
DERI Galway
University Road

Galway
IRELAND

www.deri.ie

DERI Innsbruck
Technikerstrasse 13

A-6020 Innsbruck
AUSTRIA

www.deri.ie

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

Towards an Ontology

Mapping Specification

Language for the Semantic

Web

Jos de Bruijn Axel Polleres

DERI Technical Report 2004-06-30

June 2004

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

DERI Technical Report

DERI Technical Report 2004-06-30, June 2004

Towards an Ontology Mapping Specification Language

for the Semantic Web

Jos de Bruijn1, Axel Polleres1

Abstract. This paper addresses the requirements for an Ontology Mapping Specification
Language for the Semantic Web. We present a set of generic technical use cases and a
number of application scenarios, which are used as a basis for a list of requirements for such
a mapping language. Furthermore, we discuss further steps to be taken towards a useful
language fulfilling the requirements we identify in terms of flexibility and expressiveness.

Keywords: ontology mapping, semantic web, mapping language, ontology alignment, on-
tology mediation.

1Digital Enterprise Research Institute, University of Innsbruck,
Technikerstraße 13, A-6020 Innsbruck, Austria. E-mail: {jos.de-bruijn, axel.polleres}@deri.org

Acknowledgements: The research presented in paper was partially funded by the European Com-
mission in the context of the SEKT project (http://sekt.semanticweb.org/), under contract number
IST-2003-506826 and the DIP project (http://dip.semanticweb.org/), under contract number FP6 -
507483.

Copyright c© 2004 by the authors

DERI TR 2004-06-30 I

Contents

1 Introduction 1

2 Use Cases and Scenarios for Ontology Mediation 4
2.1 Generic Use Cases . 4

2.1.1 Instance Mediation . 4
2.1.2 Ontology Merging . 8
2.1.3 Creating Ontology Mappings . 8

2.2 Scenarios for Ontology Mediation . 9
2.2.1 Data Integration . 9
2.2.2 Ontology Evolution . 11

3 Requirements for an Ontology Mapping Specification Language 12

4 Mappings and Mapping Patterns 14

5 Future Work 15

DERI TR 2004-06-30 1

O3 O4M

O1
O2

Figure 1: Illustrating tightly coupled (O1 and O2) and loosely coupled (O3 and O4) ontologies

1 Introduction

With the establishment of the Web Ontology Language OWL [8] as recommendation for the repre-
sentation of ontologies in the Web, an important step has been taken towards the realization of the
Semantic Web. Ontologies represented in OWL can be used to achieve inter-operability between
various applications in the Semantic Web. However, in the context of an open environment such as
the Web it is very unlikely that there will be very few ontologies shared by many parties; we will
have to deal with many different heterogeneous ontologies with overlapping domains.

In order to cope with this heterogeneity between ontologies in the Semantic Web and the
relations between ontologies there is a need for means to formally and explicitly specify ontology
mappings in order to achieve inter-operability. OWL offers limited support for such mappings
through the owl:import construct which can be used to import one ontology into another one.
After importing an ontology, relationships between concepts in the different ontologies can be
specified using equivalence and subsumption axioms [26].

We believe that these mechanisms provided by OWL are not sufficient for the specification of
ontology mappings in the general case. We see the following pitfalls and shortcomings in specifying
ontology mappings directly in OWL:

Tight coupling between ontologies When an ontology is explicitly imported in another on-
tology, the mapping is already explicitly present in one of the ontologies. This results in a
tight coupling between ontologies. Such a tight coupling is undesirable, because it makes one
ontology dependent on another in the sense that axioms and definitions in one ontology use
classes and properties from the other ontology. This can result in such things as the necessity
to use the other, externally specified, ontology in order to perform certain local reasoning
tasks. Such strong dependency is undesirable in an open environment as the Semantic Web.
In fact, the import of an ontology into another ontology, results in a merged version of the
two ontologies. This might be desirable for an ontology merging scenario, but not for the
general ontology mapping use case.

Figure 1 illustrates the two situations of tightly coupled and of loosely coupled ontologies.
In the Figure, O1 and O2 are tightly coupled. It is no longer possible to use one ontology
independent of the other. On the other hand, O3 and O4 are loosely coupled. Both ontologies
can be used independent of each other; the mapping M enables inter-operation between the
two.

Inadequate mapping constructs It turns out that certain desired mappings cannot be ex-

2 DERI TR 2004-06-30

pressed using the constructs provided by OWL. Value transformations, for example, cannot
be expressed using OWL, see Section 2. In fact, it is not possible to specify certain conditions
on data values in OWL, which is often necessary in order to describe a mapping.

We argue that the mapping constructs provided by OWL are also epistemologically inadequate,
mainly because the OWL language was not conceived as a mapping language, but as an
ontology modeling language. Some of the constructs in OWL might be useful to describe
relations between ontologies. However, the Description Logic modeling constructs in OWL
seem most useful (and mostly used) for the description of merged ontologies and not general
ontology mappings.

In order to understand exactly what we mean with ontologies and ontology mapping, we provide
definitions of these terms below:

Definition 1.1 We define an ontology O as a tuple 〈C, R, I,A〉 where C is a set of concepts, R is
a set of relations, I is a set of instances and A is a set of axioms. All concepts, relations, instances
and axioms are specified in some logical language. This notion of an ontology coincides with the
notion of an ontology described in [24, Chapter 2] and is similar to the notion of an ontology in
OKBC [4]. Concepts correspond with classes in OKBC, relations correspond with slots, facets in
OKBC are a kind of axiom and individuals in OKBC are what we call instances.

Because all concepts, relations, instances and axioms, also referred to a entities in the remainder,
are specified using a logical language, an ontology can be seen as a logical theory. If we assume
an ontology language with a standard model-theoretic semantics1, the meaning of the ontology is
then defined by the collection of models of the logical theory. Examples of ontology languages with
a standard model-theoretic semantics are OWL [22] and F-Logic [14].

Although instances are logically part of an ontology, it is often useful to separate between
an ontology describing a collection of instances and the collection of instances described by the
ontology. We refer to this collection of instances as the Instance Base. Instance bases are sometimes
used to discover similarities between concepts in different ontologies (e.g. [27], [9]). An instance
base can be any collection of data, such as a relational database or a collection of web pages. Note
that this not rule out the situation where instances use several ontologies for their description.
Note also that when a separate instance base is distinguished, this does not mean that there are
no more instances in the ontology.

Because ontology modeling is a community activity, the concepts, relations, instances and ax-
ioms play an important role in the specification process of the ontology. These entities also play an
important role in sharing ontologies and especially in sharing the intended meaning of the concepts
in an ontology among humans. It turns out that these entities also play an important role in the
discovery and specification of mappings between ontologies.

In order to further clarify the terminology used in this paper, we describe the notion of ontology
mediation and the notion of an ontology mapping.

Ontology mediation is the process of reconciling differences between heterogeneous ontologies
in order to achieve inter-operation between data sources annotated with and applications using

1If a language has a model-theoretic semantics, the meaning (semantics) of any sentence in the language is defined
by all the models, which make the sentence true.

DERI TR 2004-06-30 3

these ontologies. This includes the discovery and specification of ontology mappings, as well as
the use of these mappings for certain tasks, such as query rewriting and instance transformation.
Furthermore, merging ontologies also falls under the term ontology mediation.

An ontology mapping M is a (declarative) specification of the semantic overlap between two
ontologies OS and OT . This mapping can be one-way (injective) or two-way (bijective). In an
injective mapping we specify how to terms in OT using terms from OS in a way that is not easily
invertible. A bijective mapping works both ways, i.e. a term in OT is expressed using terms of OS

and the other way around.
When creating mappings between ontologies, several factors need to be taken into account in

choosing the appropriate solution for an Ontology Mapping problem. In particular, we identify the
following factors:

• Expressiveness of the Ontologies. Ontologies can range in expressiveness from simple tax-
omonies to very expressive ontologies with arbitrary logic formulas (cf. [6, 18]). The expres-
siveness of an ontology is of course limited by the expressivity of the ontology representation
language. OWL, for example, does not allow arbitrary logic formulas; however, this does not
stop ontologies from being built using more expressive languages. The DOLCE foundational
ontology [11], for example, is specified using full first-order logic with modality; a subset of
the ontology has also been specified using OWL.

Expressive ontologies typically require more complex mappings. With different types of enti-
ties in the ontology, also different types of mappings can occur. Another factor, which makes
the mapping more complex, is the size of the ontology. Mapping large ontologies typically
requires a large number of mapping rules.

• Precision and coverage of the mapping. Different scenarios impose different requirements on
the mapping. An e-commerce application which requires the translation of purchase orders
requires a very precise and complete translation of instances. A semantically-enabled search-
engine could live with a simple probabilistic identification of common instances and usually
does not require an exact transformation.

• Desired automation in the mapping process. Several approaches for (semi-)automation in the
mapping process have been proposed (e.g. [23, 20, 1]). The applicability of these automation
proposals depends on the complexity of the ontologies2 and to some extent on the desired
precision3 of the mappings.

Furthermore, many automation methods depend on the existence of thesauri (e.g. WordNet
[10]) which contain the vocabulary used in the ontologies. We argue that a general thesaurus
such as WordNet is often inappropriate, because most ontologies are very domain-specific,
so that terms used in the vocabulary often do not occur in the thesaurus, which makes the
thesaurus less useful for the discovery of similarities.

• Inconsistencies in Mappings Mappings between ontologies can create inconsistencies. Es-
pecially when translating instances from one representation to another, inconsistencies can

2We argue that typically there exists a trade-off between the possible degree of automation in the mapping process
and the complexity of the ontologies.

3Some applications may require 100% precision in the mappings, whereas other applications can live with lower
precision.

4 DERI TR 2004-06-30

arise. We see two types of inconsistencies, which can arise when translating instances from
one representation to another: (1) the instance can violate some integrity constraint in the
target ontology or (2) the instance has a conflict with another instance of the target ontology,
e.g. they might have some conflicting value for a particular attribute. It could be the case
that a particular mapping can be used to correctly translate a number of instances, but would
introduce inconsistencies with the translation of other instances. This is related to the notion
of precision introduced earlier.

The remainder of this paper is organized as follows. In Section 2 we present a selection of
generic technical use cases and application scenarios which shall serve as a basis for identifying the
requirements for an Ontology Mapping Specification Language. In Section 3 we present require-
ments for the Ontology Mapping Specification. In Section 4 we propose a conceptual model for
a mapping specification language. We present a discussion and related works in Section ??. We
conclude with an outlook to future work and research goals in Section 5.

2 Use Cases and Scenarios for Ontology Mediation

In this section we describe a number of motivating use cases and application scenarios in order to
identify the requirements for a language for the specification of ontology mappings.

2.1 Generic Use Cases

This section describes the core technical use cases which need to be supported by a generic Ontology
Mediation framework. We distinguish three use cases, which are detailed in the remainder of this
section:

• Instance Mediation

• Ontology Merging

• Creating Ontology Mappings

The first use case, Instance Mediation, addresses the tasks of instance transformation, unifica-
tion and query rewriting. The second use case, Ontology Merging, addresses the way two source
ontologies can be merged into one target ontology. The third use case, Creating Ontology Map-
pings, is about actually finding similarities between ontologies and, on the basis of these similarities,
creating mappings between the ontologies.

These three use cases are all inter-related, as we shall see in the following.

2.1.1 Instance Mediation

The following use cases are the typical use cases for instance mediation, where the emphasis is on
query rewriting and instance transformation and unification.

Instance mediation is the process of reconciling differences between two instance bases, each
described by an ontology. This includes the discovery and specification of ontology mappings, as well

DERI TR 2004-06-30 5

O2O1
mapping

rewriting
query1 query2

Figure 2: Query Rewriting

as the use of these mappings for certain tasks, such as query4 rewriting and instance transformation,
both described below.

As we can see in the definition, instance mediation also requires the discovery and specification
of ontology mappings. This makes apparent the inter-dependencies between the different use cases.
We do not describe the discovery and specification of ontology mappings here; instead, these use
cases are discussed later, because of the use in different other areas of ontology mediation.

Query Rewriting An operation occurring very frequently in Knowledge Management and data
integration applications is querying of information sources. We want to allow an application to query
different heterogeneous information sources without actually knowing about all the ontologies. In
order to achieve this, a query written in terms of the application’s ontology, needs to be rewritten
using the terms in the target data source’s ontology.

Say, we have an application A, which uses an ontology OA for its information representation.
Say now that this applications want to query a different data source, which uses ontology OB, but
A does not know about the structure of this ontology. The application A now formulates a query
QA in terms of ontology OA. In order to execute this query on the target data source, it needs to
be rewritten into query QB, which is formulated in terms of ontology OB. This rewriting process
is illustrated in figure 2. Ideally, the rewritten query can be completely derived from the original
query and the mapping.

After execution of the query, the results are transformed back to the OA representation and
unified with the local instances using the techniques for instance transformation and unification
described above.

Instance Transformation For the instance transformation use case we assume two separate
applications with separate instance stores both described by ontologies. The task to be performed
is the transformation of an instance of a source ontology, say OS , to an instance of the target
ontology OT . Figure 3 illustrates the process of instance transformation. An instance i1, which
refers to ontology O1, is transformed into instance i2, which refers to ontology O2. What is
important to note here is that the transformation itself is derived from the mapping between the
two ontology and that both the original and the transformed instance provide information about the
same real-world object. Therefore, the mapping needs to be expressive enough for the specification
of this transformation.

4A query in this context is a request for information from a user formulated in terms of a particular ontology.

6 DERI TR 2004-06-30

O2O1
mapping

i2i1

o1

transformation

Figure 3: Instance Transformation

This kind of transformation needs to be supported by the ontology mapping in the sense that
the ontology mapping specifies the relationship between instances of the source ontology OS and
instances of the target ontology OT .

Different application scenarios have different requirements on the precision and coverage of the
transformation. With precision in this context we mean the degree to which the intended meaning
of the instances is preserved in the transformation. In other words, the precision is the fraction of
instance data, which is translated correctly. With coverage we mean the fraction of instances that
are intended to be transformed, which are actually transformed. In other words, the coverage is the
fraction of instance data, which should the translated, that is actually translated. The requirements
of the application determine the lower bounds for these measures.

When an instance has been translated from OS to OT , it is often necessary to detect whether
the transformed instance corresponds to an existing instance in the instance store of the target
application in order to avoid duplication of information and in order to find out more about the
instances in the knowledge base. We discuss this issue below in the context of instance unification.

Instance Unification The instance unification problem can be summarized as follows:
Say, we have an ontology O and two instances I1 and I2 of that ontology. We want to check

whether I1 and I2 refer to the same real-world object. In this case we need to unify I1 and I2 into
a newly created instance I0, which is the union of I1 and I2. Therefore, the instance unification
task can be decomposed into (1) the identification of instances referring to the same real-world
object and (2) taking the union of the two instances in order to obtain the unified instance. For
example, one can use the property Name of a class Person to identify two instances of Person, which
describe the same person in the real world. After these two instances of Person have been identified
as being the same, the attribute values need to be merged. For example, I1 could have a value for
the property Age, whereas I2 does not. The merged instance need to inherit the property value of
Age from I1.

If the instances I1 and I2 have been identified as referring to the same real-world object, but
contain contradictory information5 with respect to the constraints in the ontology, it is not possible

5Notice that not all ontology languages allow contradictory information in the ontology. RDF Schema [2], for
example, does not allow contradictory definitions, whereas in OWL this is possible. Therefore, the problem of
contradictory instance information is highly interrelated with the expressivity of the ontology language.

DERI TR 2004-06-30 7

i2i1

o1

O1

i0

Figure 4: Instance Unification

to create a unified instance and the user should be informed of the inconsistency. For example, if
a class Person has a functional property Name and two instances of this class referring to the same
person have different names, the user should be informed of this inconsistency.

Figure 4 illustrates the process of instance unification. Two instances (i1 and i2) of the same
ontology O1, which refer to the same real-world object o1, are unified into one new instance, i0,
which is the union of both instances, is also an instance of the ontology O1 and also describes to
the same real-world object o1.

We identify two general means of detecting whether two instances refer to the same real-world
object:

• In the ‘exact’ case, the ontology mapping specifies precise, exact conditions which unambigu-
ously specify in which cases two instances refer to the same object and in which cases they
refer to different objects, in other words, in which cases the instances are unifiable. These con-
ditions are similar to primary keys in relational databases, where the value of the primary key
uniquely identifies a tuple in a relation. This is also similar to the notion of InverseFunctional
properties in OWL, where a property value uniquely identifies an instance.

We see an example of this exact case of instance unification in InfoSleuth [19], where a variant
of the SQL query language is used to express the conditions on the fusion of query answers
from different data sources. Interestingly, InfoSleuth uses two different decompositions of
the global query. The first decomposition is used to query local data sources. The second
decomposition is used to fuse query answers.

• In the ‘probabilistic’ case, a similarity measure is created on the basis of the ontology mapping.
The similarity measure expresses the probability that both instances refer to the same object.
A threshold could be used to decide whether to unify the instances.

8 DERI TR 2004-06-30

The Bibster bibliographic peer-to-peer system [3] uses a combined similarity measure, taking
into account things like string similarity, structural similarity and background knowledge,
together with a threshold to identify duplicates in query answers. Duplicates are then visual-
ized as one merged resources, which consists of the union of the properties of all individuals
identified as duplicates. In the case of conflicting property values, heuristics are used to select
the appropriate value for the property.

Instance transformation and instance unification are often required in a querying scenario where
an application A queries another application B and the query results (consisting of instances) are
transformed to the representation of A and unified with instances in the instance base of A.

In order to be able to query a data source which uses a different (unknown) ontology, the query
originally formulated in terms of the application’s ontology needs to be rewritten in terms of the
other ontology. The next section describes the generic query rewriting use case.

2.1.2 Ontology Merging

Besides instance transformation, instance unification and query rewriting, we see another major
use case for ontology mediation: Ontology Merging.

In the case of Ontology Merging [20], two source ontologies shall be merged into one target
ontology6 based on the source ontologies. In the general case, the source ontologies would disappear
and only the target (merged) ontology remains. A special case is when the source ontologies remain,
along with mappings to the merged ontology.

In the case where the source ontologies disappear after the merge, the complete instance stores
of the source ontologies have to be merged. If the source ontologies remain, the source ontologies can
maintain their instance stores and query rewriting, instance transformation and instance unification
(see above) are necessary in order to allow querying of the source ontologies through the merged
ontology. We can compare these two distinct cases with notions developed in the field of database
integration, namely, the notions of materialised and virtual views [13] respectively.

Of course, when the source ontologies do not have instance stores associated with them, these
problems do not occur. However, in the general case an ontology will have one or more instance
stores associated with it. In special cases, such as the (distributed) development of ontologies, there
will not be instance stores.

2.1.3 Creating Ontology Mappings

In order to be able to support any of the previously mentioned use cases, a mapping needs to be
created between the source and the target ontology. Note that this does not apply to the case
of ontology merging where the source ontologies do not remain. Because the source ontologies
disappear, there needs to be no ontology mapping between these sources and the new merged
ontology. However, the techniques for finding entities to be merged in different ontologies and

6Note that we do not say here how the merged ontology relates to the original ontologies. This is intentionally left
open because not all approaches merge ontologies in the same way. The most prominent approaches are the union
and the intersection approaches. In the union approach, the merged ontologies is the union of all entities in both
source ontologies, where differences in representation of similar concepts have been resolved (c.f. the union operator
in ontology algebra [32]). In the intersection approach, the merged ontology consists only of the parts of the source
ontology, which overlap (c.f. the intersection operator in ontology algebra [32]).

DERI TR 2004-06-30 9

finding mappings between entities in different ontologies are the same, since they are both based on
the similarity of entities. In fact, a mapping between two ontologies can be used as a basis for the
merged ontology. In the case of Ontology Merging where the source ontologies remain, a mapping
needs to be created between every source ontology and the merged ontology.

We split the “Creating Ontology Mappings” use case into two distinct use cases: finding simi-
larities between ontologies and specifying mappings between ontologies.

Finding Similarities In order to find out which mappings need to be created, similarity between
concepts, relations, etc. . . needs to be established. The similarity between ontologies can either be
established manually, or automatically using the so-called Match operator (cf. [23]). The Match
operator takes as input two ontologies and returns as output the similarities between entities7 in the
two source ontologies. These similarities can now be used as a starting point to semi-automatically
create a mapping between the ontologies or to merge the two ontologies (cf. [20]).

Specifying Mappings After having defined the similarities between entities in the different
ontologies, a mapping needs to be specified between the similar entities of the ontologies. The re-
quirements on this mapping depend on the application scenario (cf. the various scenarios described
in the next section) and in general the requirements on ontology mediation, as mentioned in the
introduction.

2.2 Scenarios for Ontology Mediation

This section describes a number of typical scenarios for ontology mediation.

2.2.1 Data Integration

Data Integration is concerned with the use of data from different sources in one application. The
data from the different sources needs to be presented to the user in a unified way.

Using a Relational Database in a Semantic Web application Relational databases are
currently the most popular data storage paradigm in enterprises. As was shown in [30], a large
amount of the information currently available over the Web is actually stored in relational databases.
This clearly demonstrates the necessity of the ability to use a relational database source in a
Semantic Web application.

Typically, a Semantic Web application would not want to deal with the peculiarities of a specific
database schema. Especially since legacy database schemas are often specified using incomprehen-
sible, organization- or application-specific relation and attribute names.

In order for the application to use a Relational Database, the database schema has to be “lifted”
to the ontology level8, after which an ontology mapping can be created between the ontology used
by the application and the ontology based on the database schema. Examples of relating relational
database schemata to ontologies can be found in [5, 17, 31].

7Note that current matchers can typically only discover one-to-one similarities, where one entity in O1 matches
one entity in O2. Matches of other cardinalities (e.g. one-to-many) are often hard to discover for matchers.

8This lifting can be done either directly by rewriting the database schema into an ontology (cf. [31]) or indirectly
by relating the database schema to an existing ontology [5].

10 DERI TR 2004-06-30

Once a relational data schema has been lifted to the ontology level and provided that the
connector lifting the ontology9 performs a two-way translation, i.e. it translates both instances
from the relational representation to the ontology representation and queries from the ontology to
the relational representation, the relational data source can be used in a Semantic Web application.
In fact, the relational source can then be treated as an ontology with a corresponding instance store.

Using different heterogeneous Ontologies in a Semantic Web application Larger appli-
cations typically make use of multiple data sources to fulfill the information needs of its users. For
instance, in an organization it could be the case that customer information and employee infor-
mation are stored in separate sources. An application which wants to provide a search facility to
search through all people known to the organization would have to integrate these separate sources.

We distinguish two cases for the use of different ontologies by one application. In the first case,
the application uses a global ontology, where all specific local ontologies are mapped to the global
ontology. In the second case, we assume a peer-to-peer like setting, where each application has it’s
own ontology and mappings exist between these different applications.

Using a Global Ontology Because one-to-one mappings between all involved ontologies do not
scale in the general case (cf. [29, 28]), it is often preferred to have a central, global ontology to
which all local ontologies are mapped.

Using only Local Ontologies In the case of using only local ontologies, an ontology mapping
needs to exist between every pair of ontologies, if one wants to mediate between. This approach is
not very scalable in general, because it requires O(n2) ontology mappings, where n is the number
of ontologies.

We do not think of one global upper-level ontology for the Semantic Web, but rather different
islands, consisting of a central ontology and local ontologies, along with the mappings between
them, with mappings between the islands where appropriate. This layering could again define a
hierarchy, where other central ontologies can combine several of these islands and so forth.

One could think of creating an ontology for a specific integration problem in an organization or
take the (more preferred) approach of relating the local ontologies to a domain ontology, which is a
conceptual description of the domain and thus can be shared with others. A clear advantage of this
approach is that each application can use its own terminology, while still being able to communicate
with other applications, which use different terminologies.

Another interesting approach is the one presented in [26]. This approach assumes a shared
light-weight ontology. The concepts in each local ontology are defined in terms of the concepts in
the shared ontology. This allows for a certain degree of automation in creating mappings between
the local ontologies, because similarities immediately apparent through the use of common terms
in the definitions. Limitations of this approach are the fact that the authors of the ontologies
need to agree on the use of the shared ontology, which is not always possible, and, because the
shared ontology is so light-weight, the concepts in the shared ontology could easily be interpreted
differently by authors of different local ontologies.

9This lifting involves mediation again which can be viewed as another ontology mediation problem as such using
different “ontology languages”, for example OWL and SQL. However, in this paper we restrict ourselves to mediation
between ontologies in the same language.

DERI TR 2004-06-30 11

2.2.2 Ontology Evolution

One can expect ontologies to evolve over time. This holds also for ontologies that participate in
mappings to other ontologies.

If either of the two ontologies involved in an ontology mapping changes (evolves), the mapping
might become invalid. Therefore, the mapping between the ontologies needs to evolve together with
the ontologies and versioning of both the ontologies and the mapping is required, as we explain
below.

Evolving Ontology Mappings Not only ontologies evolve, but also mappings evolve, especially
in early stages of the mapping design.

For this scenario we assume static (non-evolving) ontologies and a changing (evolving) mappings
between the ontologies. There are various reasons why a mapping may evolve. Examples are
evolving insights into the source and target ontology and their similarities, new requirements on
the mapping (e.g. a new subpart of the ontologies needs to be mapped, which was not considered
before) and inadequate or faulty specification of the mapping.

This scenario does not only indicate the need for evolution support for ontology mappings, but
also for versioning. Each change of the mapping requires a new uniquely identifiable and accessible
version of the mapping, so that applications which use a certain version do not break because of
changes in the mapping.

Mapping different versions of Evolving Ontologies The evolution of ontology mappings is
relatively simple compared to the mapping of evolving ontologies. In this case, both the source
and the target ontology evolve over time and the mapping between the ontologies needs to evolve
accordingly. The mapping between an evolving source ontology and a target ontology might even
make apparent the need for the target ontology to evolve along with the source ontology in order
to enable inter-operation.

The evolution of ontologies has the following implications for the mappings between ontologies:

• Versioning of the ontologies is required and the ontology mapping needs to be specified
between specific versions of the source and target ontology. The mapping needs to refer to
specific versions of the ontology.

• Evolution of ontologies indicates the need for evolution of ontology mappings. In many cases,
when a new version of an ontology is created, a new version of each of the mappings in which
the ontology is involved needs to be created. If the changes in the ontologies are formally
and explicitly documented, these changes can be used as the basis for changes to be made
to the mapping. We believe that in many cases, the evolution of the mapping can be done
semi-automatically.

• Evolution of an ontology OB which is mapped to an ontology OA is mapped, might indicate
the need for subsequent evolution of OA. An example of this is a case of database integration,
using the local-as-view (cf. [15]) paradigm, where OB is the global ontology and OA is the
local ontology.

12 DERI TR 2004-06-30

Mappings between different Ontology Versions When an ontology on the Semantic Web
evolves, some mappings to the old ontology might become invalid. This problem can be solved by
either evolving the mapping or by mapping to a specific version of the ontology.

When mapping to a specific version, problems may occur, for example because the instance
base of the ontology evolves with the ontology. It is not feasible to maintain an instance base for
each version of an ontology, because this can easily lead to inconsistencies and would actually be
a maintenance nightmare. A way to deal with this problem is by providing a mapping between
different versions of one ontology.

Say, OS evolves from OSv1 into OSv2 and a (two-way) mapping MS is created between OSv1 and
OSv2. Now, when there exists a mapping MS−T between OSv1 and OT , this mapping can ideally
be automatically combined with MS in order to create a new mapping between OSv2 and OT .

3 Requirements for an Ontology Mapping Specification Language

This section shall present a number of requirements on the Ontology Mapping Specification Lan-
guage, partly derived from the use cases and scenarios presented in the previous section. Further-
more, we present a number of additional requirements that follow from our setting.

Particularly, we identify the following requirements on an Ontology Mapping Specification Lan-
guage:

Mapping on the Semantic Web Our goal is to develop an ontology mapping language for the
Semantic Web. Therefore, we must be able to specify mappings between ontologies on the Web
and the ontology mapping itself must also be available on the Web. The current standard for
specifying ontologies on the web is the Web Ontology Language OWL [8]. We must therefore
support mapping between ontologies written in OWL.

Mapping between Description Logic Ontologies An important species of OWL is OWL DL,
which is a syntactical variant of the SHOIN (D) Description Logic language [12]. Therefore,
mappings between OWL ontologies can be reduced to mappings between Description Logic
ontologies.

Specify Instance Transformations It follows from the generic use cases presented in the pre-
vious section that the ontology mapping language must support transformations between
instances of the different ontologies. In fact, [23] defines the mapping process as the set of
activities required to transform instances of the source ontology into instances of the target
ontology. Also MAFRA [16] explicitly addresses the transformation of instances on the basis
of a mapping between two ontologies.

In instance transformation, we identify two dimensions: structural transformation and value
transformation:

• A structural transformation is a change in the structure of an instance. This means
that an instance might be split into two instances, two instances might be merged into
one, properties might be transformed to instances, etc. For example, an instance of the
concept PhD-Student in one ontology might need to be split into two instances, one of
Student and one of Researcher, in the target ontology. A different example is the use

DERI TR 2004-06-30 13

of aggregate functions. An ontology OS might have a concept Parent with a property
hasChild, whereas the ontology OT might also have a class Parent, but in this case only
with the property nrOfChildren. An aggregate function is required to count the number
of children of a specific parent in OS in order to come up with a suitable property filler
for nrOfChildren.

• A value transformation is a simple transformation from one value into another. An
example of such a value transformation is the transformation from kilograms into pounds

An example of a transformation, which requires both a structural and two value transforma-
tions is the transformation from a full name to separate first and last names. Splitting the
full name instance into both the first and the last name requires structural transformation.
After the structural transformation, two value transformations are required; on for the first
and one for the last name.

Specify Instance Similarity Conditions One of the generic use cases presented in section 2 is
the instance unification use case. It turned out in this use case that when instances need to
be unified, first the similarity between the instances must be established. In order to detect
the similarity, one can compare the values of all properties and describe the similarity as a
function over all the individual property similarities. The other extreme is to designate one
property as the identifying property (cf. primary keys in relational databases) and designate
instances that have equivalent values for these designated properties as equivalent and unify
them10.

We shall take a hybrid approach, where it is possible to specify equality of instances as
a logical condition over its property values. We call this the exact approach for instance
unification. In the second case, the probabilistic approach, it is possible to specify a matching
function over the property values, which yields a probability between 0 and 1, specifying
the similarity between the instances. When combined with a threshold, this function also
becomes a condition for similarity.

We are currently not aware of any existing approach which addresses the specification of
instance similarity in the same sense we do here.

Query Rewriting and Ontology Merging The Query Rewriting and Ontology Merging use
cases presented in the previous chapter indicate the need for the ontology mapping to not
only map instances of the ontologies but to also map concepts and relations in the source and
target ontologies. This is necessary for the case when a query written in terms of ontology OS

needs to be executed on an instance base, which is described by ontology OT . The mapping
needs to specify exactly how concepts and relations in OS relate to concepts in relations in
OT in order to enable the rewriting.

After execution of the query, the result instances need to be transformed back to OS which
involves all requirements for instance transformation described above. The querying use case
scenario does, however, indicate the need for a mapping which supports query rewriting in
one direction and instance transformation in the other direction.

10Note that, as with primary keys in relational databases, it is possible to designate several properties as the unique
identification for instances

14 DERI TR 2004-06-30

One mapping for all tasks It is clearly advantageous to have one common declarative mapping
language, which suffices for the different use cases of instance transformation, instance unifi-
cation, query rewriting and ontology merging.

MAFRA [16] combines relating entities (such as concepts and relations) in ontologies with
instance transformations. So-called semantic bridges specify the relationship between entities
in different ontologies. Each instance of a semantic bridge has a transformation attached
to it, which specify the instance transformations. The semantic bridges can be used for
query rewriting and ontology merging, whereas the attached transformations can be used for
instance transformation.

Use of Mapping patterns It is our expectation that many similar ontologies will appear on
the Semantic Web. When many similar ontologies exist in a specific domain, the mappings
between the ontologies will also be similar. In order to capture these similarities and to reuse
existing mapping specification we aim to identify recurring mapping patterns. A mapping
pattern can be seen as a template for mappings between classes of ontologies, which can be
instantiated to create specific mappings between specific ontologies (cf. [21]).

Mapping patterns furthermore reduce the complexity of a mapping for the user and can be
used as a way to modularize a mapping.

Versioning support The ontology mapping language must support constructs for the versioning
of the mapping and for referring to specific version of the source and target ontologies.

The latter of course depends on the scheme chosen for ontology versioning. In the case of a
new name for each new version of the ontology, no additional provisions have to be taken in
the mapping language. This is currently the only way to do versioning in the Web Ontology
Language OWL. Therefore, we will assume this situation.

Treating classes as instances Different ontologies might be modeled within slightly different
domains with different granularity. What is seen as a class in one ontology might be seen as
an instance of a different class in another ontology [25]. In order to support inter-operation
between two ontologies with such differences, classes need to be mapped to instances and vice
versa.

In fact this can be seen more general. The mapping language should support the mapping
of any entity in the source ontology, whether it is a class, instance, relation, to any entity in
the target ontology. For example, it should be possible to have a relation-instance mapping, a
class-relation mapping, etc.

Mappings of different cardinalities It might be necessary to map a class in one ontology to a
number of different classes in the other ontology. It might also be necessary to map a class
in one ontology to a class and a relation in the other ontology. In other words, the language
needs to support mappings of arbitrary cardinalities. One-to-one mappings are not enough.

4 Mappings and Mapping Patterns

In order to specify ontology mappings in an epistemologically adequate way, we plan to use elemen-
tary mapping patterns (similar to the semantic bridges presented in [16]) as the building blocks for
the mapping language.

DERI TR 2004-06-30 15

Elementary mapping patterns can also serve as building blocks for creating complex mapping
patterns which capture a recurring pattern of ontology mappings. A mapping pattern is instantiated
for a particular pair of ontologies into an ontology mapping. In fact, a complex mapping pattern
in composed of other (elementary of complex) mapping patterns and a mapping is composed of a
number of (instantiated) mapping patterns.

An ontology mapping can be uni-directional or bi-directional.

• A uni-directional mapping specifies the relationship between two ontologies in only one di-
rection. This means for the task of instance transformation that the mapping can be used to
transform an instance from the OS to the OT representation, but not the other way around.
For the query rewriting task this means that a query can only be rewritten from the OS

to the OT vocabulary, which means a mapping in the other direction is necessary for the
transformation of the query results.

• A bi-directional mapping specifies the relation between two ontologies in both directions.
This means that the same mapping can be used to transform instances both from OS to OT

and the other way around. The same holds for the query rewriting.

Note that in order to specify the merge of two ontologies, a bi-directional mapping is required.

Bi-directional mappings are in general favorable over uni-directional mappings, because there is
more flexibility. However, specifying the bi-directional mapping might require more effort than is
actually necessary for the task at hand. If, for example, it is only required to transform instances
fromOS toOT , it would be a waste of effort to specify both directions. Furthermore, a bi-directional
mapping might be infeasible or even impossible, especially if aggregate functions come into play.

In the remainder, when we talk about an ontology mapping, we mean a uni-directional ontology
mapping. A bi-directional mapping can always be decomposed into two uni-directional mappings.

One requirement stated in the previous section is the support for mapping patterns. We see two
types of mapping patterns, namely, elementary mapping patterns, also called “Semantic Bridge”
[16] or “Mapping Type” [21] and complex mapping patterns, simply referred to as “Mapping Pat-
terns” in [21].

The Ontology Mapping Specification Language will support the use of elementary mapping
patterns as constructs of the language itself. An elementary pattern specifies the relation between
one or more ontology constructs of the source ontology and one or more ontology constructs of
the target ontology. The mapping pattern describes both the relation and the necessary instance
transformation in a declarative way. When the mapping pattern is instantiated to a mapping
relation, the abstract ontology constructs in the patterns are filled-in with the actual ontology
constructs from the source and target ontologies and the relation and the transformation can be
further refined.

An additional benefit that these mapping patterns could bring is when mapping patterns would
be associated with similarity detection methods. A Match operator could then detect mapping
patterns based on certain similarities between the different ontologies.

5 Future Work

The work presented in the paper is the first step towards as Ontology Mapping Specification
Language for the Semantic Web. The requirements formulated in section 3 will be taken as a

16 DERI TR 2004-06-30

starting point for this ongoing work on the language.
From the requirements outlined in Section 3 it becomes apparent that a mapping language for

the Semantic Web needs to inter-operate with current Semantic Web standards. On the other
hand, the Web Ontology Language OWL is not enough to express all mappings we require and a
rule language is required for such mappings. As we have argued in [7], rule extension of OWL is
not straightforward, because straightforward combination of Description Logic and Horn Logic can
easily lead to undecidability. Therefore, we propose an approach based on the fragment of OWL,
which is expressible in Datalog, as a starting point for a rule language for the Semantic Web [7].
This rule language will be further developed in the context of the Web Service Modeling Language
Working Group WSML11.

An additional benefit of using LP as a formal basis for ontology mapping is the well-known and
well-understood number of extensions of Logic Programming (LP) formalisms like Datalog, such as
default negation, classical negation, function symbols, etc. Furthermore, there is well-established
research on the use of LP for query answering.

In order to develop an epistemologically adequate mapping language we will develop a library
of elementary and complex mapping patterns, which will form the basis for ontology mappings.

Our future work will furthermore consist of the following:

Relating axioms We have not yet considered relating axioms in different ontologies to each other.
We believe that this would not be common in an ontology mapping scenario, but it would be
common in an ontology merging scenario, where certain constraints need to be merged.

Handling semi-structured data In this paper, we have considered only instances of one partic-
ular ontology, which have to be transformed to a different representation. One could imagine
that data could be annotated with several different ontologies or even data could not be
annotated at all but be self-describing. In future work we will consider how to handle such
semi-structured data.

Static vs. Dynamic mappings Besides the evolution of mappings, which we mentioned in Sec-
tion 2, which can be seen as a dynamic aspect of ontology mappings, we see other issues
arising with dynamic aspects of ontology mappings. For example, a mapping function which
translates a Euro currency representation to a Dollar representation depends on the exchange
rate between the Euro and Dollar currency, which changes over time.

There are different ways of handling such dynamicity. One obvious way is to assume an oracle
beyond the mapping language, which provides the required information at the appropriate
time. In the example, the oracle would provide the current exchange rate at the time an
instance needs to be translated from one representation to the other. Another possibility
is to use a Web Service to retrieve the appropriate information. A transformation function
could be associated with a Web Service, which provides the required functionality, or with a
goal (cf. [24]), which describes the required functionality and can be used to automatically
discover a server, which offers the functionality.

11http://www.wsmo.org/wsml/

DERI TR 2004-06-30 17

References

[1] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Beneventano. Semantic
integration of heterogeneous information sources. Special Issue on Intelligent Information
Integration, Data & Knowledge Engineering, 36(1):215–249, 2001.

[2] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language 1.0:
RDF schema. Recommendation 10 February 2004, W3C, 2004. Available from
http://www.w3.org/TR/rdf-schema/.

[3] Jeen Broekstra, Marc Ehrig, Peter Haase, Frank van Harmelen, Maarten Menken, Peter Mika,
Björn Schnizler, and Ronny Siebes. Bibster – a semantics-based bibliographic peer-to-peer
system. In Proceedings of SemPGRID ’04, 2nd Workshop on Semantics in Peer-to-Peer and
Grid Computing, pages 3–22, New York, USA, May 2004.

[4] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and James P. Rice. OKBC:
A programmatic foundation for knowledge base interoperability. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), pages 600–607, Madison, Wisconsin,
USA, 1998. MIT Press.

[5] Jos de Bruijn. Semantic information integration within and across organizational boundaries.
Master Thesis, TU Delft, The Netherlands, 2003.

[6] Jos de Bruijn. Using ontologies - enabling knowledge sharing and reuse on the
semantic web. Technical Report DERI-2003-10-29, DERI, 2003. Available from
http://homepage.uibk.ac.at/∼c703239/publications/DERI-TR-2003-10-29.pdf.

[7] Jos de Bruijn, Axel Polleres, and Dieter Fensel. OWL lite−. Deliverable d20v0.1, WSML,
2004.
Available from http://www.wsmo.org/2004/d20/v0.1/.

[8] Mike Dean and Guus Schreiber, editors. OWL Web Ontology Language Reference. 2004. W3C
Recommendation 10 February 2004.

[9] AnHai Doan, Jazant Madhaven, Pedro Domingos, and Alon Halevy. Ontology matching: A
machine learning approach. In Steffen Staab and Rudi Studer, editors, Handbook on Ontologies
in Information Systems, pages 397–416. Springer-Verlag, 2004.

[10] Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1999.

[11] Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and Luc Schneider.
Sweetening ontologies with DOLCE. In Proceedings of EKAW 2002, Siguenza, Spain, 2002.

[12] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description logic
satisfiability. In Proc. of the 2003 International Semantic Web Conference (ISWC 2003),
Sanibel Island, Florida, 2003.

[13] Richard Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In
ACM Symposium on Principles of Database Systems, pages 51–61, Tuscon, Arizona, USA,
1997.

18 DERI TR 2004-06-30

[14] Michael Kifer, Geord Lausen, and James Wu. Logical foundations of object-oriented and
frame-based languages. JACM, 42(4):741–843, 1995.

[15] Alon Y. Levy. Logic-Based Techniques in Data Integration, pages 575–595. Kluwer Publishers,
2000.

[16] Alexander Maedche, Boris Motik, Nu no Silva, and Raphael Volz. Mafra a mapping framework
for distributed ontologies. In Proceedings of the 13th European Conference on Knowledge
Engineering and Knowledge Management EKAW-2002, Madrid, Spain, 2002.

[17] Andreas Maier, Hans-Peter Schnurr, and York Sure. Ontology-based information integration
in the automotive industry. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors,
Proceedings of the Second International Semantic Web Conference (ISWC2003), number LNCS
2870, pages 897 – 912. Springer-Verlag, 2003.

[18] Deborah L. McGuinness. Ontologies come of age. In Dieter Fensel, James Hendler, Henry
Lieberman, and Wolfgang Wahlster, editors, Spinning the Semantic Web: Bringing the World
Wide Web to Its Full Potential, chapter 6, pages 171–194. MIT Press, 2003.

[19] Marian H. Nodine, Jerry Fowler, Tomasz Ksiezyk, Brad Perry, Malcolm Taylor, and Amy
Unruh. Active information gathering in infosleuth. International Journal of Cooperative In-
formation Systems, 9(1-2):3–28, 2000.

[20] Natalya F. Noy and Mark A. Musen. Prompt: Algorithm and tool for automated ontology
merging and alignment. In Proc. 17th Natl. Conf. On Artificial Intelligence (AAAI2000),
Austin, Texas, USA, July/August 2000.

[21] John Y. Park, John H. Gennari, and Mark A. Musen. Mappings for reuse in knowledge-
based systems. In Proceedings of the 11th Workshop on Knowledge Acquisition, Modelling and
Management (KAW 98), Banff, Canada, 1998.

[22] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology language
semantics and abstract syntax. Recommendation 10 February 2004, W3C, 2004.

[23] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.

[24] Dumitru Roman, Holger Lausen, and Uwe Keller. Web service modeling ontology standard
(WSMO-standard). Working Draft D2v0.2, WSMO, 2004.

[25] Guus Schreiber. The web is not well-formed. IEEE Intelligent Systems, 17(2), 2002. Contri-
bution to the section Trends and Controversies: Ontologies KISSES in Standardization.

[26] Heiner Stuckenschmidt and Frank van Harmelen. Information Sharing on the Semantic Web.
Springer, 2004. to appear.

[27] Gerd Stumme and Alexander Maedche. Fca-merge: Bottom-up merging of ontologies. In 7th
Intl. Conf. on Artificial Intelligence (IJCAI ’01), pages 225–230, Seattle, WA, USA, 2001.

DERI TR 2004-06-30 19

[28] Mike Uschold. Creating, integrating, and maintaining local and global ontologies. In Pro-
ceedings of the First Workshop on Ontology Learning (OL-2000) in conjunction with the 14th
European Conference on Artificial Intelligence (ECAI-2000), Berlin, Germany, August 2000.

[29] Pepijn R. S. Visser and Zhan Cui. On accepting heterogeneous ontologies in distributed archi-
tectures. In Proceedings of the ECAI98 workshop on applications of ontologies and problem-
solving methods, Brighton, UK, 1998.

[30] Raphael Volz, Siegfried Handschuh, Steffen Staab, Ljiljana Stojanovic, and Nenad Stojanovic.
Unveiling the hidden bride: deep annotation for mapping and migrating legacy data to the
semantic web. Journal of Web Semantics, 2004. to appear.

[31] Raphael Volz, Daniel Oberle, Steffen Staab, and Rudi Studer. Ontolift prototype. Deliver-
able 11, WonderWeb, 2003.

[32] Gio Wiederhold. An algebra for ontology composition. In Proceedings of 1994 Monterey
Workshop on formal Methods, pages 56–61, U.S. Naval Postgraduate School, Monterey CA,
1994.

