Binary RDF Representation for Publication and Exchari#T{

Javier D. Fernandéz, Miguel A. Martinez-Prietd®, Claudio Gutiérre? Axel Pollere§¢, Mario Ariag®

aDataWeb Research, Department of Computer Science, University of Valladolid,
E.T.S. de Ingenieria Informatica, Campus Miguel Delibes, 47011 Valladolid, Spain.
bDepartment of Computer Science, University of Chile,
Avenida Blanco Encalada 2120, 837-0459 Santiago, Chile.
Digital Enterprise Research Institute, National University of Ireland, Galway,
IDA Business Park, Lower Dangan, Galway, Ireland.
dSiemens A®@sterreich, Siemensstrasse 90, 1210 Vienna, Austria.

Abstract

The currentWeb of Datais producing increasingly large RDF datasets. Massive publication efforts of RDF data
driven by initiatives like the Linked Open Data movement, and the need to exchange large datasets has unveiled the
drawbacks of traditional RDF representations, inspired and designed by a document-centric and human-readable Web.
Among the main problems are high levels of verbosity/redundancy and weak machine-processable capabilities in the
description of these datasets. This scenario calls for efficient formats for publication and exchange.

This article presents a binary RDF representation addressing these issues. Based on a set of metrics that characterizes
the skewed structure of real-world RDF data, we develop a proposal of an RDF representation that modularly partitions
and efficiently represents three components of RDF datasets: Header information, a Dictionary, and the actual Triples
structure (thus calledDT). Our experimental evaluation shows that dataseitfdhformat can be compacted by more
than fifteen times as compared to current naive representations, improving both parsing and processing while keeping
a consistent publication scheme. Specific compression techniquelDvéurther improve these compression rates
and prove to outperform existing compression solutions for efficient RDF exchange.

Keywords: RDF, Binary formats, Data compaction and compression, RDF metrics.

1. Introduction and Motivation data to be processed outside the particular environment
in which it was created, in a fashion that can work at In-

The original RDF Resource Description Framewqrk yonet scale This latter perspective along with increas-
W3C Recommendation [38] (from 1999) defines RDF 4 »qqntion driven by efforts such as the Linked Data

as a foundation for processing metadata and establishegytiative has made RDF evolve from a simple format for
its broad goal as a mechanism for describing resources.,atadata to a universal exchange format.

This conception was clearly influenced bglacument- The mainstream RDF serialization syntaxes share the
centricperspective of the Web as it is stated through the scope of the original perspective. The intended goal

examples of RDF applications, such as the description o the original RDF/XML representation design was to
and annotation of web page collections that represent ;44 small descriptions (metadata) to documents, to pro-
a single logical document or the intellectual property (o0 to annotate web pages or to describe services.
rights of web pages. Although the current Recommen- | i e\ise, representations like N3 [10], Turtle [9] and

dation [8] (from 2004) §hares this original perspective, it RpF/ISON [2], and more recently RD¥Falthough hav-
also devises an evolution by suggesting the use of RDF i, reqced the verbosity of the original format, are still

“to do for machine processable information (application yominated by this document-centric view. Today, as one
data) what the WWW has done for hypertext: to allow ot the major trends in the development of the Web is

RDF publication and exchange at large scaée, mak-
*Corresponding author ing RDF data (publicly) available for diverse purposes

Email addressesj f er gar 83@mai | . com(Javier D. and users, the need to consider RDF under a data-centric
Fernandez)m gumar 2@ nf or . uva. es (Miguel A.
Martinez-Prieto)cgut i er r @lcc. uchi | e. ¢l (Claudio
Gutierrez),axel . pol | er es@i enens. com(Axel Polleres), Lhitp://linkeddata.org
mari o. ari as@leri . or g (Mario Arias) 2http://www.w3.0rg/TR/2012/REC-rdfa-core-20120607/

Preprint submitted to Journal of Web Semantics October 24, 2012

http://ees.elsevier.com/jws/viewRCResults.aspx?pdf=1&docID=1199&rev=1&fileID=29409&msid={66966E5E-E18E-4F98-92AF-077291B5C8FF}

view is becoming indispensable.

The emerging Web of Data comprises a variety of
very large datasets from diverse fields such as bioin-
formatics, social networks or structured knowledge ex-
tracted from Wikipedia. The Linked Data initiative pro-
motes the use of standards (such as RDF and HTTP)
to publish such structured data on the Web and to con-
nect it by reusing dereferenceable identifiers between
different data sources [13]. The latest studies of the
so-called Linked Open Data (LOD) clotidstimate that
more than 31 billion RDF triples are being shared and
increasingly linked (close to half a billion links), which
results in one huge interconnected RDF graph, orga-
nized in datasets from different providers. Hence, when
consuming (parts of) this huge graph a major problem

cal leve| RDF representation at large scale should per-
mit efficient processing, management and exchange (be-
tween systems and memory-disk movements), thus min-
imizing redundancy, while at the same time guarantee-
ing modularity. At theoperational leveldesirable fea-
tures include native support for simple query patterns.
The state-of-the-art on publishing and exchanging large
datasetsd.g. from an RDF data store) would typically
be to first dump the data into one file using one of the
existing RDF serialization formats, and then, due to the
large size of the data, possibly compress this serializa-
tion with a generic compression algorithm. However,
there is no agreed way to publish such a dump along
with additional metadata and it is hardly usable natively,
i.e., without an expensive processing using an appropri-

is to manage, exchange, and consume these datasets efte external tool (an RDF store, a visualizer, etc.).

ficiently. Similar problems arise when managing this
information in mobile devices; together with memory

constrains, these devices can face additional transmis-

sion costs [39].

An analysis of published RDF datasets reveals several
insufficiencies of existing RDF serializations for pub-
lishing and exchanging RDF at large scale. Firstly, even
though there are some approacteg.(VoiD [4]) to add

The present work provides a novel RDF publica-
tion and serialization format which addresses the above-
mentioned challenges. First of all, one needs to un-
derstand the structure of real-world huge RDF graphs,
which will guide the design. To this end, we propose
a set of specific metrics for RDF datasets which re-
veal the underlying structure and composition of the
graph. Then, we introduce the new representation for-

provenance and other metadata (such as statistics or anat (Header-Dictionary-Triples HDT) that modular-

content summary) when publishing RDF datasets, such
information — which can be useful to guide consumers —
is usually neither complete nor systematically published
along with the dataset. In many cases this additional
information is given in non machine-readable formats
(e.g. natural language) in the web page of the dataset,
making it difficult to relate to the actual dataset.

Moreover, basic data operations (such as simple
lookup) have to deal with the sequentiality of the infor-
mation in files, requiring to parse the whole data. Pub-
lishing, exchanging, and consuming large RDF datasets
is not supported in a standardized fashion. This state
of affairs does not scale to a Web where very large
datasets will soon be produced dynamically and auto-
matically. Furthermore, most data have torbachine-
understandablén line with the aim of the original Se-
mantic Web project.

From the above, we can conclude that the process of
publishing and exchanging large RDF datasets should
comply with some basic requirements. At tlogjical

izes the data and uses the skewed structure of big RDF
graphs [25, 46, 53] to achieve large spatial savings.
HDT, following the requirements delineated above, is

based on three main components:

- A header including metadata describing the RDF
dataset. It serves as an entry point to the informa-
tion on the dataset.

- A dictionary, organizing all the identifiers in the
RDF graph. It provides a catalog of the RDF
terms (URIs, blank nodes, literals) mentioned in
the graph with high levels of compression.

- A triples component, which comprises the pure
structure of the underlying RDF grapihe. com-
pactly encodes the set of triples while avoiding the
noise produced by long labels and repetitions.

We make use of succinct data structures and simple

level large-scale datasets should have standard meta-COMpression notions to get a practical implementation

data, like provenance (source, providers, publication
date, etc.), editorial metadata (publisher, date, version,
etc.), dataset statistics (size, quality, type of data, ba-
sic parameters of the data) and intellectual property in-
formation (types of copy[left—right]s). At thehysi-

Shttp:/Mmww4.wiwiss.fu-berlin.de/lodcloud/state/

for HDT. Our design, besides gaining modularity and
compactness, also addresses other important features: 1)
it allows indexed access to the RDF graph, and 2) it uses
a specific technique for RDF compression (referred to
asHDT- Conpr ess) showing a technique able to out-
perform universal compression algorithms.

Figure 1 shows a step-by-step description of the pro-
cess to obtain theIDT representation of an RDF graph.

Extraction of
RDF Features

DF stats

Dictionary

1.
& 2
-m % Building \ 4 Practical
3 HDT

Dictionary %

Triples
Encoding

.

Figure 1: A Step-by-step constructiondbT from a set of triples. The last step covers practical decisions to get a concrete implementtifidin of

The first three steps extract basic RDF features neces-known nor exploited. Several studies confirm the pres-
sary to build the dictionary and the underlying graph, as ence of power-law distributions, in term of frequen-
well as information that will be included in the header. cies [25], resources [46] and schemas [53], while others
The fourth step covers some practical decisions in order give some indications about RDF compression poten-
to get a concrete implementation fidDT. tial [27]. Hogan et als work [32, 31] confirms many
When it comes to publish or exchange large RDF of those observations and additionally analyzes popu-
datasets, the advantagesHi’T compared to existing larity in terms of interlinkage and publishing quality of
RDF serialization formats can be summarized as fol- RDF online, particularly focusing on compliance with
lows. (i) HDT is more compact, thus — depending on Linked Data principles. Among statistical analysis, a
the concrete application — saving storage space, commu-elevant related work [33, 34] defines some equivalent
nication bandwidth and data transfer time. HDT is metrics to our proposal below, such as cardinalities for
modular, cleanly separating the dictionary from triples (subject,predicate) and (predicate,object) pairs.
(the graph structure), including a standard header with The objective of this section is to present a theoret-
metadata about the dataset. (HIDT permits basic data ical and empirical study on real-world RDF structure
operations allowing access to parts of the graph without and properties, in order to determine common features
the need to process/parse it in its entirety. and characterize real-world RDF data. This can lead to
The paper is organized as follofvsSection 2 defines better dataset designs, efficient RDF data structures, in-
a set of metrics to characterize the structural RDF fea- dexes and compression techniques.
tures. Section 3 presents tHDT format by an indi-
vidual description of each component: Header, Dictio-
nary, and Triples. Section 4 details the practical im-
plementation approach fdfDT. Section 5 character- RDF is typically formalized as follows. Assume infi-

izes HDT compacting ability. We perform an empiri- pite mutually disjoint set&” (RDF URI references)3
cal study which analyzes the currddDT features on (Bjank nodes), and. (RDF literals). A triple(s, p, o) €
real-world datasets. Section 6 reviews the related work (77 B) x U x (U U B U L) is called an RDF triple

and the state-of-the-art of RDF structural studies, repre- [29] in which s is the subjectp the predicate and the

sentations and applications. Section 7 gives conclusionsgpject. Note thats, p, o) can be represented as a direct
and addresses future work. Appendix Appendix A pro- edge-labeled graph % o

vides an.emplrlcal study on chgractenz.mg RDF through We note that RDF interpretation as a graph can be
the metrics presented in Section 2. Finally, a concrete . leading. RDE can be represented as an edge-labeled
HDT syntax specification is provided in Appendix Ap- misieading. RL" ce P . g .
pendix B graph for wsgahzatlon but, in fact, it can not be cons!d—
' ered a graph in the standard sense because the predicates
can again appear as nodes of other edges [30]. Thus, the
2. Characterizing RDF application of well-established methods from graph the-
ory presents problems. For instance, traditional graph
Despite RDF is being widely used, its structural prop- metrics must be reconsidered as well.
erties in real-world deployments are still neither well- We provide some specific parameters to characterize
RDF data, and show that they have skewed power-law
4A preliminary version of this article appeared moc. 9th In- dls-t”buuons’ part_lcularly remarkable on SUbJeC-tS and
ternational Semantic Web Conference (ISW. 193208, 2010, objects, establishing the basis of our representation. For

It has also led to a W3C Member Submission (30 March 2011), OUl PUIPOSES, few indicators of the graph StrUCtur? are
http://www.w3.0rg/Submission/2011/SUBM-HDT-20110330/. sufficient. We follow [47, 29] for graph notation, with

3

2.1. Metrics for RDF graphs

no distinction between URIs, Blank nodes and Litetals
LetG be an RDF graph, anflg, Pg, O¢ be the sets
of subjects, predicates and object€in

Definition 1 (subject out-degrees) et G be an RDF
graph, and lets € S andp € Pg.

1. Theout-degreeof s, denoteddeg~(s), is defined
as the number of triples iz in which s occurs
as subject. Formallydeg=(s) = |{(s,y,2) |
(s,y,2) € G}|. The maximum out-degree
deg™ (G) = mazses,(deg™(s)), and themean
out-degreedeg(G) = g Esesqdeg™ (s), are
defined as the maximum and mean out-degrees o
all subjects inS¢.

. The partial out-degreeof s with respect to
p, denoted deg~(s,p), is defined as the
number of triples of G in which s occurs
as subject andp as predicate. Formally,
deg™(s,p) K(s,p,2) | (s:p2) €
G}|. The maximum partial out-degreef G,
deg™~(G) AT (s pyesex Pe(deg™ " (s,p)),
and mean partial out-degreedeg——(G)
mz(sﬁp)escxpc deg~ (s, p), are defined as
the maximum (resp. the mean) partial out-degrees
of all pairs of subject-predicates 6f.

. Thelabeled out-degreef s, denotedlegL~(s) =
mazses, (degL™(s)), is defined as the number of
different predicates (labels) @& with whichs is
related as a subject in a triple off. Formally,
degL=(s) = {p | 3z € Og, (s,p,z) € G}|. The
maximum labeled out-degred G, degL— (G)
mazses,(degL™(s)), and mean labeled out-
degree degL—(G) = ‘S—lclESGSGdegL—(s), are
defined as the maximum (resp. the mean) labeled
out-degrees of all subjects 6f.

. Thedirect out-degreef s, denoteddegD~ (s),

is defined as the number of different objects of
G with which s is related as a subject in a
triple of G. Formally, degD~ (s) [{o |

Jy € Pg (s,y,0) € G}. The maxi-
mum direct out-degreef G, degD~ (G)
mazses,(degD~(s)), and mean direct out-
degree degD~(G) = 1gSsesqdegD™(s), are
defined as the maximum (resp. the mean) direct
out-degrees of all subjects 6f.

5Naming of blank nodes can matter in some treatmeirgs,our
serialization is notanonical Canonical representations of RDF are,
due to the structure of blank nodes, tricky to achieve in general [17].

4

Symmetrically, we define for objects the-degree
denoteddeg™ (o), partial in-degreedeg™™(o,p), la-
beled in-degree, degL™ (o) and direct in-degree,
degD™ (o). Their corresponding maximums and means
are denoted asleg™(G), deg™"(G), degLt(QG),
degD*(G), degt(G), degtt(G) and degLt(G),
degD+(G).

Note thatcardinality, average cardinality, inverse
cardinality andaverage inverse cardinalitin [33, 34]
are equivalent to partial out-degree, average partial out-
degree, partial in-degree and average partial in-degree.

Definition 2 (predicate degrees)Let G be an RDF

fgraph, andlets € Sg, p € Pg ando € Og.

1. Thepredicate degreef p, denoteddegp(p), is
defined as the number of triples 6f in which
p occurs as predicate. Formallydegp(p)
{(z,p,2) | (z,p,z) € G}|. Themaximum pred-
icate degreedegp(G) = mazpcps(degr(p)),
and the mean predicate degreelegp(G)
IPl—GIEPGPGdEQP(p), are defined as the maximum
and mean predicate degrees of all predicateBin

. The predicate in-degreef p, denoteddegy (p),
is defined as the number of different subjects
of G with which p is related as a predicate in
a triple of G. Formally, degp(p) = |[{s |
3z € Og,(s,p,z) € G}|. Themaximum predi-
cate in-degreedeg, (G) = mazpep, (degp(p)),
and the mean predicate degreeleg,(G)
P Sreradegp (p), are defined as the maximum
and mean predicate in-degrees of all predicates in
Pg.

. Thepredicate out-degreef p, denoteddeg;,(p),
is defined as the number of different objects of
G with which p is related as a predicate in
a triple of G. Formally, deg}(p) {o |
Jz € Sg, (z,p,0) € G}|. Themaximum predi-
cate Out-degreeleg;(G) = MaTpepy (deg; (p)),
and themean predicate out-degreéeg}; (G)
P Sreradeg) (p), are defined as the maximum
and mean predicate out-degrees of all predicates
in Pq.

Additionally, we will use the following property to
describe RDF graph characteristics:

Definition 3 (subject-object ratiavs_,). The subject-
objectratioa,_,(G) of a graph is defined as the ratio of

common subjects and objects in the graphFormally,
s—o(G) = |ScNOg|
s—o ‘SGUOGI :

Analogously, we define subject-predicate ratio, de-
noteda,_,(G), and predicate-object ratiay,_,(G).

hitp:fwww w3 .0rgl2000/01/rdf-sch emad#label
umon |
S

roperty/reference

))
r
http://dbpedia.org /resource/page3

Out-degrees In-degrees Predicate degrees Ratios
deg= (G) 4 deg™ (G) 2 degP(Q) 3 as—o(G) 013
deg™~ (GQ) 2 degt*(G) 2 degP~(G) 2 as—p(G) 0
degL~ (Q) 3 degL™(G) 1 degPt(G) 3 ap—o(G) 0
degD™ (G) 2 degD* (G) 2
deg— (G) 2.33 | degt(G) 117 | degP(G) 175
deg=—(G) 1.17 | degtt 1.17 | degP—(G) 150
degL=—(G) 2.00 | degLt+ 1.00 | degP+ 1.50
degD~ (QG) 1.17 | degD* 1.67

Figure 2: Various metrics for describing the structure of Ri2fa are shown over a small RDF graph example.

Figure 2 illustrates these properties in a small ex- nality of binary relations between subjects and objects
ample graph inspired by DBPefliaResources are de- disregarding the labelsg., the columns and rows of the
scribed with “labels”, they can “reference” other exter- adjacency matrix arising when obviating the predicates.
nal pages and they are categorized (using a “subject” pregicate degree constitutes an important metric for
predicate) through other DBPedia category pages, orga-yerical partitioning technique [1], in which an index
nized in hierarchies (“broader” categories). The subject (subject, object) is created for each predicate. Pred-
out-degree indicates the cardinality of a subject node. A j-5te degree reflects the number of entries for such a
node with high out-degree, also called star-shaped node e icate table. In turn, predicate in-degree and out-
will sometimes have hundreds, or even thousands, of yegree refine this metric by providing a characteriza-

edges (labeled edges in RDF). In conjunction with max- (o of the domain and range sizes for each predicate.
imum and mean values, this constitutes a good evidencegq, instance predicates such m:type have a lim-

of these types of nodes in a given graph. Similar reason-jiaq range (low predicate out-degree) but a great domain

ing can be made for object in-degree, where the node is (high predicate in-degree).

not a source, but is a common destination object node.
Partial and labeled out- and in- degrees are meant to

give information on the different types of edges com-

ing out from (or going into) a node. Partial degree pro-

Finally, ratios give evidence of further characteristics
of RDF graphs and datasets. The subject-object ratio is
a good measure of the percentage of nodes along which

vides a metric of the multi evaluation of pairs (subject- €T are incoming and outgoing edges. These are the
predicate or predicate-object), while labeled degree re- K€Y €dges to index, because of the different roles they
fines the star-shaped nodes categorization. For instanceP!aY: €ither as subjects described elsewhere, or as ob-
a high partial out-degree denotes that a pair (s,p) is re-JECtS, descrlb!ng oth_er resources. Subjec'g-predlcate and
lated to multiple objects (multivalued) and a high la- predmate—opject rat|os.show how far predlpates are also
beled degree shows that the subject s related to multiple US€d s subjects or objects. These two ratios can be used
predicates (star-shaped node). Fo justify the consideration of RDF as a graph or the low
Direct out- and in-degrees complete the degree met- INfluénce of these types of shared nodes.

rics for subject and objects. They indicate the cardi- Appendix Appendix A illustrates these metrics for
real-world RDF datasets. The study firstly reveals that
6DBpedia: http://dbpedia.org there are important differences between datasets from

Logical and physical metadata
Heador describing the RDF data set. It

RDF 4 serves as an entrance point to the
=
o 2 7
Q /7 "

information.
o e | s ,
< N
Vs, = — 4 D Mapping between elements in the
\/ o '/{/ T Ictlonary data set and unique IDs, thus
& P contributing to compactness.
- D

- Trieles

Structure of the data after the ID
replacement, in a compressed form.

Figure 3: Description oHDT Components: Header-Dictionary-Triples.

different domainsé€.g subject nodes in Uniprot appear dedicated RDF vocabularies to describe metadata about
in average int.27 triples whereas in Dbpedia-en it does datasetsd€.g. VoiD [4]; the various annotation prop-
in 12.62). erties listed in the OWL vocabulary [42, Section 10]),
The empirical data also show the large presence of metadata provided in the same RDF graph as the ac-
star-shaped nodes but a low frequency of multivalued tual data causes problems, particularly making difficult
pairs(s, p); the number of predicates related to a given to automatically distinguish between data and metadata.
objectis very close to 1, whereas a mean of 4-5 different Whereas current other serialization formats do not pro-
predicates are related with the same subject. vide any means or even best practices on how to publish
The ratios reveal a level of cohesion in the data; metadata along with datasets, HIDT, we make meta-
subject-object is the most frequent path constructor data a first-class citizen with a dedicated place as part of
(subject nodes are also objects up6td%), whereas the header information.
subject-predicate and predicate-object ratios are almost We consider the Header as a flexible component in
negligible. Finally, power law distributions existin both which the data provider may include a desired set of fea-
in- and out- degrees, but the skewed distributions of tures. We distinguish four basic types of metadata:
predicate degrees do not fit well to a power law.
All these results give insights into the RDF real-world

. . . * Publication information Collects the metadata
structure and point to possible compact design models.

about the publication act such as the site of publica-
tion, dates of creation and modification, version of
the dataset (which could be useful for updating no-
tifications), language, encoding, namespaces, etc.
It also includes all kind of authority information
about the source (or sources) of data.

3. Splitting RDF in Logical Components

The skewed structure of real-world RDF data, partic-
ularly the presence of power-law distributions (see Ap-
pendix Appendix A for details), gives a starting point
for designing a compact RDF structure.

In this section, we present such a compact RDF struc-
ture, calledHDT, to succinctly represent the informa-
tion of an RDF dataset by organizing and representing
the RDF graph in terms of three componertigader,
Dictionary andTriples (see Figure 3). We will show that
this organization allows to represent and manage RDF
data in an efficient manner. In the following, we will
discuss each of these components on an abstract level as
well as general uses and operations to be performed on
the separate components. Practical detailg.Eencod-
ings, vocabularies, etc.) are discussed in Section 4.

« Dataset statistics When managing huge collec-
tions, one could consider including some precom-
puted statistics about what follows in the datasets.
For instance, it could be useful to include an esti-
mation of the parameters presented in Section 2.1,
or a subset of them used in the concrete design.

e Format information Collects the information
about the concrete format of the RDF dataget,
it specifies the concrete Dictionary and Triples im-
plementations as well as their physical locations.

3.1. Header e Other information A provider can take into ac-

The Header component is responsible for providing
metadata about an RDF dataset. Although there are

6

count other metadata for the understanding and
management of the data.

Header Large RDF datasets are supposed to be managed by

WEB
= 8 e automatic processes, hence an effective replacement can
= dow“\oad(HDT be done: the Dictionary component assigns a unique 1D
= ‘3
b

3 to each element in the dataset. This way, the dictionary
F contributes to the goal of compactness by replacing the
Header |FF lon . . .
. g repeated strings in triples by short IDs. In fact,
m = the assignment of IDs, referred to ampping[19], is
Dictionary &Triples usually the first step in RDF indexing. To the best of
. our knowledge, although there are some approaches [54,
Figure 4: Example of use of DT Header. A consumer can down- 41 \yhich exploit the dictionary construction besides the
load or query the Header which maps potentially distributed Dictio- .. .
nary and Triples components. RDF stores, the dictionary has not been proposed in any
RDF representation syntax.
The Dictionary component itiDT allows multiple
3.1.1. Header Uses and Operations configurations and implementations. The sets of sub-
The Header serves as an entry point to the RDF jects, predicates and objects in RDF are not disjoint,
dataset. Figure 4 shows a typical use case. A consumerthus RDF engines usually map shared elements with the
whether a user or machine, accesses the web page whereame ID [7]. In turn, the order of the elements within
the provider publishes the dataset. The Header is down-each set could be random or sorted by some property,
loaded or queried online by the consumer, who is able e.g.the frequency of use or the alphabetical order.
to access 1) publication, statistical or other metadata
and 2) specific format information. For instance, the 3.2.1. Dictionary Uses and Operations
consumer can see a detailed summary of the published The main goal of the Dictionary is to contribute to
dataset, which might be (i) distributed in several chunks, compactness by the assignation of a unique ID to each

(ii) available in different formats or (iii) available under gjlement in the dataset. Thus, the use of the dictionary
different versions. This allows the user to get: (i) the rel- implies two important and minimum operations:
evant chunk from the large collection and thus minimiz-
ing the exchange; (ii) the best-fitting format considering . |gcate(element)returns a unique identifier for the
the trade-off compression ratio versus functionality; and givenelementif it appears in the dictionary.
(iii) in the adequate version.

The desired operations over the Header are as simple extract(id) returns the element with identifiet in

as the operations over a general metadata file. Publish- the dictionary, if it exists.
ers typically write the Header once, but it could be up-
dated with newer information. In turn, consumers will In addition, the dictionary might help in query eval-

download and access the Header locally, or they might uation and resolution. For instance, FILTER operations
consume it using SPARQL queries [48]. The only con- in SPARQL restrict the final result by a given condi-
straint over the metadata is that it should be machine- tion. This condition usually refers to a regular expres-
readable, and it should be possible to query a given type sion, language or datatype selection which can be eval-

of metadata. uated firstly over the Dictionary. Note that the elements
satisfying the condition will delimit a range to search in
3.2. Dictionary the structure of triples.

In general terms, a data dictionary is a central- 3.3. Triples
ized repository of information about data such as ~
meaning, relationships to other data, origin, usage, By means of the Dictionary component, an original
and format [36]. Current RDF formats use elemen- RDF triple can now be expressed as three IDs, replacing
tary versions of dictionaries for namespaces and pre- each elementin a triple with the reference to the dictio-
fixes. This allows for the abbreviation of long and re- nary. The Triples component compacts the information
peated strings (URIs, Literals, etc.). A good example by transforming a stream of strings into a stream of IDs.
iS** http://wwe wa. or g/ 1999/ 02/ 22- r df - synt ax- ns#t ype’’ In addition to its compacting feature, the Triples com-
repeated hundreds to thousands of times in the Billion ponent is the key component to access and query the
Triple dataset. Note that XML has this functionality RDF graph information. The Triples component al-

in the form of namespaces in conjunction wXMmL lows diverse configurations and implementations, which
Base and several RDF formats allow abbreviations of might exploit the trade-off between the compression ra-
this kind (@ase, @r ef i x in N3 and Turtle). tio and the natively supported operations over the triples.

The format for RDF Triples should be designed to op-
timize the common operations and uses of them. We
distinguish here the fundamental ones:

LO Exchange.At fundamental level, an RDF Triples
component serves to compact the set of RDF state-
ments, optimizing the objective of exchange. It
might include functionalities to exchange only a
part of the entire graph.

L1 Basic Search. An important foundation for any
search over RDF triples atdple patterns which
are templates of RDF triples where one or more el-
ement of the triple can be a variable. RDF Triples
components should be able to resolve efficiently as
many types of triple patterns as possible.

L2 Join Resolution. Joins are one of the most ex-
pensive operations in RDF queries. They imply
matching two or more triples patterns which share
one or more variables. RDF Triples components
should support the most common types of joins
(e.g. Subject-Subject, Object-Object, Subject-
Object, etc.).

L3 Complex querying.ldeally, the engine should be
able to answer efficiently any SPARQL query. This
involves addressing many other operators and mod-
ifiers, such as UNION, OPTIONAL, as well as
query evaluation optimization techniques.

The efficient indexing of the triples structure is one
of the keys for good RDF query performance. However,
the RDF information is exchanged in verbose, plain for-

rdf:type
hdt:DataSet

Figure 5: The structure of the propose®T Header is shown. It is
itself an RDF graph in tree form whose nodes describe the publication,
statistics, format and other type of information of the dataset.

4.1. Extending VoiD for Header

The Header component is expressed in plain RDF,
and the use of standard vocabularies, such as VoiD, is
strongly recommended. VoiD is an RDF Schema vo-
cabulary for expressing metadata about RDF datasets, a
mechanism for publishers to report their data, and an
entrance point for consumers to discover and retrieve
datasets. This section gives the details of our exten-
sion of the VoiD vocabulary for the particularities of
binary RDF inHDT format, improving the publishing
and exchanging RDF data at large scale. We refer to
hdt as the vocabulary extension, with the namespace
http://purl . org/ HDT/ hdt #hdt .

4.1.1. The Header Structure

mats and these indexes need to be created locally by an The proposed extension assumes that the Header is

RDF store. TheHDT Triples component is designed to

an RDF graph. The triples of this graph should contain

encourage the exchange of compressed triples structure$ atadata about a publication together with the infor-

which can be queried without the need of decompres-
sion (cf. [5]).

4. Practical Deployment ofHDT

The HDT representation is flexible, allowing diverse
implementations of the Header, Dictionary and Triples
components. This feature permits to optimize different
parameters for specific applicatioresg. compression

size, compression/decompression times or querying op-

erations over the triples.

In this section, we present practiddDT component
implementations for efficient RDF publication and ex-
change. The optimization in this case is focused on com-
pressibility and triple pattern resolution.

mation required to retrieve and process the represented
RDF graph in a machine processable format. It may also
contain other metadata not related to these processes.

The Header of theHDT is described in RDF
as anhdt: Dat aset element, which is a subclass
of voi d: Dat aset (rdfs: subCl assCOf property).
Thus, the Header can make use of VoiD properties to
describe th&iDT dataset in a standard way.

The structure of the proposed Header is represented in
Figure 5. A Header mustinclude at least one resource of
typehdt : Dat aset , described by four top-level state-
ments (containers), which are described in the follow-
ing subsections. Exactly one format metadata descrip-
tion must be present in order to retrieve the dataset, and
hdt : di cti onary andhdt : tri pl es definition (or
subproperties of them) are required.

@prefix void: <http://rdfs.org/ns/void#.

@prefix dc: <http://purl.org/dc/terms*.

@prefix foaf: <http://xmlins.com/foaf/0.1%.

@prefix hdt: <http://purl.org/HDT/hdt#.

@prefix xsd:<http: //www.w3.0rg/2001/XMLSchema#.

@prefix rdfs: <http://www.w3.0rg/2000/01/rdfschemas.
@prefix rdf: <http: //www.w3.0rg/1999/02/22- rdf —syntax—ns#>.
@prefix swp:<http: //www.w3.0rg/2004/03/ trix /swp-2/>.

<http://example.org/ex/DBpediaENa hdt:Dataset;
hdt:publicationinformation _:publication;
hdt:statisticallnformation _:statistics;
hdt:formatinformation _:format;
hdt:additionallnformation _:additional.

_:publication dc:issued'2010- 10- 01" ;
dc:license<http: //www.gnu.org/copyleft/fdl.htmt;
dc:publisher [a foaf:Organization;
foaf:homepage<http: // example.org/theCompany;
dc:source<http: //downloads.dbpedia.org/3.5.1/en;/
dc:title "DBpedi aEN';
void:sparqlEndpoint<http: //example.org/ex/DBpedia/spargl

_:statistics void:triples"7";
void:properties"4"

_:format hdt:dictionary _:dictionary;
hdt:triplesBitmap _:triples.

_:dictionary dc:format"application/x-gzip";
hdt:dictionaryEncoding"utf8";
hdt:dictionaryNamespaces [hdt:namespace [hdt:prefixéhBdbpedi a";
hdt:prefixURI "http://dbpedi a. org/resource/" 1];
hdt:dictionaryOrder<hdt:alphabeticalorder>;
hdt:dictionarySeparator\\2";
hdt:fileLocation <http: // example.org/ex/DBpediaEN. dic

_:triples hdt:predicateStream [dc:formd'tapplication/octet-streant ;
hdt:fileLocation <http: //example.org/ex/DBpediaEN. tp>;
hdt:IDCodification "32"];
hdt:predicateBitmap [hdt:fileLocationchttp://example.org/ex/DBpediaEN.tph>];

hdt:objectStream [hdt:fileLocationchttp: // example.org/ex/DBpediaEN. t8>;
hdt:IDCodification "32"];
hdt:objectBitmap [hdt:fileLocation<http://example.org/ex/DBpediaEN.t8b>].
_:additional swp:signature" AZBQWE. . . " ""<xsd:base64Binary;

swp:signatureMethodkswp:JjcC14N-md5-xor—rsa>.

Figure 6: A Header itHDT.

Figure 6 shows a Header example in Turtle syntax [9] complexity as well as serving for the final application
for an RDF graph such as the one from Figure 2. These (e.g. in visualization and summary). VoiD property set

are the elements in the Header: includes statistics such as the number of RDF triples of
o the dataset, or the number of described entities. RDF-

It groups the statements about the publicationiaes, [22] or the RDF Data Cube Vocabuldrand the previ-
the process of making RDF data publicly available for 4,5 metrics might also be included.

several purposes and users.
In addition to VoiD properties, the use of well-known 3. Format Metadata.(hdt : f or mat I nf or mat i on)

vocabularies ég Dublin Cor€ for basic metadata or It groups the statements Specifying the concrete Dic-
WAIVER for rights®) is highly recommended. tionary and Triples component representation as well as
their physical location. This metadata must be present
in order to retrieve the dataset, and it is required to con-
tain anhdt : di cti onary andhdt: tri pl es def-
inition (or subproperties of them). This metadata de-

2. Statistical Metadata.ndt : stati sti cal I nfor mati on)
Publishers include statistical statements about the
data which can provide a fast overview of the dataset

http://www.dublincore.org/
8http://vocab.org/waiver/terms/ http://www.w3.0rg/TR/2012/WD-vocab-data-cube-20120405/

pends on the concrete implementation of both Dictio- D.,...,..,,,
nary and Triples. Figure 6 shows the configuration for RDE (oem) so
Plain Dictionary and Bitmap Triples. ﬂ <.[vaget>

<./paged> s

PwNR ouswWwN (WN] BT

<./page3>
<../example1>
“Labell”@en o

4. Additional Metadata.(hdt : addi ti onal I nf or mat i on)

It contains all kind of additional information given by
the publisherg.g. annotations, or a signature as shown
in Figure 6.

“Label2”@en
“Label3"@en

<../reference>
<../#label> »
<../#broader>

\ <./#subject>)

4.2. Dictionary Encodings. Plain Dictionary

A practical encoding for the dictionary component
is proposed as follows, referred to as Plain Dictio- |2 s s P el brariessuree]
nary (dt : di cti onaryPl ai n). Four subsets of el- | 20 a6 e s e Teterensesa <ntip: /fwm'wa. arg /2000/01 rat
ements are considered, mapped as follows (in an R a0 02 o e b ey 2 oS! corerbroagenz <hitp: /I
graphG with Sg, Pg, O¢ different subjects, predicates
and objects):

Figure 7:HDT Dictionary example.

)) Figure 8:HDT physical Dictionary component example.
1. Common subject-objectdenoted as the sétO, o
are mapped t@l, |SOg|]. 4.3.1. Plain Trlplesr(dt ctriplesPlai n)
. This is the most naive approach in which only the ID
2. Thenon common subjectS¢; — SO¢, are mapped sypstitution is performed, as shown in Figure 9. The

to [[SO¢| + 1, [Se|]- physical file contains three IDs per triple.
3. Thenon common object®s — SO, are mapped)
to [|SOg| + 1, |0c]. 4.3.2.. Compapt lelp|85hﬁt. ttripl es.Oorrpact) .
_ This option implies a triple sorting by subject and the
4. Predicatesare mapped t¢l, [Fg/]. creation of predicate and object adjacency lists.

Figure 7 shows an example of these four sets for the Adjacency L'.SF s a compact data struc-
ture that facilitates managing and search-

RDF graph of Figure 2. Note that a given ID can belong in For example. the set of triples:
to different sets, but the disambiguation of the correctset =~ <" pie, ples:

is trivial when we know that the ID in a triple is placed as (8,p1,011), 7+ 5 (8,P1,01ny), (8, P2,021), -+ (8,P2,02n,),
a subject, a predicate or an object. A similar partitioning - (s, Pk, 0kn,,)}
is taken in some RDF indexing approaches [7]. can be written as the adjacency list:

The subject-object ratio defined in Section 21, .,
characterizes the proportion of the subject-object set in ~ ® = [(P1 (011, 01n1), (P2, (021, -+, 020)),
the dictionary, composed of nodes with out-degree and +r (s (k)]
in-degree greater than deg~(a),degt(a) > 0. In Turtle (and hence N3) allows such generalized ad-
those datasets with a noticeable valuexof ,, common jacency lists for triples. For example the set of triples
subject-object identification reduces the dictionary size {(s,p,0;)}_; can be abbreviated & p o1,--- ,0n).
versus a disjoint assignment. The set of predicates are The Triples component contains a compact adjacency
treated independently because of their low number and list representation. First, a subject ordered grouping is
the infrequent overlapping with other sets. Due to the performed, that is, triples are reorganized in an adja-
sequential mapping of each set, the dictionary only has cency list, in sequential order of subject IDs. Due to this
to include the strings, assuming an implicit order of IDs order, an immediate saving can be achieved by omit-
and some form of distinction between sets. ting the subject representation, as we know the first list
The physical Dictionary consists of a list of strings corresponds to the first subject, the second list to the fol-
matching the mapping of the four subsets, in order from lowing, and so on.
(1) to (4), as shown in Figure 8. A reserved character Then, the representation is split into two coordinated
(we use\2 'by default) is appended to the end of each streams of Predicates and Objects. The first stream of

string and each section to delimit their size. Predicates corresponds to the lists of predicates asso-
_ _ ciated with subjects, maintaining the implicit grouping
4.3. Triples Encodings order. The end of a list of predicates implies a change of

We provide three implementations for Triples com- subject, and must be marked with a separator, the non-
ponent encoding (plain, compact, bitmap) as shown in assigned zero ID. The second stream (Objects) groups
Figure 9 for the given graph in Figure 2. the lists of objects for each pais, p). These pairs are

10

RDF
Dictionary :\ /\i) — #
Build% M

D Dictionary

(<../page2> \ so E Triples Triples

1
2 | <../pagel> Iriples subject 1 subject 2 subject A s

v.. . P 231243
3 | </pages> s i 6 Predicates ’
2 | <../page3> v f Predicates: B,
3 | <../examplel> > :1 —
R T B e A NN . :

Objects:| 6 02 03 04501020 | '
6 | “Label3”@en Replacement 1 ° > Objects 6,
2

1 | <../reference> /
2 | <../#label> P Plain Triol C t Triol Bit Triol
3 | <../#broader> ain lriples ompact Iriples Itmap Iriples
4 \ <../#subject> /

Figure 9: Three possibilities of triple representations.

formed by the subjects (implicit and sequential), and graph structure. Bitmap Triples implementation splits
coordinated predicates following the order of the first both parts in order to improve thdDT usability.
stream. In this case, the end of a list of objects (also This encoding extracts the 0’'s out of the predicate
marked in the stream with the non-assigned zero ID) im- and object streams of the Compact Triples represen-
plies a change ofs, p) pair, moving forward in the first ~ tation. The graph structure is indexed with two bit-
stream processing. sequencesfi, and B, for predicates and objects) in
Thus, the compact triple representation is supported which 1-bits are used to mark the end of an adjacency
by two streams: (1) a predicate stream in which the list. This transformation is shown in Figure 9. On the
predicate lists are separated by Os (i-th list belongs to one hand, Predicate$z; 3,0, 1,2,4,0, 3,0} evolves to
i-th subject) and (2) an object stream in which the ob- the sequencs, = {2, 3,1, 2,4, 3} and the bitsequence
ject lists are separated in the same way (j-th list belongs B, = {010011} whereas, on the other hand, Objects=
to the j-th subject/predicate pair in the former stream). {6,0,2,0,3,0,4,5,0,1,0,2.0} is reorganized irS, =
The parameters in Section 2.1 characterize the {6,2,3,4,5,1,2} andB, = {1110111}.

streams. Labeled out-degre,gL~(s), indicates the The triples structure can be interpreted as follows.
length of the list of predicates for a subjectTherefore, ~ The ih 1-bitin B, marks the end of the predicate ad-
the maximum and mean lengths of the listsAredi- jacency list for the ith subject (it is referred to as;),
catesare given bydegL ™ (G) anddegL—(G) respec- whereas the number of predicates in the corresponding
tively. Symmetrically, partial out-degredeg=~ (s, p) list can be obtained by subtracting the positions of two
gives the size of the corresponding listOijects Max- consecutivel -bit (we always. consider that positiong are
imum and mean valuedgg~~ (G) anddeg—— (G) char- numbered from “1"). For instance, the secohébit
acterize theDbjectsstream. in B, marks the end of the predicate adjacency list for

This leads to a compact ID-based triple representation the second subject). There are three positions be-
in which the classical three-dimensional view of RDF tween the second and the firktbit in 5,. Thus, P
has been reduced into two by the coordinated streams,contains three predicates, which are represented by the

considering implicit the third dimension of subjects. third, fourth and fifth IDs inS,,, hence, = {1,2,4}.
Data inS, andB, are related in the same way. The

. . _ . j-th 1-bit in B, marks the end of the object adjacency
4.3.3. Bitmap Triplesni: tri pl esBi t map) list for the j+h subject/predicate pair. This predicate is
In Compact Triples, two coordinated ID-based represented by thetj: position in3, and it is retrieved
streams, Predicates and Objects draw the RDF from the j+h position ofS,. For example, the third-
graph, representing the triples with an implicit subject- pit in B, refers the end of the object adjacency list for
grouping strategy. Both streams can be seen as Sethe third predicate i, which is related to the second
quences of non-negative integers in whiBhvalues gypject as we have previously explained. Thus, this ad-

mark the endings of predicate and object adjacency lists jacency list stores all objectsin triples (2, 1, 0) € G.
respectively. This means that positive integers represent

predicates and objects, wheré¥s are auxiliary values ~ Operations. Each element i, andS, is encoded, re-
embedded in each stream to represent, implicitly, the spectively, with a fixed-length code &fg(|P|) and

11

Algorithm 1 Check&Fi nd operation for a triple
(s, p,0)

: begin < selecty(B,, s —
. end < selectqy(B,, s);

. sizep, +— end — begin + 1;

. Py < retrieve(S), begin, sizep,);

[y

1) +1;

: plist + binary_search(Ps,p);
. pseq < begin + plist — 1;

© O N O UA WN

. begin < selecty(B,,pseq — 1) + 1;
. end <« selectq (B,, pseq);

: sizeo,, + end — begin + 1;

: Ogp < retrieve(S,, begin, sizeo,,);

[Y
A W NP O

: plist < binary _search(Ogy, 0);

log(|O¢|) bits, by considering that the dataset com-
prises|Ps| and |O¢| different predicates and objects.
The bitsequences used to represBptand B, make
use ofsuccinct structures They are able to support
rank/ sel ect operations over a sequensef length

n drawn from an alphabét = {0, 1}:

- rank,(S, i) counts the occurrences of a symbol
a € {0,1}in S[1,1].

- sel ect (S, i) finds thei-th occurrence of sym-
bola € {0,1} in S. In practice select,(S5,0) =
0;

This problem has been solved using+ o(n) bits
of space while answering the queries in constant time
[20]. We choose th&onzlez, et al.[28] approach to
implement3,, and3,. This adds5% of extra space to

the original bitsequence lengths, and achieves constant

time for thesel ect/ r ank operations, which consti-
tutes the basis for accessing to the structure of the graph
Bitmaps Triples representation allows a retrieval

strategy able to take advantage of the structure indexed

in B, and3,, accessible by fastank/ sel ect oper-
ations. Algorithm 1 shows &eck&Fi nd operation
for atriple (s, p, o) over Bitmaps Triples.

Lines 1- 4 describe the steps performed to retrieve
the predicate adjacency list for the subje¢;). First,
we obtain its size by locating its begin/end positions in
B,. Next, wer et ri eve its sequence ofizep, pred-
icate IDs fromS,,. OnceP; is available, we need to
identify the position fseq) wheres andp are related
in S,. Lines6-7 describe it. Firstp is located inPs
with abi nar y_sear ch, and, next, this local position,
plist, is used to obtain its global positiondf, pseq, by
addingbegin to plist. In this step, the object adjacency

12

list for s, p (Osp) can be retrieved because it is indexed
through the psegth predicate.Oy, is retrieved (lines
9- 12) similarly to Ps, considerings, andsS,. Finally,

o is located with &i nary_sear ch on Og,.

The cost of theCheck&Fi nd operation for a triple
(s,p,0) is O(sizep, + sizep,,), assuming at most
sizep, degL™(s) and sizeo,, = deg™ (s, p).

The distribution of lists assures an amortized cost in
(degL—(G)+deg——(G)). Note that this operation does
not just find the required triplés, p, 0), but also the
triples(s, p, z) € G. Besides P, contains all predicates
from s, so the next operations on triples frasthegin
theCheck&Fi nd operation by identifying the position
of pin S, (fromline 6).

Efficient access is obtained throug@heck&Fi nd.

If a triple (s,p,0) ¢ G, it can be detected in step
(the predicatep is not in the predicate adjacency list
for s: S,) orin stepl4 (the objecto is not in the ob-
ject adjacency list fos andp: O,,). On the contrary, if
(s,p,0) € G, once the triple is found, the strings asso-
ciated withs, p, ando can be retrieved from the dictio-
nary. Note that the aforementioned Plain Dictionary is
only intended for compact purposes, hence it should be
loaded into a functional structure, such as a Hash table,
B-tree or any other structure optimized for dictionary
management [40].

Furthermore, the SPARQL query language for RDF
can make use of some interesting features of Bitmap
Triples, as follows:

e Algorithm 1 can answer basic ASK queries of
SPARQL for patterns (s,p,0), (s,?p,?0) and (s,p,?0).

e Algorithm 1 can response basic CONSTRUCT
query of SPARQL for simple WHERE patterns
(s,p,0), (s,?p,?0) and (s,p,?0).The result is a RDF
HDT graph.

The S-P-O Adjacency List order must be assumed. The
response patterns vary for alternative representations S-
O-P, P-S-0O, P-0O-S, O-P-S and O-S-P Adjacency Lists.

5. Evaluation of HDT

This section evaluates the size and performance of
the HDT deployment presented in the previous section.
First, we measure the size of thT Dictionary and
Triples to show its good compact ratio performance.
Then, we evaluate the scalability bBIDT based on the
implementation of Plain Dictionary and Bitmap Triples.
Finally, we evaluate triple pattern queries performance.

These tests were performed on a Debian 4.1.1 op-
erating system, running on a computer with an AMD
Opteron(tm) Processor 246 at 2 GHz and 4 GB of RAM.

. . Triples
dataset | Plain Dictionary Plain Conpact Bl {rap
Geonames 12.54% 9.33% 4.71% 2.91%
Wikipedia3 4.53% 7.82% 2.45% 2.09%
Dbtune 10.34% 6.93% 3.95% 2.53%
Uniprot 11.08% 12.05% 6.16% 4.05%
Dbpedia-en 14.10% 7.12% 3.53% 2.66%

Table 1: Compact results.

We used a g++ 4.1.2 compiler withD9 optimization.

This experimentation was run on the datasets described

in Appendix Appendix A. For the evaluation, we con-
sider a Header in Turtle syntax such as the one from
Figure 2. Note that the size of the Header (a few KB at
most) is negligible at large scale.

5.1. Dictionary and Triples compact ability

Table 1 shows the compact ratios of each proposed
component inHDT over the original N-Triples format
(one triple per line). It is very interesting to note that
Plain Dictionary and Plain Triples have a comparable
ratio, hence the need of improving both components to
improve the final result. Compact Triples clearly outper-
forms Plain Triples, achieving ratios around 4% and up
to 2.45% of the original size. Bitmap Triples is the most
compact solution for the triples, obtaining ratios around
3% and up to 2.09% over the original size.

In addition to its effectiveness, Bitmap Triples also
overcomes Compact Triples in its ability for direct ac-
cessing to the compressed data, so we will use Bitmap
Triples implementation in all remaining experiments.

Regarding the dictionary, please note that it takes five
times more space than the Bitmap Triples. Moreover,
the current dictionary does not provide SPARQL boost-

« Dictionary: We take advantage of repeated prefixes
in URIs, specific n-gram distributions in literals,
etc. We choose a predictive high-order compressor,
PPM [21], which identifies this type of redundancy
to improve the encoding of the dictionary.

Triples: The set of bitmap triples compression is
independently attempted on each structure. On the
one handsS, comprises an integer sequence drawn
from [1, |Pg|]. A Huf f man [35] code is used to
compress it. On the other hand, the compression
of S, (drawn from|[1,|O¢|]) takes advantage of
the power-law distribution of objects (see the right
dispersion graph in Figure A.17) through a sec-
ondHuf f man code. Finally, we hold a plain rep-
resentation for bitsequences because of the small
improvement obtained with specific techniques for
bitsequence compression.

We choseshuf f 19 andppndi ! to implement, re-
spectively, theHuf f man andPPMbased encoding.

Table 2 comparesDT against three well-known uni-
versal compressors. We chogei p as a dictionary-
based technique on LZ77pzi p2 based on the
Burrows-Wheeler Transform, armbndi as a predic-
tive high-order compressor.

ing operations. These insights encourage the use of The most effective universal compressors for all

compact RDF dictionary implementations [40].

5.2. HDT-Compress

HDT (referred to as Pl ai n- HDT henceforth)
achieves a considerable size reduction of the RDF
dataset by means of the Plain Dictionary and the Bitmap
Triples configurations. This provides a clean publication
and efficient exchange ratios. HowevEt,ai n- HDT
is even more compressible with very little effort. We
test HDT compressibility with a particular deployment
calledHDT- Conpr ess. This deployment makes spe-
cific decisions:

e Header: We keep the Header component in plain
form as it should always be available to any receiv-
ing agent for processing and its size is negligible.

13

datasets arppndi andbzi p2 which achieve ratios
of around4% and 5% respectively. A very interest-
ing result shows thal ai n HDT is able to outperform
gzi p for the Wikipedia3 dataset. This demonstrates the
previously cited ability oHDT to obtain compact repre-
sentations of RDF.

HDT- Conpr ess achieves the most effective re-
sults with ratios betwee2 — 4% for the considered
datasets. This implies reductions between 4 times
with respect tdPl ai n HDT, and consequently propor-
tional improvements on exchanging processes. In turn,
HDT- Conpr ess outperforms universal compressors
by improving the begtpndi results between0—45%.

LOhttp://www.cs.mu.oz.awtalistair/mr.coder
L http://pizzachili.dcc.uchile.cl/experiments.html

dataset Triples Size HDT Universal Compressors
(millions) | (GB) | Plain Conpress | gzip bzip2 ppndi
Geonames 9.4 1.00 | 15.45% 3.16% | 7.67% 5.35% 4.80%
Wikipedia3 47 6.88 | 6.62% 2.22% | 6.97% 5.11% 4.109
Dbtune 58.9 9.34 | 12.86% 1.83% | 9.67% 6.59% 4.629
Uniprot 72.5 9.11 | 15.13% 3.54% | 13.22% 7.93% 6.839
Dbpedia-en| 232.5 | 33.12| 16.77% 3.89% | 10.36% 7.80% 6.649

Table 2: Compression results.
5.3. Scalability Evaluation component of the NQuad. This way, we ensure a wide

We study theHDT scalability in two correlated as- ~ ange of application fields.
pects. First, we evaluate th#DT performance with in- First, we study the dictionary growth with respect to
cremental size of a dataset. Then, we 8T com- the number of triples in the dataset, shown in Figure 11.
ponents compact ability in a wide range of different Each point corresponds to a different dataset. The num-
datasets to show th&tDT results can be extrapolated ber of unique dictionary entries has a sublinear growth

to general fields of application. w.r.t. the number of triples.
Then, we evaluate different Triples orderings over the
5.3.1. Incremental Size Huffman-compressed Bitmap Triples implementation.

We Study theHDT performance with incremental size We setSPOas the baseline to which the other five pOSSi-
of the Uniprot dataset, from 1 to 40 million triples. This ble orderings are compared. This comparison is shown
is shown in Figure 10. The left table studies tHBT in Figure 12: X-axis lists all the remaining orderings and
evolution of effectiveness. As can be seen, the ratios go Y-axis shows the proportion of tf8POspace that each
betweenl4 — 15% for Pl ai n HDT, and around.5% ordering requires. As can be se&§OandPOSreport
for HDT- Conpr ess (the percentage is always given the worst numbers: roughly 1.4 times and 1.24 times
with regard to the original file size). This ensutdsT the space used bgPOrespectively. This is because
effectiveness by considering that its compression ratios Predicates are on the top layer of the Bitmap Triples,
do not strongly depend on the dataset size, although bes@nd since the number of different predicates is always
numbers are achieved for |arger datasets. much smaller than the number of different SUbjeCtS or

The right graph of Figure 10 shows relevant times for objects (see Table A.3), fewer items are left implicit.
HDT. On the one hand, thereationtime stands for the ~ The betterPOSeffectiveness compared RSOcan be
time required to transform an RDF dataset (from plain €xplained using the predicate degrees. As shown in Ta-
N-Triples) into HDT. This process is only performed ble A.16,degP~(G) is always smaller thadeg P+(G),
once at publishing and shows a sublinear growth. On the S0 the number of objects per predicate is smaller than
other hand, after thivadingtime, the minimum infor- the number of subjects per predicate and this results in
mation required foHDT managementis in memory and shorter adjacency lists (by object). Moreover, 0By S
available to be accessed with tBeeck&Fi nd mech- ordering outperforms the baseline because the number
anism (Algorithm 1). As can be seen, this time is only 0f predicates per objectegL* is smaller than predi-

a very small fraction4 3%) of the creation one. Ad- ~ cates per subjecicgL—, so the adjacency lists per ob-
ditionally, symmetricatompressiomnddecompression ject are shorter than lists per subject. As can be seen,
times are achieved withDT- Conpr ess. In absolute ~ degL™ ranges fromL.00 to 1.39 predicates per object,
terms, both compression and decompression times areVhereaslegL~ ranges fromi.00 to 6.13 predicates per

slightly worse than the loading ones. subject. Nevertheless, the difference is smalPGre-
quiresx 0.97 times the space used BPQ, so we think
5.3.2. Multiple datasets SPOis still a good general choice. This decision also

. takes into account the&8POis a more intuitive order-
ing for triples, and that queries involving subject access
are massively used [6]. As we show in Table 15, graph

We choose the dataset from the Semantic Web Cha
lenge 2018, called Billion Triples, which contains
(~3.2 billion statements). The Data is collected from > .
Sindice, Swoogle and others, given in N-Quads [23] trgversals are resolveq very efhuen?ly usﬂggck &
format. We select the four hundred largest datasets by Fi nd to search the neighbors of a given subject.

grouping the triples according to the host of the fourth ~ We compare the dictionary and triples compress
ability. Figure 13 represents the frequency of

the ratio Dictionary/Triples size when applying
nttp://challenge.semanticweb.org/ HDT- Conpr ess. The normal distribution centered at

14

HDT Times

1000
Triples Size HDT
(millions) | (MB) Plain Conpress
1 89.07 | 15.11% 373% | g
5 444.71 | 14.54% 3.48% §
10 893.39 | 14.04% 3.27% é
20 1790.41| 14.43% 3.31% | *
30 2680.51| 14.39% 3.27% 1 Creation ——
40 3574.59| 14.34% 3.26% Dcmg“_—:
0.1 : : : - ‘ ‘ ‘

5 10 15 20 25 30 35 40
#triples (millions)

Figure 10: Performance &DT (Pl ai n andConpr ess) with incremental size datasets from Uniprot. The left table shows effectiveness, whereas
the right figure draws significative times.

Dictionary Entries vs Triples Compressed Dictionary/Triples Ratio Distribution
T T 45 T T T T T

Dictionary Entries
Count

10° 10" 10° 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Triples Dictionary/Triples Ratio

Figure 11:HDT Dictionary growth {/ = 0, 62:0:97). Figure 13:HDT Dictionary/Triples ratio distribution.

0.12

Bitmap Triples + Huffman Order Comparison

CIrpm

1,4084 I HDT
1,40 01

1,50
130 1,2403
1,20 1,0259

1,10

1,00

0,90

0,80

0,70

0,60

0,50

0,40

0,30

0,20 |
S B
sop PSO POS osP OPS

1,1276

0,9735

o
o
*

Size comparison against SPO
Compression ratio
o
o
>

o
o
1

0,00
0.02

Figure 12: HDT Bitmap Triples (+Huffman) order comparison. Fig- 0
ures represent the ratio against the size of the SPO order.

Compression method

Figure 14:HDT- Conpr ess results.
0.5 implies that both components similarly contribute to

the final compression ratio, hence the importance of iso- 5.4. Query Response Evaluation

lating and improving both parts. Finally, we evaluate triple pattern resolution. We
Finally, Figure 14 compares the mean (over all the perform tests over the plain representation of Bitmap

datasetsHDT- Conpr ess ratio against the considered Triples (note that the aforementioned Huffman com-

universal compressors, verifying the previous results. pressed version is only intended to show its compress-

15

ibility for exchange and it is not directly queryable). 6. Related Work

We disregard also the Dictionary for a fair comparison

because the optimization of the mapping operations is HDT representation can be viewed from different

an orthogonal issue for most RDF engines. We experi- points of view, uses techniques from diverse fields, and
ment against state-of-the-art solutions such as RDF-3X can be applied in different scenarios. It can be consid-
and MonetDB which allow larger datasets to be man- ered as a binary RDF format; thus, we discuss its re-
aged. We perform on MonetDB by following the work lationship with the most relevant RDF representations.

in [51]: we create separated predicate tables and insertlt takes advantage of the RDF structure; we review the

ID-based subject/object tuples, in this order (thus forc-
ing a subject-object index). We also disable the dictio-
nary in RDF-3X.

All tests are performed on tHighpediadataset and the

SPARQL triple pattern queries are extracted from the
log provided for the USEWOD’2011 Challende This

most important findings in this direction. Regarding ap-
plications, we review and compare it with the relevant
literature on RDF publication, RDF exchange and RDF
indexing and querying.

6.1. RDF Representations

means that our testbed is composed by real user queries Today there are several syntax representations for

except for the patternsS, P, O) which are directly ex-

tracted from the original dataset through a random pro-
cedure. We choose, at random, 50 different queries for
each triple pattern, translated to their correspondent IDs.

Table 15 shows the performance for the considered
triple patterns (averaged times, in milliseconds per pat-
tern). Note that with our curreDT solution, theSPO
order can only resolve efficiently the first three patterns.
In order to test all patterns, tti@SPorder is used for the
next two queries an&OSfor the last two ones. Thus,
we do not testHDT as a full-fledged engine but we give
insights of query performance over distinct orders.

First, we compare against MonetDB to evaluate the
performance oHDT versus a vertical-partitioning so-
lution. The use oHDT largely improves query times
for all patterns. This is specially important for patterns
with unbounded predicates because their resolution is
the main weakness of the vertical-partitioning systems;
forinstance, (S,?P,0) takes 757 seconds/pattern in Mon-
etDB and only 0.03 milliseconds/patternHidT. These
large differences are an experimental evidence of the
HDT possibilities for SPARQL querying.

The comparison ofiDT and RDF-3X also shows in-
teresting conclusions.HDT is the most efficient ap-
proach for almost all patterns. The only pattern where
RDF-3X outperformsHDT is (7S, P,O). Although
(7S, P,70) improves over RDF-3X and MonetDB, it
achieves the worst time of all the triple patterns tested
on HDT. It means that grouping by predicate@Sor-
der) makes slower searches in the bitmap. This corre-
lates with the high predicate degrees studieddbpe-
dia, i.e. there are many subjects and objects related with
a given predicate. This fact evidences the importance of
the defined RDF metrics to optimize indexes and query
evaluation.

L3http://data.semanticweb.org/usewod/2011/challenge.html

16

RDF data,e.g. RDF/XML, N3, Turtle or RDF/JSON.
None of these proposals, though, seems to have consid-
ered data volume as its primary goal.

RDF/XML [8], due to its verbosity is good for ex-
changing data, but only on a small scale. It includes
some compacting features:

e Omitting Blank Nodes ([8], section 2.11): The
attributerdf:parseType="Resourceallows to im-
plicitly create blank nodes.

Omitting Nodes ([8], section 2.12): Under cer-
tain conditions, object nodes with string literals can
be moved to property attributes, hence the subject
node becomes empty.

« Abbreviating URI references ([8], section 2.14):
First, a base URI attributanl:basecan be set. This
is the base URI for resolving relative RDF URI ref-
erences, otherwise the base URI is that of the cur-
rentdocument. Then, thdf:ID attribute on a node
element can be used insteadrdf.about This at-
tribute must be interpreted as a relative RDF URI
reference.

Collections ([8], section 2.16): It allows an
rdf:parseType="Collection"attribute to be defined
on a property element. This provides a set of node
elements related to the subject node.

Notation3 (N3 [10]) is a language which was origi-
nally intended to be a compact and readable alternative
to RDF’'s XML syntax, optimized for reading by scripts.
Thus, it reduces verbosity and represents the RDF with
a simple grammar based on the plain triples philosophy.
It also allows some compacting features such as abbre-
viations for URIs prefixes (and base URI), shorthands
for common predicates and square bracket blank node
syntax. One major advantage is the use of lists. For

| [(S, P,0) [(S,P,?0) | (S,?P,?0) | (S,7P,0) | (?S,7P,0) | (?S,P,0) | (?5,P,?0) |

RDF-3X 1.82 2.90 2.75 2.31 3.86 2.55 2634.86
MonetDB 26.14 50.29| 677111.48| 757448.11| 675127.13 97.49 6397.92
HDT 0.05 0.01 0.05 0.03 0.90 8.31 2108.82

Figure 15: Query times (in ms/pattern) for simple triple pats

instance, repetition of another objects for the same pre-as a common characteristic of RDF real-world data.
vious subject and predicate using a comma “,” and rep- Ding and Finn [25] reveal that Semantic Web graphs fit
etition of another predicate for the same subject using a power-law distribution within some metrics such as the
semicolon *;". size of documents and term frequency use; most terms
Turtle [9] is a more compact and readable alternative. are described through few triples. Regarding the use
Itis intended to be compatible with, and a subset of, N3, of an RDF schema (RDFS[15]), the space of instances
thus it inherits its compact featuresg.the abbreviation is sparsely populated, since most classes and proper-
of RDF collections. N-Triple¥ is also a subset of N3, ties have never been instantiated. By crawling the Web,
restricting to only one triple per line, using hardly any Oren [46] comes to similar conclusions, showing that
syntactic sugar. It simplifies the parsing process at the resources (URIs) in different documents fit to a power-
expense of avoiding compact structures. law distribution. Theoharis [53] studies these properties
RDF/JSON [2] resembles Turtle, with the advantage for Semantic Web schemas, RDFS and OWL [41]. Sim-
of being coded in a language easier to parse and moreilar distribution is found in the descendants of a class, as
widely accepted in the programming world. It is in- well as other schema features, such as the existence of
tended to be easy for humans to read and write and easyfew classes interconnecting schemas, or non-balanced
for machines to parse and generate. hierarchies. The presence of star and chaining nodes
Although most of these formats present features to has been also described in data and queries (star- and
“abbreviate” constructions like URIs, groups of triples, chain-shaped join queries) [43, 44]. This schema anal-
common datatypes or RDF collections, the compactnessysis has contributed to synthetic schema generation for
of the representation definitely was not the main con- benchmarking [53].
cern of their design. Finally, Sterno [55] is designhed as These results motivate the application to RDF of
a subset of Turtle for optimizing parallel /0. Although the well-known Web distribution, where power-law is
it collaterally addresses some notion of initial metadata present in successors list of a given domain, playing an
and compactnes® Q. all prefix declarations must oc- important role in Web graphs compression [14, 18].
cur at the beginning of a document and a Lempe-Ziv. RDF compression capabilities have been studied [27]
compression over Sterno is evaluated), its main purposebut have not been applied in a concrete format or imple-
is to allow parallel processing (divisibility) disregarding mentation. The situation is not better for splitting RDF

publication facilities as well as native query support. into components. Neither RDF/XML nor N3 (and their
subsets Turtle and N-Triples) have the basic constructors
6.2. RDF Structure to design modular files. To the best of our knowledge,

RDF is a cornerstone in the Web of Data. It provides none of these techniques have been applied in the design
the generic graph-based data model used to structureof RDF datasets.
and link data that describes things in the world [12]. There is little work on the design of large RDF
Currently, the Web of Data comprises very large RDF datasets. There have been projects discussing design is-
datasets from diverse fields like as bioinformatics, so- sues of RDF®, and a working group on design issues
cial networks or geography, among others. RDF adop- of translation from relational databases to RDFow-
tion is becoming incredible important. However, works €ver, none of these works have touched the problem of
studying its global functioning and structure are scarce. RDF publication and exchange at large. The project that
Although power-la#® distribution validation in RDF is currently systematically addressing the issue of pub-

data remains an open field, in practice it is assumed lication of RDF at large, Linked Data, is beginning to
face some of these issues.

L4http:/mvww.w3.org/TR/rdf-testcases/#ntriples
15A power law is a function with scale invariance, which can be 16Best Practices Publishing Vocab. W3C WG:
drawn as a line in the log-log scale with a slope equal to a scaling www.w3.0rg/2001/sw/BestPractices/, and the Wordnet case
exponente.g. f(x) = ax~F, thus f(cx) o f(z), with a,c, 8 www.w3.0rg/2001/sw/BestPractices/WNET/wn-conversion.html

constants. http:/iwww.w3.0rg/2001/sw/rdb2rdf/

17

6.3. Applications on RDF

At this point in the evolution of the Web, RDF can
actually be used in a wide variety of fields and applica-
tions. We mainly focus on (i) publication, (ii) exchange
and (iii) indexing and querying.

6.3.1. Publication

An increasing number of data is currently published
adopting RDF and the Linked Data principles [11].
Linked Open Data (LOD) cloud is estimated in more
than 31 billion RDF triples and half a billion links.

pact representation for XML. It is based on efficient en-
codings of XML event streams using a grammar-driven
approach. The stream of events are represented using
variable length codes.

6.3.3. Indexing and Querying

RDF is a logical data model not limited by its physical
storage or indexing technologies. However, these pro-
cedures are strongly related with the later querying pro-
cess, which is typically performed by SPARQL queries.
SPARQL [48] is a declarative language for extracting

Furthermore, Open Data and Open Government move-information from RDF graphs. It provides graph pat-

ments have also been gaining momentum by publish-

tern matching facilities allowing to bind variables to ele-

ing government data in standards format such as RDF. ments in the RDF graph. In addition, SPARQL provides
For instance, the United States government through thea series of operators (namely SELECT, AND, FILTER,

data.gov site hosts billions of RDF triples in several
RDF datasets.
The Vocabulary of Interlinked datasets (VoiD [3])

OPTIONAL, and UNION) offering high expressiveness
for structured queries.
Several RDF indexes and RDF storages explore ef-

aims to bridge data publishers and data users, so thatficient SPARQL resolution methods. Some approaches
publishers can distribute the datasets (as @ RDF dump,store RDF in a relational database and perform SPARQL
SPARQL Endpoints, etc.) and users can discover and queries through SQL, such as Jena-TDB [57], Virtu-
use identified datasets given certain attributes. It pro- oso [26], and the column-oriented databases C-Store
vides a vocabulary and a set of instructions that allow [52] and Monet-DB [51]. Two basic policies are con-

the discovery and usage of linked datasets.

sidered to transform RDF into a relational representa-

Semantic Sitemaps [24] support efficient semantic tion (see [49] for an experimental performance compar-
datasets discovery and high-performance retrieval. It ison): (1) storing all triples in a large 3-column table
is based on extending the traditional Sitemap Protocol [s p,0](Virtuoso uses it), and (2) grouping triples by

with new XML tags for describing the presence of RDF
data (and to deal with specific RDF publishing needs).

6.3.2. Exchange
To the best of our knowledge, few works focus on

RDF exchange. Actually, RDF datasets tend to be pub-

predicate and defining a specific 2-column table: [S,0]
for each one; this last technique, called vertical parti-
tioning [1], is based on the fact that few predicates are
used to describe a dataset. A third hybrid policy (im-
plemented in systems like Jena-TDB) results from the
combination of the previous ones: a specific 3-column

lished and exchanged within plain RDF formats, such as table is considered to store clusters of correlated predi-

RDF/XML, N3, Turtle and JSON. General compressors

cates. Hexastore [56] and RDF-3X [45] are well-known

(typically gzip) are also used over these plain formats in systems which create indexes for all ordering combi-

order to reduce the final size.
A recent work [27] shows that big RDF datasets are

nations (SPO, SOP, PSO, POS, OPS, OSP). Although
their main goal is to achieve a global competitive per-

highly compressible due to the structure of RDF graphs formance, this index replication largely increases spa-

(power law), organization of URIs and RDF syntax ver-

bosity. This work also approaches basic RDF data com-

pression using (i) direct compression, (ii) adjacency list
compression and (iii) an RDF division into the dictio-

nary of elements and the triples, substituting for each el-

tial requirements avoiding indexes to be fully loaded and
queried in main memory. Thus, very expensive disk op-
erations should be performed, resulting in less compet-
itive operations. RDF-3X tries to reduce this effect by
tuning a gap-based schema which compresses the leafs

ement the corresponding number assignation in the dic- of the B+-tree storing all triples in the index. BitMat

tionary. The last technique is also carried out in [54]

[7], suggests a compressed bit-matrix structure for stor-

using MapReduce and distributed algorithms to boost ing huge RDF graphs. It represents the RDF data with

the efficiency of large RDF data compression and de-

a set of two-dimensional matrices: SO and OS for each

compression. It achieves linear scalability regarding the predicate, PO for each subject and PS for each object

input size and number of nodes.
RDF/XML is a valid XML format and thus XML in-

(note that OP and SP are discarded). These matrices
are gap-compressed by taking advantage of their sparse-

terchange formats might be used. For instance, the Ef-ness. It also supports basic querying capability without

ficient XML Interchange Format (EXI [50]) is a com-
18

decompressing the data. However, the vast majority of

approaches suffer from lack of scalability [51], and use the idea thatthe data is the indéx The Triples compo-
naive compression techniques. The workfiples [5] nent is specifically encoded using a succinct data struc-
constructs an RDF index over a compact data structureture that enables indexed access to any triple in the
called R-trees [16], which excels at compressing very dataset. ThugiDT provides effective RDF decomposi-
sparse two-dimensional binary matrices’-tiples ap- tion, simple compression notions and basic indexed ac-
plies vertical partitioning and constructs an independent cess in a compact serialization format which provides
k2-tree for each predicate, which in turn stores all pairs efficient access to the data. In this sense, we have set
(subject, object). The resulting#rees describe very up awebsiteht t p: // r df hdt . or g, exposing HDT-
sparse 1 distributions which allowf#riples to achieve based applications (such as HDT-it for visualization)

ultra-compressed representations. and HDT compliant libraries (C++ and Java). Whereas
the current approach already addresses the publication
7. Conclusions and Future Work and exchange steps of the process, consumption of RDF

o data inHDT format deserves more research, particularly
RDF publication and exchange at large scale are com-n efficient RDF indexing and SPARQL resolution. On
promised by the textual representation formats used t0the one handHDT describes a machine-friendly rep-
encode huge datasets. They are very verbose and spacqesentation which makes any kind of post-processing
inefficient, they are not prepared to separate the meta-mych simpler. On the other hand, tBheck&Fi nd
data from the data itself, and more importantly, they re- mechanism sets the basis for efficient retrieval. Cur-
quire a full scan over the whole document to locate any rently, it is focused on single triple pattern retrieval, but
piece of information. Therefore, we need more efficient f] SPARQL resolution needs a comprehensive design

formats that carry out this limitation. ~ of join operators and query optimization.
We first propose a set of metrics and an empirical

analysis of RDF Data to understand the structural fea-

tures of RDF. This supports the decisions taken when Acknowledgments

proposing RDF data formats, data structures and in-

dexes. An important finding is that the number of RDF This work was partially funded by MICINN

terms that appear both as subject and object is very sig-(TIN2009-14009-C02-02); Science Foundation Ireland
nificative, but that does not occur for other combina- (SF|): Grant No~SFI/08/CE/11380, Lion-II; Fondecyt
tions. This implies that compactness can be achieved by 1110287 and Fondecyt 1-110066. The first author is
characterizing and grouping the references to the samegranted by Erasmus Mundus, the Regional Government
node. Another interesting result is the analysis of de- of Castilla y Leon (Spain) and the European Social
grees of the nodes, that provide insights not only for Fynd. The second author is granted by the University

compression but also for designing indexes and query of valladolid: programme of Mobility Grants for Re-
evaluation optimizers. We observe that objects are typi- searchers (2012).

cally associated to only one predicate, whereas subjects
are related to a set of limited predicates.
Based on the previous analysis, we dewiel, a References
compact representation format to address the afore-
mentioned problems by decomposing an RDF dataset [1] D.Abadi, M. Adam, S.R. Madden, and K. Hollenbach. Scalable

into three Iogical components: Header Dictionary and Semantic Web Data Management Using Vertical Partitioning. In
' ' VLDB 2007 pages 411-422, 2007.

T”ples' This depomposnmn alone Iead; 'tO Space sav- [2] K. Alexander. RDF in JSON: A Specification for serialising
ings of up to 15 times compared to the original represen- RDF in JSON. INSFSW 20082008.
tation. Then, we build a specific compressor oWBi [3] K Alexander, R Cyganiak, M Hausenblas, and J Zhao. De-
HDT- Conpr ess, which shows a size reduction to half scribing Linked Datase?s-On the Design and Usage of voiD,
. " the’Vocabulary of Interlinked Datasets’. |bDOW 2009 at
pf the achieved by tra@uqnal COMPressors. Our exper- WWW 20092009.
iments demonstrate significant opportunities for RDF [4] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao.
compression allowing important size reduction of the Describing Linked Datasets with the VoID Vocabulary.
huge datasets that are being published in the Web of ggpdmz-‘gffrg”m"o'd/’ 2011. W3C Interest Group Note
Data, therefore providing an efficient RDF exchange. [5] S. Alvarez, N. Brisaboa, J.D. Fernandez, and M.A. Martinez-
In addition,HDT opens new opportunities for practi- Prieto. Compressed k2-Triples for Full-In-Memory RDF En-
cal processing of RDF: a carefully designed binary seri- gines. INAMCIS 2011, article 35@011. .
alization does not only achieve compression, but also [6] M. Arias, J.D. Fernandez, and M.A. Martinez-Prieto. An em-
. . . pirical study of real-world SPARQL queries. Rroc. 1st In-
enables efficient retrieval mechanisms over the com- ternational Workshop on Usage Analysis and the Web of Data
pressed representation. To this extéid] implements (USEWOD) 2011.

19

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

M. Atre, V. Chaoji, M.J. Zaki, and J.A. Hendler. Matrix “Bi
loaded: a scalable lightweight join query processor for RDF
data. INWWW 2010pages 41-50. ACM, 2010.

D. Beckett. RDF/XML Syntax Specification (Revised).
http://www.w3.0rg/TR/2004/REC-rdf-syntax-grammar-
20040210/, 2004. W3C Recommendation.

D. Beckett and T. Berners-Lee. Turtle - Terse RDF Triple
Language. http:/iwww.w3.0rg/TR/2012/WD-turtle-20120710/,
2012. W3C Working Draft 10 July 2012.

T. Berners-Lee. Notation 3, 1998. Available at
http://www.w3.org/Designissues/Notation3.
T. Berners-Lee. Linked Data: Design Issues.

http://www.w3.org/Designlissues/LinkedData.html, 2006.
Retrieved October 2012.

C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story
So Far.International Journal on Semantic Web and Information
Systemgsb:1-22, 2009.

C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee. Linked Data
On the Web (LDOW 2008). IWWW 2008pages 1265-1266.
ACM, 2008.

P. Boldi and S. Vigna. The webgraph framework |: compression
techniques. I'WWWW 2004pages 595-602, 2004.

D. Brickley. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/, 2004. W3C Rec-
ommendation.

N. Brisaboa, S. Ladra, and G. Navarro.2-ees for Compact
Web Graph Representation. $PIRE 2009LNCS 5721, pages
18-30. Springer, 2009.

J. J. Carroll. Signing RDF Graphs. ISWC 2003pages 369—
384, 2003.

F. Chierichetti, R. Kumar, and P. Raghavan. Compressed web
indexes. INWWW 2009pages 451-460, 2009.

E.l. Chong, S. Das, G. Eadon, and J. Srinivasan. An efficient sql-
based rdf querying scheme. YLDB 2005 pages 1216-1227,
2005.

D. Clark. Compact PAT treesPhD thesis, University of Water-
loo, 1996.

J.G. Cleary and I.H. Witten. Data Compression Using Adap-
tive Coding and Partial String MatchindEEE Transactions on
Communications32(4):396—-402, April 1984.

R. Cyganiak, S. Field, A. Gregory, W. Halb, and J. Tennison. Se-
mantic statistics: Bringing together SDMX and SCOMMOW
2010 at WWW 201 (ages 2-6, 2010.

R. Cyganiak, A. Harth, and A. Hogan. N-Quads: Ex-
tending N-Triples with Context, 2008. Available at
http://sw.deri.org/2008/07/n-quads/. Retrieved October 2012.

R Cyganiak, H Stenzhorn, R Delbru, S Decker, and G Tum-
marello. Semantic sitemaps: Efficient and flexible access to
datasets on the semantic web. BSWC 2008volume 5021,
pages 690-704. Springer-Verlag, 2008.

L. Ding and T. Finin. Characterizing the Semantic Web on the
Web. InISWC 2006pages 242-257, 2006.

O. Erling and |. Mikhailov. RDF Support in the Virtuoso DBMS.
Proceedings of CSS\¥21:59-68, 2007.

J.D. Fernandez, C. Gutierrez, and M.A. Martinez-Prieto. RDF
compression: basic approaches. VUWW 2010 pages 1091—
1092, 2010.

R. Gonzélez, S. Grabowski, V. Makinen, and G. Navarro. Prac-
tical implementation of rank and select queries.WEA 2005
pages 27-38, 2005.

C. Gutierrez, C. Hurtado, A.O. Mendelzon, and J. Perez. Foun-
dations of semantic web databasekurnal of Computer and
System Sciences (JCSB):520-541, 2011.

J. Hayes and C. Gutierrez. Bipartite Graphs as Intermediate
Model for RDF. InISWC 2004pages 47-61, 2004.

A. Hogan. Exploiting RDFS and OWL for Integrating Hetero-
geneous, Large-Scale, Linked Data CorpdrdD thesis, DERI,

20

(32

(33]

[34]

[35]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

2011.

A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres.
Weaving the pedantic web. 1bDOW 2010 at WWW 2010
Raleigh, USA, April 2010.

Aidan Hogan, Axel Polleres, Jurgen Umbrich, and Antoine Zim-
mermann. Some entities are more equal than others: statistical
methods to consolidate Linked Data.Workshop on New Forms

of Reasoning for the Semantic Web: Scalable & Dynamic (Ne-
FoRS201Q)2010.

Aidan Hogan, Antoine Zimmermann, Jurgen Umbrich, Axel
Polleres, and Stefan Decker. Scalable and distributed meth-
ods for entity matching, consolidation and disambiguation over
linked data corpora. Web Semantics: Science, Services and
Agents on the World Wide Wet0:76 — 110, 2012.

D.A. Huffman. A Method for the Construction of Minimum-
Redundancy Code$roceedings of the IRE0(9):1098-1101,
1952.

IBM. IBM Dictionary of Computing McGraw-Hill, 1993.

A. Langegger and W. Woss. RDFStats - An Extensible RDF
Statistics Generator and Library. DEXA 2009 pages 79-83,
2009.

R. R.: Lassila O., Swick. Resource description frame-
work (rdf) model and syntax specification. http://www.w3.org/
TR/1999/REC-rdf-syntax-19990222/, 1999.

D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth.
RDF On the Go : An RDF Storage and Query Processor
for Mobile Devices. InISWC 2010 2010. Available at
http://iswc2010.semanticweb.org/pdf/503.pdf.

M.A. Martinez-Prieto, J.D. Fernandez, and R. Canovas. Query-
ing RDF Dictionaries in Compressed Spag&M SIGAPP Ap-
plied Computing Review42(2):64-77, 2012.

D. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage Overview. http://www.w3.0rg/TR/owl-features/, 2004.
W3C Recommendation.

B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 Web On-
tology Language Structural Spcification and Functional Style-
Syntax. http://www.w3.0rg/TR/owl2-syntax/, 2009. W3C Rec-
ommendation.

T. Neumann and G. Weikum. RDF-3X: a RISC-style engine
for RDF. Proceedings of the VLDB Endowmgih(1):647-659,
2008.

T. Neumann and G. Weikum. Scalable join processing on very
large rdf graphs. I€OMAD 2009 pages 627-640, 2009.

T. Neumann and G. Weikum. The RDF-3X engine for scalable
management of RDF dataThe VLDB Journal 19(1):91-113,
2010.

E. Oren and et al. Sindice.com: a document-oriented lookup
index for open linked datalnternational Journal of Metadata,
Semantics and Ontologie3(1):37-52, 2008.

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Com-
plexity of SPARQL. ACM Transactions on Database Systems
34(3):1-45, 2009.

E. Prud’hommeaux. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-spargl-query/, 2008. W3C Recom-
mendation.

Michael Schmidt, Thomas Hornung, Norbert Kiichlin, Georg
Lausen, and Christoph Pinkel. An Experimental Comparison of
RDF Data Management Approaches in a SPARQL Benchmark
Scenario. INSWC 2008pages 82—-97, 2008.

J. Schneider and T. Kamiya. Efficient XML Interchange (EXI)
Format 1.0, 2009. W3C Candidate Recommendation.

L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S. Mane-
gold. Column-store support for RDF data management: not all
swans are whiteVLDB, 1(2):1553-1563, 2008.

M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O'Neil, and Others.
C-store: a column-oriented DBMS. Froceedings of the 31st

international conference on Very large data baseages 553— A preprocessing step is firstly applied. Billion Triples

53] f(ef‘r-hVLEB_Engo"TV”?tef‘kt' 2035-K o 4\ Christonnid data was parsed from N-Quads forRtab N-Triples by
. eonaris, Y. lzitzikas, D. KotzInos, an . ristopniaes. [. H H .
On Graph Features of Semantic Web ScheniBEE Trans. on eliminating context |nfqrmat|on, gatherlng the selected
Know. and Data Engineerin@0(5):692—702, 2008. datasets. Duplicate triples were discarded (Table A.3
[54] J. Urbani, J. Maassen, and H. Bal. Massive semantic web data reflects the number of triples after cleaning).
compression with mapreduce. HPDC 2010 pages 795-802. Table A.16 summarizes the data statistics collected

ACM, 2010. .
(55] J. Weaver and G.T. Williams. Reducing /O Load in Parallel for the different datasets. Note that these datasets are or-

RDF Systems via Data Compression.1st Workshop on High- ~ dered inincreasing number of triples. Several comments
Performance Computing for the Semantic Web (HPCSW 2011) are in order: first of all, we remark the high variability

2011 . _ of values among the datasets. Although expected, this
[56] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple in- . . B .

dexing for semantic web data managemeitoceedings of the pomts out the problem of deggmng a general one size

VLDB EndowmentL(1):1008-1019, 2008. fits all” solution for RDF engines. Moreover, these met-

[57] K Wilkinson, C Sayers, H Kuno, and D Reynolds. Efficient rics encourage the study of each particular case as well
RDF Storage and Retrieval in JenaProceedings of SWBB aq the interest in getting insights on common behaviors.
3(September):7-8, 2003. .

Max out-degree reveals that there are some subjects
present in many triplese(g. 7408 in Wikipedia3) but

Appendix A. Experimental RDF Characterization the mean out-degree remains lower. This corresponds to

Thi i)) al stud the presence of a subject power-law distribution. For in-
IS appendix Comprises an experimental study on giqnc6 the subjects hiprot occur in a mean of only

real-world datasets in order to characterize RDF struc- 5.94 triples and those of the largest datagiedia

wre a:jnc_i resdun.dangylbyvf\i/pplyr/]lng t?.e pzrametersbpre- occur in a mean of 12.62 triples. However, this increase
sented In Section 2.1. e chose five atgseys aS(Edcannot be attributed to the size of the datasets but the na-
on the huge amount of triples, different application do- ture of them DBpediadescribes facts of things, so more

mains apd prtehwous utsebs n bfen(ihmarkTgih Tadblf A'f’ statements about a subject have to be included. In con-
summarizes theé most basic features o € dalase S‘trast, the number of links between proteind&iniprot is

GeonamedbtuneandUniprot are samplings extracted limited by the underneath biological theory.

from the Billion Triples Challenge 2010 data collec- If we compare the out-degree with the partial, labeled

. 18 - H - . . .
tion Dlrt]) parurc]:ullgr,Geopam;agathgrs geclxjgrgpmg €ON" " and direct degrees, the structure around subjects is fur-
cepts,Dbtunenolds music information andniprot is a ther detailed. First of all, partial and direct out-degree

freeily-a(.:cessible RDF dataset (.)f pro'Fe.in sequence datahave similar figures. Thus, the maximum out-degrees
Wikipedia®'® stand? for thde ET%;;Q ng_'a’;’f_("a Im;;ge' are given by onés, p) pair with multiple related objects.
tween pages transformed to pedia’is an In contrast, mean partial out-degree is slightly bigger

conve:(sflc;n of W'k'ped'a’ vy|th||the a!lr11b(|)f malﬂn%\}hs than 1, which implies that the presence of multivalued
type of information semantically available on the Web. pairs(s, p) is not so frequent.

The column "Size” in Table A.3 shows the origi- The labeled out-degree verifies that few predicates

tnhal S|zeb|n rafvx: 'NI- Trlpletz fodrrr:at, ;‘Tn%IetE" [[rrlldlcatlets tare related to the same subject. For instance, although
€ humber ot triples in the dataset and the three fates Dbpediahas 39,672 predicates, at most 22 links the

columns show the number of different subjects, predi- same subject. In all cases, the mean labeled out-degree

cates apd objects respectively. As expected, the numberranges between 4 and 5, which is a clear indicator of the
of predicates stays commonly low. We have also cho-

: X : resence of star-shaped nodess, nodes with different
senDbpediaas an extreme case in which the number b P

f predicat 1o the order of th ds. H triples around one common subject.
0 ?r?h |(iatlhes growsto the ort.ero” OUSI?F t?]. owel;/er, The study of the in-degree comes to very similar
note that they remain proportionally small to th€ NUMDET: ¢, osjons. In addition, maximum degrees reveal a
of triples. Thus, the consideration of DBpedia broad-

th X tati ¢ datasets which more skewed structure on objeci®., clearer power-
ens the experimentation ot common datasets which Us€ 5 gistributions are present. An interesting conclusion
more limited-size predicate dictionaries.

W te th i ious| ted. i emerges when studying mean labeled in-degree. The
€ compute the parameters previously presented, Iy, mper of predicates related to a given object is very
order to characterize the structure and gain insights to-

d vzina the redund ¢ h dataset IIclose to 1. This stands for a specific treatment of these
ward analyzing the redundancy of each dataset, as Wellu o 5ye nodes” for each predicate. Thus, approaches such
as their compact and compression possibilities.

as a specific compression over vertical partitioning (such
as C-Store), can obtain important results.

18http://km.aifb.kit.edu/projects/btc-2010/
Bnttp://labs.systemone.at
20DBpedia dump: http://wiki.dbpedia.org/Downloads36 21http://sw.deri.org/2008/07/n-quads/

21

dataset| Size (GB) |

Triples | # Subjects| # predicates]

Objects |

Geonames 1.00 9,415,253] 2,203,561 20 | 3,031,664

Wikipedia? 6.72 | 47,054,407| 2,162,189 9 | 8,268,864

Dbtune 9.34 | 58,920,361| 12,401,228 394 | 14,264,221

Uniprot 9.11 | 72,460,981| 12,188,927 126 | 9,084,674

Dbpedia-en 33.12 | 232,542,405| 18,425,128 39,672 | 65,200,769

Table A.3: datasets description.

Geonames| Wikipedia3 Dbtune Uniprot | Dbpedia-en
total [deg™(G) 369.00 7408.00 2194.00 2408.00 7184.00
Max | Patial | deg~(G) 298.00 7400.00 2193.00 2406.00 7177.00
labeled | degL~(G) 17.00 7.00 24.00 22.00 448.00
SUBJECT direct | degD~(Q) 369.00 7408.00 2194.00 2408.00 7184.00
OUT- DEGREE total | deg—(G) 4.27 21.76 4.75 5.94 12.62
Mean | partial | deg==(G) 1.07 3.95 1.14 1.30 2.06
labeled | degL—(G) 4.00 5.51 4.16 4.59 6.13
direct | degD—(Q) 4.27 21.75 4.68 5.93 11.17
total | degT(Q) 2.20<10° | 2.05x10° 2.27x10° 6.04x10° 7.33x10°
Max | partia degtt(G) | 2.20x106 | 2.05x106 2.27x106 6.04x 106 7.33x106
labeled | degL™t(G) 2.00 4.00 93.00 15.00 2938.00
OBJECT direct | degD*(G) | 2.20x10% | 2.05x10° 2.27x10° 6.04x10° 2080.00
I N- DEGREE total degt(G) 3.11 5.69 4.13 7.98 3.57
Mean | partial | degt+ 3.08 5.40 3.87 5.75 2.72
labeled | degL+ 1.00 1.05 1.07 1.39 1.31
direct | degDt 3.11 5.69 4.07 7.95 55.03
total | degP(G) 2.35x10° | 3.45x107 1.23x107 1.43x107 9.87x107
Max out degP~(G) | 1.65x10% | 3.84x10° 2.25x 106 2.01x107 1.14x 107
PREDI CATE in degPt(G) | 2.20x10% | 2.16x10° 1.00x 107 1.21x107 8.89x 10°
DEGREE total | degP(G) 470763.00| 5.22x10° 149544.00| 575087.00 5861.63
Mean out degP—(G) | 152709.00| 967404.00| 38641.10| 100034.00 2158.84
in degP+ 440438 | 1.32x10° 130964.00| 443981.00 2845.39
as—o 0.018 0.17 0.61 0.43 0.25
RATI OS as—p 0 0 0 0| 5.76x10~*
ap—o 0 0 | 3.44x10=6 | 1.75x10~¢ 0

Figure A.16: datasets statistic summary.

A remarkable result is the great difference between gible. These are scheme descriptions, which are rare
the subject and object distribution Dbpedia Objects due to the RDF itself is schema-relaxed,, the vocab-
are related with subjects 5 times more than vice versa ulary evolves as needed on demand. Subject-object is
(55.03 versus 11.17). the most frequent path constructor. For instance, the de-
i 1 i 0, 0,
Predicate degrees impact on vertical partitioning, sign of DbtuneandUniprot has cohesion (61% and 43%

hence the relevance of their study. Except Bispe- respectively are shared subjects-objects), with a high

dia, the difference between the maximums and means subject-object ratio and a smaller number of very fre-

predicate deyees e not e dear as e common auf€T PEeRes The vl 8 s o destn
and in-degrees. This stands for a distribution out of) gy

. with others. A similar interpretation could be done for
?ser Zchr)tey%fep;o(\:/geurkljat\;ve, %lrt_zgg?n?n?nr?ﬁvperfg:gi[:sst(SI';I]ChV\ﬁkipediaSand Dbpediabut with less cohesion. Note
: . . N)
fact, the distribution of predicates is clearly determined Lhaateﬂ%ig?ﬁgrfglrnkathiwhlgeglaerorﬂ?e bﬁeg]'ssragfesro i
by the design and purpose of the dataset. For instance, vel pages. However, u prop

every protein inUniprot is characterized with the same ﬁ:t'ﬁsthovﬁr rigigi I?rzkrefou:ﬁe r'S propolr:]l?nra:qllyﬂ?glh\?vr
number of properties, only diverging in the number of an the number o S to otherpages. In turn, the 1o

links. The same case might be present in categorizing zggjeti(g:;bé?Ctéit'?;Ghﬁgglacn;ﬁzzogsvmiﬁ aa:?zroes(tje:;\re
an artist or a song ilbbtune However, the properties P geograp P ' '

over a resource can vary greatlyDbpedia linked to their superior administrative category.

Finally, the ratios reveal a level of cohesion between Regarding power-law distributions, Figure A.17
the different types of nodes. As we expected, subject- shows the distribution of subjects and objects of
predicate and predicate-object ratios are almost negli- Wikipedia? As we expected, a power-law distribution

22

Sub ject Distribution + Object Distribution +
y=1.727e+07x"-2,181 —— y=1,727e+87x"-2,366 ——

100000

10000
108000

in X triples

1000 10008

b4
2 1ee
g
2

#subjects

100

1 10 160 1600 108 1 10 108 1600 16600 100000 1e+06 le+
#triples striples

Figure A.17: Wikipedia? distribution of subjects (left) anbjects (right)e.g.a point (X,Y) in the rightmost graphic says that there are Y different
objects each occurring in X triples. Both axis are logarithmic. The power laws have exped®l and—2.366 respectively.

is remarkable in both cases. The other datasets reveal Figure A.18 shows a typical producer/consumer case
the same distribution for subject and object. in HOT. First, the producer uses &dT encoder in order

All these results immediately point to possible com- to generatédDT from RDF. The Header, if present, can
pact design models of RDF and optimizations of index- be retrieved by the consumer in order to get metadata
ing techniques. Our approacHDT, exploits the sig- about the dataset and the publication. In turn, the con-
nificant correlation and the inherent redundancy in data sumer uses aADT decoder to efficiently access th®T
and structure. In particular, the deployment proposed in core data. Furthermore, thOT decoder should provide
Section 4 takes advantage of subject-object ratio charac-the consumer with distinct access possibilities, such as
terization and groups the references to the same node ingetting the original full RDF document, querying over
the Dictionary. In turn, the proposed Triples component the data or several management operations.
represents the graph compacting the distribution with
implicit and coordinated adjacency lists, parametrized Appendix B.1. HDT Syntax

by the degree metrics. The syntax ofHDT is given by the syntax of the

Header, and the Dictionary and the Triples encodings.
Appendix B. Binary RDF on HDT

HDT can be further developed into a complete RDF Appendix B.1.1. Header i)

syntax toward a binary representation for RDF. Let us 1 he Header has been described as a flexible compo-
define some basic concepts previous toHBE syntax nent containing metgdata abqut the data publication to-
specification described in this appendix. gether with mformat'lon to retrieve and process HIE

core data. The desired operations over the Header and
Definition 4 (HDT processor) A program module called jts requirements of machine-readable, human-friendly,
anHDT processor, whether it is software or hardware, gng easy querying, are well satisfied considering the
is used by application programs to encode their data Header as an RDF graph. This allows expressing meta-
into HDT core dataand/or to decodéiDT core datato (ata about the dataset (originally in RDF) with an RDF
make the data accessible. The former and latter afore- syntax, which can be discovered and used through well-

mentioned roles dfiDT processors are calleHDT en- known mechanisms, such as SPARQL Endpoints.
coderandHDT decoderrespectfully. Note that the Header is out of the scope of HIZT
Definition 5 (HDT core data) HDT core data con- core data and can be accessed independently.

sists of the Dictionary and Triples information of the ~ The use of VoiD [3] as the main vocabulary of the
HDT representation, whether it is present in a unique Headeris strongly recommended. The Header should be
or several files or streams. This core data must be self- represented in any RDF syntax. The normative format
contained,i.e., it must contain enough information to of the Header is RDF/XML.

consume the dataset. Each file or stream belonging to

the HDT core data is headed by control information and Appendix B.1.2. Control Information

followed by theHDT body which can be the full or part Dictionary and Triples components could be dis-
of the Dictionary component or the Triples component tributed or chunked, hence each part should have enough
or both. Note that the Header is out of the definition of information for processing it properly. Thus, each Dic-
theHDT core data, constituting a different file or stream. tionary and Triples component, as well as subparts of

23

o B

o 1
Gq ‘:r’\' @ Dieﬁomry/ies 2 (o] 4 v
:>\1 O @:; ° M O"'"'<:]'
\/ — o e
: e 0000 @ e
Provider yprencoder HDT Decoder Consumer
(000
riples
Figure A.18: The process DT encoding/decoding.
Cookie | Format | Component| Presence Bit| [Options] [Component Bits| Stands for |
Version Bits for Options 01 | Dictionary Component
] 10 | Triples Component
Table B.4: Control Information. 11 | both Dictionary and Triples Component
[HDT Format Version [Stands for | 00 | Reserved

0000
0111
1000 0000

Version 1
\ersion 8
Version 9

Table B.5: Version Examples.

them in case of splitting, is headed by a sequence repre-

senting control information.

The control information can identify Dictionary and
Triples components or subparts of them, distinguish
HDT core data streams from text, identify the version of
theHDT format being used, and specify the options used
to process théiDT core data. The control information
has the structure shown in Table B.4.

The control information starts with adDT Cookie,

a four byte field that serves to indicate that the file or
stream of which it is a part iBIDT core data. The four
byte field consists of four characters “$ ", “H ", “
D " and “ T ” in that order, each represented as an
ASCII octet. This four byte sequence is particular to
HDT and specific enough to distingui$tDT files and
streams from a broad range of data types.

The second part of the control information identifies
the version of thédDT format being used. The version
is a sequence of one or more 4-bit unsigned integers.
The first bit set to 1 indicates that the next 4-bits must
be read. The version number is determined by summing

Table B.6: 1st and 2nHDT component distinguishing bits.

[Property | Use |
codification Identify the codification scheme of thDT body.
format Set up the MIME type of théiDT body.

User defined metadata.

[user definefl

Table B.7:HDT Options.

the control information.

TheHDT options field provides a mechanism to spec-
ify the options of the encoded component or compo-
nents of theHDT body. This field is optional and its
presence is indicated by the value of the presence bit that
follows the HDT component distinguishing bits. If the
HDT options are present (presence bit setsto '1’), then a
final reserved word “$END” must be added at the end of
the control information to delimit its length. WheiDT
options are present, &DT Processor must observe the
specified options to process thiBT body. Otherwise,
anHDT Processor may follow the default values. If the
Header component is present and it informs about such
information, their values override the default ones. In
case of conflicts, thelDT options override the informa-
tion of the Header.

HDT Options are represented as text with a
<property>:<value>; scheme, as shown in Table B.7.

The codification is used to identify the concrete cod-

each sequence of 4-bit unsigned integers and adding lification scheme used to process tH8T body. This

(one). Table B.5 show examples of versions.

The third part of the control information consists in
the HDT component distinguishing bits, which identify
the component or components of tHBT body that fol-
low the control information. Th&iDT component dis-
tinguishing bits are three bits in which the combination
of the first two bits identifies the information below the
HDT control information, as shown in Table B.6. The
third bit set to "1’ indicates that the current file or stream
is a subpart of the entire component. When both Dictio-
nary and Triples Componerite. HDT core data follow

24

must be an URI identifying the codification of the com-
ponent or components indicated by tHeT component
distinguishing bits. When the codification option is ab-
sent, undefined or empty, no statement is made about the
codification scheme, therefore BIBT Processor should
assume the codification by default of the component
or components indicated by th#DT component distin-
guishing bits, unless other information is communicated
out of band. Table B.8 shows the URIs of the codifica-
tions by default and the section with detailed informa-
tion.

[HDT Component| Codification by default| Section | | | Stands for
Dictionary hdt:dictionaryPlain Section 4.2 a <http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#t ype>
Triples hdt:triplesBitmap Section 4.3.3 = <http://ww. w3. or g/ 2002/ 07/ o #sameAs>
both D.and T. hdt:globalBitmap Section 4.3.3 => | <http://wwv. w3. org/ 2000/ 10/ swap/ | og#i npl i es>
= | <http://ww.w3. or g/ 2000/ 10/ swap/ | og#i npl i es>,
Table B.8:HDT default URI codifications. but in the inverse direction

[HDT Component| Format by default |

Table B.10: Dictionary predefined prefixes.

Dictionary text/plain
ggfr:eg T ;puplliicztrit‘/’r:‘{i‘)’(‘;tstsneam « URIs can be absolute or relative to the base URI
' ' P (defined in the user defined metadata or in the
Table B.9:HDT default formats. Header component).

The format sets up the MIME type of thT body. If » URIs can make use of prefixes (defined in the user
the format option is absent, undefined or empty-Ha defined metadata or in the Header component) or
Processor should assume the format by default of the predefined prefixes (described below). Blanks are
component(s) indicated by tHeDT component distin- named with the: namespace prefig,g. _:b19 rep-
guishing bits, unless other information is communicated resents a blank node.

out of band. Table B.9 shows the formats by default.
The user defined metadata sets up auxiliary proper-

ties with additional control information to process the

data. The syntax and semantic of the user defined prop-

« Literals are written using double-quotesd. “lit-
eral”). The *“literal”™ string form is used when
they may contain linebreaks.

erties depend on the codification of tHBT bOdy, thus o Literals represented numbers or booleans can
HDT Processor must interpret the user defined properties be written directly corresponding to the right
within the codification context. User defined properties XML Schema Datatype: xsd:integer, xsd:double,
must follow the following naming conventions to pre- xsd:decimal or xsd:boolean.

vent conflicts between different component properties:
e Comments are not allowed in any form.
« Dictionary Component. Property names must start
with one unique dollar sign(“$”) character fol-
lowed by alphanumeric characters.

Table B.10 shows the predefined prefixes whereas the
string escaping sequences follows strictly N3.

« Triples Component. Property names must start Appendix B.1.4. Triples
with two unique dollar signs (“$$”) characters fol- The Triples component must contains the structure of
lowed by alphanumeric characters. the data after the ID replacement, comprising the pure
structure of the underlying graph. The multiple index-
» Both Dictionary and Triples Component. Prop- ing variants, uses and allowed operations over the triples
erty names must start with three unique dollar difficult the restriction on a particular codification for
signs(“$$$") followed by alphanumeric characters. the Triples component. Instead, any triple codification
may be established by specifying a concrete codification
Appendix B.1.3. Dictionary option or by the Header component.

The main goal of the Dictionary is to assign a unique 1 he codification by default must be interpreted as
ID to each element in the dataset and thus there is no re-Bitmap Triples (Section 4.3.3) DT Processors.
striction on the particular mapping or codification. We Whenthe same file or stream comprises both the Dic-
provide a general dictionary encoding to be followed by tionary component and the Triples component, then a
every particular codification. A dictionary codification ~Secondary control information must be included in be-
by default is given, and it must be assumecHBT Pro- ~ tween the two streams, identifying thidT component
cessors when no other codification scheme is specifieddistinguishing bits of each stream.
in the codification option or in the Header component.

Dictionary Encoding.The distinction between URISs,
literals and blanks, as well as string escaping, follows
a similar N3 syntax:

« URIs are delimited by angle brackets™and “>".
Whitespace within them is to be ignored.

25

