
Binary RDF Representation for Publication and Exchange (HDT)

Javier D. Fernándeza,∗, Miguel A. Martı́nez-Prietoa,b, Claudio Gutiérrezb, Axel Polleresc,d, Mario Ariasa,c

aDataWeb Research, Department of Computer Science, University of Valladolid,
E.T.S. de Ingenierı́a Informática, Campus Miguel Delibes, 47011 Valladolid, Spain.

bDepartment of Computer Science, University of Chile,
Avenida Blanco Encalada 2120, 837-0459 Santiago, Chile.

cDigital Enterprise Research Institute, National University of Ireland, Galway,
IDA Business Park, Lower Dangan, Galway, Ireland.

dSiemens AG̈Osterreich, Siemensstrasse 90, 1210 Vienna, Austria.

Abstract

The currentWeb of Datais producing increasingly large RDF datasets. Massive publication efforts of RDF data
driven by initiatives like the Linked Open Data movement, and the need to exchange large datasets has unveiled the
drawbacks of traditional RDF representations, inspired and designed by a document-centric and human-readable Web.
Among the main problems are high levels of verbosity/redundancy and weak machine-processable capabilities in the
description of these datasets. This scenario calls for efficient formats for publication and exchange.

This article presents a binary RDF representation addressing these issues. Based on a set of metrics that characterizes
the skewed structure of real-world RDF data, we develop a proposal of an RDF representation that modularly partitions
and efficiently represents three components of RDF datasets: Header information, a Dictionary, and the actual Triples
structure (thus calledHDT). Our experimental evaluation shows that datasets inHDT format can be compacted by more
than fifteen times as compared to current naive representations, improving both parsing and processing while keeping
a consistent publication scheme. Specific compression techniques overHDT further improve these compression rates
and prove to outperform existing compression solutions for efficient RDF exchange.

Keywords: RDF, Binary formats, Data compaction and compression, RDF metrics.

1. Introduction and Motivation

The original RDF (Resource Description Framework)
W3C Recommendation [38] (from 1999) defines RDF
as a foundation for processing metadata and establishes
its broad goal as a mechanism for describing resources.
This conception was clearly influenced by adocument-
centricperspective of the Web as it is stated through the
examples of RDF applications, such as the description
and annotation of web page collections that represent
a single logical document or the intellectual property
rights of web pages. Although the current Recommen-
dation [8] (from 2004) shares this original perspective, it
also devises an evolution by suggesting the use of RDF
“ to do for machine processable information (application
data) what the WWW has done for hypertext: to allow

∗Corresponding author
Email addresses:jfergar83@gmail.com (Javier D.

Fernández),migumar2@infor.uva.es (Miguel A.
Martı́nez-Prieto),cgutierr@dcc.uchile.cl (Claudio
Gutiérrez),axel.polleres@siemens.com (Axel Polleres),
mario.arias@deri.org (Mario Arias)

data to be processed outside the particular environment
in which it was created, in a fashion that can work at In-
ternet scale”. This latter perspective along with increas-
ing adoption driven by efforts such as the Linked Data1

initiative has made RDF evolve from a simple format for
metadata to a universal exchange format.

The mainstream RDF serialization syntaxes share the
scope of the original perspective. The intended goal
of the original RDF/XML representation design was to
add small descriptions (metadata) to documents, to pro-
tocols, to annotate web pages or to describe services.
Likewise, representations like N3 [10], Turtle [9] and
RDF/JSON [2], and more recently RDFa2,although hav-
ing reduced the verbosity of the original format, are still
dominated by this document-centric view. Today, as one
of the major trends in the development of the Web is
RDF publication and exchange at large scale,i.e., mak-
ing RDF data (publicly) available for diverse purposes
and users, the need to consider RDF under a data-centric

1http://linkeddata.org
2http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

Preprint submitted to Journal of Web Semantics October 24, 2012

http://ees.elsevier.com/jws/viewRCResults.aspx?pdf=1&docID=1199&rev=1&fileID=29409&msid={66966E5E-E18E-4F98-92AF-077291B5C8FF}

view is becoming indispensable.
The emerging Web of Data comprises a variety of

very large datasets from diverse fields such as bioin-
formatics, social networks or structured knowledge ex-
tracted from Wikipedia. The Linked Data initiative pro-
motes the use of standards (such as RDF and HTTP)
to publish such structured data on the Web and to con-
nect it by reusing dereferenceable identifiers between
different data sources [13]. The latest studies of the
so-called Linked Open Data (LOD) cloud3 estimate that
more than 31 billion RDF triples are being shared and
increasingly linked (close to half a billion links), which
results in one huge interconnected RDF graph, orga-
nized in datasets from different providers. Hence, when
consuming (parts of) this huge graph a major problem
is to manage, exchange, and consume these datasets ef-
ficiently. Similar problems arise when managing this
information in mobile devices; together with memory
constrains, these devices can face additional transmis-
sion costs [39].

An analysis of published RDF datasets reveals several
insufficiencies of existing RDF serializations for pub-
lishing and exchanging RDF at large scale. Firstly, even
though there are some approaches (e.g.VoiD [4]) to add
provenance and other metadata (such as statistics or a
content summary) when publishing RDF datasets, such
information – which can be useful to guide consumers –
is usually neither complete nor systematically published
along with the dataset. In many cases this additional
information is given in non machine-readable formats
(e.g. natural language) in the web page of the dataset,
making it difficult to relate to the actual dataset.

Moreover, basic data operations (such as simple
lookup) have to deal with the sequentiality of the infor-
mation in files, requiring to parse the whole data. Pub-
lishing, exchanging, and consuming large RDF datasets
is not supported in a standardized fashion. This state
of affairs does not scale to a Web where very large
datasets will soon be produced dynamically and auto-
matically. Furthermore, most data have to bemachine-
understandablein line with the aim of the original Se-
mantic Web project.

From the above, we can conclude that the process of
publishing and exchanging large RDF datasets should
comply with some basic requirements. At thelogical
level, large-scale datasets should have standard meta-
data, like provenance (source, providers, publication
date, etc.), editorial metadata (publisher, date, version,
etc.), dataset statistics (size, quality, type of data, ba-
sic parameters of the data) and intellectual property in-
formation (types of copy[left—right]s). At thephysi-

3http://www4.wiwiss.fu-berlin.de/lodcloud/state/

cal level, RDF representation at large scale should per-
mit efficient processing, management and exchange (be-
tween systems and memory-disk movements), thus min-
imizing redundancy, while at the same time guarantee-
ing modularity. At theoperational level, desirable fea-
tures include native support for simple query patterns.
The state-of-the-art on publishing and exchanging large
datasets (e.g. from an RDF data store) would typically
be to first dump the data into one file using one of the
existing RDF serialization formats, and then, due to the
large size of the data, possibly compress this serializa-
tion with a generic compression algorithm. However,
there is no agreed way to publish such a dump along
with additional metadata and it is hardly usable natively,
i.e., without an expensive processing using an appropri-
ate external tool (an RDF store, a visualizer, etc.).

The present work provides a novel RDF publica-
tion and serialization format which addresses the above-
mentioned challenges. First of all, one needs to un-
derstand the structure of real-world huge RDF graphs,
which will guide the design. To this end, we propose
a set of specific metrics for RDF datasets which re-
veal the underlying structure and composition of the
graph. Then, we introduce the new representation for-
mat (Header-Dictionary-Triples: HDT) that modular-
izes the data and uses the skewed structure of big RDF
graphs [25, 46, 53] to achieve large spatial savings.
HDT, following the requirements delineated above, is
based on three main components:

- A header, including metadata describing the RDF
dataset. It serves as an entry point to the informa-
tion on the dataset.

- A dictionary, organizing all the identifiers in the
RDF graph. It provides a catalog of the RDF
terms (URIs, blank nodes, literals) mentioned in
the graph with high levels of compression.

- A triples component, which comprises the pure
structure of the underlying RDF graph,i.e. com-
pactly encodes the set of triples while avoiding the
noise produced by long labels and repetitions.

We make use of succinct data structures and simple
compression notions to get a practical implementation
for HDT. Our design, besides gaining modularity and
compactness, also addresses other important features: 1)
it allows indexed access to the RDF graph, and 2) it uses
a specific technique for RDF compression (referred to
asHDT-Compress) showing a technique able to out-
perform universal compression algorithms.

Figure 1 shows a step-by-step description of the pro-
cess to obtain theHDT representation of an RDF graph.

2

Figure 1: A Step-by-step construction ofHDT from a set of triples. The last step covers practical decisions to get a concrete implementation ofHDT.

The first three steps extract basic RDF features neces-
sary to build the dictionary and the underlying graph, as
well as information that will be included in the header.
The fourth step covers some practical decisions in order
to get a concrete implementation forHDT.

When it comes to publish or exchange large RDF
datasets, the advantages ofHDT compared to existing
RDF serialization formats can be summarized as fol-
lows. (i) HDT is more compact, thus – depending on
the concrete application – saving storage space, commu-
nication bandwidth and data transfer time. (ii)HDT is
modular, cleanly separating the dictionary from triples
(the graph structure), including a standard header with
metadata about the dataset. (iii)HDT permits basic data
operations allowing access to parts of the graph without
the need to process/parse it in its entirety.

The paper is organized as follows4. Section 2 defines
a set of metrics to characterize the structural RDF fea-
tures. Section 3 presents theHDT format by an indi-
vidual description of each component: Header, Dictio-
nary, and Triples. Section 4 details the practical im-
plementation approach forHDT. Section 5 character-
izesHDT compacting ability. We perform an empiri-
cal study which analyzes the currentHDT features on
real-world datasets. Section 6 reviews the related work
and the state-of-the-art of RDF structural studies, repre-
sentations and applications. Section 7 gives conclusions
and addresses future work. Appendix Appendix A pro-
vides an empirical study on characterizing RDF through
the metrics presented in Section 2. Finally, a concrete
HDT syntax specification is provided in Appendix Ap-
pendix B.

2. Characterizing RDF

Despite RDF is being widely used, its structural prop-
erties in real-world deployments are still neither well-

4A preliminary version of this article appeared inProc. 9th In-
ternational Semantic Web Conference (ISWC), pp. 193–208, 2010.
It has also led to a W3C Member Submission (30 March 2011),
http://www.w3.org/Submission/2011/SUBM-HDT-20110330/.

known nor exploited. Several studies confirm the pres-
ence of power-law distributions, in term of frequen-
cies [25], resources [46] and schemas [53], while others
give some indications about RDF compression poten-
tial [27]. Hogan et al.’s work [32, 31] confirms many
of those observations and additionally analyzes popu-
larity in terms of interlinkage and publishing quality of
RDF online, particularly focusing on compliance with
Linked Data principles. Among statistical analysis, a
relevant related work [33, 34] defines some equivalent
metrics to our proposal below, such as cardinalities for
(subject,predicate) and (predicate,object) pairs.

The objective of this section is to present a theoret-
ical and empirical study on real-world RDF structure
and properties, in order to determine common features
and characterize real-world RDF data. This can lead to
better dataset designs, efficient RDF data structures, in-
dexes and compression techniques.

2.1. Metrics for RDF graphs

RDF is typically formalized as follows. Assume infi-
nite, mutually disjoint setsU (RDF URI references),B
(Blank nodes), andL (RDF literals). A triple(s, p, o) ∈
(U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple
[29], in whichs is the subject,p the predicate ando the
object. Note that(s, p, o) can be represented as a direct
edge-labeled graphs

p
−→ o.

We note that RDF interpretation as a graph can be
misleading. RDF can be represented as an edge-labeled
graph for visualization but, in fact, it can not be consid-
ered a graph in the standard sense because the predicates
can again appear as nodes of other edges [30]. Thus, the
application of well-established methods from graph the-
ory presents problems. For instance, traditional graph
metrics must be reconsidered as well.

We provide some specific parameters to characterize
RDF data, and show that they have skewed power-law
distributions, particularly remarkable on subjects and
objects, establishing the basis of our representation. For
our purposes, few indicators of the graph structure are
sufficient. We follow [47, 29] for graph notation, with

3

no distinction between URIs, Blank nodes and Literals5.
LetG be an RDF graph, andSG, PG, OG be the sets

of subjects, predicates and objects inG.

Definition 1 (subject out-degrees). Let G be an RDF
graph, and lets ∈ SG andp ∈ PG.

1. Theout-degreeof s, denoteddeg−(s), is defined
as the number of triples inG in which s occurs
as subject. Formally,deg−(s) = |{(s, y, z) |
(s, y, z) ∈ G}|. The maximum out-degree,
deg−(G) = maxs∈SG

(deg−(s)), and themean
out-degree, deg−(G) = 1

|SG|Σs∈SG
deg−(s), are

defined as the maximum and mean out-degrees of
all subjects inSG.

2. The partial out-degreeof s with respect to
p, denoted deg−−(s, p), is defined as the
number of triples of G in which s occurs
as subject andp as predicate. Formally,
deg−−(s, p) = |{(s, p, z) | (s, p, z) ∈
G}|. The maximum partial out-degreeof G,
deg−−(G) = max(s,p)∈SG×PG

(deg−−(s, p)),
and mean partial out-degree, deg−−(G) =

1
|SG×PG|Σ(s,p)∈SG×PG

deg−−(s, p), are defined as
the maximum (resp. the mean) partial out-degrees
of all pairs of subject-predicates ofG.

3. Thelabeled out-degreeof s, denoteddegL−(s) =
maxs∈SG

(degL−(s)), is defined as the number of
different predicates (labels) ofG with which s is
related as a subject in a triple ofG. Formally,
degL−(s) = |{p | ∃z ∈ OG, (s, p, z) ∈ G}|. The
maximum labeled out-degreeof G, degL−(G) =
maxs∈SG

(degL−(s)), and mean labeled out-
degree, degL−(G) = 1

|SG|Σs∈SG
degL−(s), are

defined as the maximum (resp. the mean) labeled
out-degrees of all subjects ofG.

4. The direct out-degreeof s, denoteddegD−(s),
is defined as the number of different objects of
G with which s is related as a subject in a
triple of G. Formally, degD−(s) = |{o |
∃y ∈ PG, (s, y, o) ∈ G}|. The maxi-
mum direct out-degreeof G, degD−(G) =
maxs∈SG

(degD−(s)), and mean direct out-
degree, degD−(G) = 1

|SG|Σs∈SG
degD−(s), are

defined as the maximum (resp. the mean) direct
out-degrees of all subjects ofG.

5Naming of blank nodes can matter in some treatments,i.e., our
serialization is notcanonical. Canonical representations of RDF are,
due to the structure of blank nodes, tricky to achieve in general [17].

Symmetrically, we define for objects thein-degree,
denoteddeg+(o), partial in-degree,deg++(o, p), la-
beled in-degree, degL+(o) and direct in-degree,
degD+(o). Their corresponding maximums and means
are denoted asdeg+(G), deg++(G), degL+(G),
degD+(G), deg+(G), deg++(G) and degL+(G),
degD+(G).

Note that cardinality, average cardinality, inverse
cardinality andaverage inverse cardinalityin [33, 34]
are equivalent to partial out-degree, average partial out-
degree, partial in-degree and average partial in-degree.

Definition 2 (predicate degrees). Let G be an RDF
graph, and lets ∈ SG, p ∈ PG ando ∈ OG.

1. The predicate degreeof p, denoteddegP (p), is
defined as the number of triples ofG in which
p occurs as predicate. Formally,degP (p) =
|{(x, p, z) | (x, p, z) ∈ G}|. Themaximum pred-
icate degree, degP (G) = maxp∈PG

(degP (p)),
and the mean predicate degree, degP (G) =
1

|PG|Σp∈PG
degP (p), are defined as the maximum

and mean predicate degrees of all predicates inPG.

2. The predicate in-degreeof p, denoteddeg−P (p),
is defined as the number of different subjects
of G with which p is related as a predicate in
a triple of G. Formally, deg−P (p) = |{s |
∃z ∈ OG, (s, p, z) ∈ G}|. Themaximum predi-
cate in-degree, deg−P (G) = maxp∈PG

(deg−P (p)),

and the mean predicate degree, deg−P (G) =
1

|PG|Σp∈PG
deg−P (p), are defined as the maximum

and mean predicate in-degrees of all predicates in
PG.

3. Thepredicate out-degreeof p, denoteddeg+P (p),
is defined as the number of different objects of
G with which p is related as a predicate in
a triple of G. Formally, deg+P (p) = |{o |
∃x ∈ SG, (x, p, o) ∈ G}|. Themaximum predi-
cate out-degree, deg+P (G) = maxp∈PG

(deg+P (p)),

and themean predicate out-degree, deg+P (G) =
1

|PG|Σp∈PG
deg+P (p), are defined as the maximum

and mean predicate out-degrees of all predicates
in PG.

Additionally, we will use the following property to
describe RDF graph characteristics:

Definition 3 (subject-object ratioαs−o). The subject-
object ratioαs−o(G) of a graph is defined as the ratio of
common subjects and objects in the graphG. Formally,
αs−o(G) = |SG∩OG|

|SG∪OG| .
Analogously, we define subject-predicate ratio, de-

notedαs−p(G), and predicate-object ratio,αp−o(G).

4

Out-degrees In-degrees Predicate degrees Ratios
deg−(G) 4 deg+(G) 2 degP (G) 3 αs−o(G) 0.13
deg−−(G) 2 deg++(G) 2 degP−(G) 2 αs−p(G) 0
degL−(G) 3 degL+(G) 1 degP+(G) 3 αp−o(G) 0
degD−(G) 2 degD+(G) 2

deg−(G) 2.33 deg+(G) 1.17 degP (G) 1.75
deg−−(G) 1.17 deg++ 1.17 degP−(G) 1.50
degL−−(G) 2.00 degL++ 1.00 degP+ 1.50
degD−(G) 1.17 degD+ 1.67

Figure 2: Various metrics for describing the structure of RDFdata are shown over a small RDF graph example.

Figure 2 illustrates these properties in a small ex-
ample graph inspired by DBPedia6. Resources are de-
scribed with “labels”, they can “reference” other exter-
nal pages and they are categorized (using a “subject”
predicate) through other DBPedia category pages, orga-
nized in hierarchies (“broader” categories). The subject
out-degree indicates the cardinality of a subject node. A
node with high out-degree, also called star-shaped node,
will sometimes have hundreds, or even thousands, of
edges (labeled edges in RDF). In conjunction with max-
imum and mean values, this constitutes a good evidence
of these types of nodes in a given graph. Similar reason-
ing can be made for object in-degree, where the node is
not a source, but is a common destination object node.

Partial and labeled out- and in- degrees are meant to
give information on the different types of edges com-
ing out from (or going into) a node. Partial degree pro-
vides a metric of the multi evaluation of pairs (subject-
predicate or predicate-object), while labeled degree re-
fines the star-shaped nodes categorization. For instance,
a high partial out-degree denotes that a pair (s,p) is re-
lated to multiple objects (multivalued) and a high la-
beled degree shows that the subject is related to multiple
predicates (star-shaped node).

Direct out- and in-degrees complete the degree met-
rics for subject and objects. They indicate the cardi-

6DBpedia: http://dbpedia.org

nality of binary relations between subjects and objects
disregarding the labels,i.e., the columns and rows of the
adjacency matrix arising when obviating the predicates.

Predicate degree constitutes an important metric for
vertical partitioning technique [1], in which an index
(subject, object) is created for each predicate. Pred-
icate degree reflects the number of entries for such a
predicate table. In turn, predicate in-degree and out-
degree refine this metric by providing a characteriza-
tion of the domain and range sizes for each predicate.
For instance, predicates such asrdf:type have a lim-
ited range (low predicate out-degree) but a great domain
(high predicate in-degree).

Finally, ratios give evidence of further characteristics
of RDF graphs and datasets. The subject-object ratio is
a good measure of the percentage of nodes along which
there are incoming and outgoing edges. These are the
key edges to index, because of the different roles they
play, either as subjects described elsewhere, or as ob-
jects describing other resources. Subject-predicate and
predicate-object ratios show how far predicates are also
used as subjects or objects. These two ratios can be used
to justify the consideration of RDF as a graph or the low
influence of these types of shared nodes.

Appendix Appendix A illustrates these metrics for
real-world RDF datasets. The study firstly reveals that
there are important differences between datasets from

5

RDF Header

Dictionary

Triples

<…><…><…><…>…… Mapping between element s in thedata set and unique IDs, t huscont ribut ingt o compactness.
Logical and physical metadatadescribingthe RDF data set . Itserves as an ent rance point t o t heinf ormat ion.
St ruct ure of t he data aft er t he IDreplacement , in a compressed f orm.

Figure 3: Description ofHDT Components: Header-Dictionary-Triples.

different domains (e.gsubject nodes in Uniprot appear
in average in4.27 triples whereas in Dbpedia-en it does
in 12.62).

The empirical data also show the large presence of
star-shaped nodes but a low frequency of multivalued
pairs(s, p); the number of predicates related to a given
object is very close to 1, whereas a mean of 4-5 different
predicates are related with the same subject.

The ratios reveal a level of cohesion in the data;
subject-object is the most frequent path constructor
(subject nodes are also objects up to61%), whereas
subject-predicate and predicate-object ratios are almost
negligible. Finally, power law distributions exist in both
in- and out- degrees, but the skewed distributions of
predicate degrees do not fit well to a power law.

All these results give insights into the RDF real-world
structure and point to possible compact design models.

3. Splitting RDF in Logical Components

The skewed structure of real-world RDF data, partic-
ularly the presence of power-law distributions (see Ap-
pendix Appendix A for details), gives a starting point
for designing a compact RDF structure.

In this section, we present such a compact RDF struc-
ture, calledHDT, to succinctly represent the informa-
tion of an RDF dataset by organizing and representing
the RDF graph in terms of three components:Header,
Dictionary andTriples (see Figure 3). We will show that
this organization allows to represent and manage RDF
data in an efficient manner. In the following, we will
discuss each of these components on an abstract level as
well as general uses and operations to be performed on
the separate components. Practical details (e.g. encod-
ings, vocabularies, etc.) are discussed in Section 4.

3.1. Header

The Header component is responsible for providing
metadata about an RDF dataset. Although there are

dedicated RDF vocabularies to describe metadata about
datasets (e.g. VoiD [4]; the various annotation prop-
erties listed in the OWL vocabulary [42, Section 10]),
metadata provided in the same RDF graph as the ac-
tual data causes problems, particularly making difficult
to automatically distinguish between data and metadata.
Whereas current other serialization formats do not pro-
vide any means or even best practices on how to publish
metadata along with datasets, inHDT, we make meta-
data a first-class citizen with a dedicated place as part of
the header information.

We consider the Header as a flexible component in
which the data provider may include a desired set of fea-
tures. We distinguish four basic types of metadata:

• Publication information. Collects the metadata
about the publication act such as the site of publica-
tion, dates of creation and modification, version of
the dataset (which could be useful for updating no-
tifications), language, encoding, namespaces, etc.
It also includes all kind of authority information
about the source (or sources) of data.

• Dataset statistics. When managing huge collec-
tions, one could consider including some precom-
puted statistics about what follows in the datasets.
For instance, it could be useful to include an esti-
mation of the parameters presented in Section 2.1,
or a subset of them used in the concrete design.

• Format information. Collects the information
about the concrete format of the RDF dataset,i.e.,
it specifies the concrete Dictionary and Triples im-
plementations as well as their physical locations.

• Other information. A provider can take into ac-
count other metadata for the understanding and
management of the data.

6

HDTHDT RDFRDFRDFHDTHDT
Figure 4: Example of use of theHDT Header. A consumer can down-
load or query the Header which maps potentially distributed Dictio-
nary and Triples components.

3.1.1. Header Uses and Operations
The Header serves as an entry point to the RDF

dataset. Figure 4 shows a typical use case. A consumer,
whether a user or machine, accesses the web page where
the provider publishes the dataset. The Header is down-
loaded or queried online by the consumer, who is able
to access 1) publication, statistical or other metadata
and 2) specific format information. For instance, the
consumer can see a detailed summary of the published
dataset, which might be (i) distributed in several chunks,
(ii) available in different formats or (iii) available under
different versions. This allows the user to get: (i) the rel-
evant chunk from the large collection and thus minimiz-
ing the exchange; (ii) the best-fitting format considering
the trade-off compression ratio versus functionality; and
(iii) in the adequate version.

The desired operations over the Header are as simple
as the operations over a general metadata file. Publish-
ers typically write the Header once, but it could be up-
dated with newer information. In turn, consumers will
download and access the Header locally, or they might
consume it using SPARQL queries [48]. The only con-
straint over the metadata is that it should be machine-
readable, and it should be possible to query a given type
of metadata.

3.2. Dictionary

In general terms, a data dictionary is a central-
ized repository of information about data such as
meaning, relationships to other data, origin, usage,
and format [36]. Current RDF formats use elemen-
tary versions of dictionaries for namespaces and pre-
fixes. This allows for the abbreviation of long and re-
peated strings (URIs, Literals, etc.). A good example
is ‘‘http://www.w3.org/1999/02/22-rdf-syntax-ns#type’’

repeated hundreds to thousands of times in the Billion
Triple dataset. Note that XML has this functionality
in the form of namespaces in conjunction withXML
Base, and several RDF formats allow abbreviations of
this kind (@base, @prefix in N3 and Turtle).

Large RDF datasets are supposed to be managed by
automatic processes, hence an effective replacement can
be done: the Dictionary component assigns a unique ID
to each element in the dataset. This way, the dictionary
contributes to the goal of compactness by replacing the
long repeated strings in triples by short IDs. In fact,
the assignment of IDs, referred to asmapping[19], is
usually the first step in RDF indexing. To the best of
our knowledge, although there are some approaches [54,
40] which exploit the dictionary construction besides the
RDF stores, the dictionary has not been proposed in any
RDF representation syntax.

The Dictionary component inHDT allows multiple
configurations and implementations. The sets of sub-
jects, predicates and objects in RDF are not disjoint,
thus RDF engines usually map shared elements with the
same ID [7]. In turn, the order of the elements within
each set could be random or sorted by some property,
e.g.the frequency of use or the alphabetical order.

3.2.1. Dictionary Uses and Operations
The main goal of the Dictionary is to contribute to

compactness by the assignation of a unique ID to each
element in the dataset. Thus, the use of the dictionary
implies two important and minimum operations:

• locate(element): returns a unique identifier for the
givenelement, if it appears in the dictionary.

• extract(id): returns the element with identifierid in
the dictionary, if it exists.

In addition, the dictionary might help in query eval-
uation and resolution. For instance, FILTER operations
in SPARQL restrict the final result by a given condi-
tion. This condition usually refers to a regular expres-
sion, language or datatype selection which can be eval-
uated firstly over the Dictionary. Note that the elements
satisfying the condition will delimit a range to search in
the structure of triples.

3.3. Triples

By means of the Dictionary component, an original
RDF triple can now be expressed as three IDs, replacing
each element in a triple with the reference to the dictio-
nary. The Triples component compacts the information
by transforming a stream of strings into a stream of IDs.

In addition to its compacting feature, the Triples com-
ponent is the key component to access and query the
RDF graph information. The Triples component al-
lows diverse configurations and implementations, which
might exploit the trade-off between the compression ra-
tio and the natively supported operations over the triples.

7

The format for RDF Triples should be designed to op-
timize the common operations and uses of them. We
distinguish here the fundamental ones:

L0 Exchange.At fundamental level, an RDF Triples
component serves to compact the set of RDF state-
ments, optimizing the objective of exchange. It
might include functionalities to exchange only a
part of the entire graph.

L1 Basic Search. An important foundation for any
search over RDF triples aretriple patterns, which
are templates of RDF triples where one or more el-
ement of the triple can be a variable. RDF Triples
components should be able to resolve efficiently as
many types of triple patterns as possible.

L2 Join Resolution. Joins are one of the most ex-
pensive operations in RDF queries. They imply
matching two or more triples patterns which share
one or more variables. RDF Triples components
should support the most common types of joins
(e.g. Subject-Subject, Object-Object, Subject-
Object, etc.).

L3 Complex querying.Ideally, the engine should be
able to answer efficiently any SPARQL query. This
involves addressing many other operators and mod-
ifiers, such as UNION, OPTIONAL, as well as
query evaluation optimization techniques.

The efficient indexing of the triples structure is one
of the keys for good RDF query performance. However,
the RDF information is exchanged in verbose, plain for-
mats and these indexes need to be created locally by an
RDF store. TheHDT Triples component is designed to
encourage the exchange of compressed triples structures
which can be queried without the need of decompres-
sion (cf. [5]).

4. Practical Deployment ofHDT

TheHDT representation is flexible, allowing diverse
implementations of the Header, Dictionary and Triples
components. This feature permits to optimize different
parameters for specific applications,e.g. compression
size, compression/decompression times or querying op-
erations over the triples.

In this section, we present practicalHDT component
implementations for efficient RDF publication and ex-
change. The optimization in this case is focused on com-
pressibility and triple pattern resolution.

http://example.com/dataset1 hdt:DataSetrdf:type

Figure 5: The structure of the proposedHDT Header is shown. It is
itself an RDF graph in tree form whose nodes describe the publication,
statistics, format and other type of information of the dataset.

4.1. Extending VoiD for Header

The Header component is expressed in plain RDF,
and the use of standard vocabularies, such as VoiD, is
strongly recommended. VoiD is an RDF Schema vo-
cabulary for expressing metadata about RDF datasets, a
mechanism for publishers to report their data, and an
entrance point for consumers to discover and retrieve
datasets. This section gives the details of our exten-
sion of the VoiD vocabulary for the particularities of
binary RDF inHDT format, improving the publishing
and exchanging RDF data at large scale. We refer to
hdt as the vocabulary extension, with the namespace
http://purl.org/HDT/hdt#hdt.

4.1.1. The Header Structure
The proposed extension assumes that the Header is

an RDF graph. The triples of this graph should contain
metadata about a publication together with the infor-
mation required to retrieve and process the represented
RDF graph in a machine processable format. It may also
contain other metadata not related to these processes.

The Header of theHDT is described in RDF
as anhdt:Dataset element, which is a subclass
of void:Dataset (rdfs:subClassOf property).
Thus, the Header can make use of VoiD properties to
describe theHDT dataset in a standard way.

The structure of the proposed Header is represented in
Figure 5. A Header must include at least one resource of
typehdt:Dataset, described by four top-level state-
ments (containers), which are described in the follow-
ing subsections. Exactly one format metadata descrip-
tion must be present in order to retrieve the dataset, and
hdt:dictionary andhdt:triples definition (or
subproperties of them) are required.

8

@pref ix v o i d : <h t t p : / / r d f s . o rg / ns / vo id #>.
@pref ix dc : <h t t p : / / p u r l . o rg / dc / t e rms />.
@pref ix f o a f : <h t t p : / / xmlns . com / f o a f / 0 . 1 /> .
@pref ix h d t : <h t t p : / / p u r l . o rg /HDT/ hd t #>.
@pref ix x s d : <h t t p : / /www. w3 . org / 2 0 0 1 /XMLSchema#>.
@pref ix r d f s : <h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema#>.
@pref ix r d f : <h t t p : / /www. w3 . org /1999/02/22− rd f−syntax−ns #> .
@pref ix swp:<h t t p : / /www. w3 . org / 2 0 0 4 / 0 3 / t r i x / swp−2/>.

<h t t p : / / example . org / ex / DBpediaEN> a h d t : D a t a s e t ;
h d t : p u b l i c a t i o n I n f o r m a t i o n : p u b l i c a t i o n ;
h d t : s t a t i s t i c a l I n f o r m a t i o n : s t a t i s t i c s ;
h d t : f o r m a t I n f o r m a t i o n : f o r m a t ;
h d t : a d d i t i o n a l I n f o r m a t i o n : a d d i t i o n a l .

: p u b l i c a t i o n d c : i s s u e d"2010-10-01" ;
d c : l i c e n s e<h t t p : / /www. gnu . org / c o p y l e f t / f d l . h tml>;
d c : p u b l i s h e r [a f o a f : O r g a n i z a t i o n ;

foa f :homepage<h t t p : / / example . org / theCompany>] ;
d c : s o u r c e<h t t p : / / downloads . dbpe d ia . org / 3 . 5 . 1 / en />;
d c : t i t l e "DBpediaEN" ;
v o i d : s p a r q l E n d p o i n t<h t t p : / / example . org / ex / DBpedia / s p a r q l> .

: s t a t i s t i c s v o i d : t r i p l e s "7" ;
v o i d : p r o p e r t i e s "4" .

: f o r m a t h d t : d i c t i o n a r y : d i c t i o n a r y ;
h d t : t r i p l e s B i t m a p : t r i p l e s .

: d i c t i o n a r y d c : f o r m a t "application/x-gzip" ;
h d t : d i c t i o n a r y E n c o d i n g "utf8" ;
h d t : d i c t i o n a r y N a m e s p a c e s [hd t : na me s pa c e [h d t : p r e f i x L a be l "dbpedia" ;

h d t : p r e f i x U R I "http://dbpedia.org/resource/"]] ;
h d t : d i c t i o n a r y O r d e r<hd t : a l p h a b e t i c a l o r d e r>;
h d t : d i c t i o n a r y S e p a r a t o r"\\2" ;
h d t : f i l e L o c a t i o n <h t t p : / / example . org / ex / DBpediaEN . d i c>.

: t r i p l e s h d t : p r e d i c a t e S t r e a m [d c : f o r m a t"application/octet-stream" ;
h d t : f i l e L o c a t i o n <h t t p : / / example . org / ex / DBpediaEN . t 3p>;
h d t : I D C o d i f i c a t i o n "32"] ;

h d t : p r e d i c a t e B i t m a p [h d t : f i l e L o c a t i o n<h t t p : / / example . org / ex / DBpediaEN . t3pb>] ;
h d t : o b j e c t S t r e a m [h d t : f i l e L o c a t i o n<h t t p : / / example . org / ex / DBpediaEN . t 3o>;

h d t : I D C o d i f i c a t i o n "32"] ;
h d t : o b j e c t B i t m a p [h d t : f i l e L o c a t i o n<h t t p : / / example . org / ex / DBpediaEN . t3ob>] .

: a d d i t i o n a l s w p : s i g n a t u r e"AZ8QWE..." ˆ ˆ<xs d :ba s e 64B ina ry>;
s wp :s i gna tu re M e thod<swp:JjcC14N−md5−xor−r s a>.

Figure 6: A Header inHDT.

Figure 6 shows a Header example in Turtle syntax [9]
for an RDF graph such as the one from Figure 2. These
are the elements in the Header:

1. Publication Metadata.(hdt:publicationInformation)
It groups the statements about the publication act,i.e.,

the process of making RDF data publicly available for
several purposes and users.

In addition to VoiD properties, the use of well-known
vocabularies (e.g. Dublin Core7 for basic metadata or
WAIVER for rights8) is highly recommended.

2. Statistical Metadata.(hdt:statisticalInformation)
Publishers include statistical statements about the

data which can provide a fast overview of the dataset

7http://www.dublincore.org/
8http://vocab.org/waiver/terms/

complexity as well as serving for the final application
(e.g. in visualization and summary). VoiD property set
includes statistics such as the number of RDF triples of
the dataset, or the number of described entities. RDF-
Stats [37] histograms, semantic statistics with SDMX
[22] or the RDF Data Cube Vocabulary9, and the previ-
ous metrics might also be included.

3. Format Metadata.(hdt:formatInformation)
It groups the statements specifying the concrete Dic-

tionary and Triples component representation as well as
their physical location. This metadata must be present
in order to retrieve the dataset, and it is required to con-
tain anhdt:dictionary andhdt:triples def-
inition (or subproperties of them). This metadata de-

9http://www.w3.org/TR/2012/WD-vocab-data-cube-20120405/

9

pends on the concrete implementation of both Dictio-
nary and Triples. Figure 6 shows the configuration for
Plain Dictionary and Bitmap Triples.

4. Additional Metadata.(hdt:additionalInformation)
It contains all kind of additional information given by

the publisher,e.g. annotations, or a signature as shown
in Figure 6.

4.2. Dictionary Encodings. Plain Dictionary
A practical encoding for the dictionary component

is proposed as follows, referred to as Plain Dictio-
nary (hdt:dictionaryPlain). Four subsets of el-
ements are considered, mapped as follows (in an RDF
graphG with SG, PG, OG different subjects, predicates
and objects):

1. Common subject-objects, denoted as the setSOG,
are mapped to[1, |SOG|].

2. Thenon common subjects, SG−SOG, are mapped
to [|SOG|+ 1, |SG|].

3. Thenon common objects, OG− SOG, are mapped
to [|SOG|+ 1, |OG|].

4. Predicatesare mapped to[1, |PG|].

Figure 7 shows an example of these four sets for the
RDF graph of Figure 2. Note that a given ID can belong
to different sets, but the disambiguation of the correct set
is trivial when we know that the ID in a triple is placed as
a subject, a predicate or an object. A similar partitioning
is taken in some RDF indexing approaches [7].

The subject-object ratio defined in Section 2.1,αs−o,
characterizes the proportion of the subject-object set in
the dictionary, composed of nodes with out-degree and
in-degree greater than 0,deg−(a), deg+(a) > 0. In
those datasets with a noticeable value ofαs−o, common
subject-object identification reduces the dictionary size
versus a disjoint assignment. The set of predicates are
treated independently because of their low number and
the infrequent overlapping with other sets. Due to the
sequential mapping of each set, the dictionary only has
to include the strings, assuming an implicit order of IDs
and some form of distinction between sets.

The physical Dictionary consists of a list of strings
matching the mapping of the four subsets, in order from
(1) to (4), as shown in Figure 8. A reserved character
(we use '\2 'by default) is appended to the end of each
string and each section to delimit their size.

4.3. Triples Encodings
We provide three implementations for Triples com-

ponent encoding (plain, compact, bitmap) as shown in
Figure 9 for the given graph in Figure 2.

RDF
< ../ pag e2>< ../ pag e1>< ../ pag e4 >< ../ pag e3>< ../ ex ample1>< ../ ref erenc e>< ../# label>< ../# bro ad er>< ../# subj ect >

123234561234
SÍ OSOP

ID Dictionary

Figure 7:HDT Dictionary example.

<ht t p : / / dbped ia . o rg / r e s o u r c e / page2> \2\2<h t t p : / / dbped ia . o rg / r e s o u r c e / page1
>\2<h t t p : / / dbped ia . o rg / r e s o u r c e / page4> \2\2 <h t t p : / / dbped ia . o rg / r e s o u r c e /
page3>\2<h t t p : / / example . o rg / example1> \2 "Label1"@en \2 "Label2"@en \2\2
<ht t p : / / dbped ia . o rg / p r o p e r t y / r e f e r e n c e> \2<h t t p : / /www. w3 . o rg / 2 0 0 0 / 0 1 / rd f−
schema# l a b e l> \2<h t t p : / /www. w3 . o rg / 2 0 0 4 / 0 2 / skos / co r e # b r o ad e r> \2<h t t p : / /
www. w3 . o rg / 2 0 0 4 / 0 2 /skos / co r e # s u b j e c t> \2\2

Figure 8:HDT physical Dictionary component example.

4.3.1. Plain Triples (hdt:triplesPlain)
This is the most naive approach in which only the ID

substitution is performed, as shown in Figure 9. The
physical file contains three IDs per triple.

4.3.2. Compact Triples (hdt:triplesCompact)
This option implies a triple sorting by subject and the

creation of predicate and object adjacency lists.
Adjacency List is a compact data struc-

ture that facilitates managing and search-
ing. For example, the set of triples:
{(s, p1, o11), · · · , (s, p1, o1n1

), (s, p2, o21), · · · (s, p2, o2n2
),

· · · (s, pk, oknk
)}

can be written as the adjacency list:

s → [(p1, (o11, · · · , o1n1
), (p2, (o21, · · · , o2n2

)),

· · · (pk, (oknk
))].

Turtle (and hence N3) allows such generalized ad-
jacency lists for triples. For example the set of triples
{(s, p, oj)}

n
j=1 can be abbreviated as(s p o1, · · · , on).

The Triples component contains a compact adjacency
list representation. First, a subject ordered grouping is
performed, that is, triples are reorganized in an adja-
cency list, in sequential order of subject IDs. Due to this
order, an immediate saving can be achieved by omit-
ting the subject representation, as we know the first list
corresponds to the first subject, the second list to the fol-
lowing, and so on.

Then, the representation is split into two coordinated
streams of Predicates and Objects. The first stream of
Predicates corresponds to the lists of predicates asso-
ciated with subjects, maintaining the implicit grouping
order. The end of a list of predicates implies a change of
subject, and must be marked with a separator, the non-
assigned zero ID. The second stream (Objects) groups
the lists of objects for each pair(s, p). These pairs are

10

RDFDict ionary 1 2 61 3 22 1 32 2 42 2 52 4 13 3 2 Predicates:Objects: 2 3 0 1 2 4 0 3 06 0 2 0 3 0 4 5 0 1 0 2 0subject 2 subject 3
DictionaryBuilding

ID�basedReplacement
Triples

Plain Triples Compact Triples Bitmap Triples
< ../ page2>< ../ page1>< ../ page4>< ../ page3>< ../example 1>“Labe l1”@en“Labe l2”@en“Labe l3”@en< ../ refe re nce >< ../# labe l>< ../#broade r>< ../#s ubject >

123234561234
ShOSOP

ID PredicatesObjects 2 3 1 2 4 36 2 3 4 5 1 20 1 0 0 1 11 1 1 0 1 1 1SpBpSoBo
TriplesTriples subject 1

Figure 9: Three possibilities of triple representations.

formed by the subjects (implicit and sequential), and
coordinated predicates following the order of the first
stream. In this case, the end of a list of objects (also
marked in the stream with the non-assigned zero ID) im-
plies a change of(s, p) pair, moving forward in the first
stream processing.

Thus, the compact triple representation is supported
by two streams: (1) a predicate stream in which the
predicate lists are separated by 0s (i-th list belongs to
i-th subject) and (2) an object stream in which the ob-
ject lists are separated in the same way (j-th list belongs
to the j-th subject/predicate pair in the former stream).

The parameters in Section 2.1 characterize the
streams. Labeled out-degree,degL−(s), indicates the
length of the list of predicates for a subjects. Therefore,
the maximum and mean lengths of the lists inPredi-
catesare given bydegL−(G) anddegL−(G) respec-
tively. Symmetrically, partial out-degree,deg−−(s, p)
gives the size of the corresponding list inObjects. Max-
imum and mean values,deg−−(G) anddeg−−(G) char-
acterize theObjectsstream.

This leads to a compact ID-based triple representation
in which the classical three-dimensional view of RDF
has been reduced into two by the coordinated streams,
considering implicit the third dimension of subjects.

4.3.3. Bitmap Triples (hdt:triplesBitmap)
In Compact Triples, two coordinated ID-based

streams, Predicates and Objects, draw the RDF
graph, representing the triples with an implicit subject-
grouping strategy. Both streams can be seen as se-
quences of non-negative integers in which0-values
mark the endings of predicate and object adjacency lists
respectively. This means that positive integers represent
predicates and objects, whereas0’s are auxiliary values
embedded in each stream to represent, implicitly, the

graph structure. Bitmap Triples implementation splits
both parts in order to improve theHDT usability.

This encoding extracts the 0’s out of the predicate
and object streams of the Compact Triples represen-
tation. The graph structure is indexed with two bit-
sequences (Bp andBo, for predicates and objects) in
which 1-bits are used to mark the end of an adjacency
list. This transformation is shown in Figure 9. On the
one hand, Predicates={2, 3, 0, 1, 2, 4, 0, 3, 0} evolves to
the sequenceSp = {2, 3, 1, 2, 4, 3} and the bitsequence
Bp = {010011} whereas, on the other hand, Objects=
{6, 0, 2, 0, 3, 0, 4, 5, 0, 1, 0, 2.0} is reorganized inSo =
{6, 2, 3, 4, 5, 1, 2} andBo = {1110111}.

The triples structure can be interpreted as follows.
The i-th 1-bit in Bp marks the end of the predicate ad-
jacency list for the i-th subject (it is referred to asPi),
whereas the number of predicates in the corresponding
list can be obtained by subtracting the positions of two
consecutive1-bit (we always consider that positions are
numbered from “1”). For instance, the second1-bit
in Bp marks the end of the predicate adjacency list for
the second subject (P2). There are three positions be-
tween the second and the first1-bit in Bp. Thus,P2

contains three predicates, which are represented by the
third, fourth and fifth IDs inSp, henceP2 = {1, 2, 4}.

Data inSo andBo are related in the same way. The
j-th 1-bit in Bo marks the end of the object adjacency
list for the j-th subject/predicate pair. This predicate is
represented by the j-th position inBp and it is retrieved
from the j-th position ofSp. For example, the third1-
bit in Bo refers the end of the object adjacency list for
the third predicate inSp which is related to the second
subject as we have previously explained. Thus, this ad-
jacency list stores all objectso in triples(2, 1, o) ∈ G.

Operations. Each element inSp andSo is encoded, re-
spectively, with a fixed-length code oflog(|PG|) and

11

Algorithm 1 Check&Find operation for a triple
(s, p, o)

1: begin← select1(Bp, s− 1) + 1;
2: end← select1(Bp, s);
3: sizePs

← end− begin+ 1;
4: Ps ← retrieve(Sp, begin, sizePs

);
5:

6: plist← binary search(Ps, p);
7: pseq ← begin+ plist− 1;
8:

9: begin← select1(Bo, pseq − 1) + 1;
10: end← select1(Bo, pseq);
11: sizeOsp

← end− begin+ 1;
12: Osp ← retrieve(So, begin, sizeOsp

);
13:

14: plist← binary search(Osp, o);

log(|OG|) bits, by considering that the dataset com-
prises|PG| and |OG| different predicates and objects.
The bitsequences used to representBp and Bo make
use of succinct structures. They are able to support
rank/select operations over a sequenceS of length
n drawn from an alphabetΣ = {0, 1}:

- ranka(S,i) counts the occurrences of a symbol
a ∈ {0, 1} in S[1, i].

- selecta(S,i) finds thei-th occurrence of sym-
bol a ∈ {0, 1} in S. In practice,selecta(S, 0) =
0;

This problem has been solved usingn + o(n) bits
of space while answering the queries in constant time
[20]. We choose theGonźalez, et al. [28] approach to
implementBp andBo. This adds5% of extra space to
the original bitsequence lengths, and achieves constant
time for theselect/rank operations, which consti-
tutes the basis for accessing to the structure of the graph.

Bitmaps Triples representation allows a retrieval
strategy able to take advantage of the structure indexed
in Bp andBo, accessible by fastrank/select oper-
ations. Algorithm 1 shows aCheck&Find operation
for a triple(s, p, o) over Bitmaps Triples.

Lines 1-4 describe the steps performed to retrieve
the predicate adjacency list for the subjects (Ps). First,
we obtain its size by locating its begin/end positions in
Bp. Next, weretrieve its sequence ofsizePs

pred-
icate IDs fromSp. OncePs is available, we need to
identify the position (pseq) wheres andp are related
in Sp. Lines6-7 describe it. First,p is located inPs

with abinary search, and, next, this local position,
plist, is used to obtain its global position inSp, pseq, by
addingbegin to plist. In this step, the object adjacency

list for s, p (Osp) can be retrieved because it is indexed
through the pseq−th predicate.Osp is retrieved (lines
9-12) similarly toPs, consideringBo andSo. Finally,
o is located with abinary search onOsp.

The cost of theCheck&Find operation for a triple
(s, p, o) is O(sizePs

+ sizeOsp
), assuming at most

sizePs
= degL−(s) and sizeOsp

= deg−−(s, p).
The distribution of lists assures an amortized cost in
(degL−(G)+deg−−(G)). Note that this operation does
not just find the required triple(s, p, o), but also the
triples(s, p, z) ∈ G. Besides,Ps contains all predicates
from s, so the next operations on triples froms begin
theCheck&Find operation by identifying the position
of p in Sp (from line6).

Efficient access is obtained throughCheck&Find.
If a triple (s, p, o) /∈ G, it can be detected in step6
(the predicatep is not in the predicate adjacency list
for s: Sp) or in step14 (the objecto is not in the ob-
ject adjacency list fors andp: Osp). On the contrary, if
(s, p, o) ∈ G, once the triple is found, the strings asso-
ciated withs, p, ando can be retrieved from the dictio-
nary. Note that the aforementioned Plain Dictionary is
only intended for compact purposes, hence it should be
loaded into a functional structure, such as a Hash table,
B-tree or any other structure optimized for dictionary
management [40].

Furthermore, the SPARQL query language for RDF
can make use of some interesting features of Bitmap
Triples, as follows:

• Algorithm 1 can answer basic ASK queries of
SPARQL for patterns (s,p,o), (s,?p,?o) and (s,p,?o).

• Algorithm 1 can response basic CONSTRUCT
query of SPARQL for simple WHERE patterns
(s,p,o), (s,?p,?o) and (s,p,?o).The result is a RDF
HDT graph.

The S-P-O Adjacency List order must be assumed. The
response patterns vary for alternative representations S-
O-P, P-S-O, P-O-S, O-P-S and O-S-P Adjacency Lists.

5. Evaluation of HDT

This section evaluates the size and performance of
theHDT deployment presented in the previous section.
First, we measure the size of theHDT Dictionary and
Triples to show its good compact ratio performance.
Then, we evaluate the scalability ofHDT based on the
implementation of Plain Dictionary and Bitmap Triples.
Finally, we evaluate triple pattern queries performance.

These tests were performed on a Debian 4.1.1 op-
erating system, running on a computer with an AMD
Opteron(tm) Processor 246 at 2 GHz and 4 GB of RAM.

12

dataset Plain Dictionary
Triples

Plain Compact Bitmap

Geonames 12.54% 9.33% 4.71% 2.91%
Wikipedia³ 4.53% 7.82% 2.45% 2.09%

Dbtune 10.34% 6.93% 3.95% 2.53%
Uniprot 11.08% 12.05% 6.16% 4.05%

Dbpedia-en 14.10% 7.12% 3.53% 2.66%

Table 1: Compact results.

We used a g++ 4.1.2 compiler with-09 optimization.
This experimentation was run on the datasets described
in Appendix Appendix A. For the evaluation, we con-
sider a Header in Turtle syntax such as the one from
Figure 2. Note that the size of the Header (a few KB at
most) is negligible at large scale.

5.1. Dictionary and Triples compact ability

Table 1 shows the compact ratios of each proposed
component inHDT over the original N-Triples format
(one triple per line). It is very interesting to note that
Plain Dictionary and Plain Triples have a comparable
ratio, hence the need of improving both components to
improve the final result. Compact Triples clearly outper-
forms Plain Triples, achieving ratios around 4% and up
to 2.45% of the original size. Bitmap Triples is the most
compact solution for the triples, obtaining ratios around
3% and up to 2.09% over the original size.

In addition to its effectiveness, Bitmap Triples also
overcomes Compact Triples in its ability for direct ac-
cessing to the compressed data, so we will use Bitmap
Triples implementation in all remaining experiments.

Regarding the dictionary, please note that it takes five
times more space than the Bitmap Triples. Moreover,
the current dictionary does not provide SPARQL boost-
ing operations. These insights encourage the use of
compact RDF dictionary implementations [40].

5.2. HDT-Compress

HDT (referred to as Plain-HDT henceforth)
achieves a considerable size reduction of the RDF
dataset by means of the Plain Dictionary and the Bitmap
Triples configurations. This provides a clean publication
and efficient exchange ratios. However,Plain-HDT
is even more compressible with very little effort. We
test HDT compressibility with a particular deployment
calledHDT-Compress. This deployment makes spe-
cific decisions:

• Header: We keep the Header component in plain
form as it should always be available to any receiv-
ing agent for processing and its size is negligible.

• Dictionary: We take advantage of repeated prefixes
in URIs, specific n-gram distributions in literals,
etc. We choose a predictive high-order compressor,
PPM [21], which identifies this type of redundancy
to improve the encoding of the dictionary.

• Triples: The set of bitmap triples compression is
independently attempted on each structure. On the
one hand,Sp comprises an integer sequence drawn
from [1, |PG|]. A Huffman [35] code is used to
compress it. On the other hand, the compression
of So (drawn from [1, |OG|]) takes advantage of
the power-law distribution of objects (see the right
dispersion graph in Figure A.17) through a sec-
ondHuffman code. Finally, we hold a plain rep-
resentation for bitsequences because of the small
improvement obtained with specific techniques for
bitsequence compression.

We choseshuff10 andppmdi11 to implement, re-
spectively, theHuffman andPPM-based encoding.

Table 2 comparesHDT against three well-known uni-
versal compressors. We chosegzip as a dictionary-
based technique on LZ77,bzip2 based on the
Burrows-Wheeler Transform, andppmdi as a predic-
tive high-order compressor.

The most effective universal compressors for all
datasets areppmdi andbzip2 which achieve ratios
of around4% and 5% respectively. A very interest-
ing result shows thatPlain HDT is able to outperform
gzip for the Wikipedia³ dataset. This demonstrates the
previously cited ability ofHDT to obtain compact repre-
sentations of RDF.
HDT-Compress achieves the most effective re-

sults with ratios between2 − 4% for the considered
datasets. This implies reductions between3 − 4 times
with respect toPlain HDT, and consequently propor-
tional improvements on exchanging processes. In turn,
HDT-Compress outperforms universal compressors
by improving the bestppmdi results between20−45%.

10http://www.cs.mu.oz.au/∼alistair/mr coder
11http://pizzachili.dcc.uchile.cl/experiments.html

13

dataset
Triples Size HDT Universal Compressors

(millions) (GB) Plain Compress gzip bzip2 ppmdi

Geonames 9.4 1.00 15.45% 3.16% 7.67% 5.35% 4.80%
Wikipedia³ 47 6.88 6.62% 2.22% 6.97% 5.11% 4.10%

Dbtune 58.9 9.34 12.86% 1.83% 9.67% 6.59% 4.62%
Uniprot 72.5 9.11 15.13% 3.54% 13.22% 7.93% 6.83%

Dbpedia-en 232.5 33.12 16.77% 3.89% 10.36% 7.80% 6.64%

Table 2: Compression results.

5.3. Scalability Evaluation

We study theHDT scalability in two correlated as-
pects. First, we evaluate theHDT performance with in-
cremental size of a dataset. Then, we testHDT com-
ponents compact ability in a wide range of different
datasets to show thatHDT results can be extrapolated
to general fields of application.

5.3.1. Incremental Size
We study theHDT performance with incremental size

of the Uniprot dataset, from 1 to 40 million triples. This
is shown in Figure 10. The left table studies theHDT
evolution of effectiveness. As can be seen, the ratios go
between14 − 15% for Plain HDT, and around3.5%
for HDT-Compress (the percentage is always given
with regard to the original file size). This ensuresHDT
effectiveness by considering that its compression ratios
do not strongly depend on the dataset size, although best
numbers are achieved for larger datasets.

The right graph of Figure 10 shows relevant times for
HDT. On the one hand, thecreationtime stands for the
time required to transform an RDF dataset (from plain
N-Triples) into HDT. This process is only performed
once at publishing and shows a sublinear growth. On the
other hand, after theloading time, the minimum infor-
mation required forHDT management is in memory and
available to be accessed with theCheck&Find mech-
anism (Algorithm 1). As can be seen, this time is only
a very small fraction (≈ 3%) of the creation one. Ad-
ditionally, symmetricalcompressionanddecompression
times are achieved withHDT-Compress. In absolute
terms, both compression and decompression times are
slightly worse than the loading ones.

5.3.2. Multiple datasets
We choose the dataset from the Semantic Web Chal-

lenge 201012, called Billion Triples, which contains
(∼3.2 billion statements). The Data is collected from
Sindice, Swoogle and others, given in N-Quads [23]
format. We select the four hundred largest datasets by
grouping the triples according to the host of the fourth

12http://challenge.semanticweb.org/

component of the NQuad. This way, we ensure a wide
range of application fields.

First, we study the dictionary growth with respect to
the number of triples in the dataset, shown in Figure 11.
Each point corresponds to a different dataset. The num-
ber of unique dictionary entries has a sublinear growth
w.r.t. the number of triples.

Then, we evaluate different Triples orderings over the
Huffman-compressed Bitmap Triples implementation.
We setSPOas the baseline to which the other five possi-
ble orderings are compared. This comparison is shown
in Figure 12: X-axis lists all the remaining orderings and
Y-axis shows the proportion of theSPOspace that each
ordering requires. As can be seen,PSOandPOSreport
the worst numbers: roughly 1.4 times and 1.24 times
the space used bySPO respectively. This is because
predicates are on the top layer of the Bitmap Triples,
and since the number of different predicates is always
much smaller than the number of different subjects or
objects (see Table A.3), fewer items are left implicit.
The betterPOSeffectiveness compared toPSOcan be
explained using the predicate degrees. As shown in Ta-
ble A.16,degP−(G) is always smaller thandegP+(G),
so the number of objects per predicate is smaller than
the number of subjects per predicate and this results in
shorter adjacency lists (by object). Moreover, onlyOPS
ordering outperforms the baseline because the number
of predicates per objectdegL+ is smaller than predi-
cates per subjectdegL−, so the adjacency lists per ob-
ject are shorter than lists per subject. As can be seen,
degL+ ranges from1.00 to 1.39 predicates per object,
whereasdegL− ranges from4.00 to 6.13 predicates per
subject. Nevertheless, the difference is small (OPSre-
quires≈ 0.97 times the space used bySPO), so we think
SPOis still a good general choice. This decision also
takes into account thatSPO is a more intuitive order-
ing for triples, and that queries involving subject access
are massively used [6]. As we show in Table 15, graph
traversals are resolved very efficiently usingCheck &
Find to search the neighbors of a given subject.

We compare the dictionary and triples compress
ability. Figure 13 represents the frequency of
the ratio Dictionary/T riples size when applying
HDT-Compress. The normal distribution centered at

14

Triples Size HDT
(millions) (MB) Plain Compress

1 89.07 15.11% 3.73%
5 444.71 14.54% 3.48%
10 893.39 14.04% 3.27%
20 1790.41 14.43% 3.31%
30 2680.51 14.39% 3.27%
40 3574.59 14.34% 3.26%

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40

tim
e

(s
ec

on
ds

)

#triples (millions)

HDT Times

Creation
Loading

Compression
Decompression

Figure 10: Performance ofHDT (Plain andCompress) with incremental size datasets from Uniprot. The left table shows effectiveness, whereas
the right figure draws significative times.

10
3

10
4

10
5

10
6

10
7

10
8

10
3

10
4

10
5

10
6

10
7

Triples

D
ic

tio
na

ry
 E

nt
rie

s

Dictionary Entries vs Triples

Figure 11:HDT Dictionary growth (y = 0, 62x0,97).

!"#$%&'

!"(#)('

!"$(#*'

!"!$+,'

#"&+*%'

#"##'

#"!#'

#"$#'

#"*#'

#"(#'

#"%#'

#",#'

#"+#'

#")#'

#"&#'

!"##'

!"!#'

!"$#'

!"*#'

!"(#'

!"%#'

-./' /-.' /.-' .-/' ./-'

!
"#
$
%&
'
(
)
*
+"
,'
-
%*
.
*
"-
,/
%!
0
1
%

2"/(*)%3+")4$,%5%678(*-%1+9$+%:'()*+",'-%

Figure 12:HDT Bitmap Triples (+Huffman) order comparison. Fig-
ures represent the ratio against the size of the SPO order.

0.5 implies that both components similarly contribute to
the final compression ratio, hence the importance of iso-
lating and improving both parts.

Finally, Figure 14 compares the mean (over all the
datasets)HDT-Compress ratio against the considered
universal compressors, verifying the previous results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

C
ou

nt

Dictionary/Triples Ratio

Compressed Dictionary/Triples Ratio Distribution

Figure 13:HDT Dictionary/Triples ratio distribution.

0

0.02

0.04

0.06

0.08

0.1

0.12

Compression method

C
om

pr
es

si
on

 r
at

io

GZIP
BZIP2
PPM
HDT

Figure 14:HDT-Compress results.

5.4. Query Response Evaluation

Finally, we evaluate triple pattern resolution. We
perform tests over the plain representation of Bitmap
Triples (note that the aforementioned Huffman com-
pressed version is only intended to show its compress-

15

ibility for exchange and it is not directly queryable).
We disregard also the Dictionary for a fair comparison
because the optimization of the mapping operations is
an orthogonal issue for most RDF engines. We experi-
ment against state-of-the-art solutions such as RDF-3X
and MonetDB which allow larger datasets to be man-
aged. We perform on MonetDB by following the work
in [51]: we create separated predicate tables and insert
ID-based subject/object tuples, in this order (thus forc-
ing a subject-object index). We also disable the dictio-
nary in RDF-3X.

All tests are performed on theDbpediadataset and the
SPARQL triple pattern queries are extracted from the
log provided for the USEWOD’2011 Challenge13. This
means that our testbed is composed by real user queries
except for the patterns(S, P,O) which are directly ex-
tracted from the original dataset through a random pro-
cedure. We choose, at random, 50 different queries for
each triple pattern, translated to their correspondent IDs.

Table 15 shows the performance for the considered
triple patterns (averaged times, in milliseconds per pat-
tern). Note that with our currentHDT solution, theSPO
order can only resolve efficiently the first three patterns.
In order to test all patterns, theOSPorder is used for the
next two queries andPOSfor the last two ones. Thus,
we do not testHDT as a full-fledged engine but we give
insights of query performance over distinct orders.

First, we compare against MonetDB to evaluate the
performance ofHDT versus a vertical-partitioning so-
lution. The use ofHDT largely improves query times
for all patterns. This is specially important for patterns
with unbounded predicates because their resolution is
the main weakness of the vertical-partitioning systems;
for instance, (S,?P,O) takes 757 seconds/pattern in Mon-
etDB and only 0.03 milliseconds/pattern inHDT. These
large differences are an experimental evidence of the
HDT possibilities for SPARQL querying.

The comparison ofHDT and RDF-3X also shows in-
teresting conclusions.HDT is the most efficient ap-
proach for almost all patterns. The only pattern where
RDF-3X outperformsHDT is (?S, P,O). Although
(?S, P, ?O) improves over RDF-3X and MonetDB, it
achieves the worst time of all the triple patterns tested
on HDT. It means that grouping by predicate (POSor-
der) makes slower searches in the bitmap. This corre-
lates with the high predicate degrees studied forDbpe-
dia, i.e., there are many subjects and objects related with
a given predicate. This fact evidences the importance of
the defined RDF metrics to optimize indexes and query
evaluation.

13http://data.semanticweb.org/usewod/2011/challenge.html

6. Related Work

HDT representation can be viewed from different
points of view, uses techniques from diverse fields, and
can be applied in different scenarios. It can be consid-
ered as a binary RDF format; thus, we discuss its re-
lationship with the most relevant RDF representations.
It takes advantage of the RDF structure; we review the
most important findings in this direction. Regarding ap-
plications, we review and compare it with the relevant
literature on RDF publication, RDF exchange and RDF
indexing and querying.

6.1. RDF Representations

Today there are several syntax representations for
RDF data,e.g. RDF/XML, N3, Turtle or RDF/JSON.
None of these proposals, though, seems to have consid-
ered data volume as its primary goal.

RDF/XML [8], due to its verbosity is good for ex-
changing data, but only on a small scale. It includes
some compacting features:

• Omitting Blank Nodes ([8], section 2.11): The
attributerdf:parseType=“Resource”allows to im-
plicitly create blank nodes.

• Omitting Nodes ([8], section 2.12): Under cer-
tain conditions, object nodes with string literals can
be moved to property attributes, hence the subject
node becomes empty.

• Abbreviating URI references ([8], section 2.14):
First, a base URI attributexml:basecan be set. This
is the base URI for resolving relative RDF URI ref-
erences, otherwise the base URI is that of the cur-
rent document. Then, therdf:ID attribute on a node
element can be used instead ofrdf:about. This at-
tribute must be interpreted as a relative RDF URI
reference.

• Collections ([8], section 2.16): It allows an
rdf:parseType=“Collection”attribute to be defined
on a property element. This provides a set of node
elements related to the subject node.

Notation3 (N3 [10]) is a language which was origi-
nally intended to be a compact and readable alternative
to RDF’s XML syntax, optimized for reading by scripts.
Thus, it reduces verbosity and represents the RDF with
a simple grammar based on the plain triples philosophy.
It also allows some compacting features such as abbre-
viations for URIs prefixes (and base URI), shorthands
for common predicates and square bracket blank node
syntax. One major advantage is the use of lists. For

16

(S, P,O) (S, P, ?O) (S, ?P, ?O) (S, ?P,O) (?S, ?P,O) (?S, P,O) (?S, P, ?O)

RDF-3X 1.82 2.90 2.75 2.31 3.86 2.55 2634.86
MonetDB 26.14 50.29 677111.48 757448.11 675127.13 97.49 6397.92
HDT 0.05 0.01 0.05 0.03 0.90 8.31 2108.82

Figure 15: Query times (in ms/pattern) for simple triple patterns

instance, repetition of another objects for the same pre-
vious subject and predicate using a comma “,” and rep-
etition of another predicate for the same subject using a
semicolon “;”.

Turtle [9] is a more compact and readable alternative.
It is intended to be compatible with, and a subset of, N3,
thus it inherits its compact features,e.g.the abbreviation
of RDF collections. N-Triples14 is also a subset of N3,
restricting to only one triple per line, using hardly any
syntactic sugar. It simplifies the parsing process at the
expense of avoiding compact structures.

RDF/JSON [2] resembles Turtle, with the advantage
of being coded in a language easier to parse and more
widely accepted in the programming world. It is in-
tended to be easy for humans to read and write and easy
for machines to parse and generate.

Although most of these formats present features to
“abbreviate” constructions like URIs, groups of triples,
common datatypes or RDF collections, the compactness
of the representation definitely was not the main con-
cern of their design. Finally, Sterno [55] is designed as
a subset of Turtle for optimizing parallel I/O. Although
it collaterally addresses some notion of initial metadata
and compactness (e.g. all prefix declarations must oc-
cur at the beginning of a document and a Lempe-Ziv
compression over Sterno is evaluated), its main purpose
is to allow parallel processing (divisibility) disregarding
publication facilities as well as native query support.

6.2. RDF Structure

RDF is a cornerstone in the Web of Data. It provides
the generic graph-based data model used to structure
and link data that describes things in the world [12].
Currently, the Web of Data comprises very large RDF
datasets from diverse fields like as bioinformatics, so-
cial networks or geography, among others. RDF adop-
tion is becoming incredible important. However, works
studying its global functioning and structure are scarce.

Although power-law15 distribution validation in RDF
data remains an open field, in practice it is assumed

14http://www.w3.org/TR/rdf-testcases/#ntriples
15A power law is a function with scale invariance, which can be

drawn as a line in the log-log scale with a slope equal to a scaling
exponent,e.g. f(x) = ax−β , thus f(cx) ∝ f(x), with a, c, β

constants.

as a common characteristic of RDF real-world data.
Ding and Finn [25] reveal that Semantic Web graphs fit
power-law distribution within some metrics such as the
size of documents and term frequency use; most terms
are described through few triples. Regarding the use
of an RDF schema (RDFS[15]), the space of instances
is sparsely populated, since most classes and proper-
ties have never been instantiated. By crawling the Web,
Oren [46] comes to similar conclusions, showing that
resources (URIs) in different documents fit to a power-
law distribution. Theoharis [53] studies these properties
for Semantic Web schemas, RDFS and OWL [41]. Sim-
ilar distribution is found in the descendants of a class, as
well as other schema features, such as the existence of
few classes interconnecting schemas, or non-balanced
hierarchies. The presence of star and chaining nodes
has been also described in data and queries (star- and
chain-shaped join queries) [43, 44]. This schema anal-
ysis has contributed to synthetic schema generation for
benchmarking [53].

These results motivate the application to RDF of
the well-known Web distribution, where power-law is
present in successors list of a given domain, playing an
important role in Web graphs compression [14, 18].

RDF compression capabilities have been studied [27]
but have not been applied in a concrete format or imple-
mentation. The situation is not better for splitting RDF
into components. Neither RDF/XML nor N3 (and their
subsets Turtle and N-Triples) have the basic constructors
to design modular files. To the best of our knowledge,
none of these techniques have been applied in the design
of RDF datasets.

There is little work on the design of large RDF
datasets. There have been projects discussing design is-
sues of RDF16, and a working group on design issues
of translation from relational databases to RDF17. How-
ever, none of these works have touched the problem of
RDF publication and exchange at large. The project that
is currently systematically addressing the issue of pub-
lication of RDF at large, Linked Data, is beginning to
face some of these issues.

16Best Practices Publishing Vocab. W3C WG:
www.w3.org/2001/sw/BestPractices/, and the Wordnet case
www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.html

17http://www.w3.org/2001/sw/rdb2rdf/

17

6.3. Applications on RDF

At this point in the evolution of the Web, RDF can
actually be used in a wide variety of fields and applica-
tions. We mainly focus on (i) publication, (ii) exchange
and (iii) indexing and querying.

6.3.1. Publication
An increasing number of data is currently published

adopting RDF and the Linked Data principles [11].
Linked Open Data (LOD) cloud is estimated in more
than 31 billion RDF triples and half a billion links.
Furthermore, Open Data and Open Government move-
ments have also been gaining momentum by publish-
ing government data in standards format such as RDF.
For instance, the United States government through the
data.gov site hosts billions of RDF triples in several
RDF datasets.

The Vocabulary of Interlinked datasets (VoiD [3])
aims to bridge data publishers and data users, so that
publishers can distribute the datasets (as a RDF dump,
SPARQL Endpoints, etc.) and users can discover and
use identified datasets given certain attributes. It pro-
vides a vocabulary and a set of instructions that allow
the discovery and usage of linked datasets.

Semantic Sitemaps [24] support efficient semantic
datasets discovery and high-performance retrieval. It
is based on extending the traditional Sitemap Protocol
with new XML tags for describing the presence of RDF
data (and to deal with specific RDF publishing needs).

6.3.2. Exchange
To the best of our knowledge, few works focus on

RDF exchange. Actually, RDF datasets tend to be pub-
lished and exchanged within plain RDF formats, such as
RDF/XML, N3, Turtle and JSON. General compressors
(typically gzip) are also used over these plain formats in
order to reduce the final size.

A recent work [27] shows that big RDF datasets are
highly compressible due to the structure of RDF graphs
(power law), organization of URIs and RDF syntax ver-
bosity. This work also approaches basic RDF data com-
pression using (i) direct compression, (ii) adjacency list
compression and (iii) an RDF division into the dictio-
nary of elements and the triples, substituting for each el-
ement the corresponding number assignation in the dic-
tionary. The last technique is also carried out in [54]
using MapReduce and distributed algorithms to boost
the efficiency of large RDF data compression and de-
compression. It achieves linear scalability regarding the
input size and number of nodes.

RDF/XML is a valid XML format and thus XML in-
terchange formats might be used. For instance, the Ef-
ficient XML Interchange Format (EXI [50]) is a com-

pact representation for XML. It is based on efficient en-
codings of XML event streams using a grammar-driven
approach. The stream of events are represented using
variable length codes.

6.3.3. Indexing and Querying

RDF is a logical data model not limited by its physical
storage or indexing technologies. However, these pro-
cedures are strongly related with the later querying pro-
cess, which is typically performed by SPARQL queries.
SPARQL [48] is a declarative language for extracting
information from RDF graphs. It provides graph pat-
tern matching facilities allowing to bind variables to ele-
ments in the RDF graph. In addition, SPARQL provides
a series of operators (namely SELECT, AND, FILTER,
OPTIONAL, and UNION) offering high expressiveness
for structured queries.

Several RDF indexes and RDF storages explore ef-
ficient SPARQL resolution methods. Some approaches
store RDF in a relational database and perform SPARQL
queries through SQL, such as Jena-TDB [57], Virtu-
oso [26], and the column-oriented databases C-Store
[52] and Monet-DB [51]. Two basic policies are con-
sidered to transform RDF into a relational representa-
tion (see [49] for an experimental performance compar-
ison): (1) storing all triples in a large 3-column table
[S,P,O](Virtuoso uses it), and (2) grouping triples by
predicate and defining a specific 2-column table: [S,O]
for each one; this last technique, called vertical parti-
tioning [1], is based on the fact that few predicates are
used to describe a dataset. A third hybrid policy (im-
plemented in systems like Jena-TDB) results from the
combination of the previous ones: a specific 3-column
table is considered to store clusters of correlated predi-
cates. Hexastore [56] and RDF-3X [45] are well-known
systems which create indexes for all ordering combi-
nations (SPO, SOP, PSO, POS, OPS, OSP). Although
their main goal is to achieve a global competitive per-
formance, this index replication largely increases spa-
tial requirements avoiding indexes to be fully loaded and
queried in main memory. Thus, very expensive disk op-
erations should be performed, resulting in less compet-
itive operations. RDF-3X tries to reduce this effect by
tuning a gap-based schema which compresses the leafs
of the B+-tree storing all triples in the index. BitMat
[7], suggests a compressed bit-matrix structure for stor-
ing huge RDF graphs. It represents the RDF data with
a set of two-dimensional matrices: SO and OS for each
predicate, PO for each subject and PS for each object
(note that OP and SP are discarded). These matrices
are gap-compressed by taking advantage of their sparse-
ness. It also supports basic querying capability without
decompressing the data. However, the vast majority of

18

approaches suffer from lack of scalability [51], and use
naive compression techniques. The work K2-triples [5]
constructs an RDF index over a compact data structure
called k2-trees [16], which excels at compressing very
sparse two-dimensional binary matrices. K2-triples ap-
plies vertical partitioning and constructs an independent
k2-tree for each predicate, which in turn stores all pairs
(subject, object). The resulting k2-trees describe very
sparse 1 distributions which allow k2-triples to achieve
ultra-compressed representations.

7. Conclusions and Future Work

RDF publication and exchange at large scale are com-
promised by the textual representation formats used to
encode huge datasets. They are very verbose and space-
inefficient, they are not prepared to separate the meta-
data from the data itself, and more importantly, they re-
quire a full scan over the whole document to locate any
piece of information. Therefore, we need more efficient
formats that carry out this limitation.

We first propose a set of metrics and an empirical
analysis of RDF Data to understand the structural fea-
tures of RDF. This supports the decisions taken when
proposing RDF data formats, data structures and in-
dexes. An important finding is that the number of RDF
terms that appear both as subject and object is very sig-
nificative, but that does not occur for other combina-
tions. This implies that compactness can be achieved by
characterizing and grouping the references to the same
node. Another interesting result is the analysis of de-
grees of the nodes, that provide insights not only for
compression but also for designing indexes and query
evaluation optimizers. We observe that objects are typi-
cally associated to only one predicate, whereas subjects
are related to a set of limited predicates.

Based on the previous analysis, we deviseHDT, a
compact representation format to address the afore-
mentioned problems by decomposing an RDF dataset
into three logical components: Header, Dictionary, and
Triples. This decomposition alone leads to space sav-
ings of up to 15 times compared to the original represen-
tation. Then, we build a specific compressor overHDT:
HDT-Compress, which shows a size reduction to half
of the achieved by traditional compressors. Our exper-
iments demonstrate significant opportunities for RDF
compression allowing important size reduction of the
huge datasets that are being published in the Web of
Data, therefore providing an efficient RDF exchange.

In addition,HDT opens new opportunities for practi-
cal processing of RDF: a carefully designed binary seri-
alization does not only achieve compression, but also
enables efficient retrieval mechanisms over the com-
pressed representation. To this extent,HDT implements

the idea that “the data is the index”. The Triples compo-
nent is specifically encoded using a succinct data struc-
ture that enables indexed access to any triple in the
dataset. Thus,HDT provides effective RDF decomposi-
tion, simple compression notions and basic indexed ac-
cess in a compact serialization format which provides
efficient access to the data. In this sense, we have set
up a website,http://rdfhdt.org, exposing HDT-
based applications (such as HDT-it for visualization)
and HDT compliant libraries (C++ and Java). Whereas
the current approach already addresses the publication
and exchange steps of the process, consumption of RDF
data inHDT format deserves more research, particularly
in efficient RDF indexing and SPARQL resolution. On
the one hand,HDT describes a machine-friendly rep-
resentation which makes any kind of post-processing
much simpler. On the other hand, theCheck&Find
mechanism sets the basis for efficient retrieval. Cur-
rently, it is focused on single triple pattern retrieval, but
full SPARQL resolution needs a comprehensive design
of join operators and query optimization.

Acknowledgments

This work was partially funded by MICINN
(TIN2009-14009-C02-02); Science Foundation Ireland
(SFI): Grant No.∼SFI/08/CE/I1380, Lion-II; Fondecyt
1110287 and Fondecyt 1-110066. The first author is
granted by Erasmus Mundus, the Regional Government
of Castilla y León (Spain) and the European Social
Fund. The second author is granted by the University
of Valladolid: programme of Mobility Grants for Re-
searchers (2012).

References

[1] D. Abadi, M. Adam, S.R. Madden, and K. Hollenbach. Scalable
Semantic Web Data Management Using Vertical Partitioning. In
VLDB 2007, pages 411–422, 2007.

[2] K. Alexander. RDF in JSON: A Specification for serialising
RDF in JSON. InSFSW 2008, 2008.

[3] K Alexander, R Cyganiak, M Hausenblas, and J Zhao. De-
scribing Linked Datasets-On the Design and Usage of voiD,
the’Vocabulary of Interlinked Datasets’. InLDOW 2009 at
WWW 2009, 2009.

[4] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao.
Describing Linked Datasets with the VoID Vocabulary.
http://www.w3.org/TR/void/, 2011. W3C Interest Group Note
03 March 2011.

[5] S. Álvarez, N. Brisaboa, J.D. Fernández, and M.A. Martı́nez-
Prieto. Compressed k2-Triples for Full-In-Memory RDF En-
gines. InAMCIS 2011, article 350, 2011.

[6] M. Arias, J.D. Fernández, and M.A. Martı́nez-Prieto. An em-
pirical study of real-world SPARQL queries. InProc. 1st In-
ternational Workshop on Usage Analysis and the Web of Data
(USEWOD), 2011.

19

[7] M. Atre, V. Chaoji, M.J. Zaki, and J.A. Hendler. Matrix “Bit”
loaded: a scalable lightweight join query processor for RDF
data. InWWW 2010, pages 41–50. ACM, 2010.

[8] D. Beckett. RDF/XML Syntax Specification (Revised).
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/, 2004. W3C Recommendation.

[9] D. Beckett and T. Berners-Lee. Turtle - Terse RDF Triple
Language. http://www.w3.org/TR/2012/WD-turtle-20120710/,
2012. W3C Working Draft 10 July 2012.

[10] T. Berners-Lee. Notation 3, 1998. Available at
http://www.w3.org/DesignIssues/Notation3.

[11] T. Berners-Lee. Linked Data: Design Issues.
http://www.w3.org/DesignIssues/LinkedData.html, 2006.
Retrieved October 2012.

[12] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story
So Far.International Journal on Semantic Web and Information
Systems, 5:1–22, 2009.

[13] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee. Linked Data
On the Web (LDOW 2008). InWWW 2008, pages 1265–1266.
ACM, 2008.

[14] P. Boldi and S. Vigna. The webgraph framework I: compression
techniques. InWWW 2004, pages 595–602, 2004.

[15] D. Brickley. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/, 2004. W3C Rec-
ommendation.

[16] N. Brisaboa, S. Ladra, and G. Navarro. K2-trees for Compact
Web Graph Representation. InSPIRE 2009, LNCS 5721, pages
18–30. Springer, 2009.

[17] J. J. Carroll. Signing RDF Graphs. InISWC 2003, pages 369–
384, 2003.

[18] F. Chierichetti, R. Kumar, and P. Raghavan. Compressed web
indexes. InWWW 2009, pages 451–460, 2009.

[19] E.I. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient sql-
based rdf querying scheme. InVLDB 2005, pages 1216–1227,
2005.

[20] D. Clark. Compact PAT trees. PhD thesis, University of Water-
loo, 1996.

[21] J.G. Cleary and I.H. Witten. Data Compression Using Adap-
tive Coding and Partial String Matching.IEEE Transactions on
Communications, 32(4):396–402, April 1984.

[22] R. Cyganiak, S. Field, A. Gregory, W. Halb, and J. Tennison. Se-
mantic statistics: Bringing together SDMX and SCOVO.LDOW
2010 at WWW 2010, pages 2–6, 2010.

[23] R. Cyganiak, A. Harth, and A. Hogan. N-Quads: Ex-
tending N-Triples with Context, 2008. Available at
http://sw.deri.org/2008/07/n-quads/. Retrieved October 2012.

[24] R Cyganiak, H Stenzhorn, R Delbru, S Decker, and G Tum-
marello. Semantic sitemaps: Efficient and flexible access to
datasets on the semantic web. InESWC 2008, volume 5021,
pages 690–704. Springer-Verlag, 2008.

[25] L. Ding and T. Finin. Characterizing the Semantic Web on the
Web. InISWC 2006, pages 242–257, 2006.

[26] O. Erling and I. Mikhailov. RDF Support in the Virtuoso DBMS.
Proceedings of CSSW, 221:59–68, 2007.

[27] J.D. Fernández, C. Gutierrez, and M.A. Martı́nez-Prieto. RDF
compression: basic approaches. InWWW 2010, pages 1091–
1092, 2010.

[28] R. González, S. Grabowski, V. Makinen, and G. Navarro. Prac-
tical implementation of rank and select queries. InWEA 2005,
pages 27–38, 2005.

[29] C. Gutierrez, C. Hurtado, A.O. Mendelzon, and J. Perez. Foun-
dations of semantic web databases.Journal of Computer and
System Sciences (JCSS), 77:520–541, 2011.

[30] J. Hayes and C. Gutierrez. Bipartite Graphs as Intermediate
Model for RDF. InISWC 2004, pages 47–61, 2004.

[31] A. Hogan. Exploiting RDFS and OWL for Integrating Hetero-
geneous, Large-Scale, Linked Data Corpora. PhD thesis, DERI,

2011.
[32] A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres.

Weaving the pedantic web. InLDOW 2010 at WWW 2010,
Raleigh, USA, April 2010.

[33] Aidan Hogan, Axel Polleres, Jürgen Umbrich, and Antoine Zim-
mermann. Some entities are more equal than others: statistical
methods to consolidate Linked Data. InWorkshop on New Forms
of Reasoning for the Semantic Web: Scalable & Dynamic (Ne-
FoRS2010), 2010.

[34] Aidan Hogan, Antoine Zimmermann, Jürgen Umbrich, Axel
Polleres, and Stefan Decker. Scalable and distributed meth-
ods for entity matching, consolidation and disambiguation over
linked data corpora. Web Semantics: Science, Services and
Agents on the World Wide Web, 10:76 – 110, 2012.

[35] D.A. Huffman. A Method for the Construction of Minimum-
Redundancy Codes.Proceedings of the IRE, 40(9):1098–1101,
1952.

[36] IBM. IBM Dictionary of Computing. McGraw-Hill, 1993.
[37] A. Langegger and W. Woss. RDFStats - An Extensible RDF

Statistics Generator and Library. InDEXA 2009, pages 79–83,
2009.

[38] R. R.: Lassila O., Swick. Resource description frame-
work (rdf) model and syntax specification. http://www.w3.org/
TR/1999/REC-rdf-syntax-19990222/, 1999.

[39] D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth.
RDF On the Go : An RDF Storage and Query Processor
for Mobile Devices. In ISWC 2010, 2010. Available at
http://iswc2010.semanticweb.org/pdf/503.pdf.

[40] M.A. Martı́nez-Prieto, J.D. Fernández, and R. Cánovas. Query-
ing RDF Dictionaries in Compressed Space.ACM SIGAPP Ap-
plied Computing Reviews, 12(2):64–77, 2012.

[41] D. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage Overview. http://www.w3.org/TR/owl-features/, 2004.
W3C Recommendation.

[42] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 Web On-
tology Language Structural Spcification and Functional Style-
Syntax. http://www.w3.org/TR/owl2-syntax/, 2009. W3C Rec-
ommendation.

[43] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine
for RDF. Proceedings of the VLDB Endowment, 1(1):647–659,
2008.

[44] T. Neumann and G. Weikum. Scalable join processing on very
large rdf graphs. InCOMAD 2009, pages 627–640, 2009.

[45] T. Neumann and G. Weikum. The RDF-3X engine for scalable
management of RDF data.The VLDB Journal, 19(1):91–113,
2010.

[46] E. Oren and et al. Sindice.com: a document-oriented lookup
index for open linked data.International Journal of Metadata,
Semantics and Ontologies, 3(1):37–52, 2008.

[47] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Com-
plexity of SPARQL. ACM Transactions on Database Systems,
34(3):1–45, 2009.

[48] E. Prud’hommeaux. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2008. W3C Recom-
mendation.

[49] Michael Schmidt, Thomas Hornung, Norbert Küchlin, Georg
Lausen, and Christoph Pinkel. An Experimental Comparison of
RDF Data Management Approaches in a SPARQL Benchmark
Scenario. InISWC 2008, pages 82–97, 2008.

[50] J. Schneider and T. Kamiya. Efficient XML Interchange (EXI)
Format 1.0, 2009. W3C Candidate Recommendation.

[51] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Mane-
gold. Column-store support for RDF data management: not all
swans are white.VLDB, 1(2):1553–1563, 2008.

[52] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, and Others.
C-store: a column-oriented DBMS. InProceedings of the 31st

20

international conference on Very large data bases, pages 553–
564. VLDB Endowment, 2005.

[53] Y. Theoharis, Y. Tzitzikas, D. Kotzinos, and V. Christophides.
On Graph Features of Semantic Web Schemas.IEEE Trans. on
Know. and Data Engineering, 20(5):692–702, 2008.

[54] J. Urbani, J. Maassen, and H. Bal. Massive semantic web data
compression with mapreduce. InHPDC 2010, pages 795–802.
ACM, 2010.

[55] J. Weaver and G.T. Williams. Reducing I/O Load in Parallel
RDF Systems via Data Compression. In1st Workshop on High-
Performance Computing for the Semantic Web (HPCSW 2011),
2011.

[56] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple in-
dexing for semantic web data management.Proceedings of the
VLDB Endowment, 1(1):1008–1019, 2008.

[57] K Wilkinson, C Sayers, H Kuno, and D Reynolds. Efficient
RDF Storage and Retrieval in Jena2.Proceedings of SWDB,
3(September):7–8, 2003.

Appendix A. Experimental RDF Characterization

This appendix comprises an experimental study on
real-world datasets in order to characterize RDF struc-
ture and redundancy by applying the parameters pre-
sented in Section 2.1. We chose five datasets based
on the huge amount of triples, different application do-
mains and previous uses in benchmarking. Table A.3
summarizes the most basic features of the datasets.
Geonames, DbtuneandUniprot are samplings extracted
from the Billion Triples Challenge 2010 data collec-
tion18. In particular,Geonamesgathers geographic con-
cepts,Dbtuneholds music information andUniprot is a
freely-accessible RDF dataset of protein sequence data.
Wikipedia³19 stands for the English Wikipedia links be-
tween pages transformed to RDF.DBpedia20 is an RDF
conversion of Wikipedia, with the aim of making this
type of information semantically available on the Web.

The column “Size” in Table A.3 shows the origi-
nal size in raw N-Triples format, “Triples” indicates
the number of triples in the dataset and the three latest
columns show the number of different subjects, predi-
cates and objects respectively. As expected, the number
of predicates stays commonly low. We have also cho-
senDbpediaas an extreme case in which the number
of predicates grows to the order of thousands. However,
note that they remain proportionally small to the number
of triples. Thus, the consideration of DBpedia broad-
ens the experimentation of common datasets which use
more limited-size predicate dictionaries.

We compute the parameters previously presented, in
order to characterize the structure and gain insights to-
ward analyzing the redundancy of each dataset, as well
as their compact and compression possibilities.

18http://km.aifb.kit.edu/projects/btc-2010/
19http://labs.systemone.at
20DBpedia dump: http://wiki.dbpedia.org/Downloads36

A preprocessing step is firstly applied. Billion Triples
data was parsed from N-Quads format21 to N-Triples by
eliminating context information, gathering the selected
datasets. Duplicate triples were discarded (Table A.3
reflects the number of triples after cleaning).

Table A.16 summarizes the data statistics collected
for the different datasets. Note that these datasets are or-
dered in increasing number of triples. Several comments
are in order: first of all, we remark the high variability
of values among the datasets. Although expected, this
points out the problem of designing a general “one size
fits all” solution for RDF engines. Moreover, these met-
rics encourage the study of each particular case as well
as the interest in getting insights on common behaviors.

Max out-degree reveals that there are some subjects
present in many triples (e.g. 7408 in Wikipedia³) but
the mean out-degree remains lower. This corresponds to
the presence of a subject power-law distribution. For in-
stance, the subjects ofUniprot occur in a mean of only
5.94 triples and those of the largest dataset (Dbpedia)
occur in a mean of 12.62 triples. However, this increase
cannot be attributed to the size of the datasets but the na-
ture of them.DBpediadescribes facts of things, so more
statements about a subject have to be included. In con-
trast, the number of links between proteins inUniprot is
limited by the underneath biological theory.

If we compare the out-degree with the partial, labeled
and direct degrees, the structure around subjects is fur-
ther detailed. First of all, partial and direct out-degree
have similar figures. Thus, the maximum out-degrees
are given by one(s, p) pair with multiple related objects.
In contrast, mean partial out-degree is slightly bigger
than 1, which implies that the presence of multivalued
pairs(s, p) is not so frequent.

The labeled out-degree verifies that few predicates
are related to the same subject. For instance, although
Dbpedia has 39,672 predicates, at most 22 links the
same subject. In all cases, the mean labeled out-degree
ranges between 4 and 5, which is a clear indicator of the
presence of star-shaped nodes,i.e., nodes with different
triples around one common subject.

The study of the in-degree comes to very similar
conclusions. In addition, maximum degrees reveal a
more skewed structure on objects,i.e., clearer power-
law distributions are present. An interesting conclusion
emerges when studying mean labeled in-degree. The
number of predicates related to a given object is very
close to 1. This stands for a specific treatment of these
“leave nodes” for each predicate. Thus, approaches such
as a specific compression over vertical partitioning (such
as C-Store), can obtain important results.

21http://sw.deri.org/2008/07/n-quads/

21

dataset Size (GB) # Triples # Subjects # predicates # Objects

Geonames 1.00 9,415,253 2,203,561 20 3,031,664
Wikipedia³ 6.72 47,054,407 2,162,189 9 8,268,864

Dbtune 9.34 58,920,361 12,401,228 394 14,264,221
Uniprot 9.11 72,460,981 12,188,927 126 9,084,674

Dbpedia-en 33.12 232,542,405 18,425,128 39,672 65,200,769

Table A.3: datasets description.
Geonames Wikipedia³ Dbtune Uniprot Dbpedia-en

SUBJECT
OUT-DEGREE

Max

total deg−(G) 369.00 7408.00 2194.00 2408.00 7184.00
partial deg−−(G) 298.00 7400.00 2193.00 2406.00 7177.00
labeled degL−(G) 17.00 7.00 24.00 22.00 448.00
direct degD−(G) 369.00 7408.00 2194.00 2408.00 7184.00

Mean

total deg−(G) 4.27 21.76 4.75 5.94 12.62
partial deg−−(G) 1.07 3.95 1.14 1.30 2.06
labeled degL−(G) 4.00 5.51 4.16 4.59 6.13
direct degD−(G) 4.27 21.75 4.68 5.93 11.17

OBJECT
IN-DEGREE

Max

total deg+(G) 2.20×106 2.05×106 2.27×106 6.04×106 7.33×106

partial deg++(G) 2.20×106 2.05×106 2.27×106 6.04×106 7.33×106

labeled degL+(G) 2.00 4.00 93.00 15.00 2938.00
direct degD+(G) 2.20×106 2.05×106 2.27×106 6.04×106 2080.00

Mean

total deg+(G) 3.11 5.69 4.13 7.98 3.57
partial deg++ 3.08 5.40 3.87 5.75 2.72
labeled degL+ 1.00 1.05 1.07 1.39 1.31
direct degD+ 3.11 5.69 4.07 7.95 55.03

PREDICATE
DEGREE

Max
total degP (G) 2.35×106 3.45×107 1.23×107 1.43×107 9.87×107

out degP−(G) 1.65×106 3.84×106 2.25×106 2.01×107 1.14×107

in degP+(G) 2.20×106 2.16×106 1.00×107 1.21×107 8.89×106

Mean
total degP (G) 470763.00 5.22×106 149544.00 575087.00 5861.63
out degP−(G) 152709.00 967404.00 38641.10 100034.00 2158.84
in degP+ 440438 1.32×106 130964.00 443981.00 2845.39

RATIOS
αs−o 0.018 0.17 0.61 0.43 0.25
αs−p 0 0 0 0 5.76×10−4

αp−o 0 0 3.44×10−6 1.75×10−6 0

Figure A.16: datasets statistic summary.

A remarkable result is the great difference between
the subject and object distribution inDbpedia. Objects
are related with subjects 5 times more than vice versa
(55.03 versus 11.17).

Predicate degrees impact on vertical partitioning,
hence the relevance of their study. Except forDbpe-
dia, the difference between the maximums and means
predicate degrees are not as clear as the common out
and in-degrees. This stands for a distribution out of
the scope of power law, although some predicates (such
asrdf:type) could be predominant over the rest. In
fact, the distribution of predicates is clearly determined
by the design and purpose of the dataset. For instance,
every protein inUniprot is characterized with the same
number of properties, only diverging in the number of
links. The same case might be present in categorizing
an artist or a song inDbtune. However, the properties
over a resource can vary greatly inDbpedia.

Finally, the ratios reveal a level of cohesion between
the different types of nodes. As we expected, subject-
predicate and predicate-object ratios are almost negli-

gible. These are scheme descriptions, which are rare
due to the RDF itself is schema-relaxed,i.e., the vocab-
ulary evolves as needed on demand. Subject-object is
the most frequent path constructor. For instance, the de-
sign ofDbtuneandUniprot has cohesion (61% and 43%
respectively are shared subjects-objects), with a high
subject-object ratio and a smaller number of very fre-
quent predicates. This reveals a star chained design in
which a subject is strongly characterized and interlinked
with others. A similar interpretation could be done for
Wikipedia³andDbpediabut with less cohesion. Note
that one could think thatWikipedia³or Dbpediapages
have links to other pages. However, the number of prop-
erties over a page or resource is proportionally higher
than the number of links to other pages. In turn, the low
subject-object ratio inGeonamesshows that data are de-
scriptions of geographical concepts which, at most, are
linked to their superior administrative category.

Regarding power-law distributions, Figure A.17
shows the distribution of subjects and objects of
Wikipedia³. As we expected, a power-law distribution

22

Figure A.17: Wikipedia³ distribution of subjects (left) andobjects (right),e.g.a point (X,Y) in the rightmost graphic says that there are Y different
objects each occurring in X triples. Both axis are logarithmic. The power laws have exponent−2.181 and−2.366 respectively.

is remarkable in both cases. The other datasets reveal
the same distribution for subject and object.

All these results immediately point to possible com-
pact design models of RDF and optimizations of index-
ing techniques. Our approach,HDT, exploits the sig-
nificant correlation and the inherent redundancy in data
and structure. In particular, the deployment proposed in
Section 4 takes advantage of subject-object ratio charac-
terization and groups the references to the same node in
the Dictionary. In turn, the proposed Triples component
represents the graph compacting the distribution with
implicit and coordinated adjacency lists, parametrized
by the degree metrics.

Appendix B. Binary RDF on HDT

HDT can be further developed into a complete RDF
syntax toward a binary representation for RDF. Let us
define some basic concepts previous to theHDT syntax
specification described in this appendix.

Definition 4 (HDT processor). A program module called
anHDT processor, whether it is software or hardware,
is used by application programs to encode their data
intoHDT core dataand/or to decodeHDT core data to
make the data accessible. The former and latter afore-
mentioned roles ofHDT processors are calledHDT en-
coderandHDT decoder respectfully.

Definition 5 (HDT core data). HDT core data con-
sists of the Dictionary and Triples information of the
HDT representation, whether it is present in a unique
or several files or streams. This core data must be self-
contained,i.e., it must contain enough information to
consume the dataset. Each file or stream belonging to
theHDT core data is headed by control information and
followed by theHDT body which can be the full or part
of the Dictionary component or the Triples component
or both. Note that the Header is out of the definition of
theHDT core data, constituting a different file or stream.

Figure A.18 shows a typical producer/consumer case
in HDT. First, the producer uses anHDT encoder in order
to generateHDT from RDF. The Header, if present, can
be retrieved by the consumer in order to get metadata
about the dataset and the publication. In turn, the con-
sumer uses anHDT decoder to efficiently access theHDT
core data. Furthermore, theHDT decoder should provide
the consumer with distinct access possibilities, such as
getting the original full RDF document, querying over
the data or several management operations.

Appendix B.1. HDT Syntax

The syntax ofHDT is given by the syntax of the
Header, and the Dictionary and the Triples encodings.

Appendix B.1.1. Header
The Header has been described as a flexible compo-

nent containing metadata about the data publication to-
gether with information to retrieve and process theHDT
core data. The desired operations over the Header and
its requirements of machine-readable, human-friendly,
and easy querying, are well satisfied considering the
Header as an RDF graph. This allows expressing meta-
data about the dataset (originally in RDF) with an RDF
syntax, which can be discovered and used through well-
known mechanisms, such as SPARQL Endpoints.

Note that the Header is out of the scope of theHDT
core data and can be accessed independently.

The use of VoiD [3] as the main vocabulary of the
Header is strongly recommended. The Header should be
represented in any RDF syntax. The normative format
of the Header is RDF/XML.

Appendix B.1.2. Control Information
Dictionary and Triples components could be dis-

tributed or chunked, hence each part should have enough
information for processing it properly. Thus, each Dic-
tionary and Triples component, as well as subparts of

23

Figure A.18: The process ofHDT encoding/decoding.

Cookie Format Component Presence Bit [Options]
Version Bits for Options

Table B.4: Control Information.

HDT Format Version Stands for

0000 Version 1
0111 Version 8

1000 0000 Version 9

Table B.5: Version Examples.

them in case of splitting, is headed by a sequence repre-
senting control information.

The control information can identify Dictionary and
Triples components or subparts of them, distinguish
HDT core data streams from text, identify the version of
theHDT format being used, and specify the options used
to process theHDT core data. The control information
has the structure shown in Table B.4.

The control information starts with anHDT Cookie,
a four byte field that serves to indicate that the file or
stream of which it is a part isHDT core data. The four
byte field consists of four characters “ $ ” , “ H ”, “
D ” and “ T ” in that order, each represented as an
ASCII octet. This four byte sequence is particular to
HDT and specific enough to distinguishHDT files and
streams from a broad range of data types.

The second part of the control information identifies
the version of theHDT format being used. The version
is a sequence of one or more 4-bit unsigned integers.
The first bit set to 1 indicates that the next 4-bits must
be read. The version number is determined by summing
each sequence of 4-bit unsigned integers and adding 1
(one). Table B.5 show examples of versions.

The third part of the control information consists in
theHDT component distinguishing bits, which identify
the component or components of theHDT body that fol-
low the control information. TheHDT component dis-
tinguishing bits are three bits in which the combination
of the first two bits identifies the information below the
HDT control information, as shown in Table B.6. The
third bit set to ’1’ indicates that the current file or stream
is a subpart of the entire component. When both Dictio-
nary and Triples Component,i.e. HDT core data follow

Component Bits Stands for

01 Dictionary Component
10 Triples Component
11 both Dictionary and Triples Component
00 Reserved

Table B.6: 1st and 2ndHDT component distinguishing bits.
Property Use

codification Identify the codification scheme of theHDT body.
format Set up the MIME type of theHDT body.
[user defined] User defined metadata.

Table B.7:HDT Options.

the control information.
TheHDT options field provides a mechanism to spec-

ify the options of the encoded component or compo-
nents of theHDT body. This field is optional and its
presence is indicated by the value of the presence bit that
follows theHDT component distinguishing bits. If the
HDT options are present (presence bit sets to ’1’), then a
final reserved word “$END” must be added at the end of
the control information to delimit its length. WhenHDT
options are present, anHDT Processor must observe the
specified options to process theHDT body. Otherwise,
anHDT Processor may follow the default values. If the
Header component is present and it informs about such
information, their values override the default ones. In
case of conflicts, theHDT options override the informa-
tion of the Header.
HDT Options are represented as text with a

<property>:<value>; scheme, as shown in Table B.7.
The codification is used to identify the concrete cod-

ification scheme used to process theHDT body. This
must be an URI identifying the codification of the com-
ponent or components indicated by theHDT component
distinguishing bits. When the codification option is ab-
sent, undefined or empty, no statement is made about the
codification scheme, therefore anHDT Processor should
assume the codification by default of the component
or components indicated by theHDT component distin-
guishing bits, unless other information is communicated
out of band. Table B.8 shows the URIs of the codifica-
tions by default and the section with detailed informa-
tion.

24

HDT Component Codification by default Section

Dictionary hdt:dictionaryPlain Section 4.2
Triples hdt:triplesBitmap Section 4.3.3
both D. and T. hdt:globalBitmap Section 4.3.3

Table B.8:HDT default URI codifications.

HDT Component Format by default

Dictionary text/plain
Triples application/octetstream
both D. and T. multipart/mixed

Table B.9:HDT default formats.

The format sets up the MIME type of theHDT body. If
the format option is absent, undefined or empty, anHDT
Processor should assume the format by default of the
component(s) indicated by theHDT component distin-
guishing bits, unless other information is communicated
out of band. Table B.9 shows the formats by default.

The user defined metadata sets up auxiliary proper-
ties with additional control information to process the
data. The syntax and semantic of the user defined prop-
erties depend on the codification of theHDT body, thus
HDTProcessor must interpret the user defined properties
within the codification context. User defined properties
must follow the following naming conventions to pre-
vent conflicts between different component properties:

• Dictionary Component. Property names must start
with one unique dollar sign(“$”) character fol-
lowed by alphanumeric characters.

• Triples Component. Property names must start
with two unique dollar signs (“$$”) characters fol-
lowed by alphanumeric characters.

• Both Dictionary and Triples Component. Prop-
erty names must start with three unique dollar
signs(“$$$”) followed by alphanumeric characters.

Appendix B.1.3. Dictionary
The main goal of the Dictionary is to assign a unique

ID to each element in the dataset and thus there is no re-
striction on the particular mapping or codification. We
provide a general dictionary encoding to be followed by
every particular codification. A dictionary codification
by default is given, and it must be assumed byHDT Pro-
cessors when no other codification scheme is specified
in the codification option or in the Header component.

Dictionary Encoding.The distinction between URIs,
literals and blanks, as well as string escaping, follows
a similar N3 syntax:

• URIs are delimited by angle brackets “<” and “>”.
Whitespace within them is to be ignored.

Stands for

a <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

= <http://www.w3.org/2002/07/owl#sameAs>

=> <http://www.w3.org/2000/10/swap/log#implies>

<= <http://www.w3.org/2000/10/swap/log#implies>,

but in the inverse direction

Table B.10: Dictionary predefined prefixes.

• URIs can be absolute or relative to the base URI
(defined in the user defined metadata or in the
Header component).

• URIs can make use of prefixes (defined in the user
defined metadata or in the Header component) or
predefined prefixes (described below). Blanks are
named with the: namespace prefix,e.g. :b19 rep-
resents a blank node.

• Literals are written using double-quotes (e.g. “lit-
eral”). The ““literal”” string form is used when
they may contain linebreaks.

• Literals represented numbers or booleans can
be written directly corresponding to the right
XML Schema Datatype: xsd:integer, xsd:double,
xsd:decimal or xsd:boolean.

• Comments are not allowed in any form.

Table B.10 shows the predefined prefixes whereas the
string escaping sequences follows strictly N3.

Appendix B.1.4. Triples
The Triples component must contains the structure of

the data after the ID replacement, comprising the pure
structure of the underlying graph. The multiple index-
ing variants, uses and allowed operations over the triples
difficult the restriction on a particular codification for
the Triples component. Instead, any triple codification
may be established by specifying a concrete codification
option or by the Header component.

The codification by default must be interpreted as
Bitmap Triples (Section 4.3.3) byHDT Processors.

When the same file or stream comprises both the Dic-
tionary component and the Triples component, then a
secondary control information must be included in be-
tween the two streams, identifying theHDT component
distinguishing bits of each stream.

25

