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Abstract. Large engineering processes need to be monitored in detail
regarding when what was done in order to prove compliance with rules
and regulations. A typical problem of these processes is the lack of con-
trol that a central process engine provides, such that it is difficult to
track the actual course of work even if data is stored in version control
systems (VCS). In this paper, we address this problem by defining a
mining technique that helps to generate models that visualize the work
history as GANTT charts. To this end, we formally define the notion of a
project-oriented business process and a corresponding mining algorithm.
Our evaluation based on a prototypical implementation demonstrates
the benefits in comparison to existing process mining approaches for this
specific class of processes.
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1 Introduction

Business process management plays an important role for improving the perfor-
mance and compliance of various types of processes. In practice, many processes
are executed with clear guidelines and regulatory rules, but without an explicit
centralized control imposed by a process engine. In particular, it is often impor-
tant to exactly know when which work was done. This is, for instance, the case
for complex engineering processes in which different parties are involved. We
refer to this class of processes as project-oriented business processes.

Such project-oriented business processes are difficult to control due to the
lack of a centralized process engine. However, there are various unstructured
pieces of information available to analyze and monitor their progress. One type
of data that are often available these processes is event data from version control
systems (VCS). While process mining techniques provide a useful perspective on
how such event data can be analyzed, they do not produce output that is readily
organized according to the project orientation of these processes.
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In this paper, we define formal concepts for capturing project-oriented pro-
cesses. These concepts provide the foundation for us to develop an automatic
discovery technique which we refer to as project mining. The output of our
project mining algorithm is organized according to the specific structure typ-
ically encountered in project-oriented business processes. With this work, we
extend the field of process mining towards the coverage of this specific type of
business process.

The paper is structured as follows. Section 2 describes the research prob-
lem and summarizes insights from prior research upon which our project mining
approach is built. Section 3 defines the preliminaries of our work and presents
an algorithm to mine project-oriented business processes. Section 4 describes
the implementation of this algorithm and discusses the results from its applica-
tion to VCS logs from a real-world engineering project. Section 5 highlights the
implications of this work before Section 6 concludes.

2 Background

Here, we describe the addressed problem and related work.

2.1 Problem Description

The class of processes that we discuss in this paper are long-term engineering
projects. These processes have specific requirements for monitoring. First, they
are executed only once according to the specific needs of a particular project, and
only partially according to recurring process descriptions. Second, they involve
various actors that typically document their work in a semi-structured way using
text and tables. Third, work in the project is usually subject to constraints
regarding the start and end and the temporal order. Fourth, there is typically
no process engine controlling the execution. Fifth, even though these limitations
in terms of traceability exist, there are usually strong requirements in terms of
tracking when which work was conducted.

In line with these observations, a project-oriented business process can be
defined as an ad-hoc plan that specifies the tasks to be performed within a limited
period of time and with a limited set of resources for achieving a specific goal.
Unlike repetitive business processes for which notations such as BPMN [12] or
EPC [1] are commonly used, project-oriented business processes may be properly
represented with PERT or GANTT models. The concept is illustrated in Fig. 1.

Documentation is required not only explicitly as part of some activities but
also to comply with norms and regulations that may require some evidence of
the actions being performed in the organization. Documents are usually free
of format or contain tables, at best. The unstructuredness of data makes it
difficult to monitor processes and check rules on them. A starting point for
analysis of project-oriented processes can be data logs that are stored in Software
Configuration Management (SCM) systems that help tracking the evolution of
data and restore information if needed [19]. However, hundreds of versions of
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Fig. 1. Problem illustration

thousands of files are common in a single project [20], which makes it impractical
to browse this data manually.

Let us see an example inspired by a real scenario of a process to write a
project proposal that uses a Version Control System (VCS) to store the data.
The project history, and hence, the data produced, starts when people begin to
work on the proposal, which involves a description of the project goals and mile-
stones, a division of tasks into work packages, an estimation of cost and resources
required, etcetera. This information is spread in the repository over several fold-
ers containing different documents, which are later merged into a single file.
If the proposal is accepted, the first step is to organize a kickoff meeting and
assign specific resources to the work packages. A hierarchical set of folders is
then created in the repository in order to store the information generated for
each work package. As the project evolves over time, resources contribute by
adding, removing or modifying information to the VCS repository. Project evo-
lution is guided by specific norms that impose the execution of predefined steps.
For instance, the European norm EN5016 requires a preliminary Reliability,
Availability and Maintainability (RAM) analysis to support targets.

Table 1 depicts an excerpt of the log data generated, where the first column
(on the left hand side) indicates the commit identifier, the second column indi-
cates the person who committed changes, the third column indicates the commit
date, and the fourth column indicates the files affected and the type of action
performed among added (A), modified (M) and deleted (D). For the sake of
simplicity, the table shows the log data of a specific time period and the actions
related to a specific task, namely, Define example. That task was assigned to
resource X and was supervised by resource Y and, later on, also by resource Z.
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Table 1. Excerpt from VCS log data for the referenced time period

CID Resource Date List of changes

A /example

1 Y 2014-11-12 11:57:46
A /example/SHAPE/ToyStationExample.docx

M /example/ToyStation.bpmn

3 X 2014-11-14 16:34:07
M /example/ToyStation.png

4 w 2014-12-15 13:49:11 D /example/Download

5 W 2015-01-08 16:06:41 A /example/Download2
M le/ T ation_OL .

6 X 2015-01-13 11:47:09 /example/ToyStation_OLoop.bpmn
M /example/ToyStation_nLoop.bpmn
A le/ToyStation_0Loop.pdf

7 VA 2015-01-16 16:50:29 /example/ToyStation-OLoop.p

A /example/ToyStation-feedbackZ.pdf

Existing frameworks, such as Subversion or Git, allow to access their logs
in different ways. However, the covered information is limited to (roughly) that
depicted in Table 1. Especially for big projects that are frequently updated
over a large period of time, these logs are complex to analyze. Therefore, the
problem to address is how to analyze and visualize the information produced
in project-oriented business processes such that it can be represented in an
understandable and manageable way by project experts and enable, a.o., the
automation of mechanisms for compliance checking. The following properties of
project-oriented process logs must be taken into account to achieve this goal: (i)
VCS repositories consist of a hierarchy of folders and files which are logically
organized such that work is grouped in a specific way; (ii) process activities are
not registered in VCS log entries. Therefore, such information must be inferred
by reasoning on the repository structure and/or the content of the log entries;
(iii) the granularity of the events is unknown a priori and it needs to be defined
before analyzing the data.

2.2 Related Work

The problem described has been addressed in the literature from different per-
spectives. The first category of related work tackles the problem by transforming
it into a process mining problem. Consequently, approaches have been developed
to preprocess VCS data such that process mining techniques can be applied, and
hence, a business process can be derived from the log data. In this group, Kindler
et al. [9,10] developed an algorithm for extracting software processes that are
mapped to Petri Nets. Activities, which are not explicit in the logs, are dis-
covered from their input and output artifacts. However, strong assumptions are
made on the filenames as well as on the software process lifecycle. Rubin et al.
in [15] addressed the problem of engineering processes that are not well doc-
umented and are usually unstructured. They provided a bridge from Kindler
et al.’s approach to ProM [5] in order to mine different process perspectives,
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such as performance social network analyses. Rubin et al. [16] applied process
mining to the touristic industry and obtained user processes from web client logs
pursuing the goal of improving the software system by analyzing the underlying
process. Poncin et al. [14] developed the FRASR framework for preprocessing
software repositories to transform the VCS data to logs that conform to the
process mining event log meta model [4] as utilized in ProM [5]. However, these
approaches disregard the single-instance nature of project-oriented business pro-
cesses and treat them as procedures that can be repeated over time.

The second category of related work focuses on the visualization of VCS data
for different purposes. Several approaches study the interaction among develop-
ers over time from a visualization point of view. For instance, Ogawa and Ma
[11] drew storyline pathways to show the story of each developer’s contribution.
Other approaches analyze and visualize VCS data at file level in order to discover
file version evolution. Voinea and Telea [20] introduced an interactive navigation
method to surf file version evolution as well as two methods to cluster versions
of the same file in an abstraction layer. Wu et al. [22] also visualized the evolu-
tions of entire projects at file level, emphasizing the evolution moments. Finally,
several approaches study change prediction with the aim of discovering predic-
tion patterns that can help in the process of software development [23,24]. The
approaches mentioned in this category as well as others that apply similar tech-
niques [3,6,8] focus on studying software evolution from different standpoints.
However, the goal pursued differs in all cases from our goal in that they are not
interested in discovering projects tasks out of the log data, and hence, they lack
an explicit notion of work structure that we need to consider for our purpose.

Our approach combines ideas from both areas, as we aim at identifying tasks
like in the approaches that rely on process mining, but we must cluster the data
in an appropriate way, for which techniques developed in the approaches that
pursue visualization may be adapted or extended.

3 Mining VCS Event Data

Here, we first formalize the notions encountered in the project mining setting.
Then we develop an approach to acquire a hierarchical overview on the project
from a repository perspective.

3.1 Preliminaries

Version control systems (VCSs) are used in projects to ensure reliable collabo-
ration. We build our approach on VCS. Typically, the workflow in VCS is that
people work on files (e.g., text, source code, spread sheets) and commit them to
the central repository. Project participants comment on their commits so that
other participants can better understand the nature of the changes to the files.

Let F' be the universe of files. Files are organized in a file tree. Therefore,
each file f € F has one parent file. The only file without a parent file is the
root file. We capture this information in the parent relation Parent : F x F.
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For example, let f, € F be the parent of file f. € F', then (f,, fc) € Parent. The
transitive closure on the parent files is given by the function ancestor : F — 2F
that returns the set of files along the path to the root.

When project members did a certain amount of work and want to save their
current progress, they commit the changes to the VCS. We define changes on
files as the events of interest on the lowest granularity.

Definition 1 (Event). Let E be the set of events. An event e € E is a four-
tuple (f,o0,ts,k), where
— f € F is the affected file of the event.
- 0 € O = {added, modified, deleted} is the change operation on the file with
obvious meaning.
— ts € TS = Ny represents a unix time stamp marking the time of the event
occurrence.
- ke X* is a comment in natural language text.

For events e = (f,0,ts, k) we overload f,o,ts, and k to be used as accessor
functions. For example, f is the function f : £ — F mapping an event to its
affected file.

Project participants can commit a number of changes to different files at one
step. Therefore, we define the notion of commits as follows.

Definition 2 (Commit). A commit C is a set of events sharing the same time
stamp and comment, i.e., Ve, e’ € C : ts(e) = ts(e')Nk(e) = k(e’). Additionally,
each event in a commit affects different files, i.e., Ve,e' € C: e # e — f(e) #

f(e).

Usually, it is in the hands of project participants, when they decide to commit
changes to the VCS. In the extreme case, there could be only a single commit
made in a project that adds all files to the repository. Note that this extreme
practice would render the use of a VCS obsolete. On the contrary, it is common
practice to regularly perform commits in order to securely store work progress
and to reduce the chance of conflicts [7,13]. Conflicts occur, when another par-
ticipant committed changes to a file that is being committed and can cause
extra work. Based on these insights, we make the assumption that commits are
regularly made during work.

Projects are decomposed into work packages. We assume a hierarchical work
package structure of a project, such that a work package can have sub work
packages. Further, the amount of work in a single work package need not be
done in one single time span, but it can be split into several activities. Activities
have a start and end time, and subsequent activities can have idle periods in
between. Thus, we define projects as follows.

Definition 3 (Project). A project P is a tuple (W, S, A, a,w, 3), where
— W is the set of work packages in the project.
- S CWxW is the relation that hierarchically decomposes work packages into
a tree structure.
— A is the set of activities that are conducted in the work packages.
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—a:A— TS is the function that assigns a start time to activities. Activities
are ordered by their start times.

- w: A— TS is the function that assigns an end time to activities.

- B: A — W is the mapping function that maps activities to their correspond-
ing work packages.

Note that this definition reflects an activity centric view on projects. The
definition deliberately omits further dimensions, e.g., costs, resources, risks. The
idea is not to capture projects in every detail, but to focus on the work packages
of a project to obtain an overview of the work that is being done. We are inter-
ested in when work has been started in a work package, and when work packages
have been done. This information can be derived from the activities associated
to the workpackages. An obvious assumption is that the work package starts
with its first activity, and ends when its last activity is completed.

Based on these notions, we can define the task of project discovery as recon-
structing the project P from a set of low level event data E. In the following,
we present an approach to this problem.

3.2 Project Discovery Technique

For project discovery from the VCS commit history, we need to identify activities
that are performed, associate the activities to work packages and recreate the
work package structure of the project. Our aim is to create a hierarchical model
that provides an overview of the project work. Therefore, we have to identify the
start and end times of activities and of work packages before we can visualize
the project work. The input to the technique is the log that is stored in the VCS.
The challenge is that the raw log only records commits on the file system level
and information on activity level is missing. However, we can deduce activity
information from events based on the following assumptions.

A1l: Meaningful file tree structure. The file tree structure in a project rep-
resents its work package structure. That is, the knowledge workers organize
their work in a file hierarchy that reflects the project structure.

A2: Local changes. Activities in a work package affect only files of the work
package folder, or in the corresponding sub-tree in the file tree structure.
A3: Frequent commits. Commits to the VCS are regularly performed, when

conducting work in an activity.
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Note that assumption Al can be seen as a strong assumption on the file
tree structure. Nevertheless, we argue that even if Al is not entirely met, the
aggregation of work information on the file tree hierarchy provides a valuable
view on the project. Figure 2 shows the different steps of the technique. We
describe each of them in detail.

Step 1: Preprocessing. The first step is to transform raw logs of version
control systems (which might be grouped by commits) into a list of events as
specified in Definition 1. This step is easily done by replicating the information
on commit level to be contained in the events. The output is a set of events F.

Step 2: Aggregating events to activities. Given the set of events E that we
gathered from a version control system, the next step is to identify the activities
to which the events belong. Note that we do not know the activities of the
project in advance, but need to infer them based on the events. Each event
affects a single file in the file hierarchy.

observed
active ’ as ‘
time
5 C C C3 Cy4
. L o— — & >
- time
tc1 tcz tc3 tcA
adjusted
active t. as' |
time

Fig. 3. Adjustment of activity start time a.

Based on assumption A2, we are interested in activities conducted in a work
package, that is, we filter for the events that are contained in the given file or its
children. For every file f of interest, we select the set of events affecting the file or
its children as Ey = {e € E | f = f(e)V f € ancestor(f(e))}. The task is then to
find the activities which emitted the set of events Ef. We rely on assumption A3,
which states that during an activity, we expect multiple commits. Assumption
A3 allows us to conclude that if we do not observe commits for a longer period
of time, there is no activity being performed in the work package.

To this end, we adopt the abstraction technique by Baier et al. [2] and allow
the domain expert to formulate rules for aggregating events to activities based
on boundary conditions. Assuming that people frequently commit their progress
(A3), we can specify a boundary condition based on the temporal distance to
previous events. For example, we can specify that a time period of seven days
without a commit is a boundary condition. As the result, we obtain the mapping
from events to these activities, which we call vy : Ef — Ay in the remainder of
the paper. The set of discovered activities identified for the work package based
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on given boundary conditions is then Ay = {a | e € Ef,ys(e) = a}. We also
define the inverse mapping, that is, the mapping from an activity to its events
as 7]71 t Ay — 2Fr,

With the events mapped to activities, we need to find the temporal bound-
aries of the target activities. That is, we define the functions o and w for each
activity. The challenge here is that we do not know when an activity actually
started, because the start of the activity is not recorded in the VCS. We can
only observe the time of the first commit in that activity, but commits usually
mark progress of an already running activity.

To address the challenge of missing start times, we impute the missing start
time by prepending the expected active time £, before a commit, as illustrated
by Figure 3. This notion assumes that project participants commit their work
progress after a certain amount of time. However, we cannot compute . by
looking at the average commit rate in a work package, because this average is
based on busy periods and idle periods. We need to factor out the idle periods
in the computation of this measure. We know the end time of the activities, as
the last commit marks the completion of work. Therefore, each activity a based
on given boundary conditions has the associated end time w(a) = max({ts(e) |
ec 7]71(11)}). Further, we write the first event’s timestamp of an activity as the
function o/(a) = min({ts(e) | e € wfl(a)}). Then, we define ¢ : Ay — NT as the
number of commits in one activity, formally c(a) = [{C | e € C Avy¢(e) = a}|.

With this information the expected active time between commits %, is given
as follows.

- Tues, (6l0) = (a) "
‘ ZaEAf(C(a) - 1)

We assume that there is at least one activity spanning over at least two
commits, i.e., 3a € Af | ¢(a) > 1. Translated to our boundary condition, this
assumption is that there is at least one week in each work package, in which
there were at least two commits made. Otherwise, we set %, to 0 for the current
file f due to lack of information.

Given the expected active time between commits f., we can finally adjust
the start time of each activity. Therefore, we set the associated start time for
each activity as a(a) = o/(a) — f.. That is, we subtract the expected active time
from the first commit’s timestamp.

We apply Step 2 to all files f in the file tree to get Af. For the remainder
of this paper, we define the function v : A — F that contains the mapping
information of the discovered activities to their originating files. Finally, we set
the activities A in the project to be the union of the activity sets per file UfGF Af.

Steps 3 and 4: Mapping activities to work packages and aggregating.
Once activities have been identified, we want to climb to the next abstraction
layer: the work packages. Assumption Al allows us to specify a one-to-one map-
ping k : F' — W between files in the file tree structure and work packages. More
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precisely, we construct the set of work packages W isomorphic to the set of files
F, such that the Parent relation is preserved in the work package structure S
relationship.

The mapping (§ of activities to work packages is simply B(a) = k(¥(a)).
That is, the corresponding work package of the activity that was discovered for
a file. In this way, we provide an activity based view on work packages, and
we can aggregate on each level in the file system to see active periods of the
corresponding hierarchy level.

Step 5: Computing work package characteristics. In this final step, we
compute measures of interest for the discovered work packages. First, we obtain
the temporal boundaries of a work package by the functions a and w of the
associated activities.

Let 81 : W — 24 be the inverse of the mapping function 3 of the project.
The start and end time of a work package (aw and wy ) are functions from work
packages to timestamps. The start time is defined as aw (w) = min({a(a) | a €
B~H(w)}), and the end time function of work packages wy is analogously defined
using the maximum of the end times w(a) of the activities. We call the duration
of a work package 7 that is the difference between wy, and aypy.

Moreover, we are interested in the ratio of active working periods (i.e., the
time spans of activities) to the total work package duration. This quantity helps
to estimate the average work intensity in a work package.

Definition 4 (Coverage). The coverage x of work packages by activities is a
function x : W — [0,1] and is defined as follows.

Zaeg—l(w) (w(a) — afa))

7(w)

X(w) = (2)

With this final step, we lifted the information hidden in low level events to a
high-level Gantt chart perspective, with which project managers are familiar. In
the following, we compare our technique to existing process mining approaches.

4 Evaluation

In this section we evaluate our solution to the project mining problem, and show
results for the example presented in Section 2.

4.1 Experimental Setup

We evaluate our technique by a visual perspective and by comparison to possible
different approaches. To this end we implemented our technique as a prototype.
We used JAVA as a programming language to code the logic of our technique.
For the visualization part we made use of custom SWT widgets provided by the
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Nebula Project!. Our program can deal with logs from Subversion (SVN) [13]
and Git[17], but it can be extended to other version control systems by providing
an implementation of the preprocessing step discussed in Section 3.2. We ran the
software in an Intel®Core ™ i5-4570 CPU @ 3.20 GHz x 4 machine with 15.6
GiB of RAM and Linux kernel 3.13.0-46-generic 64-bit version.

4.2 Input Data Description

We tested our prototype with real-world log data taken from the SHAPE project.
Logs were exported from the SVN and Git repositories of different projects. They
come from the railway domain and describe engineering processes. Documenta-
tion stored in the repositories consists of manually produced text files, diagrams,
and files coming from proprietary tools that are typically used in the domain.

We will display results for the SVN log that describes the process oriented
project for SHAPE. Data span over one year, going from January 2014 to Jan-
uary 2015. This time window covers the phases of project definition and planning,
and a part of the project execution. In the first phase, feasibility of the project
was studied and budget, schedule and resources were determined. Proposal sub-
mission marked the end of this phase. The second phase started with a kickoff
meeting in October 2014 and is still ongoing.

The total number of participants who actively contributed to the work pack-
ages stored in the SVN repository was 8 people in the beginning, with new
resources joining the project after the kickoff date. The total number of files and
directories counts up to 156 objects and 226 overall commit events. The total
number of extracted change events after preprocessing (i.e. atomic changes on
all the files) was 453.

The last part of the log data contains the task Define example, introduced
in Section 2.1. For our showcase we assume that this task is contained in a work
package named example.

4.3 Output Data

To monitor the project execution, we visualize the work progress that was done
for each work package. Monitoring is performed by managers who want to have
an overview on the project (which work packages are done, when and for how
long, and where idleness or congestion occurs). Gantt charts offer a graphical
representation for displaying schedules and jobs that were done on the various
work packages [21] in a way that can easily be communicated to managers.
Figure 4 is a screenshot of how our tool presents the data. The tree structure
on the left represents the Parent relation in the file tree. Events belonging to
the same commit have the same color. On the top part of the chart we can see
the result of merging events to activities with our aggregation method. Here
we have merged the events of the example scenario on their highest abstraction
level. The chart shows the three main activities and the idle times between them.

! https://www.eclipse.org/nebula/


https://www.eclipse.org/nebula/

436 S. Bala et al.

Gantt Chart x

December '14 Januarv 15
v09 Nov 16 Nov 23 anv 30 lnsr 07 lnsr 14 Dec 21 Dec 28 Ilan()d Jan 11

|
« T
I o

m

| |
T
= Project structure =
|
T | |
- proposal_FFG_IKT2013 B
i

1.1_Relevance_Contribution_to_the¢
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On the other hand, in correspondence to expanded directories we show only their
status before the aggregation. That is, every time a directory is fully expanded
we apply a disaggregation into the corresponding activities. In this way, we can
also show the finest granularity of work, i.e. the atomic events.

4.4 Project Analysis

Next, we apply our algorithm to the example case from Table 1 and check how
it helps to identify work packages. The data is aggregated according to our
threshold of seven days. We can observe three groups of events being temporally
close to each other according to our threshold. That is, we expect the event data
to be grouped into three activities.

The second step of our algorithm takes care of adjusting the starting time
of the activities. Furthermore, we vertically order the events and activities in
the Gantt chart according to the directory structure to show the mapping from
the objects on the Gantt chart to each work package in the tree structure. The
last step, computing work package characteristics is done automatically when
we collapse a node of a tree.

Figure 5 shows a comparison of the case when we do not implement the
activity adjustment to the case which adjusts it. In the upper part, activity

Gantt Chart X
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Fig. 5. Before and after the prepending the expected time before commit. Coverage
factor increases when we adjust the starting times of the activities.
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boundaries are based only on the first commit time that we see in the data. In
the lower part, we observe that the start times were adjusted by approximately
one day. The tool automatically adjusted the start time of the activities. As
a consequence, the coverage factor increases because we expect that there was
more work than what we observe by only considering the first commit time.

4.5 Coverage Tests on Available Open Projects

Finally, we apply our approach on different input data from open source projects.
We are interested in exploring how the coverage factor varies in different existing
projects. Hence, we take the work package w as our controlled variable and set
it to the highest level of aggregation. Then, we analyze each project of the data
set and observe the dependent variable y(w). Another variable of interest is the
t. since it gives an idea of the average work speed (commit frequency) during
active times.

Table 2. Coverage results for different open source projects

Log Duration Idle periods Files Comumits t. x(w)

File name Days Number Number  Number  Hours %
MiningCVS 24 0 89 63 9 100
Whitehall 1279 6 6539 15566 2 95
Petitions 834 17 1562 914 13 59
Study 624 13 7501 736 11 58

The Guardian 1667 59 12889 621 30 44
Book 414 15 154 592 5 32

Papers 1859 55 1791 649 20 30
Requirements 771 22 505 231 17 21
Yelp 206 6 24 54 20 20

Adobe 1076 13 356 237 24 15

The data we used stems from the following projects. MiningVCS is our tool.
It consists of daily commits and was developed over 24 days. Whitehall is the
code name for the Inside Government project, which aims to bring Government
departments online in a consistent and user-friendly manner. Petitions is a Dru-
pal 7 code base used to build an application on ”We The People”, the platform
to create and sign petitions of the White House. Study is an SVN log about
Healthcare domain, taken from SHAPE. The guardian is the log data from the
Git repository of the well-known British national daily newspaper. Book is the
log data that describes the writing of the book Crypto 101 by Laurens Van
Houtven, taken from Git. Papers is taken from SHAPE project for building a
paper archive. Requirements log data is taken from the the Git repository of
OpenETCS and belongs to the railway domain. Yelp is the main Github page of
Yelp were they showcase all their projects. Adobe is the Adobe Github Homepage
v2.0, which is a central hub for Adobe Open sources projects.
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Table 2 shows our experiments on the above-mentioned logs and the corre-
sponding coverage factors. Projects that score a high coverage factor are charac-
terized by continuous work. This can be further seen by looking at their average
idle times #4;.. Let n. be the number of commits per work package. We compute
the average idle time as follows.

fldle:u7n>0 (3)
n
where n is the number of idle times in the work package. If n = 0, then we
trivially assign #74;. = 0, because there were no break periods over time.
Applying the formula to the above projects, we can observe how projects
with a higher coverage factor have actually low values of Z;4;.. For instance,
Whitehall scores a t g5, of 11 days, whereas Adobe scores a 4, of 36 days. This
supports the usage of the coverage factor x as an indicator for work package
time utilization.

5 Discussion

In this section we compare our method to other alternatives for mining data out
of logs and interpret our results.

Well known tools that are used in academia and practice include ProM]5]
and Disco®. Both tools require input data to be in the XES [18] format. Thus,
we convert our data from the Define example case into XES. To show events per
objects of the project structure, we choose the file path as the caseld. To flatten
the logs we extract all the file paths and build a mapping from each file to the
set of changes done to it.

Figure 6 depicts the results of the Dotted chart plugin of ProM applied to
our log data. Also here, we observe different changes of each file of the repository.
While the files and their corresponding events are shown, the plugin does not
allow to rearrange the data in order to understand the file structure, nor does it
allow to perform any kind of aggregation or connection between data, to observe
them from a higher level perspective.

Figure 7 shows the results from mining our log data with the Disco tool. Here
we can see a plot that displays the events that happen over time. The plot has
some peeks in correspondence to active times of the ezample work package. They
can be grouped in three clusters: an initial cluster with a few amount work, an
intermediate cluster with the most significant part of the work, and a final cluster
that again is not very active. In this way, clusters can be associated to activities.
As a drawback, when the number of work packages and activities increase, the
number of peeks grows and generate identifying clusters of activities by look at
active (or idle) times becomes unworkable.

Our approach to mining the work progress of project-oriented business pro-
cesses complements these techniques with metrics and a corresponding visual-
ization that is informative to managers.

2 http://fluxicon.com/disco/
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Fig. 6. Dotted chart from ProM

Evert: 70
Active cases over time - 86
Case varisnts
e — Activiies 25
Case duration Median case curation 135 millis
Wean case duration 46 secs

Start 12.11.2014 11:67.46
End 16.01.2015 16:50:29

Fig. 7. Chart from Disco plotting the events over time.

6 Conclusion

In this paper we addressed the problem of mining and visualizing project-
oriented business processes in a way that is informative to managers. We define
an approach that takes VCS logs as input to generate Gantt charts. Our algo-
rithm works under the assumptions that repositories reflect the hierarchical
structure of the project, each work package is contained in a corresponding
directory and project members commit their work regularly during active work-
ing times. The approach was implemented as a prototype and evaluated based
on real-world data from open source projects.

In future work, we aim to extract further details of the VCS logs in order to
calculate metrics that approximate the work effort. We plan to investigate on how
the project mining approach is affected by project characteristics. Furthermore,
we want to utilize statistical methods to better estimate the boundaries of the
activities and work packages. Finally, we have already incorporated feedback
from managers and plan to extend these to full user studies.
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