
Enabling Privacy-Preserving Semantic Presence in Instant
Messaging Systems

Anca Dumitrache1,4, Alessandra Mileo2, Antoine Zimmermann3, Axel Polleres2,
Philipp Obermeier2, and Owen Friel4

1 DERI, NUIG, Galway, Ireland, {alessandra.mileo, axel.polleres,

philipp.obermeier}@deri.org
2 INSA-Lyon, LIRIS, France, Antoine.Zimmermann@insa-lyon.fr

3 Cisco Systems, Galway, Ireland, ofriel@cisco.com
4 Jacobs University, Bremen, Germany, a.dumitrache@jacobs-university.de

Abstract. In pervasive environments, presence-based application develop-
ment via Presence Management Systems (PMSs) is a key factor to optimise
the management of communication channels, driving productivity increase.
Solutions for presence management should satisfy the interoperability re-
quirements, in turn providing context-centric presence analysis and privacy
management. In order to push PMSs towards flexible, open and context-
aware presence management, we propose some adaptation of two extensions
to standard XML-based XMPP for message exchange in online communica-
tion systems. The contribution allows for more complex specification and
management of nested group and privacy lists, where semantic technologies
are used to map all messages into RDF vocabularies and pave the way for
a broader semantic integration of heterogeneous and distributed presence
information sources in the standard PMSs framework.

Keywords: Presence Management Systems, XMPP, XML, Nested Groups, Pri-
vacy List, Context-awareness, Rule-based Policies

1 Motivations

Presence, also known as “presence information”, conveys the ability and willing-
ness of a user to communicate across a set of devices [4]. Presence has become an
essential building block for many applications, both on the Web and in enterprise
information systems, where being able to communicate efficiently with colleagues,
customers, partners, suppliers and peers is essential. The concept of presence is a
key ingredient for efficient communication, but it should take users’ privacy into
account, and the presence status of partners and resources should be provided to
the other users according to such privacy settings.

When it comes to privacy-preserving Presence Management Systems (PMSs),
the context in which users and resources may or may not be seen as available
plays an important role as well, both in terms of physical context (e.g., location,
ongoing meetings, booked resources), and virtual presence in online communica-
tion channels (e.g., IP telephony, video conferences or Instant Messaging (IM)).
The contextual accessibility of presence information optimises communication
time and hence time to resolution, in turn driving productivity increase, customer
satisfaction and business revenues.

Despite the importance of delivering presence-based services to applications
in both corporate and home environments, current PMSs still fail in providing a
context- and privacy- aware presence management for users, which is in turn open
and flexible enough to support easy integration of arbitrary sources of presence
information through the use of open standards. In terms of interoperability,
available standards for presence and presence-related information systems define
an abstract model of presence, a data model, several data formats, and protocols
that have been recently extended to provide additional flexibility, as detailed
in Sect. 2.2. Unfortunately, the current standards and their extensions are still
unsupported by the majority of IM tools, and they are not flexible enough to
enhance interoperability, context-awareness and personalised privacy.

In order to push the existing PMSs towards a more flexible, open and context-
aware concept of presence (later defined in this paper as semantic presence),
we consider two existing extensions of the standard Extensible Messaging and
Presence Protocol (XMPP) as detailed in Sect.2: the first extension enables to
structure contacts of an IM client into (possibly nested) sub-groups (XEP-0083),
while the second allows to define access to presence information via declarative
rules, grouped into privacy lists (XEP-0016), for users to personalise the way
they enable or disable communication with other entities or clients.

The main outcome of this work is the elaboration of these two extensions
through the definition and implementation of i) mechanisms to deal with more
complex users’ taxonomies (including multiple inheritence for user groups) and ii)
context-dependent privacy rules for accessing and sharing presence information. As
part of our contribution, we address interoperability issues, by providing a mapping
of both nested groups and privacy lists into semantic data structures based on
RDF. This paves the way for the integration of PMS privacy settings with dynamic
information that can be extracted from web sources (e.g. Facebook, Linkedin,
etc.), email filters, google calendars and alike, as well as sensor information.

In order to make the reader familiar with the state-of-the-art in PMS stan-
dards and terminology, a basic overview is provided in Sect.2. Sect.3 provides
a characterisation of the semantic presence framework, and Sect.4 shows how
we modified the XMPP extensions for nested groups and privacy lists towards a
context- and privacy- aware access to presence information that takes interoper-
ability issues into account. A preliminary evaluation is presented in Sect.5 based
on a prototype of the extended presence framework run on an XMPP presence
server, and several open issues and next steps are summarised in Sect.6.

2 Overview and Concepts

2.1 Privacy and Access Control Policies
Policies are becoming the emerging paradigm for configuring complex systems and
controlling the interaction between distributed entities, in that they represent an
abstract way to define the changing behaviour of a system without changing the
implementation. Privacy and Access control policies are the best known and well
explored example of the use of policies in complex systems. They are concerned
with the (declarative) specification of who is allowed to access which information
according to some conditions.

Traditional role-based policies [14] cannot be applied when the role of the
various actors is not known in advance (e.g. in open environments) or when it
cannot be accessed by some applications. In this setting, attribute-based access
control models turn out to help [5]. Context-centric approaches can provide a
valid support to dynamic attribute-based access control, but given the heteroge-
neous nature of contextual information, some abstraction is needed to enhance
interoperability.

Several solutions have been proposed, to semantically describe the conditions
(or the context) in which policies are to be applied to enhance appropriate
security [8, 12]. Some of these solutions support mainly context-awareness [1] and
semantic interoperability for policy integration and reuse [16, 7, 17, 18]. In the
Proteus policy model [15], a set of semantically annotated attributes trigger the
appropriate context-related policy which returns permitted/forbidden actions
for that specific context [16]. Conflict resolution between possible incompatible
contexts are defined at design-time by specific constraints aimed at selecting
which context should be active in case of conflict: this makes the approach not
flexible enough to be adapted to different domains. Security issues have also been
considered in XACML [11] though little support is provided for interoperability
and flexibility to integrate new domain-related knowledge. The semantic policy
language REI [7] provides a strong support to interoperability and flexibility
in both integration and definition of policy for distributed security control, in
particular in the definition and evaluation of actions, based on deontic logic, and
in the conflict resolution mechanism, based on priorities and precedences.

The top-down approach that is generally adopted by the policy frameworks
mentioned earlier provides a solid basis for research in this area, but it is sometimes
too general to capture specific issues that are present in real environments, and
target them appropriately. In this paper we adopt a bottom-up approach to allow
for personalised privacy settings, rather than dealing with general security issues.
We consider a context as a special view on presence information, which goes
beyond the possibility of allowing or forbidding access to it: users can contextually
adapt and transform the presence information by making a given rule list active,
while semantic mappings enhance integration and interoperability.

Ideally, the general top-down and the specific bottom-up approaches will
converge to a point where policy frameworks can benefit from generality principles
but without losing the specificity needed to solve a given problem in a more
effective and efficient way.

2.2 Presence Management System: Models and Protocols

A presence management system is described by connections between objects that
expose their presence state (called presentities) and objects expressing standing
interest in presence information related to a set of presentities (called watchers).

The IETF working group SIMPLE5 published a set of standards for presence
information systems. These are identified as RFCs followed by an identification
number, and they define an abstract model of presence, a data model, several

5 SIP, http://www.ietf.org/dyn/wg/charter/simple-charter.html

data formats and protocols for message exchange. In RFC 3856, presence is
described as as the ability, willingness, or desire to communicate across a set
of devices. In the abstract presence model introduced in RFC 2778 [2], both
presentities and watchers interact with the presence system via User Agents (UA),
which manipulates presence information for them.

The flow of information from a presentity towards a watcher is ensured by
a presence service as illustrated in Fig.1, where the Principals are the people,
groups, and/or software outside the presence system, which use the system as a
mean of coordination and communication.

Presence Protocol

Presentity Watcher

Presence
User Agent

Watcher
User Agent

Presence Service

Principal Principal

Fig. 1: Simple model of a presence service

In order to enable the near-real-time exchange of structured yet extensible
data in form of messages between watchers and presentities of a PMS, the IEFT
also defined the Extensible Messaging and Presence Protocol (XMPP)6, a set
of open technologies for instant messaging, presence, multi-party chat, voice
and video calls, collaboration, lightweight middleware, content syndication, and
generalised routing of XML data. All messages exchanged in a PMS under XMPP
are referred to as stanzas, while a user’s roster consists of groups of contacts
where each group is identified by a label.

The XMPP Standards Foundation (XSF) develops extensions to XMPP
through a standard process centred around XMPP Extension Protocols (XEPs).
Many extensions to XMPP have been proposed to enable representation and
sharing of various context elements, e.g., current location and user activities.
Among these extensions, we focus on those that mainly affect contextual and
privacy-preserving presence management:

XEP-0083 on Nested Roster Groups, which allows the client’s roster to store
nested subgroups without breaking existing clients;

XEP-0016 on Privacy Lists, which defines a flexible method for communication
blocking.

In the specific scenario of online PMS based on XMPP, dynamic and modular
context-awareness for privacy setting is not properly addressed. In fact:

– it’s not possible to define presence at different levels in accordance with
some watcher’s properties, nor to dynamically change presence information
according to the context (activity, position, current agenda);

6 http://xmpp.org

– there is a lack of support for appropriate policy mechanisms and a uniform
semantic model of context for both the presentities and the watchers;

– policies are all-or-nothing: one can decide who to show presence to but it’s
not possible to share different presence statuses to different watchers;

– properties of watcher are strictly hierarchical: groups can be defined and
nested, but they cannot incorporate multiple subgroups or be defined implicitly
in terms of static properties;

– overlapping groups and distributed policies can create conflicts in presence
results, and conflict resolution mechanisms should take contextual aspects
into account in order to dynamically adapt to presentities’ and watchers’
contexts.

In this paper, we address these limitations by extending XEP-0083 and
XEP-0016.

2.3 RDF, SPARQL and OWL

The Resource Description Framework (RDF) [10] is a data modelling language
to describe resources on the Web identified by a URI. Resources are typically
Web sites or services, but can also refer to physical or immaterial entities which
are not directly obtainable through the Web. A RDF document is essentially a
set of triples, whose components, in ascending order, are distinguished as subject,
property and object. Each RDF triple (s, p, o), intuitively, specifies an instance
of a distinct property p which puts a subject s and an object o into relation.
Moreover, a RDF document can be interpreted as a graph containing nodes and
arcs to represent resources (or literal values) and their relationships.

Similar to schemata for relational databases, the semantics of RDF data can be
further enriched by ontological background information. Ontological languages can
be encoded in RDF and support the definition of classes (of resources and literals)
and properties, as well as the definition of inclusions of classes and properties.
The W3C recommends the Web Ontology Language (OWL) [9], which is strongly
influenced by Description Logics, a carefully analysed set of formal logics for
concept descriptions with extensively studied fragments that are tractable or
decidable with highly optimised algorithms and efficient implementations

Additionally, W3C recommends SPARQL [13], the standard language for
querying RDF. SPARQL is well supported and widely deployed with a respectable
number of query engines implemented and integrated in various RDF stores (Jena
ARQ, Sesame 2, OpenLink Virtuoso, AllegroGraph, 4store, etc)7.

3 The Semantic Presence Framework

Semantic Presence. Disclosed information in corporate environments should
be controlled by personal policies as well as corporate level policies, such that
only those watchers who conform to a certain profile can access specific presence
information of a presentity, at a given time, in a certain (dynamic) context.

7 A comprehensive list of SPARQL implementations is available at
http://www.w3.org/wiki/SparqlImplementations.

Therefore, beyond the dynamic nature of heterogeneous presence information,
users’ privacy profiles should also play a role in the presence model. We therefore
generalise the definition of presence to that of semantic presence as follows:

Definition 1. Semantic presence [6] is defined as the contextualised avail-
ability of a person or a resource, where both the presentity’s and the watcher’s
contexts are taken into account. The context-related aspects that contribute to the
identification of semantic presence can be determined and influenced by:

– Presentities’/Watchers’ physical/virtual presence;
– Presentities’/Watchers’ profiles, including group membership and preferences;
– Presentities’ privacy policies;
– Governing (Corporate) policies.

In this work we specifically focus on profiles and privacy policies, and illustrate
the interoperability of our approach via RDF mapping.

Scenario. We consider a user, Buster, and his communication with other user
accounts connected via IM clients, in a real-work situation.

The group taxonomy for Buster is represented in Fig.2, and it constitutes an
important source of contextual information for the semantic presence framework.

Lindsay

Co-worker

Project-URQ

Friend

Michael
SheilaStudent

Oscar

Michael

subclass of

subclass of

is a

is a

is a

is ais a

Fig. 2: Buster’s taxonomy of groups

The active privacy settings for Buster are represented by a list of privacy
rules, which are applied whenever Buster changes his status to “in a meeting”:

1. show status as “available” to all co-workers;
2. show status as “unavailable” to students;
3. block all messages from contacts which are not part of the co-workers group.

When Buster joins a meeting with his co-workers on Project-URQ, he selects
the status “in a meeting” (or it is selected automatically according to his calendar).
As soon as the status changes, Buster receives a notification of a conflict, since
two inconsistent rules with the same priority are applicable for Sheila: she is a
student and so she should see Buster as “unavailable”, but she is also a co-worker,
thus she is allowed to still see Buster as “available”. Buster is asked to solve this
conflict by assigning priorities to the conflicting privacy rules, and these priorities
will be applied by the semantic presence system in any future conflict related to
that specific privacy list.

Requirements. A similar messaging system needs to deal with a more flexible
and modular knowledge management mechanism for groups, contacts and their
relations and properties. Desirable features of the systems are also its capacity
of inferring implicit knowledge from explicit representations and dealing with a
more fine-grained policy control. As a result, the user’s status and the message
content can be adapted to different classes of users via specific policies that are
concerned with privacy issues and contextual settings. Presence information as
well as the classification of users into groups should be dynamically updated,
based on properties of the recipients and of the message. In this respect, semantic
technologies can be useful to gather this dynamic knowledge and adapt policy
evaluation accordingly. The general idea presented in this paper is that of enabling
the XMPP-based Instant Messaging framework to:

– intercept and rewrite messages (or XMPP stanzas) based on high-level policies
specified in a rule-like fashion and dynamically evaluated according to context-
and user- related settings.

– map XMPP stanzas, groups and privacy rules into RDF (Resource Descrip-
tion Framework), a standard model for data interchange on the Web which
facilitates data merging even if the underlying schemas differ, and specifically
supports the evolution of data schemas over time without requiring all the
data consumers to be changed.

All information passed through XMPP stanzas is stored on the server side,
but since access to this information is restricted to a single authentified user, this
sharing of information between client and server does not constitute a serious
threat on privacy.

4 Implementation

The framework described in Sect.3 can be obtained by introducing two main
extensions to XMPP: the first is related to the organisation of contacts of the IM
client into a hierarchical taxonomy, and the second is related to the introduction
of policy rules that determine how messages need to be managed according to
how the sender and/or the receiver are related in this taxonomy. In the next
subsections we detail how these two aspects have been implemented as extensions
to XMPP.

4.1 Nested Groups

According to XMPP [3], a user’s roster consists of a list of contacts, where contacts
may have group labels attached to them, but there is no notion of “group” as
a separate entity, a limitation in term of group management that our extension
addresses. To improve this, we introduce the notion of nested groups, such that
groups in rosters can be handled separately and related by a binary relation
subGroup, where A subGroup B means that group A contains a subset of the
users from group B.

Users are connected to an XMPP server via a Jabber client. Each user on this
server is logged in by a personal user account and communication between server

and client takes place by an exchange of XMPP stanzas. In order to implement
the concept of Semantic Presence, the Jabber software client has to support the
regular roster management extended by methods for nested groups. Moreover, for
each user account, all roster information including group taxonomy, is persistently
stored at the XMPP server, in RDF.

The following operations need to be supported:

– adding subgroup relations, including multiple supergroups: in this case, the
server should enforce that group members are also members of all the super-
groups of the group they belong to;

– removing a subgroup relation: in this case, all the group membership that
were the consequence of the nesting should not exist anymore.

– visualisation: a user is able to get a convenient hierarchical visualisation of
the group nesting in his/her roster.

A user should be able to manipulate a contact or an entire group in his roster
by adding, renaming or deleting groups as well as by defining virtual groups on
the basis of (set) intersection or union of existing groups. Based on this rich
classification of contacts into groups, privacy rules can be applied over intersection,
union of groups, and any combination of these operations.

All information about a user’s roster and groups are stored on the server side
but since access to this information is restricted to a single authentified user, this
sharing of information between client and server does not constitute a serious
threat on privacy.

Group Management In order to allow for more complex group taxonomies to
be created, we define new stanzas, such that it is possible to create/update/delete
and relate groups independently of the roster items.
Example 1. Group creation:
<iq from=’juliet@example.com/balcony’ type=’set’ id=’group_1’>

<query xmlns=’jabber:iq:group’>
<group name=’Servants’/>
<group name=’Friends’/>

</query></iq>

The stanza in Ex.1 is creating two groups, ’Servants’ and ’Friends’. The server
must update the group information in persistent storage, and also push the
change out to all of the user’s available resources that have requested the roster.
Stanza types are presence, message, iq . The roster push consists of an iq stanza
of type set from the server to the client and enables all available resources to
remain in sync with the server-based roster information. The server pushes the
updated roster information to all available resources that have requested the
roster and then replies with an iq result to the sending resource. As required by
the semantics of the iq stanza kind, each resource that received the roster push
must reply with an iq stanza of type result (see Ex.3) or error.

Example 2. Add subgroup relations:
<iq from=’juliet@example.com/balcony’ type=’set’ id=’group_2’>

<query xmlns=’jabber:iq:group’>

<group name=’LocalFriends’>
<subgroupof>Friends</subgroupof>
<subgroupof>Nearby</subgroupof>

</group></query></iq>

The stanza in Ex.2 defines ’LocalFriends’ as a subgroup of two groups, ’Friends’
and ’Nearby’.
Example 3. Client requests/receives current roster from server:

<iq from=’juliet@example.com/balcony’ type=’get’ id=’group_1’>
<query xmlns=’jabber:iq:group’/>

</iq>

<iq to=’juliet@example.com/balcony’ type=’result’ id=’group_1’>
<query xmlns=’jabber:iq:group’>

<group name=’Friends’/>
<group name=’Servants’/>
<group name=’Nearby’/>
<group name=’LocalFriends’>

<subgroupof>Friends</subgroupof>
<subgroupof>Nearby</subgroupof>

</group></query></iq>

The stanza in Ex.3 shows both the request and the answer from the server
which contains the list of all groups and their subgroup relations.
Example 4. Delete a group:
<iq from=’juliet@example.com/balcony’ type=’set’ id=’group_4’>

<query xmlns=’jabber:iq:group’>
<group name=’Nearby’ remove=’true’ />

</query></iq>

As with adding a group, when deleting a group the server updates the group
information in persistent storage, initiate a group push to all of the user’s available
resources that have requested the group hierarchy (with the ‘remove’ attribute
set to a value of true), and send an iq result to the initiating resource. The server
should return an error when trying to remove a non empty group, or a group
having subgroups.

We now illustrates how privacy rules can be used to enable Semantic Presence.

4.2 Privacy Lists

The same mechanism used for group management, is also applied for creating
privacy lists composed by privacy rules: the roster pushes an iq stanza for the
creation of both the privacy list and the policy rule. Directions are either inbound
or outbound , meaning that the rule apply to incoming and outgoing stanzas.
Subscription types restrict the application of the rule depending on mutual
subscription (or lack thereof) of the sender and receiver. The values can be to,
from, both or none. When all criteria for a rule are match, the action is performed,
as explain below. Ex.5 illustrates a privacy list stanza with one rule.
Example 5. Create a privacy list and add rules to the list:
<iq from=’juliet@example.com/balcony’ type=’set’

<query xmlns=’jabber:iq:privacy’>
<list name=’MyList’ />

</query></iq>

<iq from=’juliet@example.com/balcony’ type=’set’
<query xmlns=’jabber:iq:privacy’>

<list name=’MyList’ />
<item type=’jid’

value=’Juliet@example.com/balcony’
action=’allow’
order=’4’>

<presence-in/>
</item></list></query></iq>

Analogous to roster and group information, a users’s privacy list is stored on
the server side and can only be accessed via authentication.

Syntax of Policy Rules Formally, we define a (policy) rule as an expression

Action← Condition

where Action stands for either allow, block or transform(e) with a POSIX extended
regular expression e; Condition is an expression defined over a set of fixed predicate
symbols Preds and a set of constant symbols Cons . Specifically, a Condition can
be an expression of the form

1. p(c) where p ∈ Preds and c ∈ Cons;
2. expr1 ∧ expr2 where expr1, expr2 ∈ Cons;
3. expr1 ∨ expr2 where expr1, expr2 ∈ Cons;
4. ¬exp where exp ∈ Cons.

Furthermore, Cons exclusively comprises the constants payload , presence, message,
iq , to, from, both, none, inbound , outbound , all possible group names and all
POSIX regular expressions, while Preds is a fixed set which exclusively con-
tains the symbols stanzaType, direction, subscriptionType, affects, owner and
regexMatch.8

Semantics of Policy Rules The evaluation of a policy rule p is always tied to
an XMPP session of a Jabber user and a current send or receive action of a stanza
by the user. We formally integrate these diverse information as a contextual
session cs = (cs jid , csgroups , cspresence , csstanza) which holds the user’s Jabber ID
(cs jid), the roster groups (csgroups), given as a set of JIDs, the user’s presence
status (cspresence) and the stanza which is currently processed (csstanza)., i.e.
sent or received by the user.

The evaluation of the rule itself is conducted in two major steps. First the
truth value of the condition has to be determined. Second, if the Condition is
true the Action has to be applied. A function atomicTv maps each condition
c ∈ Cons to true or false as follows:

8 Note that future extensions may generalise rules to include other n-ary predicates.

atomicTv(stanzaType(c)) is true iff c is the stanza type of csstanza

atomicTv(direction(c)) is true iff c is the direction of csstanza

atomicTv(subscripitonType(c)) is true iff c is the subscription type of csstanza

atomicTv(affect(c)) is true iff c is the ‘from’ or is in a group that contain
the ‘from’ (for an inbound stanza)

or c is the ‘to’ or is a group that contains the
‘to’ (for an outbound stanza) of csstanza

atomicTv(owner(c)) is true iff c is cs jid

atomicTv(regexMatch(c)) is true iff the payload of csstanza matches the reg-
ular expression c

If the condition of the policy rule is true, the corresponding action is applied
to cs stanza, and the message can be i) blocked, ii) allowed or iii) transformed
by a sed (Unix stream editor) rewriting command e and afterwards forwarded to
the receiver.

An example of rule could be

block ← stanzaType(message)
∧ regexMatch(/. ∗ Cisco. ∗ /)
∧ ¬affects(Cisco−Staff)
∧ subscriptionType(to)

which says that each message containing the word ‘Cisco’ is blocked when sent to
a user who is not in group ‘Cisco-Staff’.

Processing Privacy Rules The processing of the privacy rules is made in two
steps. The first step consists in retrieving the potentially applicable privacy rules
from the RDF store with a SPARQL query, based on the type of the stanza, the
sender, the recipient and the subscription type assigned to the contact affected
by the rule. This may involve some reasoning over the RDF data, especially
to accurately determine implicit group membership from the group nesting.
An optimised implementation would store user specific information (roster and
privacy list) in memory so that this step can be performed very fast.

Rules that are retrieved this way may still not apply to the stanza in question,
because there can be additional conditions that cannot be directly represented
in RDF, such as a time frame, a location an expression of the possible payloads
affected by the rules (cf. regexMatch in our simple policy rule syntax). To decide
this, a dedicated policy engine interprets the condition (which must be in a
language understandable by such an engine) and evaluates it as explained above.
Rules are processed in order of priority and whenever a rule is applicable, the
engine stops processing the rest of the rules fir that privacy list. Software clients
should inform users when two rules with equal priority apply to a given stanza.

Enabling Interoperability In order to make our proposal easily extensible, we
provide a mapping of XMPP stanzas into RDF, for both nested groups and privacy
rules. This also allows roster groups to be interconnected with existing enterprise
level staff member management. For instance, an RDF version of Active Directory

� �
<iq type=’set’>

<query xmlns=’jabber:iq:groups ’>
<group name=’URQ’>

<subgroupof >
Coworkers

</subgroupof >
<subgroupof >

Semantic Search Stream
</subgroupof >

</group >
</query>

</iq>� �
(a)

� �
group:urq

rdf:type sioc:UserGroup ,
owl:Class ;

rdfs:label "URQ" ;
rdfs:subClassOf

group:coworkers ,
group:semSearchStream .� �

(b)

Fig. 3: Translation of roster group ’URQ’ given by stanza (a) into an OWL class (b)

could be integrated in the roster management system to facilitate categorisation
of contacts. The mapping is illustrated in Fig.3b and Fig.4b and it paves the
way for integrating heterogeneous sources of contextual knowledge (provided that
the same semantic mapping is given for this knowledge), such as sensors and
corporate policies.

� �
<iq type=’set’

from=’michael@corp.com’>
<query xmlns=’jabber:iq:privacy ’>

<list name=’MyList ’>
<item type=’group’

value=’Coworkers ’
action=’transform ’
ed=’available ’
order=’3’>

<presence -out/>
</item>
<item action=’allow ’

order=’68’/>
</list>

</query>
</iq>� �

(a)

� �
:Michael

rdf:type privacy:UserAccount ;
privacy:has_privacy_list

list:myList .
list:myList

rdfs:label "MyList" ;
privacy:has_privacy_rule

rule:myRule .
rule:myRule

privacy:affects group:Coworkers ;
privacy:applies_to

privacy:presence ;
privacy:has_action

transform:available ;
privacy:priority "3" ;
privacy:direction

privacy:outbound .
transform:available

privacy:transformation
"available" .� �

(b)

Fig. 4: Translation of a privacy list (a) into OWL (b)

5 Preliminary Experiments

We conducted a set of preliminary experiments based on the runtime of the appli-
cation in various extreme cases, for the purpose of assessing how our component
will scale in a real-world situation (i.e. having a large group hierarchy of up to 30
nested groups, as defined in the Psi9 XMPP IM client). More intensive testing
will be done in future experiments, when the conflict resolution mechanism will be
made more expressive and some of the issues mentioned in Sect.6 will be tackled.

As seen in Fig.5, the reaction time grows proportionately with the increase of
the number of users and the hierarchy depth, the likely reason being that the
9 http://psi-im.org/

Fig. 5: Approximate runtime (in seconds) when applying privacy XMPP stanza.

implementation is currently non-optimised w.r.t. the number of queries against
the triple store. However, when discussing a real-world scenario, it should be taken
into account that, even in a corporate environment, roster groups are usually
declared and maintained by users, and therefore the complexity of their hierarchy
is limited by the fact that groups need to stay human-readable. In this context,
hierarchy depths of more than 10 become very unlikely. As demonstrated by our
evaluation, in cases with small group depth, the runtime measurements showed a
negligible delay. We conclude that, even if the runtime of the component increases
with group depth, this would have little impact in a real-world scenario, and
therefore our component can be deemed scalable.

6 Future Work and Conclusion

In this paper we present a bottom-up approach to specify and evaluate privacy
settings in XMPP-based PMSs on the basis of contextutal group information. The
proposed implementation takes advantage of semantic technologies for flexible and
interoperable solutions to Semantic Presence and it paves the way for numerous
challenging issues we already started to tackle, including the following:

Temporal-/location- based validity of rules refers to advanced privacy
rules to change the granularity of the location attached to presence information:
for instance, colleagues may know the exact room in which the person is, while
external collaborators are only notified with the city in which the user is.

Federated policies consider that presence should reconcile general company
policies with users’ privacy settings. Interruptions are counterproductive in the
workplace and adequate handling of (corporate) policies to avoid these could be
of potentially high impact. Some companies that ban the use of social networks
for those reasons, so active support by presence systems might be desirable.

Physical presence is also a key aspect in context-aware pervasive environ-
ments, thus the extention of XMPP to take into account sensor data, aggregated at

the right level of granularity is of interest, where the management and processing
of a large amount of dynamic sensor data can be a challenge.

Conflict analysis requires to deal with efficient conflict resolution strategies,
taking presence information, groups structure and roles into account.

These aspects are all relevant for advanced semantic presence management and
we believe semantic technologies and abstract policy specification and enforcement
introduced in this paper can help addressing these challenges.

References
1. Acharya, A., Banerjee, N., Chakraborty, D., Dasgupta, K., Misra, A., Sharma, S.,

Wang, X., Wright, C.: Programmable presence virtualization for next-generation
context-based applications. In: PerCom. pp. 1–10 (2009)

2. Jabber Software Foundation: A model for presence and instant messaging (2000)
3. Jabber Software Foundation: Extensible messaging and presence protocol (xmpp):

Instant messaging and presence (2004)
4. Jabber Software Foundation: A presence event package for the session initiation

protocol (sip) (2004)
5. Frikken, K., Atallah, M., Li, J.: Attribute-based access control with hidden policies

and hidden credentials. IEEE Transactions on Computers 55, 1259–1270 (2006)
6. Hauswirth, M., Euzenat, J., Friel, O., Griffin, K., Hession, P., Jennings, B., Groza,

T., Handschuh, S., Zarko, I.P., Polleres, A., Zimmermann, A.: Towards consolidated
presence. In: CollaborateCom 2010.

7. Kagal, L., Finin, T., Joshi, A.: A policy based approach to security for the semantic
web. In: ISWC2003

8. Ko, H., Won, D., Shin, D., Choo, H., Kim, U.: A semantic context-aware access
control in pervasive environments. In Proc. of: ICCSA 2006. LNCS vol. 3981, pp.
165–174 (2006)

9. McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview. W3C
recommendation, W3C (Feb 2004)

10. Miller, E., Manola, F.: RDF primer. W3C recommendation, W3C (Feb 2004),
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

11. Moses, T.: eXtensible Access Control Markup Language (XACML) Version 1.0.
(February 2003)

12. Priebe, T., Dobmeier, W., Kamprath, N.: Supporting attribute-based access control
with ontologies. Int’l conf on Availability, Reliability and Security, 465–472 (2006)

13. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C recom-
mendation, W3C (Jan 2008), http://www.w3.org/TR/2008/REC-rdf-sparql-query-
20080115/

14. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control models.
Computer 29(2), 38 –47 (1996)

15. Toninelli, A., Montanari, R., Kagal, L., Lassila, O.: A semantic context-aware access
control framework for secure collaborations in pervasive computing environments.
In Proc. of: ISWC 2006. LNCS, vol. 4273, pp. 473–486.

16. Toninelli, A., Montanari, R., Kagal, L., Lassila, O.: Proteus: A semantic context-
aware adaptive policy model. In: POLICY. pp. 129–140 (2007)

17. Uszok, A., Bradshaw, J.M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., Aitken,
S.: Kaos policy management for semantic web services. IEEE Intelligent Systems
19, 32–41 (July 2004)

18. Uszok, A., Bradshaw, J.M., Lott, J., Breedy, M.R., Bunch, L., Feltovich, P.J.,
Johnson, M., Jung, H.: New developments in ontology-based policy management:
Increasing the practicality and comprehensiveness of kaos. In: POLICY. pp. 145–152
(2008)

