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Abstract

dlv is a state-of-the-art system for disjunctive logic programming, which may be used
as an implementation bed for solving declarative knowledge representation problems. In
this paper, we review the use of the dlv system for solving diagnostic problems, and
contrast this with solving planning problems in dlv. This is possible using a declara-
tive “guess and check” approach: The power of disjunction allows for nondeterministic
generation of plans, which are verified in a step by step manner by applying state transi-
tion rules. Efficient processing of these phases, in an interleaved mode, will be provided
through the algorithms incorporated in the dlv engine. Based on these ideas, we are
currently developing a front-end for deductive planning in d1v, which will be included in
future releases of dlv.

1 Introduction

Planning and diagnostic reasonings are very important Al tasks. Both fields have been
studied quite extensively before, for an overview we refer to [4] (for diagnosis) and to [17, 22]
(for planning).

In this paper, we compare the two domains and review the use of the dlv system for
solving these problems. We show that both problems exhibit a goal-oriented “guess and
check” structure, which allows for a declarative representation in disjunctive datalog, d1v’s
language.

In particular, disjunctive rules are used for guessing a solution candidate, which are then
checked for validity. We would like to point out that dlv does not really perform a naive
approach like this; rather it uses efficient algorithms to interleave the guessing and checking
phases as good as possible, such that the generation of candidates can be pruned effectively,
see e.g. [8, 12].

Let us first focus on the planning and diagnostic reasoning domains.
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1.1 Planning

In planning, given a description of a world, an initial situation, and a desired situation, the
goal is to find a sequence of actions (which can change the situations), such that the desired
situation is reached from the initial one. In addition, not all actions are applicable in every
situations. We formulate our model of planning accordingly:

Definition 1 A planning problem (PP) P is a quadruple (F, A, I,G), where:
o F' is a set of fluents, which characterize the situations
o A is a set of actions, with a definition of their respective preconditions and effects
o [ is a set of fluents describing the initial situation

o G is a set of fluents describing the goal situation

We define fixed-length solutions to a PP as follows:

Definition 2 Given a PP P = (F,A,I,G) and an integer n, a plan for PP is a sequence
A =ay---ay such that there are n+ 1 situations Sy, ..., Sp, such that for each a; in A, S;_1
is consistent with a;’s preconditions, and S; is modified from S;_1 by exactly the effects of
a;. To make the plan valid for the given situations, So must be entailed by 1, and G must be
entailed by S,. O

Consider the planning problem Py, = ({light_on}, {toggle},{—light_on},{light_on}),
where the action toggle has no precondition and the effect is that if light_on holds, —light_on
holds after the action and vice versa. Then there exists a plan of length 1, toggle. In fact
every sequence of toggle actions, whose length is an odd number, is a valid plan.

In this definition (and the example) we did not go into any details concerning the lan-
guage involved in specifying the problem. We refer to [15, 3, 16, 18] for definitions of action
languages, which are suited for this purpose.

1.2 Diagnosis

In diagnosis, given a theory and some observations, the goal is to find a set of hypotheses
which can explain the observations by means of the theory. The notion of “explanation” is not
a priori clear, therefore we define two notions of diagnosis, abductive and consistency-based
diagnosis, following [4].

In the abductive model of diagnosis [1, 5, 20], the theory is a function-free disjunctive logic
program, whose semantics is given by the set of its stable models [14]. This form of diagnostic
reasoning has been recently proved to be highly expressive, as it is able to represent even
problems located at the third level of the polynomial hierarchy [6].

Definition 3 We define an abductive diagnostic problem (ADP) P as a triple (H,T,O),
where:

o H is a set of ground atoms and is referred to as hypotheses.
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o T is a disjunctive datalog program and is referred to as theory.

e O is a set of ground literals and is referred to as observations.

Definition 4 Given an ADP P = (H,T,0), a
e generic diagnosis is a set A C H, such that T U A = O holds.
e single error diagnosis A is a generic diagnosis, for which |A| =1 holds additionally.

e subset minimal diagnosis A is a generic diagnosis and all subsets A* C A are not
generic diagnoses.

O

On the other hand, the consistency-based diagnosis model refers to theories of first-order
logic under classical semantics, similar to the original definition by Reiter [21].

Definition 5 A consistency-based diagnostic problem (CDP) P is a triple (H,T,O), where:

e H is a set of ground atoms with predicate name ab (standing for abnormal) and is
referred to as hypotheses.

o T is a set of first-order sentences and is referred to as theory.

e O is a set of ground literals and is referred to as observations.
O

We assume that these sentences are written in clausal form so that they can be represented
by datalog programs. H is comprised of atoms of the form ab(c), meaning that the component
¢ behaves abnormally.

Definition 6 Given a CDP P = (H,T,0), a

e generic diagnosis is a set A C H, such that T UO U AU {=h|h € H — A} is consistent
in the classical sense.

e single error diagnosis A is a generic diagnosis, for which |A| =1 holds additionally.

e subset minimal diagnosis A is a generic diagnosis and all subsets A* C A are not
generic diagnoses.

Examples for diagnostic reasoning can be found in Section 2.2 and in [4].
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1.3 Planning versus Diagnostic Reasoning

Let us now consider the relationship between the two domains: First of all, it can be observed
that both tasks are goal-oriented. In the case of diagnosis, the goal is to find explanations for
the observations. For planning, the goal is to find a plan which leads to the desired situation.
In a less procedural view, the observations and the desired situation actually are the goals.

In both diagnosis and planning, a choice must be made out of a pool of atomic items (hy-
potheses and actions), which forms a solution candidate. The difference is that the solutions
are ordered in planning, while they are an unordered set for diagnosis.

For checking the validity of solution candidates, the theory is used in diagnosis, while in
planning there are more implicit conditions, such as checking the admissibility (by means of
the preconditions) and the correct execution (by means of effects and inertial laws) of actions.
Of course, these checks also have to guarantee the satisfaction of the goals.

The analysis above shows that these problems follow a guess and check pattern involving
a goal. As motivated in [7], a disjunctive logic programming approach is particularly suitable
for representing and solving problems following such a pattern.

2 Representing Diagnosis and Planning Problems Using dlv

2.1 The dlv System

dlv is a powerful logic programming and non-monotonic reasoning (LPNMR) system with
advanced knowledge representation mechanisms and interfaces to classic relational database
systems [8, 9].

Its core language is disjunctive datalog (function-free logic programming) under the An-
swer Set semantics [14] with integrity constraints, strong (or explicit) negation, and queries.
Integer arithmetics and various built-in predicates are also included in the core language.

In addition to this base language, d1v has several frontends, namely brave and cautious
reasoning, abductive diagnosis, consistency-based diagnosis and a subset of SQL3. For up-
to-date information on the system and a full manual please refer to the project homepage
[13]. dlv is also available for download from that page.

Syntactically, d1v programs consist of rules and constraints, possibly also queries. A rule
has the form

a1V ...V Gm -by, ..., by, not bgy1, ..., not by.

where m > 1 and n > 0.

a1,-..,0m,b1,...,b, are strong literals, i.e., atoms a(ty,...,t;) or strongly negated
atoms -a(ti, ... ,ts), where a is the predicate name of the atom and each ¢; (1 < < f) is ei-
ther a constant, a variable, or an anonymous variable. Note that in the actual implementation
the order of the body literals is immaterial.

The part to the left of : - is called the head of the rule, the part to the right is the body.
A constraint is a rule with an empty head (m = 0). A rule with m = 1 and an empty body
is called a fact, the :- can be omitted in this case.

Constants are strings starting with a lower-case letter, while variables are strings starting
with an upper-case letter. Anonymous variables are denoted by “_”. Each occurrence of an
anonymous variable stands for a variable that is different from all others in the entire rule.
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Semantically, each program can have no, one or several consistent Answer Sets, each of
which is also a minimal model of that program.

A nice example for the knowledge modeling power of d1v is Graph 3-Colorability — given
an undirected graph, represented by facts of the form edge(_,.), assign each node one of
three colors such that no two adjacent nodes have the same color. The simple program in
Figure 1 computes the legal 3-colorings of the graph.

node(X) :- edge(X,Y).
node(Y) :- edge(X,Y).
% Each node is either red, green, or blue.

colored(X,red) v colored(X,green) v colored(X,blue) :- node(X).

% Two nodes on the same edge must not have the same color.

:- edge(X,Y), colored(X,C), colored(Y,C).

Figure 1: Graph 3-Coloring

As another example, take the program in Figure 2, which computes the Hamilton paths
of a directed graph. (Recall that a Hamilton path of a directed graph is a path through that
graph that reaches each node exactly once.) In our example, the graph is given by a relation
arc(X,Y) denoting its arcs and a starting node start (X).

% start(X), the starting node, is reached by definition.
%» Any other node is reached, if it is the destination
% of an arc that is part of the current path.

reached(X) :- start(X).

reached(X) :- inPath(_,X).

% Each arc starting in an already reached node is either
% in the path, or it is not.

inPath(X,Y) v -inPath(X,Y) :- reached(X), arc(X,Y).

% No two arcs with the same source resp. destination

% nodes may be included in the path.
% != is a built-in predicate denoting inequality.

:— inPath(X,Y), inPath(X,Y1), Y '= Y1.
:— inPath(X,Y), inPath(X1,Y), X !'= X1i.

% Each node has to be reached.

:— arc(X,.), not reached(X).

Figure 2: Finding Hamilton Paths
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2.2 Diagnostic Reasoning in dlv

dlv provides two kinds of diagnosis frontends: one for abductive diagnosis, and one for con-
sistency based diagnosis, as shown in Section 1.

Both frontends support three different modes: general diagnosis, where all diagnoses are
computed, subset minimal diagnosis', and single failure diagnosis.

The diagnostic theory obeys the basic syntax described in Section 2.1. Hypotheses (resp.
observations) are lists of atoms (resp. literals) followed by a dot (.) and are stored in files
whose names carry the extension .hyp (resp. .obs). Note that hypotheses and positive
observations are syntactically equal to facts, but their semantics is different.

In the case of abductive diagnosis, these modes are invoked by command line options -FD,
-FDmin and -FDsingle, respectively, while for consistency-based diagnosis the corresponding
command line options are -FR, -FRmin and -FRsingle.

For detailed information on the theoretical foundations of the implementation of the
diagnosis frontends please refer to [4].

a

Figure 3: A computer network

As an example, consider the computer network depicted in Figure 3. Suppose that ma-
chine q is online in this network but we observe it cannot reach machine e. Which machines
are offline? This can be easily modeled as a diagnosis problem, where the theory is:

reaches(X,X) :- node(X), not offline(X).
reaches(X,Z) :- reaches(X,Y), connected(Y,Z), not offline(Z).

the observations are:
not offline(a). not reaches(a,e).
and the hypotheses are:

offline(a). offline(b). offline(c).
offline(d). offline(e). offline(f).

The diagnoses in this case are D; ={offline(b), offline(f)},
Dy ={offline(c), offline(d), offline(f)}, D3 ={offline(e)}, and all supersets of Dy,
DQ, or D3.

'For positive non-disjunctive theories only.
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2.3 Planning in dlv

In the literature the relation between planning, reasoning about actions, and non-monotonic
logic programming has been studied quite extensively [15, 23, 2]. However, most of this work
does not deal with disjunctive logic programming. Exceptions are [10, 19], where several
planning problems are encoded using disjunctive datalog.

Due to lack of space, we omit the step of describing an action language and the associated
translation to disjunctive datalog (this will be the task performed by a planning front-end,
which we are currently implementing), and directly show the encoding of an example planning
domain in disjunctive datalog.

The following encoding is similar to the ones presented in [10, 18], but there is a main
difference: In our approach, we view situations as states of knowledge, rather than complete
states. Our approach can be thought of as modelling an autonomous robot, which usually is
not omniscient, hence his knowledge may be incomplete.

We show by example of the well-known blocksworld domain, how such an encoding can
be achieved in disjunctive datalog. The objects in the blocksworld are one table and an
arbitrary number of labeled cubic blocks. They are referred to as locations:

location(table). location(L) :- block(L).

Since the number of blocks varies in different problem instances, the blocks are defined
together with these instances.

We have not described the time yet: We use integer built-in predicates and constants to
model time. The first time is always 0, and the last time k is specified when invoking dlv
via the command-line option -N=k. #int(T) represents all numbers in [0..k], #succ(T,T1)
defines the successor relation in the same interval, and the constant #maxint is substituted
by k. There is also an inequality operator <>, which is defined over these numbers. We define
actiontime, which represents all times at which actions may be initiated (all but the last).

actiontime(T) :- #int(T), T <> #maxint.

The state of the blocksworld at a particular time can be described by the relation
on(B,L,T), which specifies that block B resides on location L at time T.

There is one action, which is moving a block from one location to another location. A
move is started at one point in time, and it is completed before the next time. At any time
T which allows for initiating an action, the action of moving a block B to location L (where B
must be different from L) may be taken (move(B,L,T)) or not (-move(B,L,T)). This single
rule serves as the guessing part of our program.

move(B,L,T) v -move(B,L,T) :— block(B), location(L),
actiontime(T), B <> L.

In order to move a block, some preconditions must hold. The first is that no other block
may be on the moved block.

:— move(B,L,T), on(B1,B,T).

Similar, if a block should be moved onto another block, no block may be on the latter.
Note that an arbitrary number of blocks may be moved onto the table.
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initial: goal:

b
bl _a 2

Figure 4: The Sussman anomaly.

% Define the involved blocks.
block(a). block(b). block(c).

% Specify the initial and goal situations.
on(a,table,0). on(b,table,0). on(c,a,0).
on(a,table,#maxint), on(b,a,#maxint), on(c,b,#maxint)?

Figure 5: The Sussman anomaly in disjunctive datalog.

:— block(B1), move(B,B1,T), on(B2,B1,T).

Next, the effects of an action are that the moved block is no longer on its previous location
and that it is on the new location at the next point in time.

on(B,L,T1) :- move(B,L,T), #succ(T,T1).
-on(B,L,T1) :- move(B,_,T), on(B,L,T), #succ(T,T1).

It is required that at most one action is initiated at one time:

:- move(B,L,T), move(B1,L1,T), B != B1.
:- move(B,L,T), move(B1,L1,T), L '= L1.

The on relation is inertial. This means that unless it is changed by an action, it remains
stable over the time.

on(B,L,T1) :- on(B,L,T), #succ(T,T1), not -on(B,L,T1).

For a problem instance, the involved blocks, the initial state (describing where each block
is located) must be specified by facts. The task is to find a sequence of moves (a plan) such
that the goal state (which is given by a query) is reached by applying the action sequence to
the initial state.

One classical instance is the so-called Sussman anomaly? [24], depicted in Figure 4, and
its representation in disjunctive datalog is shown in Figure 5. When we look for a plan of
length 3 (by specifying -N=3 on the commandline) for this instance, exactly one is found:

move(c,table,0), move(b,a,1), move(c,b,2)

Indeed, this is the only valid plan.

%It is called anomaly, because at the time it was formulated (and also quite some time after that) planners
could not handle it correctly.
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3 Conclusion and Further Work

We have discussed some relationships between two important AI tasks, namely Diagnosis
and Planning. The way in which they are related, namely by showing a guess and check
pattern, shows that disjunctive datalog is particularly suitable for representing and solving
these types of problems.

The dlv system is a state-of-the-art system for solving problems represented in disjunc-
tive datalog, and can thus serve as the computational engine for solving both diagnostic and
planning problems. To ease the use of the system, frontends to d1lv are developed, which
transform problems written in a particular domain language to disjunctive datalog automat-
ically. They are an integral part of dlv.

For diagnostic reasoning we have already developed such a frontend by using techniques
which are described in detail in [4].

For planning, we have shown by example how such problems can be represented. A
frontend which can transform planning problems specified in an action language to disjunctive
datalog is currently under development and will be included in one of the next releases of
dlv.

To get an idea about performance, we refer to the webpage [11] at the University of Texas,
where you can find the report [10], which contains benchmark data for d1v and other systems.
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