
1

Current Efforts towards
Semantic Web Services (SWS):

OWL-S and WSMO
Axel Polleres axel.polleres@deri.org

Slides partly based on recent Tutorial at ISWC'04 (Hiroshima) by:
Sinuhe Arroyo, Christoph Bussler, Jos de Brujin, Ruben Lara, David Martin (OWL-S), Matthew Moran,

Massimo Paolucci (OWL-S), Michael Stollberg, Katia Sycara (OWL-S), Michal Zaremba, Laurentiu Vasiliu,
Liliana Cabral, John Domingue

BIT-Seminar, 16/03/2005, Bolzano

2

Semantic Web Services:
• Introduction to Semantic Web Services (SWS)

• OWL-S & WSMO

• Comparison

Carnegie Mellon
University

3

Semantic Web Services
=

Semantic Web Technology
+

Web Service Technology

4

WS standards: Lack of semantics!

Problem: Enable interoperability by using the same format, but
still discovery, combinability only syntax based, no way to
describe functionality.

Syntax only!

5

Semantic Web Services (2)
Semantic Web:
• Ontologies - basic building block:

"Formal, explicit specification of a shared conzeptualization"
• Allow machine supported data interpretation
• Ontology Language Standards:

– RDF, RDFS … triples, graph based model
– OWL … DL (+extensions SWRL, full FOL)
– WSML … LP, F-Logic, …

i.e.
– instance data, plus relations between instances (RDF)
– modeling taxonomies (RDFS)
– richer inference rules and axioms over my instances and relations

(OWL, OWL-S, F-Logic, SWRL, WSML)

Semantic annotation shall enable machine-processable data and automation of
processing the data on the Web!

6

Semantic Web Services

• What should S+WS and service ontologies provide?
(Partly) Automation of the Usage Process:

– Publication: Make available the description of the capability of a service
– Discovery: Locate different services suitable for a given task
– Selection: Choose the most appropriate services among the available ones
– Composition: Combine services to achieve a goal
– Mediation: Solve mismatches (data, protocol, process) among the combined
– Execution: Invoke services following programmatic conventions
– Monitoring: Control the execution process
– Compensation: Provide transactional support and undo or mitigate unwanted effects
– Replacement: Facilitate the substitution of services by equivalent ones

7

Service Description languages and
Ontologies to enable

semantic markup

• Should describe all information necessary to
enable automating discovery, composition,
execution, etc.

• Semantically enhanced repositories
• Tools and platforms that:
– semantically enrich current Web content
– facilitate discovery, composition and execution

Two main efforts: OWL-S and WSMO

8

Semantic Web Services:
• Introduction to Semantic Web Services (SWS)

• OWL-S & WSMO

• OWL-S and WSMO - Design decisions and trade-offs

Carnegie Mellon
University

9

OWL-S Ontology

• OWL-S is an OWL ontology to describe Web
services

• OWL-S leverages on OWL to
– Support capability based discovery of Web services
– Support automatic composition of Web Services
– Support automatic invocation of Web services

"Complete do not compete"
– OWL-S does not aim to replace the Web services standards

rather OWL-S attempts to provide a semantic layer
• OWL-S relies on WSDL for Web service invocation (see

Grounding)
• OWL-s Expands UDDI for Web service discovery (OWL-

S/UDDI mapping)

10

OWL-S Upper Ontology

• Mapping to WSDL
• communication protocol (RPC, HTTP, …)
• marshalling/serialization
• transformation to and from XSD to OWL

• Control flow of the service
•Black/Grey/Glass Box view

• Protocol Specification
• Abstract Messages

•Capability specification
•General features of the Service

• Quality of Service
• Classification in Service

taxonomies

11

Service Profiles

Service Profile
– Presented by a service.
– Represents

what the service provides
– Two main uses:

1. Advertisements of Web Services
capabilities (non-functional
properties, QoS, Description,
classification, etc.)

2. Request of Web services with a
given set of capabilities

•Profile does not specify use/invocation!

12

OWL-S Service Profile
Capability Description

• Preconditions
– Set of conditions that should hold prior to service invocation

• Inputs
– Set of necessary inputs that the requester should provide to invoke the

service
• Outputs

– Results that the requester should expect after interaction with the service
provider is completed

• Effects
– Set of statements that should hold true if the service is invoked

successfully.
• Service type

– What kind of service is provided (eg selling vs distribution)
• Product

– Product associated with the service (eg travel vs books vs auto parts)

13

Process Model

• Process Model
– Describes how a service works:

internal processes of the service
– Specifies service interaction

protocol
– Specifies abstract messages:

ontological type of information
transmitted

• Facilitates
– Web service invocation
– Composition of Web services
– Monitoring of interaction

14

Definition of Process
• A Process represents a transformation (function).

It is characterized by four parameters
– Inputs: the inputs that the process requires
– Preconditions: the conditions that are required for the process to run

correctly
– Outputs: the information that results from (and is returned from) the

execution of the process
– Results: a process may have different outcomes depending on some

condition
• Condition: under what condition the result occurs
• Constraints on Outputs
• Effects: real world changes resulting from the execution of the process

15

Example of an atomic Process
<process:AtomicProcess rdf:ID="LogIn">
 <process:hasInput rdf:resource="#AcctName"/>
 <process:hasInput rdf:resource="#Password"/>
 <process:hasOutput rdf:resource="#Ack"/>
 <process:hasPrecondition isMember(AccName)/>
 <process:hasResult>
 <process:Result>
 <process:inCondition>
 <expr:SWRL-Condition>

 correctLoginInfo(AccName,Password)
 </expr:SWRL-Condition>

 </process:inCondition>
 <process:withOutput rdf:resource=“#Ack“>

 <valueType rdr:resource=“#LoginAcceptMsg”>
 </process:withOutput>
 <process:hasEffect>
 <expr:SWRL-Condition>
 loggedIn(AccName,Password)
 </expr:SWRL-Condition>
 </process:hasEffect>

 </process:Result>
 </process:hasResult>
</process:AtomicProcess>

Inputs / Outputs

Result

Condition

Effect

Output
Constraints

Precondition

16

Ontology of Processes

Process

Atomic

Simple

CompositeProvides abstraction,
encapsulation etc.

Defines a workflow
composed of process
performs

Invokable
bound to grounding

17

Composite Processes

• Composite Processes specify how processes work
together to compute a complex function
• Composite processes define

1.Control Flow
Specify the temporal relations between the
executions of the different sub-processes
(sequence, choice, etc.)

2.Data Flow
Specify how the data produced by one process is
transferred to another process

18

Example of Composite
Process
Sequence
BookFlight

Depart
Arrive

Flights
Airline

Airline Flight

Perform

Get Flights Flight

Perform

Select
 Flight

Flights

Control Flow Links
Specify order of
execution

Data-Flow Links
Specify transfer of data

Perform statements
Specify the execution of a process

19

Process Model Organization
• Process Model is described as a tree structure

– Composite processes are internal nodes
– Simple and Atomic Processes are the leaves

• Simple processes represent an abstraction
– Placeholders of processes that aren’t specified
– Or that may be expressed in many different ways

• Atomic Processes correspond to the basic actions that the
Web service performs
– Hide the details of how the process is implemented
– Correspond to WSDL operations

~ related Process Definition Languages a la BPEL

20

Service Grounding

• Service Grounding
– Provides a specification of service

access information.
– Service Model + Grounding give

everything needed for using the
service

– Builds upon WSDL to define message
structure and physical binding layer

• Specifies:
– communication protocols, transport

mechanisms, communication
languages, etc.

21

Mapping OWL-S / WSDL 1.1

• Operations
correspond to
Atomic Processes

• Input/Output
messages
correspond to
Inputs/Outputs of
processes

22

Example of Grounding
Sequence
BookFlight

Depart
Arrive

Flights
Airline

Airline Flight

Perform

Get Flights Flight

Perform

Select
 Flight

Flights

Get Flights OpDepart
Arrive

Flights

WSDL

Airline
FlightSelect

 Flight op
Flights

23

Result of using the Grounding

• Invocation mechanism for OWL-S
– Invocation based on WSDL
– Different types of invocation supported by WSDL can be used with

OWL-S
• Clear separation between service description and

invocation/implementation
– Service description is needed to reason about the service

• Decide how to use it
• Decide how what information to send and what to expect

– Service implementation may be based on SOAP an XSD types
– The crucial point is that the information that travels on the wires

and the information used in the ontologies is the same
• Allows any web service to be represented using OWL-S

Personal Remark: I do not completely believe this enables composition:
still different SOAP messages can be linked to the same service: ambiguities!

24

OWL-S: Language
Some superficial comments:

• OWL-S itself is an OWL Ontology,
• Combined with SWRL for preconditions and effects.
• Inputs/Outputs subclasses of SWRL variables
• Possible candidates for logicical language used:

SWRL, SWRL-FOL, (KIF, DRS)

• However: Dicsovery, composition approaches
published so far operate purely on description logic
reasoning

25

WSMO

• WSMO is an ontology and conceptual framework to describe
Web services and related aspects

• Based Web Service Modeling Framework (WSMF)
• WSMO is a SDK-Cluster Working Group

A Conceptual
Model for SWS

A Formal Language
for WSMO

Execution
Environment for

WSMO

26

 WSMO Principles and Top Level
Concepts:

• Strong Decoupling & Strong Mediation
– autonomous components with mediators for interoperability

• Interface vs. Implementation:
– distinguish interface (= description) from implementation (=program)

Objectives that a client may have
when consulting a Web Service

Provide the
formally specified
terminology
of the information
used by all other
components

Semantic description of
Web Services

Connectors between components
with mediation facilities for handling
heterogeneities

WSMO D2, version 1.0, 20 September 2004

27

Non-Functional Properties
• Every WSMO elements is described by properties that contain

relevant, non-functional aspects of the item
• used for management and element overall description
• Core Properties:

- Dublin Core Metadata Element Set plus version (evolution
support)

- W3C-recommendations for description type
• Web Service Specific Properties:

- quality aspects and other non-functional information of Web
Services

- used for Service Selection

28

Non-Functional Properties

ontology _"http://www.example.org/ontologies/example"
 nfp
 dc#title hasValue "WSML example ontology"
 dc#subject hasValue "family"
 dc#description hasValue "fragments of a family ontology to provide WSML examples"
 dc#contributor hasValue { _"http://homepage.uibk.ac.at/~c703240/foaf.rdf",
 _"http://homepage.uibk.ac.at/~csaa5569/",
 _"http://homepage.uibk.ac.at/~c703239/foaf.rdf",
 _"http://homepage.uibk.ac.at/homepage/~c703319/foaf.rdf" }
 dc#date hasValue _date("2004-11-22")
 dc#format hasValue "text/plain"
 dc#language hasValue "en-US"
 dc#rights hasValue _"http://www.deri.org/privacy.html"
 wsml#version hasValue "$Revision: 1.13 $"
 endnfp

29

WSMO Ontologies

Provide the formally
specified
terminology
of the information
used by all other
components

Semantic description of
Web Services

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

30

• Non functional properties (see before)
• Imported Ontologies importing existing ontologies

where no heterogeneities arise
• Used mediators: OO Mediators (ontology import with

terminology mismatch handling)

• ‘Standard’ Ontology Notions:
Concepts set of concepts that belong to the ontology, incl.
Attributes set of attributes that belong to a concept
Relations: define interrelations between several concepts
Functions: special type of relation (unary range = return value)
Instances: set of instances that belong to the represented ontology
Axioms axiomatic expressions in ontology (logical statement)

Ontology Specification

31

Ontology: Example 1/2

32

Ontology: Example 2/2

33

WSMO Capabilities/Interfaces

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services:

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

Requested/provided:
• Capability (functional)
• Interfaces (usage)

34

Capability Specification:
• Non functional properties
• Imported Ontologies
• Used mediators

– OO Mediator: importing ontologies as terminology definition
– WG Mediator: link to a Goal that is solved by the Web Service

• Pre-conditions
What a web service expects in order to be able to
provide its service. They define conditions over the input.

• Assumptions
Conditions on the state of the world that has to hold before
the Web Service can be executed and work correctly, but not necessarily
checked/checkable.

• Post-conditions
describes the result of the Web Service in relation to the input,
and conditions on it.

• Effects
Conditions on the state of the world that hold after execution of the
Web Service (i.e. changes in the state of the world)

35

Capability - Example
eGovernment: Effect– Service makes a child a German citizen …)

36

WSMO Web Service - Interfaces

Web Service
Implementation
(not of interest in Web
Service Description)

Choreography --- Interfaces ---

Capability

functional description

WS

WS

- Advertising of Web Service
- Support for WS Discovery

Interaction Interface
for consuming WS
- Messages
- External Visible
 Behavior
- ‘Grounding’

Realization of
WS by using
other Web
Services
- Functional
 decomposition
- WS
 Composition

Non-functional Properties

Core + WS-specific

- complete item description
- quality aspects
- Web Service Management

WS

Orchestration

37

Orchestration

Composition

Web Service Interfaces

Choreography

invocation

connection choice

contract of purchase

payment & delivery

request:
buyer information,

itinerary

set of valid itineraries
itinerary

input not valid

no valid connection

purchase proposition

option selection OR
accept OR not accept

payment information
request payment information

payment information incorrect

internal

connection choice TimeTable

Payment

Delivery

P

P

successful purchase

payment & delivery

38

Choreography in WSMO

“Interface of Web Service for client-service interaction when
consuming the Web Service”

• External Visible Behavior
– those aspects of the workflow of a Web Service where User

Interaction is required
– described by process / workflow constructs

• Communication Structure
– messages sent and received
– their order (messages are related to activities)

39

Choreography in WSMO (2)
• Grounding

– concrete communication technology for interaction
– choreography related errors (e.g. input wrong, message timeout, etc.)

• Formal Model
– allow operations / mediation on Choreographies
– Formal Basis: Abstract State Machines (ASM)

• Very generic description of a transition system over evolving
ontologies:

40

“Achieve Web Service Functionality by aggregation of
other Web Services”

Decomposition of the Web Service functionality into sub functionalities

Proxies: Goals as placeholders for used Web Services

• Orchestration Language
– decomposition of Web Service functionality
– control structure for aggregation of Web Services

• Web Service Composition
– Combine Web Services into higher-level functionality
– Resolve mismatches occurring between composed Web Services

• Proxy Technology
– Placeholders for used Web Services or goals, linked via Mediators.
– Facility for applying the Choreography of used Web Services, service templates for composed

services

WSMO Orchestration

41

Choreography & orchestration

• Example:

42

Choregraphy & Orchestration:

43

Choregraphy & Orchestration:

44

WSMO Goals

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)
- Interfaces (usage)

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

45

Goals
• De-coupling of Request and Service

Goal-driven Approach, derived from AI rational agent approach
- Requester formulates objective independent / without regard to services for resolution
- ‘Intelligent’ mechanisms detect suitable services for solving the Goal
- Allows re-use of Goals

• Usage of Goals within Semantic Web Services
– A Requester, that is an agent (human or machine), defines a Goal to be resolved
– Web Service Discovery detects suitable Web Services for solving the Goal automatically
– Goal Resolution Management is realized in implementations

46

Goal Specification

Goals:
 - have NonFunctionalProperties
 - import Ontologies
 - use Mediators
 - request a Capability
 - request an Interface

47

WSMO Standard

WSMO Web Services

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)
- Interfaces (usage)

Objectives that a client may have
when consulting a Web Service

Connectors between components with
mediation facilities for handling
heterogeneities

48

Web Service specific
Properties

• non-functional information of Web Services:

Accuracy Robustness
Availability Scalability
Financial Security
Network-related QoS Transactional
Performance Trust
Reliability

49

Service Specification:

Services :
 - have NonFunctionalProperties
 - import Ontologies
 - use Mediators
 - provides a Capability
 - provides an Interface

50

Mediation
• Heterogeneity …

– Mismatches on structural / semantic / conceptual / level
– Occur between different components that shall interoperate
– Especially in distributed & open environments like the Internet

• Concept of Mediation (Wiederhold, 94):
– Mediators as components that resolve mismatches
– Declarative Approach:

• Semantic description of resources
• ‘Intelligent’ mechanisms that resolve mismatches independent of content

– Mediation cannot be fully automated (integration decision)

• Levels of Mediation within Semantic Web Services (WSMF):
(1) Data Level: mediate heterogeneous Data Sources
(2) Protocol Level: mediate heterogeneous Communication Patterns
(3) Process Level: mediate heterogeneous Business Processes

Ongoing work on mediation:
Development of a rule based mapping language for Data Mediation

 (so-called ooMediators in WSMO).
Protocol Mediation still open: Interesting approaches for composition of WS
Interfaces (KnowledgeWeb, Trento!)

51

Mediators

• For handling heterogeneity

• Mediator Types: OO, GG, WG, WW

WSMO Mediator

uses a Mediation Service via

Source
Component

Source
Component

Target
Component

1 .. n
1

Mediation
Services

- as a Goal
- directly
- optionally incl. Mediation

52

Mediator Usage

53

Example ooMediator:

54

Service Grounding – WSMO
Currently a placeholder in WSMO, mainly investigated by
WSMX group (execution environment):
• Deal with existing WSDL services or other grounding

technologies:
– Map from XML Schema used in WSDL to WSML
– Use existing tools to mediate from WSML to WSML

• Also investigating
– Using XSLT to map from XML-S of WSDL directly to

WSML/XML of ontology used by WSMO description

• Ultimate aim to have Semantic description of interface
grounding in the Choreography

55

Service Grounding – WSMO

Amazon WS

WSDL
XML Schema

WSMO

Choreography

Book Ontology

WSML from XML Schema

Mapping Rules

Create WSMO
description

1

Mapping Rules

used by

Map XML schema
to WSML

2

Create
Mapping
Rules

3

Add mapping rules to
WSMO choreography

4

56

WSMO Perspective
• WSMO provides a conceptual model for Web Services and related

aspects
– WSMO separates the different language specifications layers (MOF

style)
• Language for defining WSMO is the meta – meta - model in MOF
• WSMO and WSML are the meta - models in MOF
• Actual goals, web services, etc. are the model layer in MOF
• Actual data described by ontologies and exchanged is the information layer

in MOF
– Stress on solving the integration problem

• Mediation as a key element
– Languages to cover wide range of scenarios and improve

interoperability
– Relation to industry WS standards
– All the way from conceptual modelling to usable implementation

(WSML, WSMX)

– Language: WSML: human radable syntax, XML exchange syntax,
RDF/XML exchange syntax under consideration

57

Semantic Representation

• OWL-S and WSMO adopt a similar view on the need of
ontologies and explicit semantics
but they rely on different logics

– OWL-S is based on OWL/SWRL
• OWL represent taxonomical knowledge
• SWRL provides inference rules

– WSMO is based on WSML a family of languages with a common
basis for compatibility and extensions in the direction of
Description Logics and Logic Programming.
WSML is a fully-frledged ontology language.

58

WSML vs OWL

• The relation between WSML and OWL+SWRL is still to be
completely worked out:

• WSML-Core is a subset of OWL Lite (DL Å Datalog)
• WSML-DL is equivalent to OWL DL
• WSML-Flight (refers to "F-Logic" and "Light" ;-) and

extends to the LP variant of F-Logic)
but for other languages the relation is still unknown.

59

Relation to Web Services
Technology

Grounding

Orchestration +
choreography

Web Services
(capability)

WSMO

WSDL/SOAPGrounding+
WSDL/SOAP

Invocation
How to invoke

BPEL4WSProcess ModelChoreography
How is done

UDDI APIProfileDiscovery
What it does

Web Services
InfrastructureOWL-S

• OWL-S and WSMO map to UDDI API adding semantic annotation
• OWL-S and WSMO share a default WSDL/SOAP Grounding
• BPEL4WS could be mapped into WSMO orchestration and choreography
• Mapping still unclear at the level of choreography/orchestration

– In OWL-S, multi-party interaction is obtained through automatic composition and invocation
of multiple parties

– BPEL allows hardcoded representation of many Web services in the same specification.
– Trade-off: OWL-S support substitution of Web services at run time, such substitution is

virtually impossible in BPEL.

60

Perspective on Security and
Policies

• WSMO distinguishes capabilities, constraints and preferences on both
sides [Arroyo et al., 2004]
– Functional and non-functional
– Extensions to WSMO required
– Policies at WSDL level?
– Must be ensured at execution time

• Extend WSDL (and others) to include policies and control execution

• Experiments with the representation of policies in WSMO using
Peertrust [Lara et al., 2004]
– Different scope to WS-Policy (trust negotiation)
– Link to WS-Policy feasible

61

Conclusion: How WSMO
 Addresses WS problems

• Discovery
– Provide formal representation of capabilities and goal
– Conceptual model for service discovery
– Different approaches to web service discovery

• Composition
– Provide formal representation of capabilities and choreographies

• Invocation
– Support any type of WS invocation mechanism
– Clear separation between WS description and implementation

• Mediation and Interoperation
– Mediators as a key conceptual element
– Mediation mechanism not dictated
– (Multiple) formal choreographies + mediation enable interoperation

• Guaranteeing Security and Policies
– No explicit policy and security specification yet
– Proposed solution will interoperate with WS standards

• The solutions are envisioned maintaining a strong relation with existing WS standards

62

Related Works:

• METOR-S: extension of WSDL to add ontological
concepts to WSDL.

• SWSL: W3C submission under progress, probably
overlaps with OWL-S. Semantic Web Service
Language… overlap of people ;-)

• Diverse WS Standard proposals, WS-I, WS-Policy,
etc.

• WSMO W3C submission also pending!

• W3C workshop on Frameworks for SWS:
June 9/10, Innsbruck!!!

http://www.deri.at/events/swsw/index.html

63

Open Issues:
• Formal semantics of WSMO Interfaces/OWL-S process model
• Formal semantics of the capability of services: OWL-S IOPRs, WSMO Capabilities
• Protocol Mediation
• Grounding… in my opinion not completely solved, neither in WSMO nor OWL-S

• Semantics/Layering and Extensions of Ontology Languages: Local closed world
assumption, etc.

• Preferences in Goals
• …

• We are working on it ;-)
• Many challenges!
• Collaboration welcome!

– WSMO – http://www.wsmo.org
– WSML - http://www.wsmo.org/wsml
– WSMX - http://www.wsmx.org
– Working drafts page - http://www.wsmo.org/TR

64

END

Questions? Discussion welcome!

