conference on Database Theory
(ICDT 2015), 2015.

[14] I. Boneva, J. Dusart, D. F. Alvarez, J. E. L. Gayo, Shape designer for shex and shacl
constraints, in: ISWC 2019-18th International Semantic Web Conference, 2019.

[15] H. Paulheim, A. Gangemi, Serving dbpedia with dolce–more than just adding a cherry on
top, in: International semantic web conference, Springer, 2015, pp. 180–196.

[16] M. Figuera, P. D. Rohde, M. Vidal, Trav-shacl: Efficiently validating networks of SHACL
constraints, in: J. Leskovec, M. Grobelnik, M. Najork, J. Tang, L. Zia (Eds.), WWW ’21:
The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, ACM /
IW3C2, 2021, pp. 3337–3348. URL: https://doi.org/10.1145/3442381.3449877. doi:10.1145/
3442381.3449877.

http://ceur-ws.org/Vol-1457/SSWS2015_paper3.pdf
https://doi.org/10.1145/3442381.3449877
http://dx.doi.org/10.1145/3442381.3449877
http://dx.doi.org/10.1145/3442381.3449877

	1 Introduction
	2 Expressing Wikidata Constraints with SHACL
	2.1 Property Constraint Types and Qualifiers
	2.2 Mapping WD Property constraints to SHACL

	3 Operationalizing Wikidata Constraints with SPARQL
	3.1 Expressing and validating WD property constraints in SPARQL

	4 Related Work
	5 Conclusions

