AI & Law – a technical perspective

Prof. Dr. Axel Polleres
What is (the state of the art in) AI?

• Types of (Artificial) Intelligence
• (Deep) Neural Networks

• Some examples:
 • Question Answering
 • Surveillance, face recognition (mood, sexual orientation)
 • Diagnosis based on images
 • Image Creation
 • Text Creation
 • Deep Fakes
What is Intelligence?
What is Intelligence?

- A very general mental capability that, among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn from experience. It is not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending our surroundings — "catching on," "making sense" of things, or "figuring out" what to do - Wall Street Journal, 1994

- Intelligence ...
 - Perception (sound, images...)
 - Abstraction (Language understanding, Vision: situation, object detection)
 - Decision Making
 - Problem solving
 - Planning
 - Creativity
 - Emotional knowledge
 - Self-awareness/Consciousness

Involves increasingly complex tasks
What is (the state of the art in) AI?

“Types” of AI:

- **Weak AI** refers to narrow embodiments of an AI – AI as a tool
- **Strong AI** refers to a machine with consciousness, sentience and mind
- **Artificial general intelligence (AGI)** (a machine with the ability to apply intelligence to any problem, rather than just one specific problem).

Have you ever tried having a reasonable conversation with Alexa?

We are not yet there... and it will probably still take a while!
What is (the state of the art in) AI?

• Distinction between “AI main strands”
 • Model-based vs. Function-Based AI

• Boost of Machine Learning/Deep Learning:
 • Data, Hardware, Algorithms
 • Lots of data and the ability to store/process it
 • GPUs
 • New Neural eTwork architectures Deep Neural Networks, LSTMs ...etc.
 • "What just happened is the successful employment of AI technology in some widespread applications, aided greatly by developments in related fields, and by new modes of operation that can tolerate lack of robustness or intelligence."

A. Darwiche. Human-Level Intelligence or Animal-Like Abilities?
Model-Based AI (or Rule-based AI)

- Up to large-scale real-world applications:

 Works very well in structured, regulated domains:
 - Automated Verification of chips
 - Scheduling and logistics,
 - Production planning in automated plants
 - Playing games with a finite, discrete search space and finite rules (Chess, but not Go – why?)
 - Tax declarations

- \textbf{big advantage:} Declarative Rules and constraints are “explainable by design”.
Function-Based AI (or (Deep) Learning)

The original ideas are not so new, starting around the 1950s, around the idea of the **perceptron** (a simplified mathematical model of a neuron):

Function-Based AI (or (Deep) Learning)

• (Deep) Neural Networks Learning:

- **Pro:**
 - Given enough example data, a neural network can “learn” any function [1]
 - Works great for: predictions from large amounts of training data, can even re-create new data itself!

- **Con:** Can’t **explain** what it does, not easy to “train” constraints, works *only* with enough training data

Source: http://makeyourownneuralnetwork.blogspot.com/

What is (the state of the art in) AI?

• Use of (function-based) AI got a lot easier (many new software tools, easy access to cloud infrastructure)

You can now understand state of the art AI with before high school math. You forward a neural net and repeat guess&check. works well enough.

• [Link to Twitter](https://twitter.com/karpathy/status/841739127796125696?lang=en)
Why (now) Neural Networks?
Data, Hardware, Algorithms!

• Some Milestones (non-chronological):

• Multi-Layer (feedforward) networks with one hidden layer have been proven to be able to approximate essentially any functions:

Specialized architectures with multiple layers - inspired by nature:

• **Convolutional Neural Networks (CNN) (nowadays often used for image recognition)**

• **Long-Short-Term Memory Networks (LSTM) (nowadays often used for sequential data (speech, text))**

• **Generative Adversarial Networks (GAN):**
Function-Based AI: Example

Medical Example 1: Diagnostics in Dermatology

Image recognition in diagnosis. Typical example use of Convolutional NNs

Thanks to Prof. Georg Dorffner (MedUni Wien)

- Achieves (better than) human-level performance in recognizing melanoma

Function-Based AI other examples:

- Many useful applications:

 ![Images](https://machinelearning.apple.com/2017/10/01/hey-siri.html)
Function-Based AI: “Creating” Data... Example:

- Examples from https://twitter.com/drbeef for usage of a Generative Adversarial Networks (GAN): *Image Generation*

Pro:
- Not only learns patterns, but also re-creates (similar) new data itself!
- Works quite well already for texts!

Con:
- Not easy to “train” constraints
- Again, needs a lot of training data
Function-Based AI other examples:

- Also problematic applications (fake manipulation of video content or generation of voice characteristics: https://en.wikipedia.org/wiki/Deepfake)
So, what is current AI?

- Learning **patterns** from massive data.
- Making **predictions** from learnt **patterns**.
- **Generating similar data** according to these patterns.

- What about making **decisions** from learnt patterns?
 - Machines make less error than humans vs.
 - Machines make different errors than humans vs.
 - Machines make errors because of humans (programmers or data)
Where’s the IP?

Traditional view:
• Programming = Data + Algorithms

vs.

• AI = Data + (Deep) Neural Networks + Data Preparation + Parameter Tuning
Related Questions:
Where we need better regulations...

• Data ownership:
 • Data Ownership and IP ... what about synthesized data?
 • Data Licenses

• Personal Data Protection and Bias:
 • GDPR is a good start, but (how) can we automate it?
 • Challenges: Consent, Trusted Computing, Sticky Policies

• Explainability and Responsibility
 • Knowledge Graphs & Hybrid AI
Model-based AI for Data ownership & Licensing: Machine-readable policies

Digital Rights Management
A Data Licensing Perspective...

https://www.dalicc.net/

DALICC is funded by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) under the program "ICT of the Future" between November 2016 - October 2018. More information https://iktderzukunft.at/en/
Model-based AI for Personal Data Protection: **Machine-readable policies**

Scalable Policy-awarE Linked Data arChitecture for prlvlacy, trAnsparency and compLiance

Research and innovation Action
9 partners from 6 countries
January 2017 to December 2019
3,991,389 €

https://www.specialprivacy.eu/
Can GANs be used as a way to anonymize data?
Last, but not least: Bias and Explainability

This article relates to a computer program that generates a score predicting the likelihood of criminals committing a future crime.

In 2014, then U.S. Attorney General Eric Holder warned that the risk scores might be injecting bias into the courts.

ProPublica did, as part of a larger examination of the powerful, largely hidden effect of algorithms in American life.

Still largely unresolved – Subject of research:

Solution? Hybrid AI – i.e., combining Model-based and function-based AI
Image references:

- http://makeyourownneuralnetwork.blogspot.com/
- https://twitter.com/drbeef
- https://www.youtube.com/watch?v=cQ54GDm1eL0

- John Launchbury: A DARPA Perspective on Artificial Intelligence - https://www.youtube.com/watch?v=-O01G3tSYpU

Acknowledgements:

- Thanks to Sabrina Kirrane, Georg Dorffner for some of the slides.