
European Semantic Web Conference 2007

Tutorial

SPARQL – Where are we?

Current state, theory and practice

Marcelo Arenas (Pontificia Universidad Católica de Chile)
Claudio Gutierrez (Universidad de Chile)

Bijan Parsia (University of Manchester)
Jorge Pérez (Pontificia Universidad Católica de Chile)

Axel Polleres (DERI, National University of Ireland, Galway)
Andy Seaborne (Hewlett-Packard Laboratories)

Supported by FONDECYT grants 1070732, 1070348, CWR project P04-067-F,
EU FP6 project inContext IST-034718, MEC/URJC project SWOS URJC-CM-2006-CET-0300.

SPARQL – Where are we?

Current state, theory and practice

Marcelo Arenas1, Claudio Gutierrez2, Bijan Parsia3,
Jorge Pérez1, Axel Polleres4, and Andy Seaborne5

1 Pontificia Universidad Católica de Chile
2 Universidad de Chile

3 University of Manchester
4 DERI, National University of Ireland, Galway

5 Hewlett-Packard Laboratories

Abstract. After the data and ontology layers of the Semantic Web stack have achieved considerable

stability, the query layer, realized by SPARQL, is the next item on W3C’s agenda. Short before its

completion, we will take the opportunity to reflect on the current state of the language, its applications,

recent results on theoretical foundations, and also future challenges. This tutorial will teach SPARQL

along two complementary streams: On the one hand, we will provide a practical introduction for

newcomers, giving examples from various application domains, providing formal underpinnings and

guiding attendees through the jungle of existing implementations, including those which reach beyond

the current specification to query more expressive semantic web languages. On the other hand, we

will go further into the theoretical foundations of SPARQL, presenting recent results of SPARQL’s

complexity, formalization in terms of database theory, as well as its exact semantic relation to the other

building blocks in the SW stack, namely, RDF Schema, OWL and the rules layer.

1 Motivation and Objectives

After the data and ontology layers of the Semantic Web stack have achieved considerable stability through
standard recommendations such as RDF and OWL, the query layer is the next item to be completed on
W3C’s agenda. This layer is realized by the SPARQL Protocol and RDF Query Language (SPARQL)
currently under development by W3C’s Data Acceess working group (DAWG). Although the SPARQL

specification is not yet 100% stable, people are taking up this specification at tremendous pace, driven by
the strong need for a long awaited standard in querying the Semantic Web and being able of making use of
the advantages of RDF together with common metadata-vocabularies at large scale.

This is just the right moment to reflect on the current state of the language and its applications. The
contributions of this tutorial will be along two complementary main streams: On the one hand we will pro-
vide a practical introduction to SPARQL for newcomers, giving examples from various application domains,
providing formal underpinnings and guiding attendees through the jungle of existing implementations, in-
cluding those which reach beyond the current specification to query more expressive semantic web languages.
Thus, participants will get a clear sense of the language as it is specified and as it exists in implementations.
On the other hand, we will go further going into the theoretical foundations of SPARQL, presenting recent
results of SPARQL’s complexity, and its exact semantics relation to the other building blocks in the SW
stack, namely, RDF Schema, OWL and the upcoming rules layer. Finally, we will bring these two streams
together, identifying the current limitations and challenges around SPARQL, pointing to possible extensions
and emerging application fields.

After the tutorial, attendees new to SPARQL should be able to formulate queries, understand the
differences and overlaps of SPARQL with traditional Database query languages and have sufficient insight
to understand issues in existing SPARQL engines that might affect their applications. The theoretical
background given in the afternoon session will provide deeper understanding of SPARQL’s underlying
semantics and complexity. Moreover, we will provide a detailed picture of SPARQL’s position in the space
of related Semantic Web standards. Finally, we will give an outlook to emerging research challenges and
possible future directions.

2 Outline

The tutorial will be divided in two main parts: The morning part covering primarily the practical side of
SPARQL, and an afternoon part going more into depth towards the foundational aspects of SPARQL and
discussing Semantic Web data access in the bigger context of related standards. More specifically, the tutorial
will be organized in six units, where Units 1-3 mark the morning part and Units 4-6 the afternoon part, as
follows.

Unit 1 – SPARQL Basics (90min) The first Unit is tailored to give a gentle introduction to all the fea-
tures of SPARQL, starting from simple queries towards more complex less used, but interesting features
of the language. In this session we aim to guide new users, but also users already roughly familiar with
SPARQL, through all major features of the language. Moreover, we will provide interesting insights
in design rationale and requirements which guided the inclusion of these features in the process of the
working group.

Unit 2 – SPARQL Semantics (45min) In this Unit we will present the algebra underlying and defining
a formal semantics for SPARQL. The formal semantics presented here will be exemplified by several
examples from the first unit and practical users of the language will get sufficient insight to understand
the formal underpinnings of SPARQL. Here, we will restrict ourselves to only the level of detail necessary
to understand implementation aspects covered in Unit 3. More in-depth considerations on theoretical
foundations will be covered in Unit 4.

Unit 3 – SPARQL Implementations and Applications (45min) First, presenting some basic imple-
mentation strategies for SPARQL, we will present several actual implementations and their actual deploy-
ment in use cases. The focus in this Unit is to give practitioners hints on tools and available implementa-
tions, APIs which they can use off-the-shelf or optimize in order to develop Semantic Web applications on
top of SPARQL. This will include examining implementations that go beyond the current specification
to evaluate SPARQL queries against RDFS and OWL datasets.

Unit 4 – SPARQL Foundations (90min). In this session of the tutorial, we address the database foun-
dations of SPARQL covering: I) Formal aspects of querying RDF data. II) Formal Semantics of SPARQL:
algebraic syntax, compositional semantics for a core fragment (continuation of Unit 2). III) Complexity
of SPARQL: covering the computational complexity of evaluating a query for several fragments of the
language, identifying the main sources of complexity. IV) Ad-hoc optimization procedures: well-designed
queries, reordering and normal forms, and optimization based on normal forms.

Unit 5 – SPARQL and its neighbour components in the Semantic Web stack (90min). The def-
initions in the current specification of SPARQL focus mainly on RDF simple entailment. In this unit,
we show how they can be extended towards coverage of the ontology layer in terms of RDFS and OWL
entailment. As it turns out, this extension is not straightforward and a complete coverage of SPARQL

imposes new challenges on OWL Reasoners. Next, we will study the emerging Semantic Web rules layer
and its relation to SPARQL. On the one hand, will see that a large part of SPARQL can be mapped to
extended Datalog, a deductive rule based query. On the other hand, we will discuss the use of SPARQL
itself as a declarative rules language on top of RDF and OWL. As it turns out, the challenges arising
in such a combination are closely related to those combining deductive non-monotonic rules languages
with Ontologies.

Unit 6 – SPARQL Extensions and Outlook (45min). In the last unit of this tutorial, we will discuss
further practical extensions of the current standard from simple extensions which simply did not find
their way yet in the first version of the specification, to other extensions which seemingly easy will require
significant more investigation and raise new research problems. One aim of this unit is to spark further
ideas on solving open issues by providing a down-to earth analysis of current limitations of the language.

European Semantic Web Conference 2007

Tutorial

SPARQL – Where are we?

Current state, theory and practice

Unit 1: SPARQL Basics

SPARQL

SPARQL

Query Language

Protocol
− HTTP binding
− SOAP binding

XML Results Format
− Easy to transform (XSLT, XQuery)

Status: Later stages of standardisation
− Design finished, getting implementation feedback

SPARQL

Basic Graph Pattern Matching
−Building block for data access and extensibility

Algebra: combining graph patterns
−Building block for data access and extensibility
− Filters for restricting values

Solution Modifiers
−

Result forms
−

It’s Turtles all the way down

Turtle: An RDF serialization
− The RDF part of N3
−Commonly used in examples (and tutorials and papers)
−SPARQL uses Turtle+variables as triple pattern syntax

@prefix person: <http://example/person/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

person:A foaf:name "Alice" .
person:A foaf:mbox <mailto:alice@example.net> .

person:B foaf:name "Bob" .

SPARQL : Triple Pattern

@prefix person: <http://example/person/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

person:A foaf:name "Alice" .
person:A foaf:mbox <mailto:alice@example.net> .
person:B foaf:name "Bob" .

PREFIX person: <http://example/person/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE
{ ?x foaf:name ?name }

| name |
===========
| "Bob" |
"Alice"

SPARQL : Basic Graph Pattern

@prefix person: <http://example/person/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

person:A foaf:name "Alice" .
person:A foaf:mbox <mailto:alice@example.net> .
person:B foaf:name "Bob" .

PREFIX person: <http://example/person/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE
{ ?person foaf:mbox <mailto:alice@example.net> .
?person foaf:name ?name . }

| name |
===========
"Alice"

SPARQL : FILTER
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix stock: <http://example.org/stock#> .
@prefix inv: <http://example.org/inventory#> .

stock:book1 dc:title "SPARQL Query Language Tutorial" .
stock:book1 inv:price 10 .
stock:book1 inv:quantity 3 .

stock:book2 dc:title "SPARQL Query Language (2nd ed)" .
stock:book2 inv:price 20 ; inv:quantity 5 .

stock:book3 dc:title "Moving from SQL to SPARQL" .
stock:book3 inv:price 5 ; inv:quantity 0 .

stock:book4 dc:title "Applying XQuery" .
stock:book4 inv:price 20 ; inv:quantity 8 .

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX stock: <http://example.org/stock#>
PREFIX inv: <http://example.org/inventory#>

SELECT ?book ?title
WHERE {
?book dc:title ?title .
?book inv:price ?price . FILTER (?price < 15)
?book inv:quantity ?num . FILTER (?num > 0) }

--
| book | title |
==
| stock:book1 | "SPARQL Query Language Tutorial" |

--

SPARQL : OPTIONAL

@prefix person: <http://example/person/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

person :a foaf:name "Alice" .
person :a foaf:nick "A-online" .

person:b foaf:name "Bob" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?nick
{ ?x foaf:name ?name .

OPTIONAL {?x foaf:nick ?nick }
}

| name | nick |
========================
| "Alice" | "A-online" |
| "Bob" | |

SPARQL : UNION
@prefix book: <http://example/book/> .
@prefix dc10: <http://purl.org/dc/elements/1.0/> .
@prefix dc11: <http://purl.org/dc/elements/1.1/> .

book:a dc10:title "SPARQL Query Language Tutorial" .
book:b dc11:title "SPARQL Query Language (2nd ed)" .
book:c dc10:title "SPARQL" .
book:c dc11:title "SPARQL" .

PREFIX dc10: <http://purl.org/dc/elements/1.0/>
PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT DISTINCT ?title
{

{ ?book dc10:title ?title } UNION { ?book dc11:title ?title }
}

| title |
====================================
| "SPARQL Query Language Tutorial" |
| "SPARQL" |
"SPARQL Query Language (2nd ed)"

Solution Modifiers

After matching, the set of solutions is turned into
a sequence then:

Result Sets

--
| name | mbox |
==
| "Johnny Lee Outlaw" | <mailto:jlow@example.com> |
| | <mailto:peter@example.org> |
--

<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>
<variable name="name"/>
<variable name="mbox"/>

</head>

<results ordered="false" distinct="false">
<result>
<binding name="name"><literal>Johnny Lee Outlaw</literal></binding>
<binding name="mbox"><uri>mailto:jlow@example.com</uri></binding>

</result>

<result>
<binding name="mbox"><uri>mailto:peter@example.org</uri></binding>

</result>
</results>

</sparql>

Inference

An RDF graph may be backed by inference
−

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?type
WHERE
{

?x rdf:type ?type .
}

:x rdf:type :C .
:C rdfs:subClassOf :D .

| type |
========
| :C |
:D

CONSTRUCT

@prefix person: <http://example/person/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

person:a foaf:name "Alice" .
person:a foaf:mbox <mailto:alice@example.net> .
person:b foaf:name "Bob" .

PREFIX person: <http://example/person/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { ?person vcard:FN ?name }
WHERE
{?person foaf:name ?name . }

@prefix person: <http://example/person/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

person:a vcard:FN "Alice" .
person:b vcard:FN "Bob" .

SPARQL : RDF Dataset

RDF Dataset – collection of graphs
−One, unnamed default graph ;
−Zero or more named graphs

Access with the GRAPH keyword
SELECT . . .
FROM <contact.ttl>
FROM NAMED <aliceFoaf.ttl>
FROM NAMED <bobFoaf.ttl>
WHERE { . . . }

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?graph ?name
WHERE
{ ?alice foaf:name "Alice" .
?alice foaf:mbox ?mbox .
GRAPH ?graph
{ ?x foaf:mbox ?mbox .
?x foaf:knows ?person .
?person foaf:name ?name .

}
}

European Semantic Web Conference 2007

Tutorial

SPARQL – Where are we?

Current state, theory and practice

Unit 2: SPARQL Semantics

SPARQL Formalization

Marcelo Arenas, Claudio Gutierrez, Jorge Pérez

Department of Computer Science
Pontificia Universidad Católica de Chile

Universidad de Chile

Center for Web Research
http://www.cwr.cl

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 1 / 34

SPARQL: A simple RDF query language

SELECT ?Name ?Email

WHERE

{

?X :name ?Name

?X :email ?Email

}

� The semantics of simple SPARQL queries is easy to
understand, at least intuitively.

“Give me the name and email of the

resources in the datasource”

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 2 / 34

But things can become more complex...

Interesting features of pattern
matching on graphs

� Grouping

� Optional parts

� Nesting

� Union of patterns

� Filtering

�

{ { P1

P2 }

OPTIONAL { P5 } }

{ P3

P4 }

OPTIONAL { P7 } }

OPTIONAL { P8 } } }

}

UNION

{ P9 }

FILTER (R) }

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 3 / 34

A formal semantics for SPARQL is needed.

A formal approach would be beneficial

� Clarifying corner cases

� Helping in the implementation process

� Providing sound foundations

We will see:

� A formal compositional semantics based on
[PAG06: Semantics and Complexity of SPARQL]

� This formalization is the starting point of the official
semantics of the SPARQL language by the W3C.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 4 / 34

Outline

Motivation

Basic Syntax

Semantics

Datasets

Query result forms

Dealing with bnodes

Dealing with duplicates

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 5 / 34

First of all, a simplified algebraic syntax

� Triple patterns: RDF triple + variables (no bnodes for now)

(?X , name, ?Name)

� The base case for the algebra is a set of triple patterns

{t1, t2, . . . , tk}.

This is called basic graph pattern (BGP).

Example

{ (?X , name, ?Name), (?X , email, ?Email) }

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 6 / 34

First of all, a simplified algebraic syntax (cont.)

� We consider initially three basic operators:

AND, UNION, OPT.

� We will use them to construct graph pattern expressions from
basic graph patterns.

� A SPARQL graph pattern:

((({t1, t2} AND t3) OPT {t4, t5}) AND (t6 UNION {t7, t8}))

it is a full parenthesized expression

� Full parenthesized expressions give us explicit
precedence/association.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 7 / 34

Mappings: building block for the semantics

Definition

A mapping is a partial function from variables to RDF terms.

Given a mapping µ and a basic graph pattern P :

� dom(µ): the domain of µ.

� µ(P): the set obtained from P replacing the variables
according to µ

Example

µ = {?X → R1, ?Y → R2, ?Name → john, ?Email → J@ed.ex}

P = {(?X , name, ?Name), (?X , email, ?Email)}

µ(P) = {(R1, name, john), (R1, email, J@ed.ex)}

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 8 / 34

The semantics of basic graph pattern

Definition

The evaluation of the BGP P over a graph G , denoted by [[P]]G , is
the set of all mappings µ such that:

� dom(µ) is exactly the set of variables occurring in P

� µ(P) ⊆ G

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 9 / 34

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

[[{(?X , name, ?Y)}]]G

{
µ1 = {?X → R1, ?Y → john}
µ2 = {?X → R2, ?Y → paul}

} ?X ?Y
µ1 R1 john
µ2 R2 paul

[[{(?X , name, ?Y), (?X , email, ?Z)}]]G{
µ = {?X → R1, ?Y → john, ?Z → J@ed.ex}

}
?X ?Y ?Z

µ R1 john J@ed.ex

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 10 / 34

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

[[{(R1, webPage, ?W)}]]G{ }

[[{(R2, name, paul)}]]G{
µ∅ = { }

}

[[{(R3, name, ringo)}]]G{ }

[[{ }]]G{
µ∅ = { }

}

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 11 / 34

Compatible mappings: mappings that can be merged.

Definition

The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

� µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex
µ1 ∪ µ3 R1 john P@edu.ex R2

µ∅ = { } is compatible with every mapping.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 12 / 34

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

� {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2, and µ1, µ2 are compatibles}

� extending mappings in M1 with compatible mappings in M2

will be used to define AND

Definition

Union: M1 ∪ M2

� {µ | µ ∈ M1 or µ ∈ M2}

� mappings in M1 plus mappings in M2 (the usual set union)

will be used to define UNION

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 13 / 34

Sets of mappings and operations

Definition

Difference: M1 � M2

� {µ ∈ M1 | for all µ′ ∈ M2, µ and µ′ are not compatibles}

� mappings in M1 that cannot be extended with mappings in M2

Definition

Left outer join: M1 M2 = (M1 M2) ∪ (M1 � M2)

� extension of mappings in M1 with compatible mappings in M2

� plus the mappings in M1 that cannot be extended.

will be used to define OPT

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 14 / 34

Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

� [[(P1 AND P2)]]G = [[P1]]G [[P2]]G

� [[(P1 UNION P2)]]G = [[P1]]G ∪ [[P2]]G

� [[(P1 OPT P2)]]G = [[P1]]G [[P2]]G

the base case is the evaluation of a BGP.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 15 / 34

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[[{(?X , name, ?N)} AND {(?X , email, ?E)}]]G

[[{(?X , name, ?N)}]]G [[{(?Y , email, ?E)}]]G

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 16 / 34

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[[{(?X , name, ?N)} OPT {(?X , email, ?E)}]]G

[[{(?X , name, ?N)}]]G [[{(?X , email, ?E)}]]G

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 17 / 34

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[[{(?X , email, ?Info)} UNION {(?X , webPage, ?Info)}]]G

[[{(?X , email, ?Info)}]]G ∪ [[{(?X , webPage, ?Info)}]]G

?X ?Info

µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com

?X ?Info

µ1 R1 J@ed.ex
µ2 R3 R@ed.ex
µ3 R3 www.ringo.com

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 18 / 34

Boolean filter expressions (value constraints)

In filter expressions we consider

� the equality = among variables and RDF terms

� a unary predicate bound

� boolean combinations (∧, ∨, ¬)

A mapping µ satisfies

� ?X = c if µ(?X) = c

� ?X =?Y if µ(?X) = µ(?Y)

� bound(?X) if µ is defined in ?X , i.e. ?X ∈ dom(µ)

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 19 / 34

Satisfaction of value constraints

� If P is a graph pattern and R is a value constraint then
(P FILTER R) is also a graph pattern.

Definition

Given a graph G

� [[(P FILTER R)]]G = {µ ∈ [[P]]G | µ satisfies R}
i.e. mappings in the evaluation of P that satisfy R .

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 20 / 34

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[[({(?X , name, ?N)} FILTER (?N = ringo ∨ ?N = paul))]]G

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

?X ?N
µ2 R2 paul
µ3 R3 ringo

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 21 / 34

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[[(({(?X , name, ?N)} OPT {(?X , email, ?E)}) FILTER ¬ bound(?E))]]G

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

?X ?N
µ2 R2 paul

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 22 / 34

FILTER: differences with the official specification

� We restrict to the case in which all variables in R are
mentioned in P .

� This restriction is not imposed in the official specification by
W3C.

� The semantics without the restriction does not modify the
expressive power of the language.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 23 / 34

SPARQL Datasets

� One of the interesting features of SPARQL is that a query
may retrieve data from different sources.

Definition

A SPARQL dataset is a set

D = {G0, 〈u1,G1〉, 〈u2,G2〉, . . . , 〈un,Gn〉}

� G0 is the default graph, 〈ui ,Gi 〉 are named graphs

� name(D) = {u1, u2, . . . , un}

� dD is a function such dD(ui) = Gi .

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 24 / 34

The GRAPH operator

if u is an IRI, ?X is a variable and P is a graph pattern, then

� (u GRAPH P) is a graph pattern

� (?X GRAPH P) is a graph pattern

GRAPH will permit us to dynamically change the graph against
which our pattern is evaluated.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 25 / 34

Semantics of GRAPH

Definition

Given a dataset D and a graph pattern P

[[(u GRAPH P)]]G = [[P]]dD(u)

[[(?X GRAPH P)]]G =
⋃

u∈name(D)

(
[[P]]dD(u) {{?X → u}}

)

Definition

The evaluation of a general pattern P against a dataset D, denoted
by [[P]]D, is the set [[P]]G0

where G0 is the default graph in D.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 26 / 34

Example (GRAPH)

D
G0:

〈 tb, G1:
(R1, name, john) (R2, name, paul)
(R1, email, J@ed.ex)

〉

〈 trs, G2:
(R4, name, mick) (R5, name, keith)
(R4, email, M@ed.ex) (R5, email, K@ed.ex)

〉

[[(trs GRAPH {(?X , name, ?N)})]]D

[[(trs GRAPH {(?X , name, ?N)})]]G0

[[{(?X , name, ?N)}]]G2

?X ?N
µ1 R4 mick
µ2 R5 keith

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 27 / 34

Example (GRAPH)

D
G0:

〈 tb, G1:
(R1, name, john) (R2, name, paul)
(R1, email, J@ed.ex)

〉

〈 trs, G2:
(R4, name, mick) (R5, name, keith)
(R4, email, M@ed.ex) (R5, email, K@ed.ex)

〉

[[(?G GRAPH {(?X , name, ?N)})]]D

[[{(?X , name, ?N)}]]G1 {{?G → tb}}∪
[[{(?X , name, ?N)}]]G2 {{?G → trs}}

?X ?N
µ1 R1 john
µ2 R2 paul

{{?G → tb}} ∪
?X ?N

µ3 R4 mick
µ4 R5 keith

{{?G → trs}}

?G ?X ?N
tb R1 john
tb R2 paul
trs R4 mick
trs R5 keith

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 28 / 34

SELECT

� Up to this point we have concentrated in the body of a
SPARQL query, i.e. in the graph pattern matching expression.

� A query can also process the values of the variables. The
most simple processing operation is the selection of some
variables appearing in the query.

Definition
� A SELECT query is a tuple (W ,P) where P is a graph

pattern and W is a set of variable.

� The answer of a SELECT query against a dataset D is

{µ|W | µ ∈ [[P]]D}

where µ|W is the restriction of µ to domain W .

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 29 / 34

CONSTRUCT

� A query can also output an RDF graph.

� The construction of the output graph is based on a template.

� A template is a set of triple patterns possibly with bnodes.

Example

T1 = {(?X , name, ?Y), (?X , info, ?I), (?X , addr, B)}

with B a bnode

Definition

� A CONSTRUCT query is a tuple (T ,P) where P is a graph
pattern and T is a template.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 30 / 34

CONSTRUCT: Semantics

Definition

The answer of a CONSTRUCT query (T ,P) against a dataset D
is obtained by

� for every µ ∈ [[P]]D create a template Tµ with fresh bnodes

� take the union of µ(Tµ) for every µ ∈ [[P]]D
� discard the not valid RDF triples

� some variables have not been instantiated.
� bnodes in predicate positions

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 31 / 34

Blank nodes in graph patterns

� We allow now bnodes in triple patterns.

� Bnodes act as existentials scoped to the basic graph pattern.

Definition

The evaluation of the BGP P with bnodes over the graph G

denoted [[P]]G , is the set of all mappings µ such that:

� dom(µ) is exactly the set of variables occurring in P ,

� there exists a function θ from bnodes of P to G such that

µ(θ(P)) ⊆ G .

� A natural extension of BGPs without bnodes.

� The algebra remains the same.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 32 / 34

Bag/Multiset semantics

� In a bag, a mapping can have cardinality greater than one.

� Every mapping µ in a bag M is annotated with an integer
cM(µ) that represents its cardinality (cM(µ) = 0 if µ /∈ M).

� Operations between sets of mappings can be extended to bags
maintaining duplicates:

Definition

µ ∈ M = M1 M2, cM(µ) =
∑

µ=µ1∪µ2

cM1
(µ1) · cM2

(µ2),

µ ∈ M = M1 ∪ M2, cM(µ) = cM1
(µ) + cM2

(µ),

µ ∈ M = M1 � M2, cM(µ) = cM1
(µ).

� Intuition: we simply do not discard duplicates.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 33 / 34

References

� R. Cyganiak, A Relational Algebra for SPARQL. Tech Report
HP Laboratories, HPL-2005-170.

� E. Prud’hommeaux, A. Seaborne, SPARQL Query Language

for RDF. W3C Working Draft, 2007.

� J. Pérez, M. Arenas, C. Gutierrez, Semantics and Complexity

of SPARQL. In Int. Semantic Web Conference 2006.

� J. Pérez, M. Arenas, C. Gutierrez, Semantics of SPARQL.
Tech Report Universidad de Chile 2006, TR/DCC-2006-17.

M. Arenas, C. Gutierrez, J. Pérez – SPARQL Formalization 34 / 34

SPARQL Algebra

SPARQL Algebra

SPARQL Syntax => SPARQL Algebra

Algebra works on

Spec defines the algorithm for translating syntax to
algebra

Spec defines the correct results for evaluation of an
algebra expression

−

SPARQL Pattern Semantics

Bottom-up evaluation
−Meaning for all queries
−All syntactically correct queries have defined semantics

Optional/LeftJoin is conditional
−Makes queries more natural to write

Account of pattern matching and solution modifiers

Basic Graph Patterns

Set of triple patterns

Building block in SPARQL

Extension point for other levels of entailment
−Blank nodes are extensional variables

Compatible Solutions

S0: { }
S1: { ?x/”foo” , ?y/<http://example/y> }
S2: { ?y/<http://example/y> }
S3: { ?x/”bar” }

S0, S1 and S2 are compatible
S0 and S3 are compatible
S2 and S3 are compatible
S1 and S3 are not compatible

Solutions
−
−

Two solutions are compatible if variables of the same name
are associated with the same RDF term
−

SPARQL Algebra

(tolist
(BGP [triple ?x foaf:name ?name]))

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
WHERE
{ ?x foaf:name ?name }

SPARQL Algebra

(tolist
(BGP

[triple ?x foaf:mbox ?mbox]
[triple ?x foaf:name ?name]

))

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
WHERE
{ ?x foaf:mbox ?mbox ;

foaf:name ?name .
}

SPARQL Algebra

(project (?mbox ?name)
(tolist

(BGP
[triple ?x foaf:mbox ?mbox]
[triple ?x foaf:name ?name]

)))

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox
WHERE
{ ?x foaf:mbox ?mbox ;

foaf:name ?name .
}

SPARQL Algebra

(project (?name)
(tolist

(filter (regex ?name "^Smith")
(BGP [triple ?x foaf:name ?name]))))

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE
{ ?x foaf:name ?name .
FILTER regex(?name, "^Smith")

}

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name
WHERE
{ FILTER regex(?name, "^Smith")
?x foaf:name ?name .

}

SPARQL Algebra

(tolist
(leftjoin

(BGP
[triple ?x foaf:name ?name]
[triple ?x foaf:mbox <mailto:xyz>]

)
(BGP [triple ?x foaf:nick ?nick])
true

))

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
WHERE
{ ?x foaf:name ?name .
?x foaf:mbox <mailto:xyz> .
OPTIONAL
{ ?x foaf:nick ?nick }

}

SPARQL Algebra

−

(tolist
(leftjoin

(BGP
[triple ?x foaf:name ?name]
[triple ?x foaf:mbox <mailto:xyz>]

)
(BGP [triple ?x foaf:nick ?nick])
(regex ?name "^Smith")))

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
WHERE
{ ?x foaf:name ?name .
?x foaf:mbox <mailto:xyz> .
OPTIONAL
{ ?x foaf:nick ?nick

FILTER regex(?name, "^Smith")
}

}

SPARQL Algebra

BasicGraphPattern (BGP)

Filter

Join

LeftJoin

Union

ToList

OrderBy

Distinct

Reduced

Project

Slice

SPARQL Algebra

Step 0 : Expand abbreviations for IRIs and triple patterns.

Step 1 : BasicGraphPatterns

Replace all BasicGraphPattern elements by BGP(list of triple patterns)

Step 2 : GroupOrUnionGraphPattern

Replace any GroupOrUnionGraphPattern elements:

* If the element consists of a single GroupGraphPattern,
replace with the GroupGraphPattern.

* If the element consists of multiple GroupGraphPatterns,
connected with 'UNION' terminals, then
replace with a sequence of nested union operators:

e.g. Union(Union(GroupGraphPattern, GroupGraphPattern), GroupGraphPattern).

Step 3 : GraphGraphPattern

Map GRAPH IRI GroupGraphPattern to Graph(IRI, GroupGraphPattern)

Map GRAPH Var GroupGraphPattern to Graph(var, GroupGraphPattern)

Step 4 : . . .

SPARQL Algebra

Step 4 : GroupGraphPattern

Map all sub-patterns contained in this group
Let SP := List of algebra expressions for sub-patterns
Let F := all filters in the group (not in sub-patterns)
Let G := the empty pattern, {}

for i := 0 ; i < length(SP); i++
If SP[i] is an OPTIONAL,

If SP[i] is of the form OPTIONAL(Filter(F, A))
G := LeftJoin(G, A, F)

else
G := LeftJoin(G , A, true)

Otherwise for expression SP[i], G := Join(G, SP[i])

If F is not empty:
If G = empty pattern then G := Filter(F, empty pattern)
If G = LeftJoin(A1, A2, true) then G := LeftJoin(A1, A2, F)
If G = Join(A1, A2) then G := Filter(F, Join(A1, A2)
If G = Union(A1, A2) then G := Filter(F, Union(A1, A2))
If G = Graph(x, A) then G := Filter(F, Graph(x, A))

where x is a variable or IRI.
The result is G

Step 5 : ...

SPARQL Algebra

Step 5 : Simplification

Groups of one graph pattern (not a filter) become join({}, A) and can be replaced by A

Replace join({}, A) by A
Replace join(A, {}) by A

Solution Modifiers

Step 1 : ToList
Let M := ToList(Pattern)

Step 2 : Order By
M := OrderBy(M, list of order comparators)

Step 3 : Projection
M := Project(M, vars)

Step 4 : Distinct
M := Distinct(M)

Step 5 : Reduced
M := Reduced(M)

Step 5 : OFFSET and LIMIT
M := Slice(M, start, length)

Result is M

European Semantic Web Conference 2007

Tutorial

SPARQL – Where are we?

Current state, theory and practice

Unit 3: SPARQL Implementations

and Applications

SPARQL
Implementations

SPARQL Implementations

ARQ – Complete, general purpose query system
• SPARQL Parser and serializer
• SPARQL Algebra
• SPARQL Execution
• Results handling

SDB – Specialised ARQ extension
• SPARQL to SQL rewriter

ARQ
http://jena.sf.net/ARQ

Execution Issues

Transformations:
− Query String => Algebra expression
− Algebra => Execution Plan
− Execution plan => solutions
− Solutions => query results form

Stream-based
− Transformation possible for majority of queries
− Multi-sets as iterators : ToList is a no-op

Linearization

Where possible execution is by one stage
extending/removing results of previous stage

Indexing = Substitution

Exceptions:
− Nested optionals with locally free variables

− Join/LeftJoin : Out of scope variables in filters
− These are done bottom-up for correctness

PREFIX : <http://example/>
SELECT *
{ :x1 :p ?v .
OPTIONAL {

:x3 :q ?w .
OPTIONAL { :x2 :p ?v } } }

PREFIX : <http://example/>
SELECT *
{ :x1 :p ?v .
{ :x2 :q ?w . FILTER(?v + ?w < 5) }

}

SDB
http://jena.svn.sf.net/viewvc/jena/SDB/

SDB Table layouts

Layout 1
− Single triple table, RDF terms encoded into the entries
− c.f. Jena’s RDB layout
− Optimal for fine-grain API use

Layout 2
− Triples table ; Quads table ; Nodes table
− Better for plain SPARQL queries
− Id and hash forms

Layout 2+
− Cached partial queries
− Inference support
− (values)

Layout2 / hash variant / single graph

CREATE TABLE Triples (
s BIGINT NOT NULL,
p BIGINT NOT NULL,
o BIGINT NOT NULL,
PRIMARY KEY (s, p, o)
)

CREATE INDEX PredObj ON Triples (p, o)
CREATE INDEX ObjSubj ON Triples (o, s)

CREATE TABLE Node (
hash BIGINT NOT NULL,
lex TEXT NOT NULL,
lang varchar NOT NULL default '',
datatype varchar(200) NOT NULL default '',
type integer NOT NULL default '0',
PRIMARY KEY (hash)
)

CREATE UNIQUE INDEX Hash ON Nodes (hash)

Example 1

SELECT -- V_1=?nick
R_1.lex AS V_1_lex, R_1.datatype AS V_1_datatype,
R_1.lang AS V_1_lang, R_1.type AS V_1_type

FROM
Triples AS T_1 -- ?x foaf:name "Fred"

INNER JOIN
Triples AS T_2 -- ?x foaf:nick ?nick

ON (T_1.p = -2290624521842110797 -- Const: <http://xmlns.com/foaf/0.1/name>
AND T_1.o = 6622531991636827042 -- Const: "Fred"
AND T_2.p = 5173304175992580252 -- Const: <http://xmlns.com/foaf/0.1/nick>
AND T_1.s = T_2.s -- Join var: ?x
)

LEFT OUTER JOIN
Nodes AS R_1 -- Var: ?nick

ON (T_2.o = R_1.hash)

PREFIX person: <http://example/person/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?nick
WHERE
{ ?x foaf:name "Fred" .
?x foaf:nick ?nick . }

PREFIX : <http://example/>
SELECT *
{ :x1 :p ?v .
OPTIONAL {

:x3 :q ?w .
OPTIONAL { :x2 :p ?v } } }

(leftjoin
(BGP [triple :x1 :p ?v])
(leftjoin
(BGP [triple :x3 :q ?w])
(BGP [triple :x2 :p ?v])))

Example 2

SELECT -- V_1=?v V_2=?w
R_1.lex AS V_1_lex, R_1.datatype AS V_1_datatype, R_1.lang AS V_1_lang, R_1.type AS V_1_type,
R_2.lex AS V_2_lex, R_2.datatype AS V_2_datatype, R_2.lang AS V_2_lang, R_2.type AS V_2_type

FROM
(SELECT *
FROM Triples AS T_1 -- :x1 :p ?v
WHERE (T_1.s = -7272111352983262523 -- Const: <http://example/x1>

AND T_1.p = 2004134117598721274 -- Const: <http://example/p>
)

) AS T_1
LEFT OUTER JOIN
((SELECT *

FROM Triples AS T_2 -- :x3 :q ?w
WHERE (T_2.s = 4693521611208290624 -- Const: <http://example/x3>

AND T_2.p = -4884978200120352820 -- Const: <http://example/q>
)

) AS T_2
LEFT OUTER JOIN
Triples AS T_3 -- :x2 :p ?v

ON (T_3.s = -6898947185675171362 -- Const: <http://example/x2>
AND T_3.p = 2004134117598721274 -- Const: <http://example/p>
)

)
ON (((T_3.o IS NULL) OR (T_1.o = T_3.o)) -- Join var: ?v
)
LEFT OUTER JOIN
Nodes AS R_1 -- Var: ?v

ON (T_1.o = R_1.hash)
LEFT OUTER JOIN
Nodes AS R_2 -- Var: ?w

ON (T_2.o = R_2.hash)

Example 2

PREFIX : <http://example/>

SELECT *
{

?x :p ?v .
OPTIONAL { ?x :p ?a }
OPTIONAL { ?x :q ?a }

}

(leftjoin
(leftjoin
(BGP [triple ?x :p ?v])
(BGP [triple ?x :p ?a])

)
(BGP [triple ?x :q ?a])

)

Example 3

SELECT -- V_1=?x V_2=?v V_3=?a
R_1.lex AS V_1_lex, R_1.datatype AS V_1_datatype, R_1.lang AS V_1_lang, R_1.type AS V_1_type,
R_2.lex AS V_2_lex, R_2.datatype AS V_2_datatype, R_2.lang AS V_2_lang, R_2.type AS V_2_type,
R_3.lex AS V_3_lex, R_3.datatype AS V_3_datatype, R_3.lang AS V_3_lang, R_3.type AS V_3_type

FROM
(SELECT COALESCE(T_2.o, T_3.o) AS VC_1, T_1.o AS VC_2, T_1.s AS VC_3

FROM
(SELECT *
FROM Triples AS T_1 -- ?x :p ?v
WHERE (T_1.p = 2004134117598721274 -- Const: <http://example/p>

)
) AS T_1

LEFT OUTER JOIN
Triples AS T_2 -- ?x :p ?a

ON (T_2.p = 2004134117598721274 -- Const: <http://example/p>
AND T_1.s = T_2.s -- Join var: ?x
)
LEFT OUTER JOIN
Triples AS T_3 -- ?x :q ?a

ON (T_3.p = -4884978200120352820 -- Const: <http://example/q>
AND T_1.s = T_3.s -- Join var: ?x
AND ((T_2.o IS NULL) OR (T_2.o = T_3.o)) -- Join var: ?a
)

) AS M_1 -- ?a as M_1.VC_1, ?v as M_1.VC_2, ?x as M_1.VC_3
LEFT OUTER JOIN
Nodes AS R_1 -- Var: ?x

ON (M_1.VC_3 = R_1.hash)
LEFT OUTER JOIN
Nodes AS R_2 -- Var: ?v

ON (M_1.VC_2 = R_2.hash)
LEFT OUTER JOIN
Nodes AS R_3 -- Var: ?a

ON (M_1.VC_1 = R_3.hash)

Example 3

Engines, and Endpoints, and Apps!
(oh my)

� The ESW Wiki is a good source:

– http://esw.w3.org/topic/SparqlImplementations

– http://esw.w3.org/topic/DawgShows

� Far too much to explore now!

– Brief mention of notable engines

– Tour of several SPARQL based apps

� Excellent web client

– http://demo.openlinksw.com/sparql_demo/#

(some) Notable RDF engines

� Oracle (SPARQL syntax coming)

� AllegroGraph

� OpenLink Virtuoso (Open Source as well)

� ARQ and Joseki from HP

� IBM's Boca (ARQ and native interface)

� Rasqal for Redland

� SWI-Prolog

� Sesame

� D2R Server

(Some)notable OWL engines
(With conj. Query support)

� Pellet

� KAON2

� Racer (Not SPARQL syntax yet)

� QuOnto (DL Lite, online demo, not SPARQL
syntax yet)

Garlik.com
� UK Based tech startup

– “give people real power over their online data”

– $18.5m in venture capital

– Incorporates members from the 3Store team

� DataPatrol

– Reports on personal information online

– Uses SPARQL to build these reports

– Currently 57,000 users!

– See the demo:

� http://www.garlik.com/index3.php?page=demo

� Key developer, Steve Harris, member of DAWG

Garlik: Tech details
� Reports

– 500-2000 SPARQL queries to build a report

� Often recursive, i.e., using prior results to find next ones

– 8 knowledge bases of 2 billion triples each

– Reports take 1-2 seconds to generate

� Query characteristics

– Highly heterogenous

– Lots of GRAPH and OPTIONAL

– Some FILTER and ORDER BY

� Results

– XML Format but not the protocol (for performance)

JSpace

� An extended mSpace clone

– http://clarkparsia.com/jspace

– mSpace developed at U. of Southampton

– “Google meets iTunes”

– http://www.mspace.fm/

� Selections drive query building

– Each column selection instantiates a variable and
adds some conjuncts

– One can browse intermediate results

Built by ClarkParsia, LLC.

POPS (a JSpace app)

� Expertise location service for NASA

– NASA has lots of idiosyncratic problems/systems

– Roladex culture

– Serendipity is key

� Federates 4 diverse data sources

– 4.5M triples

– Most queries are built by browsing

– Fixed queries for info pane and socnet

� Pilot for Office of the Chief Engineer

– Production will see 10,000 users
Built by Clark & Parsia, LLC.

BIANCA

� Network Asset Management Service

– Integrated view of applications, servers, networks,
and changes, and their relations

– Supports interruption analysis

– Sensitive data, so few users (~50) but high impact

– One of the first deployed SemWeb Apps at NASA

� Tech details

– 100,000 triples

– 6-8 sorts of queries

� Classification tree, instance retrieval, graph building

Built by Clark & Parsia, LLC.

HCLS demos

� Health Care and Life Sciences Interest Group

– Organized by W3C; about 60 members

– “chartered to develop and support the use of
Semantic Web technologies and practices to improve
collaboration, research and development, and
innovation adoption in the [of HCLS] domains”

� Demo for WWW

– Google Maps based interface for Allen Brain Atlas

– 20,000 genes, 400000 images

– Scraped 80,000 web pages to RDF

Allen Brain Atlas

Slide from Alan Ruttenberg
http://tinyurl.com/ysqm3z

Google Maps/SPARQL/Allen Brain Atlas

Slide from Alan Ruttenberg
http://tinyurl.com/ysqm3z

Architecture

Slide from Alan Ruttenberg
http://tinyurl.com/ysqm3z

Thanks

� To Steve Harris for Garlik.com info

� To Kendall Clark and Andy Schain for
POPS/BIANCA details

– See Kendall's seminal article:
SPARQL: Web 2.0 Meet the Semantic Web

� To Mike Grove and Mike Smith for JSpace
demo set up

� To Alan Ruttenberg for HCLS slides

European Semantic Web Conference 2007

Tutorial

SPARQL – Where are we?

Current state, theory and practice

Unit 4: SPARQL Foundations

RDF and SPARQL: Database Foundations

Marcelo Arenas, Claudio Gutierrez, Jorge Pérez

Department of Computer Science
Pontificia Universidad Católica de Chile

Universidad de Chile

Center for Web Research
http://www.cwr.cl/

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 1 / 52

Outline

� Part I: Querying RDF Data

� The RDF data model
� Querying: The simple and the ideal
� Querying: Semantics and Complexity

� Part II: Querying Data with SPARQL

� Decisions taken
� Decisions to be taken

� Conclusions

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 2 / 52

RDF in a nutshell

� RDF is the W3C proposal framework for representing
information in the Web.

� Abstract syntax based on directed labeled graph.

� Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties).

� Extensible URI-based vocabulary.

� Support use of XML schema datatypes.

� Formal semantics.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 3 / 52

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 4 / 52

RDFS: An example

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Ronaldinho Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spainlives in

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 5 / 52

RDF model

Some difficulties:

� Existential variables as datavalues

� Built-in vocabulary with fixed semantics (RDFS)

� Graph model where nodes may also be edge labels

RDF data processing can take advantage of database techniques:

� Query processing

� Storing

� Indexing

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 6 / 52

Entailment of RDF graphs

Entailment of RDF graphs:

� Can be defined in terms of classical notions such model,
interpretation, etc

� As for the case of first order logic

� Has a graph characterization via homomorphisms.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 7 / 52

Homomorphism

A function h : U ∪ B ∪ L→ U ∪ B ∪ L is a homomorphism h from
G1 to G2 if:

� h(c) = c for every c ∈ U ∪ L;

� for every (a, b, c) ∈ G1, (h(a), h(b), h(c)) ∈ G2

Notation: G1 → G2

Example: h = {B �→ b}

a

b

B
p

p

a

b

p

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 8 / 52

Entailment

Theorem (CM77)

G1 |= G2 if and only if there is a homomorphism G2 → G1.

a

b

p

a

b

B
p

p|=

Complexity

Entailment for RDF is NP-complete

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 9 / 52

Graphs with RDFS vocabulary

Previous characterization of entailment is not enough to deal with
RDFS vocabulary: (Ronaldinho, rdf : type, person)

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Spainlives in

Ronaldinho

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 10 / 52

Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:

rdf:sc: transitive

rdf:sp: transitive

More complicated interactions:
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

RDFS-entailment can be characterized by a set of rules

� An Existential rule

� Subproperty rules

� Subclass rules

� Typing rules

� Implicit typing

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 11 / 52

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:

Existential rule :
G1

G2
if G2 → G1

Subproperty rules :
(p, rdf:sp, q) (a, p, b)

(a, q, b)

Subclass rules :
(a, rdf:sc, b) (b, rdf:sc, c)

(a, rdf:sc, c)

Typing rules :
(p, rdf:dom, c) (a, p, b)

(a, rdf:type, c)

Implicit typing :
(q, rdf:dom, a) (p, rdf:sp, q) (b, p, c)

(b, rdf:type, a)

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 12 / 52

RDFS Entailment

Theorem (H04,GHM04,MPG07)

G1 |= G2 iff there is a proof of G2 from G1 using the system of 14
inference rules.

Complexity

RDFS-entailment is NP-complete.

Proof idea

Membership in NP: If G1 |= G2, then there exists a polynomial-size
proof of this fact.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 13 / 52

Closure of an RDF Graph

Notation:

ground(G) : Graph obtained by replacing every blank B
in G by a constant cB .

ground−1(G) : Graph obtained by replacing every constant
cB in G by B .

Closure of an RDF graph G (denoted by closure(G)):

G ∪ {t ∈ (U ∪ B)× U × (U ∪ B ∪ L) |

there exists a ground tuple t ′ such that

ground(G) |= t ′ and t = ground−1(t ′)}

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 14 / 52

Closure of an RDF Graph: Example

rdf : sc

rdf : sc

b

a

c

rdf : sc

rdf : sc

rdf : sc

b

a

c

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 15 / 52

Closure of an RDF graph: complexity

Proposition (H04,GHM04,MPG07)

G1 |= G2 iff G2 → closure(G1)

Complexity

The closure of G can be computed in time O(|G |4 · log |G |).

Can the closure be used in practice?

� Can we use an alternative materialization?

� Can we materialize a small part of the closure?

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 16 / 52

Core of an RDF Graph

An RDF Graph G is a core if there is no homomorphism from G to
a proper subgraph of it.

Theorem (HN92,FKP03,GHM04)

� Each RDF graph G has a unique core (denoted by core(G)).

� Deciding if G is a core is coNP-complete.

� Deciding if G = core(G ′) is DP-complete.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 17 / 52

Core and RDFS

For RDF graphs with RDFS vocabulary, the core of G may contain
redundant information:

d

rdf : sc

c

b

a

rdf : sc

rdf : sc

B

rdf : sc

rdf : sc

d

rdf : sc

c

b

a

rdf : sc

rdf : sc

rdf : sc

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 18 / 52

A normal form for RDF graphs

To reduce the size of the materialization, we can combine both
core and closure.

� nf(G) = core(closure(G))

Theorem (GHM04)

� G1 is equivalent to G2 iff nf(G1) ∼= nf(G2).

� G1 |= G2 iff G2 → nf(G1)

Complexity

The problem of deciding if G1 = nf(G2) is DP-complete.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 19 / 52

Querying RDF data: Desiderata

Let D be a database, Q a query, and Q(D) the answer.

� Outputs should belong to the same family of objects as inputs

� If D ≡ D ′, then Q(D) = Q(D ′)
(Weaker) If D ≡ D ′, then Q(D) ∼= Q(D ′)

� Q(D) should have no (or minimal) redundancies

� The framework should be extensible to RDFS
(Should the framework be extensible to OWL?)

� Incorporate to the framework the notion of entailment

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 20 / 52

Querying RDF data: Desiderata

Outputs should belong to the same family of objects as inputs

� Allows compositionality of queries

� Allows defining views

� Allows rewriting

In RDF, the natural objects of input/output are RDF graphs.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 21 / 52

Querying RDF data: Desiderata

If D ≡ D ′, then Q(D) = Q(D ′)
(Weaker) If D ≡ D ′, then Q(D) ∼= Q(D ′)

� Outputs are syntactic or semantic objects?

� Need a notion of “equivalent” databases (≡)
(In RDF, there is a standard notion of logical equivalence)

� One could just ask logical equivalence in the output

� In RDF there is an intermediate notion: graph isomorphism

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 22 / 52

Querying RDF data: Desiderata

Q(D) should have no (or minimal) redundancies

� Desirable to avoid inconsistencies

� Desirable to improve processing time and space

� Standard requirement for exchange information

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 23 / 52

Querying RDF data: Desiderata

The framework should be extensible to RDFS
(Should the framework be extensible to OWL?)

� A basic requirement of the Semantic Web Architecture

� Extension to OWL are not trivial because of the known
mismatch

� Not necessarily related to the type of semantics given (logical
framework, graph matching, etc.)

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 24 / 52

Querying RDF data: Desiderata

Incorporate to the framework the notion of entailment

� RDF graphs are not purely syntactic objects

� Would like to incorporate KB framework

� Beware of the complexity issues! RDF navigates on the Web

� Find the good compromise

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 25 / 52

Querying RDF data: Definitions

A conjunctive query Q is a pair of RDF graphs H,B where some
resources have been replaced by variables X̄ , Ȳ in V .

Q : H(X̄)← B(X̄ , Ȳ)

Issues:

� Free variables in B (projection)

� Treatment of blank nodes in B

� Treatment of blank nodes in H

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 26 / 52

Querying RDF data: Definitions (cont.)

A valuation is a function v : V → U ∪ B ∪ L

A matching of a graph B in the database D is a valuation v such
that v(B) ⊆ D.

A pre-answer to Q over D is the set

preans(Q,D) = {v(H) : v is a matching of B in D }

A single answer is an element of preans(Q,D)

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 27 / 52

Querying RDF data: Two semantics

Union: answer Q(D) is the union of all single answers

ansU(Q,D) =
⋃

preans(Q,D)

Merge: answer Q(D) is the merge of all single answers

ansM(Q,D) =
⊎

preans(Q,D)

Proposition

1. For both semantics, if D |= D ′ then ans(Q,D ′) |= ans(Q,D)

2. For all D, ansU(Q,D) |= ansM(Q,D)

3. With merge semantics, we cannot represent the identity query

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 28 / 52

Querying RDF data: refined semantics

Problem

Two non-isomorphic datasets D,D ′ give different answers to the
same query.

A slightly refined semantics:

1. Normalize D before querying

2. Then query as usual over nf (D)

Good News: if D ≡ D ′ then Q(D) ∼= Q(D ′)
Bad News: computing nf (D) is hard

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 29 / 52

Querying RDF data: refined semantics (cont.)

The news as formal results:

Theorem (MPG07)

Do not need to compute the normal form.

Theorem (FG06)

If a query language has the following two properties:

1. for all Q, if D ≡ D ′ then Q(D) = Q(D ′),

2. can represent the identity query,

then the complexity of evaluation is NP-hard (in data complexity).

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 30 / 52

Querying RDF data: Containment

A query Q contains a query Q, denoted Q 	 Q ′ iff ans(Q,D)
comprises all the information of ans(Q ′,D).

In classical DB: ans(Q,D) ⊆ ans(Q ′,D)

In our setting we have two versions:

� ans(Q ′,D) ⊆ ans(Q,D) (Q 	p Q ′)

� preans(Q,D) ⊆ preans(Q ′,D) (modulo iso) (Q 	m Q ′)

For ground RDF both notions coincide.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 31 / 52

Querying RDF data: Complexity

Query complexity version: The evaluation problem is NP-complete

Data complexity version: The evaluation problem is polynomial

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 32 / 52

Querying with SPARQL

� SPARQL is the W3C candidate recommendation query
language for RDF.

� SPARQL is a graph-matching query language.

� A SPARQL query consists of three parts:
� Pattern matching: optional, union, nesting, filtering.
� Solution modifiers: projection, distinct, order, limit, offset.
� Output part: construction of new triples,

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 33 / 52

Recall the formalization from Unit-2

Syntax:

� Triple patterns: RDF triple + variables (no bnodes)

� Operators between triple patterns: AND, UNION, OPT.

� Filtering of solutions: FILTER.

� A full parenthesized algebra.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 34 / 52

Recall the formalization from Unit-2

Semantics:

� Based on mappings, partial functions from variables to terms.

� A mapping µ is a solution of triple pattern t in G iff
� µ(t) ∈ G
� dom(µ) = var(t).

� [[t]]G is the evaluation of t in G , the set of solutions.

Example

G t [[t]]G

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

(?X , name, ?Y)
?X ?Y

µ1: R1 john
µ2: R2 paul

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 35 / 52

Compatible mappings

Definition

Two mappings are compatible if they agree in their shared
variables.

Example

?X ?Y ?Z ?V
µ1 : R1 john
µ2 : R1 J@edu.ex
µ3 : P@edu.ex R2

µ1 ∪ µ2 : R1 john J@edu.ex
µ1 ∪ µ3 : R1 john P@edu.ex R2

� µ2 and µ3 are not compatible

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 36 / 52

Sets of mappings and operations

Let M1 and M2 be sets of mappings:

Definition

Join: M1 M2

� extending mappings in M1 with compatible mappings in M2

Difference: M1 � M2

� mappings in M1 that cannot be extended with mappings in M2

Union: M1 ∪M2

� mappings in M1 plus mappings in M2 (set theoretical union)

Definition

Left Outer Join: M1 M2 = (M1 M2) ∪ (M1 � M2)

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 37 / 52

Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

� [[(P1 AND P2)]]G = [[P1]]G [[P2]]G

� [[(P1 UNION P2)]]G = [[P1]]G ∪ [[P2]]G

� [[(P1 OPT P2)]]G = [[P1]]G [[P2]]G

� [[(P FILTER R)]]G = {µ ∈ [[P]]G | µ satisfies R}

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 38 / 52

Differences with Relational Algebra / SQL

� Not a fixed output schema
� mappings instead of tables
� schema is implicit in the domain of mappings

� Too many NULLs
� mappings with disjoint domains can be joined
� mappings with distinct domains in output solutions

� SPARQL-to-SQL translations experience this issues
� need of IS NULL/IS NOT NULL in join/outerjoin conditions
� need of COALESCE in constructing output schema

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 39 / 52

SPARQL complexity: the evaluation problem

Input:

A mapping µ, a graph pattern P , and an RDF graph G .

Question:

Is the mapping in the evaluation of the pattern against the graph?

µ ∈ [[P]]G?

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 40 / 52

Evaluation of AND-FILTER patterns is polynomial.

Theorem (PAG06)

For patterns using only AND and FILTER operators, the evaluation
problem is polynomial:

O(|P | × |G |).

Proof idea
� Check that the mapping makes every triple to match.

� Then check that the mapping satisfies the FILTERs.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 41 / 52

Evaluation including UNION is NP-complete.

Theorem (PAG06)

For patterns using AND, FILTER and UNION operators, the
evaluation problem is NP-complete.

Proof idea
� Reduction from 3SAT.

� A pattern encodes the propositional formula.

� ¬ bound is used to encode negation.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 42 / 52

Evaluation including OPT is PSPACE-complete.

Theorem (PAG06)

For patterns using AND, FILTER and OPT operators, the
evaluation problem is PSPACE-complete.

Proof idea
� Reduction from QBF

� A pattern encodes a quantified propositional formula:

∀x1∃y1∀x2∃y2 · · ·ψ.

� nested OPTs are used to encode quantifier alternation.

(This time, we do not need ¬ bound.)

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 43 / 52

PSPACE-hardness: A closer look

Assume ϕ = ∀x1∃y1 ψ, where ψ = (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1).

We generate G , Pϕ and µ0 such that µ0 belongs to the answer of
Pϕ over G iff ϕ is valid:

G : {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}

Pψ : ((a, tv, ?X1) AND (a, tv, ?Y1)) FILTER
((?X1 = 1 ∨ ?Y1 = 0) ∧ (?X1 = 0 ∨ ?Y1 = 1))

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))

µ0 : {?B0 �→ 1}

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 44 / 52

PSPACE-hardness: A closer look

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

P1

?B0 �→ 1

?X1 �→ 0 ?Y1 �→ i ?B0 �→ 0

?X1 �→ 1 ?Y1 �→ j ?B0 �→ 0

Q1

?X1 �→ 0

?X1 �→ 1

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 45 / 52

Data–complexity is polynomial

Theorem (PAG06)

When patterns are consider to be fixed (data complexity), the
evaluation problem is in LOGSPACE.

Proof idea

From data–complexity of first–order logic.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 46 / 52

SPARQL reordering/optimization: a simple normal from

� AND and UNION are commutative and associative.

� AND, OPT, and FILTER distribute over UNION.

Theorem (UNION Normal Form)

Every graph pattern is equivalent to one of the form

P1 UNION P2 UNION · · · UNION Pn

where each Pi is UNION–free.

We concentrate in UNION-free patterns.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 47 / 52

Well–designed patterns

Definition

A graph pattern is well–designed iff for every OPT in the pattern

(· · · · · · · · · · · · (A OPT B) · · · · · · · · · · · ·)
↑ ↑ ↑ ↑

if a variable occurs inside B and anywhere outside the OPT, then
the variable must also occur inside A.

Example
((

(?Y , name, paul) OPT (?X , email, ?Z)
)

AND (?X , name, john)
)

�� ↑ ↑

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 48 / 52

Well–designed patterns and PSPACE-hardness

In the PSPACE-hardness reduction we use this formula:

Pϕ : (a, true, ?B0) OPT (P1 OPT (Q1 AND Pψ))
P1 : (a, tv, ?X1)
Q1 : (a, tv, ?X1) AND (a, tv, ?Y1) AND (a, false, ?B0)

It is not well-designed: B0

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 49 / 52

Well–designed patterns: reordering/optimization

For well-designed patterns

� P1 AND (P2 OPT P3) ≡ (P1 AND P2) OPT P3

� (P1 OPT P2) OPT P3 ≡ (P1 OPT P3) OPT P2

Theorem (OPT Normal Form)

Every well–designed pattern is equivalent to one of the form

(· · · (t1 AND · · · AND tk) OPT O1) · · ·) OPT On)

where each ti is a triple pattern, and each Oj is a pattern of the
same form.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 50 / 52

Final remarks

� RDFS can be considered a new data model.
� It is the W3C’s recommendation for describing Web metadata.

� RDFS can definitely benefit from database technology.
� RDFS: Formal semantics, entailment of RDFS graphs, normal

forms for RDFS graphs (closure and core).
� SPARQL: Formal semantics, complexity of query evaluation,

query optimization.
� Updating
� . . .

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 51 / 52

References

� A. Chandra, P. Merlin, Optimal Implementation of
Conjunctive Queries in Relational Databases. In STOC 1977.

� R. Fagin, P. Kolaitis, L. Popa, Data Exchange: Getting to the
Core. In PODS 2003.

� C. Gutierrez, C. Hurtado, A. O. Mendelzon, Foundations of
Semantic Web Databases. In PODS 2004.

� P. Hayes, RDF Semantics. W3C Recommendation 2004.

� P. Hell, J. Nesetril, The Core of a Graph. Discrete
Mathematics 1992.

� S. Muñoz, J. Pérez, C. Gutierrez, Minimal Deductive Systems
for RDF. In ESWC 2007.

� J. Pérez, M. Arenas, C. Gutierrez, Semantics and Complexity
of SPARQL. In ISWC 2006.

M. Arenas, C. Gutierrez, J. Pérez – RDF and SPARQL: DB Foundations 52 / 52

European Semantic Web Conference 2007

Tutorial

SPARQL – Where are we?

Current state, theory and practice

Unit 5: SPARQL and its

neighbour components in the

Semantic Web stack

SPARQL and the Rules Layer

Axel Polleres1

1DERI Galway, National University of Ireland, Galway
axel.polleres@deri.org

European Semantic Web Conference 2007

A. Polleres – SPARQL and the Rules Layer 1 / 33

Outline

The SW Rules layer in a nutshell
Rules for the Semantic Web

Translating SPARQL to LP style rules languages
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure
OPTIONAL and Negation as failure

Other Rules languages and formats
SWI Prolog, TRIPLE, N3
SPARQL and RIF

A. Polleres – SPARQL and the Rules Layer 2 / 33

Back to the layer cake...

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L

?

How does SPARQL relate to Rules?

A. Polleres – SPARQL and the Rules Layer 4 / 33

Rules for/on the Web: Where are we?

� Several proposals for systems and rules languages on the Web
usable on top of RDF/RDFS:

� TRIPLE [Decker et al., 2005]
� N3 [Berners-Lee et al., 2005]
� dlvhex [Eiter et al., 2005]
� SWI-Prolog’s semweb library [Wielemaker,]
� SWRL [Horrocks et al., 2004]
� SWSL Rules [Battle et al., 2005]
� WRL, WSML [Angele et al., 2005, de Bruijn et al., 2005]

� RIF working group chartered in Dec 2005 to provide common
interchange format (sic! Not a rule language) for the Web:

� Is currently producing first concrete results and first draft
format, in the future likely a common format for the
approaches above

� apart from deductive rules also concerned with other “rules”:
business rules, ECA rules, (integrity) constraints

A. Polleres – SPARQL and the Rules Layer 5 / 33

Outline

The SW Rules layer in a nutshell
Rules for the Semantic Web

Translating SPARQL to LP style rules languages
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure
OPTIONAL and Negation as failure

Other Rules languages and formats
SWI Prolog, TRIPLE, N3
SPARQL and RIF

A. Polleres – SPARQL and the Rules Layer 6 / 33

SPARQL and LP 1/2

� Starting point: SQL can (to a large extent) be encoded in LP with
negation as failure (=Datalognot)

Example: Two tables containing adressbooks
myAddr(Name, Street, City, Telephone)
yourAddr(Name, Address)

SELECT name FROM myAddr WHERW City = "Innsbruck"

UNION

SELECT name FROM yourAddresses

answer1(Name) :- myAddr(Name, Street, "Innsbruck", Tel).

answer1(Name) :- yourAddr(Name, Address).

?- answer1(Name).

� That was easy... Now what about SPARQL?

� OPTIONAL and UNION probably cause some trouble, see Unit 4!

A. Polleres – SPARQL and the Rules Layer 7 / 33

SPARQL and LP 2/2

We take as an example the language of dlvhex
(http://con.fusion.at/dlvhex/):

� Prolog-like syntax

� We assume availability of built-in predicate
rdf[URL](S,P,O) to import RDF data.

� dlvhex is implemented on top of the DLV engine
(http://www.dlvsystem.com/)

� supports so-called answer set semantics (extension of the stable
model semantics) for a language extending
Datalog [Eiter et al., 2006].

� plugin-mechanism for easy integration of external function calls
(built-in predicates).

� rdf[URL](S,P,O) is one such built-in to import RDF data.

The example translations in this Unit work similarly using e.g.
SWI-Prolog’s rdf db module
(see, http://www.swi-prolog.org/packages/semweb.html).

A. Polleres – SPARQL and the Rules Layer 8 / 33

SPARQL and LP: Basic Graph Patterns

� We import all triples in a predicate triple(Subj,Pred,Object,Graph)

which carries an additional argument for the dataset.

� For the import, we use the rdf[URL](S,P,O) built-in.

“select persons and their names”

SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X a foaf:Person . ?X foaf:name ?Y . }

triple(S,P,O,def) :- rdf["http://ex.org/bob"](S,P,O).
triple(S,P,O,def) :- rdf["http://alice.org"](S,P,O).
answer1(X,Y,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",Y,def).

?- answer1(X,Y,def).

A. Polleres – SPARQL and the Rules Layer 9 / 33

SPARQL and LP: GRAPH Patterns and NAMED graphs

“select creators of graphs and the persons they know”

SELECT ?X ?Y
FROM <alice.org>
FROM NAMED <alice.org>
FROM NAMED <ex.org/bob>
WHERE { ?G foaf:maker ?X .

GRAPH ?G { ?X foaf:knows ?Y. } }

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).
triple(S,P,O,"alice.org") :- rdf["alice.org"](S,P,O).
triple(S,P,O,"ex.org/bob") :- rdf["ex.org/bob"](S,P,O).
answer1(X,Y,def) :- triple(G,"foaf:maker",X,def),

triple(X,"foaf:knows",Y,G).

For legibility we left out the http:// prefix

A. Polleres – SPARQL and the Rules Layer 10 / 33

SPARQL and LP: UNION Patterns 1/2

UNIONs are split of into several rules:

“select Persons and their names or nicknames”

SELECT ?X ?Y
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Y .} }

triple(S,P,O,def) :- ...
answer1(X,Y,def) :- triple(X,"foaf:name",Y,def).
answer1(X,Y,def) :- triple(X,"foaf:nick",Y,def).

A. Polleres – SPARQL and the Rules Layer 11 / 33

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

Data:
<alice.org#me> foaf:name "Alice".
<ex.org/bob#me> foaf:name "Bob"; foaf:nick "Bobby".
Result:

?X ?Y ?Z

<alice.org#me> ”Alice” null

<ex.org/bob#me> ”Bob” null

<ex.org/bob#me> null ”Bobby”

A. Polleres – SPARQL and the Rules Layer 12 / 33

SPARQL and LP: UNION Patterns 2/2

What if variables of the of constituent patterns don’t coincide?
Slightly different than in SQL!
We emulate this by special null values!

SELECT ?X ?Y ?Z
FROM ...
WHERE { { ?X foaf:name ?Y . }

UNION { ?X foaf:nick ?Z .} }

triple(S,P,O,def) :- ...
answer1(X,Y,null,def) :- triple(X,"foaf:name",Y,def).
answer1(X,null,Z,def) :- triple(X,"foaf:nick",Z,def).

A. Polleres – SPARQL and the Rules Layer 13 / 33

SPARQL and LP: OPTIONAL Patterns 1/2

“select all persons and optionally their names”

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

OPTIONAL is similar to an OUTER JOIN in SQL, actually it is a
combination of a join and set difference:

{P1 OPTIONAL {P2}}: M1 M2 = (M1 M2) ∪ (M1 � M2)

where M1 and M2 are variable binding for P1 and P2, resp.

A. Polleres – SPARQL and the Rules Layer 14 / 33

SPARQL’s OPTIONAL has “negation as failure”, hidden:

� Observation: SPARQL allows to express set difference /
negation as failure by combining OPT and !bound

“select all persons without an email address”

SELECT ?Name ?Email
WHERE
{

?X a ?Person
OPTIONAL {?X :email ?Email }
FILTER (!bound(?Email))

}

� Same effect as “NOT EXISTS” in SQL, set difference!.

� We’ve seen before that OPTIONAL, has set difference
inherent, with the “!bound” we get it back again “purely”.

A. Polleres – SPARQL and the Rules Layer 15 / 33

SPARQL and LP: OPT Patterns – First Try

SELECT *
WHERE
{

?X a foaf:Person .
OPTIONAL {?X foaf:name ?N }

}

Recall: (P1 OPT P2): M1 M2 = (M1 M2) ∪ (M1 � M2)

triple(S,P,O,def) :- ...

answer1(X,N,def) :- triple(X,"rdf:type","foaf:Person",def),

triple(X,"foaf:name",N,def).

answer1(X,null,def) :- triple(X,"rdf:type","foaf:Person",def),

not answer2(X).

answer2(X) :- triple(X,"foaf:name",N,def).

We use null and negation as failure not to “emulate” set
difference.

A. Polleres – SPARQL and the Rules Layer 16 / 33

SPARQL and LP: OPT Patterns – Example

Graph: ex.org/bob

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker :a.
:a a foaf:Person ; foaf:name "Bob";

foaf:knows :b.

:b a foaf:Person ; foaf:nick "Alice".

<alice.org/> foaf:maker :b

Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;

foaf:knows :c.

:c a foaf:Person ; foaf:name "Bob" ;

foaf:nick "Bobby".

SELECT *

FROM <http://alice.org>

FROM <http://ex.org/bob>

WHERE { ?X a foaf:Person . OPTIONAL { ?X foaf:name ?N } }

Result:
?X ?N

:a ”Bob”
:b null

:c ”Bob”
alice.org#me ”Alice”

{ answer1("_:a","Bob",def), answer1("_:b",null, def),

answer1("_:c","Bob",def), answer1("alice.org#me","Alice", def) }

A. Polleres – SPARQL and the Rules Layer 17 / 33

SPARQL and LP: OPT Patterns – Nasty Example

Ask for pairs of persons ?X1, ?X2 who share the same name and
nickname where both, name and nickname are optional:

SELECT *
FROM ...
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

��

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

Now this is strange, as we join over unbound variables.

Remark: this pattern is not well-designed, following Unit 4!

A. Polleres – SPARQL and the Rules Layer 18 / 33

SPARQL and LP: OPT Patterns – With our translation?:

?X1 ?N

:a ”Bob”
:b null

:c ”Bob”
alice.org#me ”Alice”

��

?X2 ?N

:a null

:b ”Alice”
:c ”Bobby”

alice.org#me null

=

?X1 ?N X2

:b null :a
:b null alice.org#me

alice.org#me ”Alice” :b

What’s wrong here? Join over null , as if it was a normal constant.

Compared with SPARQL’s notion of compatibility of mappings, this is

too cautious!

A. Polleres – SPARQL and the Rules Layer 19 / 33

SPARQL and LP: OPT Patterns – Correct Result:

?X1 ?N

:a ”Bob”
:b
:c ”Bob”

alice.org#me ”Alice”

��

?X2 ?N

:a
:b ”Alice”
:c ”Bobby”

alice.org#me

=

?X1 ?N X2

:a ”Bob” :a
:a ”Bob” alice.org#me

:b :a
:b ”Alice” :b
:b ”Bobby” :c
:b alice.org#me

:c ”Bob” :a
:c ”Bob” alice.org#me

alice.org#me ”Alice” :a
alice.org#me ”Alice” :b
alice.org#me ”Alice” alice.org#me

SPARQL defines a very brave way of joins: unbound, i.e.
null should join with anything!

A. Polleres – SPARQL and the Rules Layer 20 / 33

Semantic variations of SPARQL

We could call these alternatives of treatment of possibly
null-joining values alternative semantics for SPARQL:

� c-joining: cautiously joining semantics

� b-joining: bravely joining semantics (normative)

Which is the most intuitive? DAWG basically decided for b-join.

Now let’s see to how to fix our translation to logic programs...

A. Polleres – SPARQL and the Rules Layer 21 / 33

SELECT *

FROM ...

WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

Here is the problem! Join over a possibly null-joining variable
A. Polleres – SPARQL and the Rules Layer 22 / 33

SPARQL and LP: OPT Patterns – Improved!

How do I emulate b-joining Semantics? Solution:

We need to take care for variables which are joined and possibly

unbound, due to the special notion of compatibility in SPARQL

triple(S,P,O,def) :- rdf["ex.org/bob"](S,P,O).

triple(S,P,O,def) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(N,X2,def).

answer1(N,X1,X2,def) :- answer2(N,X1,def), answer4(null,X2,def).

answer1(N,X1,X2,def) :- answer2(null,X1,def), answer4(N,X2,def).

answer2(N, X1,def) :- triple(X1,"a","Person",def),

triple(X1,"name",N,def).

answer2(null,X1,def) :- triple(X1,"a","Person",def),

not answer3(X1,def).

answer3(X1,def) :- triple(X1,"name",N,def).

answer4(N, X2,def) :- triple(X2,"a","Person",def),

triple(X2,"nick",N,def).

answer4(null,X2,def) :- triple(X2,"a","Person",def),

not answer5(X2,def).

answer5(X2,def) :- triple(X2,"nick",N,def).

A. Polleres – SPARQL and the Rules Layer 23 / 33

SPARQL and LP: OPT Patterns

Attention:

� The “fix” we used to emulate b-joining semantics is
potentially exponential in the number of possibly-null-joining
variables.

� This is not surprising, since the complexity of
OPTIONAL/UNION corner cases is PSPACE,
see [Pérez et al., 2006].

� But: A slight modification of the translation (in the tech.
report version of [Polleres, 2007]) shows that this translation
is optimal: Non-recursive Datalog with negation as failure is
also PSPACE complete!

A. Polleres – SPARQL and the Rules Layer 24 / 33

From SPARQL to Rules . . . Summary!

� With these ingredients any SPARQL query Q can be translated
recursively to a Datalog program Pq with a dedicated predicate
answer1Q which contains exactly the answer substitutions for Q.

� The target language is non-recursive Datalog with neg. as failure

� Non-well-designed combinations of OPTIONAL and UNION are
nasty and need special care: Special treatment for the case
where possibly null values are joined.

� Prototype engine implemented and available at
http://con.fusion.at/dlvhex/

� Full details of the translation in [Polleres, 2007].

� FILTERS not treated in detail, basically an implementation issue,
needs a rules engine with support for external built-ins.

� In order to properly deal with the multiset-semantics of SPARQL,
UNIONS and projections need special care!

A. Polleres – SPARQL and the Rules Layer 25 / 33

Short DEMO:
http://con.fusion.at/dlvhex/sparql-query-evaluation.php

A. Polleres – SPARQL and the Rules Layer 26 / 33

Outline

The SW Rules layer in a nutshell
Rules for the Semantic Web

Translating SPARQL to LP style rules languages
Basic Graph Patterns
GRAPH Patterns
UNION Patterns
OPTIONAL and Negation as failure
OPTIONAL and Negation as failure

Other Rules languages and formats
SWI Prolog, TRIPLE, N3
SPARQL and RIF

A. Polleres – SPARQL and the Rules Layer 27 / 33

Other LP style languages

Similar considerations apply to other rule systems that allow to
process RDF data, each of which has some syntactic peculiarities.
We exemplify here:

� dlvhex
� Done! SPARQL-plugin available.

� SWI-Prolog
� similar... rdf db module supports rdf/3, rdf/4 predicates,

analogous to dlvhex rdf built-in.

� TRIPLE

� N3

A. Polleres – SPARQL and the Rules Layer 28 / 33

TRIPLE

� RDF rules processor on top of XSB Prolog, developed by
Michael Sintek, Stefan Decker.

� F-Logic style syntax, i.e. triple S P O. viewed as F-Logic
molecule S[P->O]

� Special features: module mechanism.

Basic pattern SPARQL query “emulated” in TRIPLE:

@PREFIX foaf: <http://xmlns.com/foaf/0.1/> .
SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X foaf:name ?Y .

?X a foaf:Person . }

foaf:= ’http://xmlns.com/foaf/0.1/’.
rdf:= ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
FORALL S,P,O S[P->O] <- S[P->O]@’http://alice.org’ OR

S[P->O]@’http://ex.org/bob’.
FORALL X,Y answer(X,Y) <- (X[rdf:name->Y] ANDA. Polleres – SPARQL and the Rules Layer 29 / 33

N3

� RDF rules processor, CWM, implemented in python,
developed by Dan Conolly, et al.

� N3 logic syntax, an extension of Turtle syntax.
� Special features: has negation as failure (log:notIncludes).
� Semantics... ? Probably perfect model semantics (i.e. only

deals with stratified negation as failure)

Basic pattern SPARQL query “emulated” in N3:

@PREFIX foaf: <http://xmlns.com/foaf/0.1/> .
SELECT ?X ?Y
FROM <http://alice.org>
FROM <http://ex.org/bob>
WHERE { ?X foaf:name ?Y .

?X a foaf:Person . }

{ <http://alice.org> log:semantics ?A.
<http://ex.org/bob> log:semantics ?B.
(?A ?B) log:conjunction ?C.
?C log:supports { ?X foaf:name ?Y ?X a foaf:Person }

A. Polleres – SPARQL and the Rules Layer 30 / 33

SPARQL and RIF

� RIF charter requires rules to deal with RDF data
� It is also written in the RIF charter that RIF should compatible

to deal with SPARQL queries to access (external) datasets
� Both not yet addressed in WD1, first step:

� Simple “webbish” Horn-style rules language (RIF Core)
� Trouble: Has to address incompatibilities at lower levels... e.g.

� URIs: Qnames in XML vs. RDF treatment of namespaces
� compatibility with RDFS, OWL (not fully tackled in SPARQL

even)

� Last but not least: SPARQL itself may be viewed as a rules
language e.g. take the RDFS entailment rule (rdfs3)
from [Hayes, 2004]

If an RDF graph contains triples (P rdfs:range C) and
(S P O) then the triple O rdf:type C is entailed.

CONSTRUCT {?O a ?C . }
WHERE { ?P rdfs:range ?C . ?S ?P ?O . }

→ More on that in the next Unit!
A. Polleres – SPARQL and the Rules Layer 31 / 33

References I

Angele, J. et al. (2005).

Web rule language (WRL).
W3C Member Submission, available from http://www.w3.org/Submission/WRL/.

Battle, S. et al. (2005).

Semantic web services framework (SWSF).
W3C Member Submission, available from http://www.w3.org/Submission/SWSF/.

Berners-Lee, T., Connolly, D., Prud’homeaux, E., and Scharf, Y. (2005).

Experience with n3 rules.
In W3C Workshop on Rule Languages for Interoperability, Washington, D.C., USA.

de Bruijn, J., Fensel, D., Keller, U., Lausen, M. K. H., Krummenacher, R., Polleres, A., and Predoiu, L.

(2005).
Web Service Modeling Language (WSML).
W3C.
Member Submission. Available from http://www.w3.org/Submission/WSML/.

Decker, S. et al. (2005).

TRIPLE - an RDF rule language with context and use cases.
In W3C Workshop on Rule Languages for Interoperability, Washington, D.C., USA.

Eiter, T., Ianni, G., Polleres, A., and Schindlauer, R. (2006).

Answer set programming for the semantic web.
Tutorial at the European Semantic Web Conference (ESWC), see http://asptut.gibbi.com/.

Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2005).

A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer Set Programming.
In International Joint Conference on Artificial Intelligence (IJCAI) 2005, pages 90–96, Edinburgh, UK.

A. Polleres – SPARQL and the Rules Layer 32 / 33

References II

Hayes, P. (2004).

RDF semantics.
Technical report, W3C.
W3C Recommendation, http://www.w3.org/TR/rdf-mt/.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean, M. (2004).

SWRL: A semantic web rule language combining OWL and RuleML.
W3C Member Submission.

Pérez, J., Arenas, M., and Gutierrez, C. (2006).

Semantics and complexity of sparql.
Technical Report DB/0605124, arXiv:cs.

Polleres, A. (2007).

From SPARQL to rules (and back).
In Proceedings of the 16th World Wide Web Conference (WWW2007), Banff, Canada.
Extended technical report version available at
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf.

Wielemaker, J.

SWI-Prolog Semantic Web Library.
available at http://www.swi-prolog.org/packages/semweb.html.

A. Polleres – SPARQL and the Rules Layer 33 / 33

European Semantic Web Conference 2007

Tutorial

SPARQL – Where are we?

Current state, theory and practice

Unit 6: SPARQL Extensions and

Outlook

SPARQL Extensions and Outlook

Axel Polleres1

1DERI Galway, National University of Ireland, Galway
axel.polleres@deri.org

European Semantic Web Conference 2007

A. Polleres – SPARQL Extensions and Outlook 1 / 16

Outline

Translation to LP, a bit more formal

Next steps? Some possible Examples

Lessons to be learned from SQL?
Nested queries – Nesting ASK
Aggregates

Lessons to be learned from Datalog, Rules Languages, etc. ?
Use SPARQL as rules
Mixing data and rules – Recursion?

A. Polleres – SPARQL Extensions and Outlook 2 / 16

Translation to LP, a bit more formal

Given a query q = (V , P, DS), DS = (G , GN)

SELECT V
FROM G
FROM NAMED GN

WHERE P

we denote by Πq the logic program obtained by the translation
sketched in the previous Unit, where we give the auxiliary
predicates non-ambiguous names, i.e. answeriq.

Then, the extension of the predicate answer1q contains all answer
substitutions for q.

A. Polleres – SPARQL Extensions and Outlook 3 / 16

Example: q1 = ({?E , ?N},
(((?X : name ?N) OPT (?X : email ?E))),
({http : //alice.org}, ∅))

SELECT ?N ?E
FROM <http://alice.org>
WHERE { ?X :name ?N

OPTIONAL {?X :email ?E } }

Πq1 =

triple(S,P,O,defaultq1) :- rdf["alice.org"](S,P,O).

answer1q1(E,N,defaultq1) :- triple(X,":name",N,defaultq1),

triple(X,":email",E,defaultq1).

answer1q1(null,N,defaultq1) :- triple(X,":name",N,defaultq1),

not answer2q1(X).

answer2q1(X) :- triple(X,":email",E,defaultq1).

More complex queries are decomposed recursively introducing more auxiliary

predicates for nested sub-patterns: answer2q, answer3q, answer4q1,

answer5q1 , . . .

A. Polleres – SPARQL Extensions and Outlook 4 / 16

Next steps?

Disclaimer: What follows in this unit is a speculative outlook and
does not necessarily reflect the SPARQL working group’s agenda.
We discuss in this unit two starting points for such extensions:

� Lessons to be learned from SQL

� Lessons to be learned from Datalog

Both these partially overlap, and we will discuss how they integrate
with the current SPARQL spec by using the translation from the
previous unit.

A. Polleres – SPARQL Extensions and Outlook 5 / 16

Lessons to be learned from SQL: Nested ASK queries (1/2)

Nested queries are very common in SQL e.g.

SELECT ...FROM WHERE EXISTS (SELECT ...

a simple and very useful extension for SPARQL could be nesting of
boolean queries (ASK) in FILTERS:

SELECT ...FROM WHERE { P FILTER (ASK PASK) }

So, how could we implement e.g.

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

Note that this give a more elegant solution for “set difference” queries

avoiding the OPTIONAL/!bound combination!

A. Polleres – SPARQL Extensions and Outlook 6 / 16

Lessons to be learned from SQL: Nested ASK queries (2/2)

Given query q = (V , P, DS), with sub-pattern
(P1 FILTER (ASK qASK)) and qASK = (∅, PASK, DSASK):

� modularly translate such sub-queries by extending Πq with Πq′

where q′ = (vars(P1) ∩ vars(PASK), PASK, DSASK))
� let DSASK default to DS if not specified otherwise.

Example:

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

vars(P1) ∩ vars(PASK) = {X}
q′ = ({?X}, (?X : email?E), ({http : //alice.org}, ∅))

Πq:
answer1q′(X) :- triple(X,”:email”,E, default).
answer1q(N) :- triple(X,”:name”,N, default), not answer1q′(X).

A. Polleres – SPARQL Extensions and Outlook 7 / 16

Lessons to be learned from SQL: Aggregates (1/4)

Example Count:

SELECT ?X
FROM <http://example.org/lotsOfFOAFData.rdf>
WHERE { ?X a person .

FILTER (
COUNT{ ?Y : ?X foaf:knows ?Y} > 3

) }

SELECT ?X
FROM <http://example.org/lotsOfFOAFData.rdf>
WHERE { ?X a person .

?X foaf:knows ?Y1 , ?Y2, ?Y3 .
FILTER (!(?Y1 = ?Y2) AND

!(?Y1 = ?Y3) AND
!(?Y2 = ?Y3)) }

� Possible argument against:A. Polleres – SPARQL Extensions and Outlook 8 / 16

Lessons to be learned from SQL: Aggregates (2/4)

Aggregates: A mockup syntax proposal:

� Symbolic Set: Expression

{Vars : Pattern}
of a list Vars of variables and a pattern P
(e.g. { ?K : ?X foaf:knows ?K }).

� Aggregate Function: Expression

f {Vars : Pattern}
where

� f ∈ {COUNT , MIN, MAX , SUM, TIMES}, and
� {Vars : Pattern} is a symbolic set

(e.g. COUNT{ ?K : ?X foaf:knows ?K })

A. Polleres – SPARQL Extensions and Outlook 9 / 16

Lessons to be learned from SQL: Aggregates (3/4)

� Aggregate Atom: Expression

Agg Atom ::= val � f {Vars : Pattern}
| f {Vars : Conj} � val
| vall �l f {Vars : Pattern} �r valu

where
� val , vall , valu are constants or variables,
� � ∈ {<,>,≤,≥, = },
� �l ,�r ∈ {<,≤}, and
� f {Vars : Pattern} is an aggregate function

(e.g. COUNT{ ?K : ?X foaf:knows ?K } }< 3)

A. Polleres – SPARQL Extensions and Outlook 10 / 16

Lessons to be learned from SQL: Aggregates (4/4)

Examples of usage:
� Aggregate atoms in FILTERs:

SELECT ?X
WHERE { ?X a foaf:Person .

FILTER (COUNT{ ?K : ?X foaf:knows ?K } }< 3)

� Aggregate atoms in result forms:

SELECT ?X COUNT{ ?K : ?X foaf:knows ?K } }
WHERE { ?X a foaf:Person .)

Implementation:
� The aggregate syntax chosen here is a straight-forward extension of

the aggregate syntax of DLV → implementation possible by a slight
extension of the LP translation with DLV’s aggregates.

Semantics:
� Semantics of Aggregates in LP, even possibly involving recursive

rules agreed [Faber et al., 2004]

A. Polleres – SPARQL Extensions and Outlook 11 / 16

CONSTRUCT 1/3

CONSTRUCTs themselves may be viewed as rules over RDF.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT { ?X foaf:name ?Y . ?X a foaf:Person . }
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate

triple(S,P,O,constructed)

in post-processing to get the constructed RDF graph

A. Polleres – SPARQL Extensions and Outlook 12 / 16

CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

Mock-up syntax, mixing TURTLE and SPARQL to describe
implicit data or mappings within RDF1:

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".
CONSTRUCT{ :me foaf:knows ?X }
FROM <http://www.deri.ie/about/team>
WHERE { ?X a foaf:Person. }
:me foaf:knows [foaf:name "Marcelo Arenas"],

[foaf:name "Claudio Gutierrez"],
[foaf:name "Bijan Parsia"],
[foaf:name "Jorge Perez"],
[foaf:name "Andy Seaborne"].

1see e.g. RIF use case 2.10, http://www.w3.org/TR/rif-ucr/
A. Polleres – SPARQL Extensions and Outlook 13 / 16

CONSTRUCT 3/3

Attention! If you apply the translation to LP and two
RDF+CONSTRUCT files refer mutually to each other, you might
get a recursive program!

� even non-stratified negation as failure!
� two basic semantics for such “networked RDF graphs”

possible:
� well-founded [Schenk and Staab, 2007]
� stable [Polleres, 2007]

A. Polleres – SPARQL Extensions and Outlook 14 / 16

etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!

Now let’s get back to the next logical step. . .
. . . how to combine with OWL and RDFS?

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L

As it turns out, not so simple! Bijan, the stage is yours!

A. Polleres – SPARQL Extensions and Outlook 15 / 16

References

Faber, W., Leone, N., and Pfeifer, G. (2004).

Recursive aggregates in disjunctive logic programs: Semantics and complexity.
In Alferes, J. J. and Leite, J., editors, Proceedings of the 9th European Conference on Artificial Intelligence
(JELIA 2004), number 3229 in Lecture Notes in AI (LNAI), pages 200–212. Springer Verlag.

Polleres, A. (2007).

From SPARQL to rules (and back).
In Proceedings of the 16th World Wide Web Conference (WWW2007), Banff, Canada.
Extended technical report version available at
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf.

Schenk, S. and Staab, S. (2007).

Networked rdf graph networked rdf graphs.
Technical Report 3/2007, Universsity of Koblenz.
available at http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf.

A. Polleres – SPARQL Extensions and Outlook 16 / 16

SPARQL Extensibility
� Arbitrary functions in FILTERs

– Identified by URI

– Can extend operators as well

� New semantics for Basic Graph Patterns

– BGPs extract mappings from data sets

� The algebra is independent of the extraction

– We hope!

– One document/graph has many semantics

� Simple, RDF, RDFS, OWL....

– Queries (should be) sensitive to the semantics

� See prior unit for some examples (RDF, etc.)

Trickiness
� Controlling answers

– Too many:

� Simple entailment can yield infinite answers

– Too few:

� Finding all proofs of an answer difficult

� New sorts of issue

– E.g., inconsistent data or equality

� Performance

– Bare consistency of OWL DL is NEXPTIME

– Query languages very expressive!

– Performance model unclear

Standardizing these things is hard
� Not a lot of experience

– Conjunctive query for DLs is (fairly) new

� Theoretically and implementationally

– Concept language expressive

� Can express many common queries

– Lots of decisions

� Database experience not always reliable

� LP experience not always reliable

Inconsistency

� Some logics can express inconsistent data

– RDF (with certain datatypes), RDFS, and OWL

– Inconsistencies entail everything

� So, every mapping is a “correct” answer!

– Inconsistencies often signal error

� But may indicate mere disagreement!

� What should a query engine return?

– Nothing

– No answers, but explanations

– Implementation dependent “best” answers

– Answers from a weaker logic

“Strange” queries

� In RDF(S)

– Thin distinction between schema and data

� Schema language very inexpressive

– So easy to treat the schema and data uniformly

� In OWL-DL

– Strong distinction between schema and dat

� TBox vs. Abox

� Concept language very expressive

– OWL Full tries to do the RDF thing

� High cost: Undecidability, no implementations, hard to
understand semantics

Types of Query Variables
� 2 key axis of a variable with 4 combinations

A)Distinguished

B)"Semi-"distinguished

C)"Projected away"

D)Non-distinguished

� In a databases, only A and C are possible

– C and D collapse (no non-named entities)

� In DLs, A and D are standard

– D make query answering harder!

� In SPARQL/RDF, all variables are B

Query Variable Position
� “Conjunctive ABox queries”

– Standard in DL systems: KAON2, Racer, Pellet

– No variables in property or class positions

� “Higher order” queries

– ?x rdf:type ?C. ?C rdfs:subClassOf ?D.

– Careful restrictions make this feasible

� “Syntax reflective” qureies

– ?s ?p ?o, where ?p can bind to rdf:type

– ?x rdf:type [a Restriction; someValuesFrom ?C]

� Only bind to asserted axioms? (essentially SPARQL/RDF)

� Latter two coming (see OWLED)

Counting

� What is a redundant answer?

– BNodes in answers can be tricky

� Might want to lean the answers

� Distinguish between redundancy due to algebra and
stated redundancy and inferred redundancy

– Equality can be tricky

� If two answers differ only by the value of one binding, and
those values are inferred to be sameAs, how many
answers?

� No UNA in RDF-OWL

� We could count answers (instead of entities)

– But then answers proliferate, often pointlessly

Information about the speakers

Marcelo Arenas, Department of Computer Science, Pontificia Universidad Católica de Chile.

Home Page: http://www.ing.puc.cl/~marenas/.

Short Bio: Prof. Marcelo Arenas received B.Sc. degrees in Mathematics (1997) and Computer Engineering
(1998) and a M.Sc. degree in Computer Science (1998) from the Pontificia Universidad Católica de Chile, and
a Ph.D. degree in Computer Science (2005) from the University of Toronto, Canada. In 2005, he joined the
Computer Science Department at the Pontificia Universidad Católica de Chile as an Assistant Professor. His
research interests are in different aspects of database theory, such as expressive power of query languages,
database semantics, integrity constraints, inconsistency handling, database design, XML databases, data
exchange and database aspects of the semantic web. Marcelo has received an IBM Ph.D. Fellowship (2004),
three best paper awards (PODS 2003 in San Diego, California, PODS 2005 in Baltimore, Maryland and
ISWC 2006 in Athens, Georgia) and an Honorable Mention Award in 2006 from the ACM Special Interest
Group on Management of Data (SIGMOD) for his Ph.D dissertation, “Design Principles for XML Data.”

Marcelo Arenas is supported by FONDECYT 1070732 and by Millennium Nucleus Center for Web Research,
P04-067-F, Mideplan, Chile.

Claudio Gutierrez, Department of Computer Science, Universidad de Chile.

Home page: http://www.dcc.uchile.cl/cgutierr/.

Short Bio: Claudio Gutierrez received degrees in mathematics and mathematical logic from Universidad
de Chile and Pontificia Universidad Católica de Chile, and a Ph.D. degree in computer science from Wes-
leyan University, U.S.A. Currently, he is associated professor in the Computer Science Department at the
Universidad de Chile, and associated researcher at the Center for Web Research. His research interest lie in
the intersection of databases and the Semantic Web. He has received Best Research Paper Awards at the
European Semantic Web Conference in 2005, and at the International Semantic Web Conference in 2006.

Claudio Gutierrez is supported by FONDECYT 1070348 RDF Databases and by Millennium Nucleus Center
for Web Research, P04-067-F, Mideplan, Chile.

Bijan Parsia, Information Management Group, School of Computer Science, University of Manchester, UK.

Home page: http://homepages.manchester.ac.uk/~bparsia/.

Short Bio: Bijan Parsia is a lecturer (since 2006) in the School of Computer Science at the University of
Manchester, UK. He has published over 50 papers in such areas as description logic reasoning, explanation,
trust, ontology editing, planning, web service composition, ontology partitioning, and ontology visualization.
He has been a member of the WSDL, WS-Architecture, Data Access, and WS-Policy working groups.

Jorge Pérez, Department of Computer Science, Pontificia Universidad Católica de Chile.

Home Page: http://www.ing.puc.cl/~jperez/.

Short Bio: Jorge Pérez received B.Sc. degree in Computer Engineering and a M.Sc. degree in Computer
Science from the Pontificia Universidad Católica de Chile. He is currently a Ph.D. student under the super-
vision of Prof. Marcelo Arenas. His research interests are primarily in database theory and the application of
database technologies to the Web. Jorge has received the Best Research Paper Award at the 5th International
Semantic Web Conference for work on SPARQL formalization from a database perspective.

The work of Jorge Pérez is supported by Dirección de Investigación – Universidad de Talca, and by Millen-
nium Nucleus Center for Web Research, P04-067-F, Mideplan, Chile.

Axel Polleres, DERI, National University of Ireland, Galway.

Home page: http://www.polleres.net.

Short Bio: Axel Polleres obtained his PhD in Computer Science at the Vienna University of Technology in
2003. From 2003 to 2006 he worked at DERI at the Leopold-Franzens Universität Innsbruck in the areas of
Semantic Web Services, Ontologies, Rules & Query Languages and Logic Programming. While there, he was
involved in managing several EU projects. He worked for one year at Univ. Rey Juan Carlos, Madrid, under a
“Juan de la Cierva” research award and joined DERI Galway in April 2007. Dr. Polleres has published more
than 30 articles in journals, books, and conference and workshop contributions and has recently co-authored
a book on Semantic Web Services. He has organised several international workshops in the areas of logic
programming, Semantic Web, Semantic Web services and also ExpertFinding. He actively contributes to
working groups such as WSMO, WSML, and the W3C Rule Interchange Format (RIF) WG.

The work of Axel Polleres was partly supported by the EU FP6 project inContext (IST-034718)1 as well as by
the Spanish MEC and Universidad Rey Juan Carlos under the project SWOS (URJC-CM-2006-CET-0300).

Andy Seaborne, Hewlett-Packard Laboratories.

Home page: http://www.hpl.hp.com/people/afs/.

Short Bio: Dr Andy Seaborne is a member of the Semantic Web Research Group in Hewlett-Packard
Laboratories and he is based in Bristol, UK. He has been involved in RDF query languages since 2001, firstly
with the development of RDQL for the Jena framework and latterly with the development of SPARQL. He
is co-editor of the SPARQL query language specification. In addition, he has built two implementations of
SPARQL, one, a reference implementation of SPARQL and one is a query engine that that is based on SQL.

1 http://www.in-context.eu/

