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Abstract. The Web Service Modeling Language (WSML) is a language for the
specification of different aspects of Semantic Web Services. It provides a for-
mal language for the Web Service Modeling Ontology WSMO which is based
on well-known logical formalisms, specifying one coherent language framework
for the semantic description of Web Services, starting from the intersection of
Datalog and the Description Logic SHIQ. This core language is extended in the
directions of Description Logics and Logic Programming in a principled manner
with strict layering. WSML distinguishes between conceptual and logical mod-
eling in order to support users who are not familiar with formal logic, while not
restricting the expressive power of the language for the expert user. IRIs play a
central role in WSML as identifiers. Furthermore, WSML defines XML and RDF
serializations for inter-operation over the Semantic Web.

1 Introduction

Web Services1 are pieces of functionality which are accessible over the Web. Current
technologies such as WSDL allow to describe the functionality offered by a Web Ser-
vice on a syntactical level only. For automation of tasks, such as Web Service discovery,
composition and execution, semantic descriptions of Web Services are required. Since
Semantic Web technology enables this formal description of Web content, the combi-
nation of Semantic Web with Web Service is the natural next step to be taken.

This combination is often referred to as Semantic Web Services [16]. In this context,
the Web Service Modeling Ontology WSMO [17] provides a conceptual model for the
description of various aspects of Services towards such Semantic Web Services (SWS).
In particular, WSMO distinguishes four top-level elements:

Ontologies. Ontologies provide formal and explicit specifications of the vocabularies
used by the other modeling elements. Such formal specifications enable automated
processing of WSMO descriptions and provide background knowledge for Goal
and Web Service descriptions.

Goals. Goals describe the functionality and interaction style from the requester
perspective.

1 Throughout this paper we use the terms “Service” and “Web Service” interchangeably.
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Web Service descriptions. Web Service descriptions specify the functionality and the
means of interaction provided by the Web Service.

Mediators. Mediators connect different WSMO elements and resolve heterogeneity in
data representation, interaction style and business processes.

The Web Service Modeling Language WSML takes into account all aspects of Web
Service description identified by WSMO. WSML comprises different formalisms in
order to investigate their applicability to the description of SWS. Since our goal is to
investigate the applicability of different formalisms to the description of SWS, it would
be too restrictive to base our effort on existing language recommendations such as OWL
[6]. A concrete goal in our development of WSML is to investigate the usage of different
formalisms, most notably Description Logics and Logic Programming, in the context
of Ontologies and Web services.

We see three main areas which benefit from the use of formal methods in service de-
scriptions: Ontology description, Declarative functional description of Goals and Web
services, and Description of dynamics. In its current version WSML defines a syntax
and semantics for ontology descriptions. The underlying formalisms which were men-
tioned earlier are used to give a formal meaning to ontology descriptions in WSML.
For the functional description of Goals and Web services, WSML offers a syntacti-
cal framework, with Hoare-style semantics in mind. However, WSML does not yet
formally specify the exact semantics of the functional descriptions of services. The de-
scription of the dynamic behavior of Web services (choreography and orchestration)
in the context of WSML is currently under investigation, but has not been integrated
in WSML at this point. Thus, in this paper we primarily focus on ontology descrip-
tion in WSML, where it turns out that WSML already includes many potentially useful
features lacking in previous approaches.

We give an overview of WSML and its language layering in Section 2. The normative
human-readable syntax of WSML is described in Section 3, followed by key features
of WSML which are described in Section 4. Section 5 describes related approaches for
the description of Semantic Web Services and Ontologies. We draw conclusions and
outline future work in Section 6.

2 WSML Layering

Figure 1(a) shows the different variants of WSML and the relationships between them.
These variants differ in logical expressiveness and in the underlying language paradigms
and allow users to make the trade-off between provided expressiveness and the implied
complexity for ontology modeling on a per-application basis.

WSML-Core is based on by the intersection of the Description Logic SHIQ and
Horn Logic, based on Description Logic Programs [8]. It has the least expressive
power of all the WSML variants. The main features of the language are concepts,
attributes, binary relations and instances, as well as concept and relation hierarchies
and support for datatypes.

WSML-DL captures the Description Logic SHIQ(D), which is a major part of the
(DL species of) OWL [6].
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(a) Language variants
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(b) Layering

Fig. 1. WSML Variants and Layering

WSML-Flight is an extension of WSML-Core which provides a powerful rule lan-
guage. It adds features such as meta-modeling, constraints and nonmonotonic nega-
tion. WSML-Flight is based on a logic programming variant of F-Logic [12] and is
semantically equivalent to Datalog with inequality and (locally) stratified negation.
WSML-Flight is a direct syntactic extension of WSML-Core and it is a semantic
extension in the sense that the WSML-Core subset of WSML-Flight agrees with
WSML-Core on ground entailments (cf. [11]).

WSML-Rule extends WSML-Flight with further features from Logic Programming,
namely the use of function symbols, unsafe rules and unstratified negation under
the Well-Founded semantics.

WSML-Full unifies WSML-DL and WSML-Rule under a First-Order umbrella with
extensions to support the nonmonotonic negation of WSML-Rule. The semantics
of WSML-Full is currently an open research issue.

As shown in Figure 1(b), WSML has two alternative layerings, namely, WSML-Core
⇒ WSML-DL ⇒ WSML-Full and WSML-Core ⇒ WSML-Flight ⇒ WSML-Rule
⇒ WSML-Full. For both layerings, WSML-Core and WSML-Full mark the least and
most expressive layers. The two layerings are to a certain extent disjoint in the sense
that inter-operation in WSML between the Description Logic variant (WSML-DL) on
the one hand and the Logic Programming variants (WSML-Flight and WSML-Rule)
on the other, is only possible through a common core (WSML-Core) or through a very
expressive superset (WSML-Full).

3 General WSML Syntax

In this section we introduce the general WSML syntax which encompasses all features
supported by the different language variants. We describe the restrictions imposed on
this general syntax by the different variants. These restrictions follow from the logical
language underlying the specific language variant, as described in the previous section.
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WSML makes a clear distinction between the modeling of the different conceptual
elements on the one hand and the specification of complex logical definitions on the
other. To this end, the WSML syntax is split into two parts: the conceptual syntax and
logical expression syntax. The conceptual syntax was developed from the user perspec-
tive, and is independent from the particular underlying logic; it shields the user from the
peculiarities of the underlying logic. Having such a conceptual syntax allows for easy
adoption of the language, since it allows for an intuitive understanding of the language
for people not familiar with logical languages. In case the full power of the underly-
ing logic is required, the logical expression syntax can be used. There are several entry
points for logical expressions in the conceptual syntax, namely, axioms in ontologies
and capability descriptions in Goals and Web Services.

We will first describe the use of Web identifiers and concrete data values in Sec-
tion 3.1. The different kinds of WSML definitions and a general explanation of the con-
ceptual syntax are given in Section 3.2. The logical expression syntax is described in
Section 3.3. Finally, we briefly outline the XML and RDF serializations in Section 3.4.

3.1 Identifiers in WSML

WSML has three kinds of identifiers, namely, IRIs, sQNames, which are abbreviated
IRIs, and data values.

An IRI (Internationalized Resource Identifier)2 uniquely identifies a resource in a
Web-compliant way. The IRI proposed standard is the successor of the popular URI
standard and has already been adopted in various W3C recommendations. IRIs are de-
limited using an underscore and a double quote ‘ ”’ and a double quote ‘”’, for example:
”http://www.wsmo.org/wsml/wsml-syntax#”.

In order to enhance legibility, an IRI can be abbreviated to an sQName, which is short
for ‘serialized QName’, and is of the following form: prefix#localname. The prefix and
local part may be omitted, in which case the name falls in the default namespace. Our
concept of an ‘sQName’ corresponds with the use of QNames in RDF and is slightly
different from QNames in XML, where a QNames is not merely an abbreviation for an
IRI, but a tuple <namespaceURI, localname>.

Data values in WSML are either strings, integers, decimals or structured data val-
ues, reflecting the XML Schema datatypes. WSML defines constructs which reflect the
structure of data values. For example, the date “March 15th, 2005” is represented as:
date(2005,3,15). In logical expressions, constructed data values can be used in the same

way as constructed terms, with the difference that constructed terms may not be nested
inside constructed data values.

3.2 Conceptual Syntax

The WSML conceptual syntax allows for the modeling of Ontologies, Web Services,
Goals and Mediators. It is shared between all variants, with the exception of some re-
strictions which apply on the modeling of ontologies in WSML-Core and WSML-DL.

Ontologies. An ontology in WSML consists of the elements concept, relation,
instance, relationInstance and axiom. Additionally, an ontology may have

2 IETF RFC 3987: http://www.ietf.org/rfc/rfc3987.txt

http://www.ietf.org/rfc/rfc3987.txt
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non-functional properties and may import other ontologies. We start the description
of WSML ontologies with an example which demonstrates the elements of an ontology
in Listing 1, and detail the elements below.

wsmlVariant ”http://www.wsmo.org/wsml/wsml−syntax/wsml−flight”
namespace { ”http://example.org/bookOntology#”,

dc ”http :// purl .org/dc/elements/1.1/”}
ontology ”http :// example.org/bookOntology”

nonFunctionalProperties
dc#title hasValue ”Example Book ontology”
dc#description hasValue ”Example ontology about books and shopping carts”

endNonFunctionalProperties
concept book

title ofType string
hasAuthor ofType author

concept author subConceptOf person
authorOf inverseOf(hasAuthor) ofType book

concept cart
nonFunctionalProperties

dc#description hasValue ”A shopping cart has exactly one id
and zero or more items, which are books.”

endNonFunctionalProperties
id ofType (1) string
items ofType book

instance crimeAndPunishment memberOf book
title hasValue ”Crime and Punishment”

hasAuthor hasValue dostoyevsky

relation authorship(impliesType author, impliesType document)
nonFunctionalProperties

dc#relation hasValue authorshipFromAuthor
endNonFunctionalProperties

axiom authorshipFromAuthor
definedBy

authorship(?x,?y) :− ?x[authorOf hasValue ?y] memberOf author.

Listing 1. An Example WSML Ontology

Concepts. The notion of concepts (sometimes also called ‘classes’) plays a central
role in ontologies. Concepts form the basic terminology of the domain of discourse.
A concept may have instances and may have a number of attributes associated with it.
The non-functional properties, as well as the attribute definitions, are grouped together
in one frame, as can be seen from the example concept book in Listing 1.

Attribute definitions can take two forms, namely constraining (using ofType) and
inferring (using impliesType) attribute definitions3. Constraining attribute definitions
define a typing constraint on the values for this attribute, similar to integrity constraints
in Databases; inferring attribute definitions imply that the type of the values for the
attribute is inferred from the attribute definition, similar to range restrictions on proper-
ties in RDFS [3] and OWL [6]. Each attribute definition may have a number of features
associated with it, namely, transitivity, symmetry, reflexivity, and the inverse of an at-
tribute, as well as minimal and maximal cardinality constraints.

Constraining attribute definitions, as well as cardinality constraints, require closed-
world reasoning and are thus not allowed in WSML-Core and WSML-DL. As opposed

3 The distinction between inferring and constraining attribute definitions is explained in more
detail in [5, Section 2].
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to features of roles in Description Logics, attribute features such as transitivity, sym-
metry, reflexivity and inverse attributes are local to a concept in WSML. Thus, none of
these features may be used in WSML-Core and WSML-DL. For a motivation on the
use of constraining attributes, see [5].

Relations. Relations in WSML can have an arbitrary arity, may be organized in a hi-
erarchy using subRelationOf and the parameters may be typed using parameter type
definitions of the form (ofType type ) and (impliesType type), where type is a concept
identifier. The usage of ofType and impliesType correspond with the usage in attribute
definitions. Namely, parameter definitions with the ofType keyword are used to check
the type of parameter values, whereas parameter definitions with the impliesType key-
word are used to infer concept membership of parameter values.

The allowed arity of the relation may be constrained by the underlying logic of the
WSML language variant. WSML-Core and WSML-DL allow only binary relations and,
similar to attribute definitions, they allow only parameter typing using the keyword
impliesType.

Instances. A concept may have a number of instances associated with it. Instances
explicitly specified in an ontology are those which are shared as part of the ontology.
However, most instance data exists outside the ontology in private databases. WSML
does not prescribe how to connect such a database to an ontology, since different or-
ganizations will use the same ontology to query different databases and such corporate
databases are typically not shared.

An instance may be member of zero or more concepts and may have a number of
attribute values associated with it, see for example the instance crimeAndPunishment
in Listing 1. Note that the specification of concept membership is optional and the
attributes used in the instance specification do not necessarily have to occur in the as-
sociated concept definition. Consequently, WSML instances can be used to represent
semi-structured data, since without concept membership and constraints on the use of
attributes, instances form a directed labelled graph. Because of this possibility to cap-
ture semi-structured data, most RDF graphs can be represented as WSML instance data,
and vice versa.

Axioms. Axioms provide a means to add arbitrary logical expressions to an ontol-
ogy. Such logical expressions can be used to refine concept or relation definitions in
the ontology, but also to add arbitrary axiomatic domain knowledge or express con-
straints. The axiom authorshipFromAuthor in Listing 1 states that the relation author-
ship exists between any author and any book of which he is an author; consequently,
〈dostoyesksy, crimeAndPunishment〉 is in the relation authorship. Logical expressions
are explained in more detail in Section 3.3.

Web Services. A Web Service has a capability and a number of interfaces. The capabil-
ity describes the Web Service functionality by expressing conditions over its
pre- and post-states4 using logical expressions; interfaces describe how to interact with

4 Pre-state (post-state, respectively) refers to the state before (after, respectively) the execution
of the Web Service.
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the service. Additionally, WSML allows to specify non-functional properties of a Web
Service. Listing 2 describes a simple Web Service for adding items to a shopping cart.

webService ”http://example.org/bookService”
nonFunctionalProperties

dc#title hasValue ”Example book buying service”
dc#description hasValue ”A simple example web service for adding items to a shopping cart”

endNonFunctionalProperties

importsOntology ”http://example.org/bookOntology”
capability

sharedVariables {?cartId, ?item}
precondition

definedBy
?cartId memberOf string and ?item memberOf book.

postcondition
definedBy

forall ?cart (?cart [ id hasValue ?cartId] memberOf cart implies
?cart [items hasValue ?item]).

Listing 2. A WSML Web Service description

Capabilities. Preconditions and assumptions describe the state before the execution of
a Web Service. While preconditions describe conditions over the information space, i.e.,
conditions over the input; assumptions describe condition over the state of world which
can not necessarily be directly checked. Postconditions describe the relation between
the input and the output, e.g., a credit card limit with respect to its values before the
service execution. In this sense, they describe the information state after execution of
the service. Effects describe changes in the real world caused by the service, e.g., the
physical shipment of some good. The sharedVariables construct is used to identify
variables which are shared between the pre- and postconditions and the assumptions
and effects. Shared variables can be used to refer to the same input and output values
in the conditions of the capability. Listing 2 describes a simple Web Service for adding
items to a shopping cart: given a shopping cart identifier and a number of items, the
items are added to the shopping cart with this identifier.

Interfaces. Interfaces describe how to interact with a service from the requester point-
of-view (choreography) and how the service interacts with other services and goals it
needs to fulfill in order to fulfill its capability (orchestration), which is the provider
point of view. Choreography and orchestration descriptions are external to WSML;
WSML allows to reference any choreography or orchestration identified by an IRI.

Goals. Goals are symmetric to Web Services in the sense that Goals describe desired
functionality and Web Services describe offered functionality. Therefore, a Goal de-
scription consists of the same modeling elements as a Web Service description, namely,
non-functional properties, a capability and a number of interfaces.

Mediators. Mediators connect different Goals, Web Services and Ontologies, and
enable inter-operation by reconciling differences in representation formats, encoding
styles, business protocols, etc. Connections between Mediators and other WSML ele-
ments can be established in two different ways:
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1. Each WSML element allows for the specification of a number of used mediators
through the usesMediator keyword.

2. Each mediator has (depending on the type of mediator) one or more sources and one
target. Both source and target are optional in order to allow for generic mediators.

A mediator achieves its mediation functionality either through a Web Service, which
provides the mediation service, or a Goal, which can be used to dynamically discover
the appropriate (mediation) Web Service.

3.3 Logical Expression Syntax

We will first explain the general logical expression syntax, which encompasses all
WSML variants, and then describe the restrictions on this general syntax for each of
the variants. The general logical expression syntax for WSML has a First-Order Logic
style, in the sense that it has constants, function symbols, variables, predicates and the
usual logical connectives. Furthermore, WSML has F-Logic [12] based extensions in
order to model concepts, attributes, attribute definitions, and subconcept and concept
membership relationships. Finally, WSML has a number of connectives to facilitate
the Logic Programming based variants, namely default negation (negation-as-failure),
LP-implication (which differs from classical implication) and database-style integrity
constraints.

Variables in WSML start with a question mark, followed by an arbitrary number of
alphanumeric characters, e.g., ?x, ?name, ?123. Free variables in WSML (i.e., variables
which are not explicitly quantified), are implicitly universally quantified outside of the
formula (i.e., the logical expression in which the variable occurs is the scope of quan-
tification), unless indicated otherwise, through the sharedVariables construct (see the
previous Section).

Terms are either identifiers, variables, or constructed terms. An atom is, as usual,
a predicate symbol with a number of terms as arguments. Besides the usual atoms,
WSML has a special kind of atoms, called molecules, which are used to capture infor-
mation about concepts, instances, attributes and attribute values. The are two types of
molecules, analogous to F-Logic:

– An isa molecule is a concept membership molecule of the form A memberOf B
or a subconcept molecule of the form A subConceptOf B with A and B arbitrary
terms

– An object molecule is an attribute value expressions of the form A[B hasValue
C], a constraining attribute signature expression of the form A[B ofType C], or
an inferring attribute signature expression of the form A[B ofType C], with A,B,C
arbitrary terms

WSML has the usual first-order connectives: the unary negation operator neg, and
the binary operators for conjunction and, disjunction or, right implication implies, left
implication impliedBy, and dual implication equivalent. Variables may be universally
quantified using forall or existentially quantified using exists. First-order formulae are
obtained by combining atoms using the mentioned connectives in the usual way. The
following are examples of First-Order formulae in WSML:
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// every person has a father
forall ?x (?x memberOf Person implies exists ?y (?x[father hasValue ?y])).
// john is member of a class which has some attribute called ’name’
exists ?x,?y (john memberOf ?x and ?x[name ofType ?y]).

Apart from First-Order formulae, WSML allows the use of the negation-as-failure
symbol naf on atoms, the special Logic Programming implication symbol :- and the
integrity constraint symbol !-. A logic programming rule consists of a head and a body,
separated by the :- symbol. An integrity constraint consists of the symbol !- followed
by a rule body. Negation-as-failure naf is only allowed to occur in the body of a Logic
Programming rule or an integrity constraint. The further use of logical connectives in
Logic Programming rules is restricted. The following logical connectives are allowed in
the head of a rule: and, implies, impliedBy, and equivalent. The following connectives
are allowed in the body of a rule (or constraint): and, or, and naf. The following are
examples of LP rules and database constraints:

// every person has a father
?x[father hasValue f(?y)] :− ?x memberOf Person.
// Man and Woman are disjoint
!− ?x memberOf Man and ?x memberOf Woman.
// in case a person is not involved in a marriage, the person is a bachelor
?x memberOf Bachelor :− ?x memberOf Person and naf Marriage(?x,?y,?z).

Particularities of the WSML Variants. Each of the WSML variants defines a number
of restrictions on the logical expression syntax. For example, LP rules and constraints
are not allowed in WSML-Core and WSML-DL. Table 1 presents a number of language
features and indicates in which variant the feature can occur.

Table 1. WSML Variants and Feature Matrix

Feature Core DL Flight Rule Full
Classical Negation (neg) - X - - X
Existential Quantification - X - - X
(Head) Disjunction - X - - X
n-ary relations - - X X X
Meta Modeling - - X X X
Default Negation (naf) - - X X X
LP implication - - X X X
Integrity Constraints - - X X X
Function Symbols - - - X X
Unsafe Rules - - - X X

– WSML-Core allows only first-order formulae which can be translated to the DLP
subset of SHIQ(D) [8]. This subset is very close to the 2-variable fragment of
First-Order Logic, restricted to Horn logic. Although WSML-Core might appear in
the Table 1 featureless, it captures most of the conceptual model of WSML, but has
only limited expressiveness within the logical expressions.

– WSML-DL allows first-order formulae which can be translated to SHIQ(D). This
subset is very close to the 2-variable fragment of First-Order Logic. Thus, WSML
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DL allows classical negation, and disjunction and existential quantification in the
heads of implications.

– WSML-Flight extends the set of formulae allowed in WSML-Core by allowing vari-
ables in place of instance, concept and attribute identifiers and by allowing relations
of arbitrary arity. In fact, any such formula is allowed in the head of a WSML-Flight
rule. The body of a WSML-Flight rule allows conjunction, disjunction and default
negation. The head and body are separated by the LP implication symbol.
WSML-Flight additionally allows meta-modeling (e.g., classes-as-instances) and
reasoning over the signature, because variables are allowed to occur in place of
concept and attribute names.

– WSML-Rule extends WSML-Flight by allowing function symbols and unsafe rules,
i.e., variables which occur in the head or in a negative body literal do not need to
occur in a positive body literal.

– WSML-Full The logical syntax of WSML-Full is equivalent to the general logical
expression syntax of WSML and allows the full expressiveness of all other WSML
variants.

The separation between conceptual and logical modeling allows for an easy adop-
tion by non-experts, since the conceptual syntax does not require expert knowledge in
logical modeling, whereas complex logical expressions require more familiarity and
training with the language. Thus, WSML allows the modeling of different aspects re-
lated to Web services on a conceptual level, while still offering the full expressive power
of the logic underlying the chosen WSML variant. Part of the conceptual syntax for on-
tologies has an equivalent in the logical syntax. This correspondence is used to define
the semantics of the conceptual syntax. Notice that, since only parts of the conceptual
syntax are mapped to the logical syntax, only a part of the conceptual syntax has a
semantics in the logical language for ontologies. For example, non-functional proper-
ties are not translated (hence, the name ‘non-functional’). The translation between the
conceptual and logical syntax is sketched in Table 2.

Table 2. Translating conceptual to logical syntax

Conceptual Logical
concept A subConcepOf B A subConceptOf B.

concept A
B ofType (0 1) C

A[B ofType C].
!− ?x memberOf A and

?x[B hasValue ?y, B hasValue ?z] and ?y != ?z.

concept A B ofType C A[B ofType C].

relation A/n subRelationOf B A(x1 ,...,xn) implies B(x1,...,xn)

instance A memberOf B
C hasValue D

A memberOf B.
A[C hasValue D].

3.4 WSML Web Syntaxes

The WSML XML syntax is similar to the human-readable syntax, both in keywords
and in structure. We have defined the XML syntax through a translation from the



600 J. de Bruijn et al.

human-readable syntax [4] and have additionally specified an XML Schema for
WSML5. Note that all WSML elements fall in the WSML namespace http://www.wsmo.
org/wsml/wsml-syntax#.

WSML provides a serialization in RDF of all its conceptual modeling elements
which can be found in [4]. The WSML RDF syntax reuses the RDF and RDF Schema
vocabulary to allow existing RDF(S)-based tools to achieve the highest possible degree
of inter-operation. As a result, WSML can be seen as an extension of RDF(S).

4 Key Features of WSML

There are a number of features which make WSML unique from other language pro-
posals for the Semantic Web and Semantic Web Services. These key features are mainly
due to the two pillars of WSML, namely (1) a language independent conceptual model
for Ontologies, Web Services, Goals and Mediators, based on WSMO [17] and (2) reuse
of several well-known logical language paradigms in one syntactical framework. More
specifically, we see the following as the key features of WSML:

One syntactic framework for a set of layered languages. We believe different Se-
mantic Web and Semantic Web Service applications need languages of different
expressiveness and that no single language paradigm will be sufficient for all use
cases. With WSML we investigate the use of Description Logics and Logic Pro-
gramming for Semantic Web Services.

Normative, human readable syntax. It has been argued that tools will hide language
syntax from the user; however, as has been seen, for example, with the adoption of
SQL, an expressive but understandable syntax is crucial for successful adoption of
a language. Developers and early adopters of the language will have to deal with the
concrete syntax. If it is easy to read and understand it will allow for easier adoption
of the language.

Separation of conceptual and logical modeling On the one hand, the conceptual syn-
tax of WSML has been designed in such a way that it is independent of the under-
lying logical language and no or only limited knowledge of logical languages is
required for the basic modeling of Ontologies, Web Services, Goals, and Media-
tors. On the other hand, the logical expression syntax allows expert users to refine
definitions on the conceptual syntax using the full expressive power of the underly-
ing logic, which depends on the particular language variant chosen by the user.

Semantics based on well known formalisms. WSML captures well known logical
formalisms such as Datalog and Description Logics in a unifying syntactical frame-
work, while maintaining the established computational properties of the original
formalisms through proper syntactic layering. The variants allow the reuse of tools
already developed for these formalisms. Notably, WSML allows to reuse efficient
querying engines developed for Datalog and efficient subsumption reasoners devel-
oped in the area of Description Logics. Inter-operation between the paradigms is
achieved through a common subset, WSML-Core, based on DLP [8].

5 http://www.wsmo.org/TR/d16/d16.1/v0.21/xml-syntax/wsml-xml-syntax.xsd
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WWW Language. WSML has a number of features which integrate it seamlessly in
the Web. WSML adopts the IRI standard, the successor of URI, for the identifi-
cation of resources, following the Web architecture. Furthermore, WSML adopts
the namespace mechanism of XML and datatypes in WSML are compatible with
datatypes in XML Schema [2] and datatype functions and operators are based on
the functions and operators of XQuery [15]. Finally, WSML defines an XML syn-
tax and an RDF syntax for exchange over the Web. When using the RDF syntax,
WSML can be seen as an extension of RDFS.

Frame-Based syntax. minus .1em Frame Logic [12] allows the use of frames in log-
ical expressions. This allows the user to work directly on the level of concepts,
attributes, instances and attribute values, instead of at the level of predicates. Fur-
thermore, variables are allowed in place of concept and attribute identifiers, which
enables meta-modeling and reasoning over the signature in the rule-based WSML
language variants.

5 Related Work

In this section we review existing work in the areas of Semantic Web and Semantic Web
Services languages and compare it to WSML.

RDFS. RDFS [3] is a simple ontology modeling languages based on triples. It allows
to express classes, properties, class hierarchies, property hierarchies, and domain- and
range restrictions. Several proposals for more expressive Semantic Web and Semantic
Web Service descriptions extend RDFS, however there are difficulties in semantically
layering an ontology language on top of RDFS:

1. RDFS allows the use of the language vocabulary as subjects and objects in the
language itself.

2. RDFS allows the use of the same identifier to occur at the same time in place of a
class, individual, and property identifier.

We believe that the number of use cases for the first feature, namely the use of lan-
guage constructs in the language itself, is limited. However, the use of the same identifier
as class, individual and property identifier (also called meta-modeling) is deemed use-
ful in many cases. WSML does not allow the use of the language constructs in arbitrary
places in an ontology, but does allow meta-modeling in its Flight, Rule and Full variants.

WSML is an extension of a significant part of RDFS; it does not allow the use of
language constructs in the language itself and does not allow full treatment of blank
nodes, because this would require reasoning with existential information, which is not
allowed in the rule-based WSML variants. WSML provides a significant extension of
RDFS through the possibility of specifying local attributes, range and cardinality con-
straints for attributes and attribute features such as symmetry, transitivity and reflexivity.
Furthermore, WSML (in its rule-based variants) provides an expressive rule language
which can be used for the manipulation of RDF data.

OWL. The Web Ontology Language OWL [6] is a language for modeling ontologies
based on the Description Logic paradigm. OWL consists of three species, namely OWL
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Lite, OWL DL and OWL Full, which are intended to be layered according to increasing
expressiveness. OWL Lite is a notational variant of the Description Logic SHIF(D);
OWL DL is a notational variant of the Description logic SHOIN (D). The most ex-
pressive species of OWL, OWL Full, layers on top of both RDFS and OWL DL. We
compare OWL with the ontology description component of WSML, since OWL does
not offer means to describe Web Services, Goals and Mediators.

WSML-Core is a semantic subset of OWL Lite. WSML-DL is semantically equiv-
alent to OWL DL. However, there is a major difference between ontology modeling in
WSML and ontology modeling in OWL. WSML uses an epistemology which abstracts
from the underlying logical language, whereas OWL directly uses Description Logics
epistemology; WSML separates between conceptual modeling for the non-expert users
and logical modeling for the expert user. Arguably, these properties could make WSML
easier to use as an ontology language. This is, however, merely a conjecture and would
required extensive user testing to verify its correctness.

WSML-Flight and WSML-Rule are based on the Logic Programming paradigm,
rather than the Description Logic paradigm. Thus, their expressiveness is quite different
from OWL. On the one hand, WSML-Flight/Rule allow chaining over predicates and
non-monotonic negation, but do not allow classical negation and full disjunction and
existential quantification. We conjecture that both the Description Logics and Logic
Programming paradigms are useful on the Semantic Web (cf. [11]). With WSML we
capture both paradigms in one coherent framework. Interaction between the paradigms
is achieved through a common subset, WSML-Core.

OWL-S. OWL-S [1] is an OWL ontology for the modeling of Semantic Web Services.
It has been recognized that the expressiveness of OWL alone is not enough for the
specification of Web Services (e.g. [13]). To overcome this limitation OWL-S allows
the use of more expressive languages such as SWRL [9], KIF and DRS. However, the
relation between the inputs and output described using OWL and the formulae in these
languages is sometimes not entirely clear.

Comparing the language suggestions for WSML and OWL-S it turns out that while
OWL-S aims at combining different notations and semantics with OWL for the descrip-
tion of service conditions and effects, WSML takes a more cautious approach: WSML
does not distinguish between languages used for inputs/output and other description
elements of the Web Service, but provides one uniform language for capability descrip-
tions. Additionally, the languages suggested for OWL-S are all based on classical logic,
whereas WSML also offers the possibility to use (nonmonotonic) Logic Programming.

Finally, WSML is based on the conceptual model of WSMO, which differs signif-
icantly from the OWL-S conceptual model for Web Service modeling. For a detailed
comparison, see [14].

6 Conclusions and Future Work

In this paper we have presented the Web Service Modeling Language WSML, a lan-
guage for the specification of different aspects related to Semantic Web Services, based
on the Web Service Modeling Ontology WSMO [17]. WSML brings together different
logical language paradigms and unifies them in one syntactical framework, enabling
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the reuse of proven reasoning techniques and tools. Unlike other proposals for Seman-
tic Web and Semantic Web Service languages, WSML has a normative human readable
syntax that makes a separation between conceptual and logical syntax, thereby enabling
conceptual modeling from the user point-of-view according to a language-independent
meta-model (WSMO), while not restricting the expressiveness of the language for the
expert user. With the use of IRIs (the successor of URI) and the use of XML and RDF,
WSML is a language based on the principles of the Semantic Web and allows seamless
integration with other Semantic Web languages and applications.

The definition of an inter-operability layer between the Description Logic and Rules
paradigms, in the form of WSML-Core, enables the use and extension of the same core
ontology for a number of different reasoning tasks supported by a number of different
reasoners, most notably subsumption reasoning using Description Logic reasoners and
query answering using Logic Programming reasoners.

Future work for WSML consists of the application of the language to various use
cases and the improvement of WSML tools, such as editors and reasoners6. From the
language development point of view, the semantics of WSML-Full has not yet been
defined; we are currently looking into several nonmonotonic logics, such as Autoepis-
temic and Default Logic. There are approaches which combine expressive Description
Logics with nonmonotonic logic programming without requiring the expressiveness of
WSML-Full (e.g. ). Incorporating such approaches in WSML is a matter of ongoing in-
vestigation. We are working on defining the operational semantics for the Web Service
capability. Such operational semantics is necessary for the automation of several Web
Service related tasks, such as discovery [10]. It might turn out, however, that differ-
ent tasks need different operational semantics. Finally, the Web Service choreography
and orchestration are currently place-holders in WSML; work is ongoing to fill these
place-holders.
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