
Handling Inconsistencies due to Class
Disjointness in SPARQL Updates

joint work with: Albin Ahmeti, Diego Calvanese, Vadim Savenkov

Axel Polleres
web: http://polleres.net twitter: @AxelPolleres

The quest...
One Semantics to rule them all

SPARQL1.1 Updates and Entailment -
Why the specification is silent about
their interaction

• SPARQL1.1 Update allows to update
RDF Graphs

• SPARQL1.1 Entailment Regimes tells
us what answers a SPARQL query gives
us including implicit triples

• But: What does it mean to update implicit
triples?

• Particularly (in this paper): How to deal
with inconsistencies?

In which library do I find the “Lord
of the Rings” and where do I find it?

S P O

:NLC geo:long 4.609553

:NLC geo:lat -74.068649

:NLC a :Library

:NLC :locatedIn :Colombia

:LordOfTheRings :inCatalogOf :NLC

SPARQL 1.1 Query language

§ SPARQL offers a standard protocol/service interface to
data offering services like DBPedia!

§ SPARQL endpoint
à Query request encoded in a HTTP request
ß Query result in various formats (CSV, RDF, JSON, ...)

SELECT ?L WHERE {
:LordOfTheRings :inCatalogOf ?L.
?L a :Library .
}

SPARQL1.1 Entailment Regimes:

§ Make use of ontological infernces (RDFS and OWL):

SELECT ?L WHERE {
:LordOfTheRings :inCatalogOf ?L.
?L a :Library .
}

SELECT ?L WHERE {
:LordOfTheRings :inCatalogOf ?L.
?L a schema:Library .
} S P O

:NLC geo:long 4.609553

:NLC geo:lat -74.068649

:NLC a :Library

:NLC :locatedIn :Colombis

:LordOfTheRings :inCatalogOf :NLC

S P O

:Library rdfs:subClassOf :Organisation

:Library rdfs:subClassOf :schema:Library

But: the Semantic Web is all about
updates! SPARQL 1.1 Update

§ What do updates mean?

INSERT { :NLC :a :Place.}

DELETE { :NLC a Organisation.}

DELETE {?X :a :Organisation.}
INSERT { ?X :a Place. }
WHERE { ?X geo:lat [] ; geo:long []. }

Previous work:
What happened before…

Our initial thoughts
on this problem…

Discussed several possible semantics for
SPARQL Update under RDFS Entailment

§ Materialised store…

§ Low expressivity ontology language… RDFS

§ Semantics for update should:
§ Preserve materialisation
§ Not “leave traces”

Previous work:
Our initial assumptions…

S P O

:NLC geo:long 4.609553

:NLC geo:lat -74.068649

:NLC a :Library

:NLC :hasDirector :ConsueloGaitánGaitán

:LordOfTheRings :inCatalogOf :NLC

:NLC a :Organisation

:NLC a schema:Library

S P O

:Library rdfs:subClassOf :Organisation

:Library rdfs:subClassOf :schema:Library

§ Idea: keep Materialised state by rewriting
updates:

Previous work:
Our initial solution…

DELETE { Pd }
INSERT { Pi }
WHERE { Pw }

§ Sem2
mat

§ Insert the instantiations of 𝑃𝑖 plus all their effects.
§ Delete the instantiations of 𝑃𝑑 plus all their causes;

P fvars
d = {?x a rdfs:Resource. | for each ?x 2 V ar(P

causPd
d) \ V ar(Pd)}

G
Semmat

2

u(Pd,Pi,Pw) = Gu(P caus
d ,P e↵

i ,{Pw}{P fvars
d })

10

ABOX

TBOX

DELETE {?X :a :Organisation.}
INSERT { ?X :a Place. }
WHERE { ?X geo:lat [] ; geo:long []. }

rewrite(u,T)

S P O

:Library rdfs:subClassOf :Organisation

:Library rdfs:subClassOf schema:Library

:Place rdfs:SubClassOf schema:Place

S P O

:NLC geo:long 4.609553

:NLC geo:lat -74.068649

:NLC a :Library

:NLC :hasDirector :ConsueloGaitánGaitán

:LordOfTheRings :inCatalogOf :NLC

:NLC a :Organisation

:NLC a schema:Library

DELETE {?X :a :Organisation. ?X a Library}
INSERT { ?X :a Place. ?X a schema:Place}
WHERE { ?X geo:lat [] ; geo:long []. }

Our initial solution…
Example:

11

ABOX

TBOX

materialize(G)

DELETE {?X :a :Organisation.}
INSERT { ?X :a Place. }
WHERE { ?X geo:lat [] ; geo:long []. }

rewrite(u,T)

S P O

:Library rdfs:subClassOf :Organisation

:Library rdfs:subClassOf schema:Library

:Place rdfs:SubClassOf schema:Place

S P O

:NLC geo:long 4.609553

:NLC geo:lat -74.068649

:NLC a :Library

:NLC :hasDirector :ConsueloGaitánGaitán

:LordOfTheRings :inCatalogOf :NLC

:NLC a :Organisation

:NLC a schema:Library

:NLC a :Place

:NLC a schema:Place

DELETE {?X :a :Organisation. ?X a Library}
INSERT { ?X :a Place. ?X a schema:Place}
WHERE { ?X geo:lat [] ; geo:long []. }

Our initial solution…
Example:

for many use cases the
most ‘reasonable”, among
the semantics we looked
into…

§ Materialised store…
§ … fits e.g. DBpedia (all Abox inferences are materialised)
§ consistent

§ Low expressivity ontology language… RDFS
§ ... does not quite fit DBpedia:

§ “OWL Dbpedia” :
§ rdfs:subClassOf, rdfs:subPropertyOf rdfs:domain, rdfs:range,

owl:inverseOf, owl:disjointWith
§ Semantics for update should:

§ Preserve materialisation
§ Not “leave traces”
§ Preserve consistency

Let’s revisit
our initial assumptions…

Inconsistencies!

Inconsistencies in DBPedia:

unfortunately there are
inconsistencies in DBpedia…

S P O

:NLC geo:long 4.609553

:NLC geo:lat -74.068649

:NLC a :Library

:NLC :hasDirector :ConsueloGaitánGaitán

:LordOfTheRings :inCatalogOf :NLC

:NLC a :Organisation

:NLC a schema:Library

:NLC a :Place

S P O

:Library rdfs:subClassOf :Organisation

:Library rdfs:subClassOf schema:Library

:Place rdfs:SubClassOf schemaPlace

:Place owl:disjointWith :Organisation

Can be introduced due to
uncautious updates and the
flexibility of mappings L

So, how can we do SPARQL updates
that preserve consistency (and
materialization?

§ Dealing with different forms of
inconsistencies:
§ Intrinsic inconsistencies “within” updates

§ Inconsistencies between “old” and “new” knowledge
§ … Different solution strategies:

§ Brave
§ Cautious
§ Fainthearted (somewhere in between ;-))

So, how can we do SPARQL updates
that preserve consistency (and
materialization?

§ Dealing with different forms of
inconsistencies:
§ Intrinsic inconsistencies “within” updates

§ … solution: “safe” rewriting
§ Inconsistencies between “old” and “new” knowledge

§ … Different solution strategies:
§ Brave
§ Cautious
§ Fainthearted (somewhere in between ;-))

SPARQL	updates:	deal	with	
inconsistency	within	new	knowledge

"Unsafe" update	à intrinsically inconsistent:	
INSERT	{?X	:based_near ?Y	}		WHERE	{	?X	:locatedIn ?Y	.}

:NLC	:locatedIn :Bogotá .	

:Bogotá :locatedIn Colombia .

:Place	owl:disjointWith :Organisation .
:based_near rdfs:domain :Organisation.
:based_near rdfs:range :Place.

"Unsafe" update:	
INSERT	{?X	:based_near?Y}		WHERE	{?X	:locatedIn ?Y	.}

intrinsical Inconsistencies can be caught by "safe rewriting"

INSERT{?X	:based_near ?Y}	
WHERE{?Y		:locatedIn ?X .	

MINUS{			{?X1	:locatedIn ?Y}	
UNION	{?X	:locatedIn ?Y2}}}

Copies of the WHERE	
clause,	variables	

renamed appropriately.

SPARQL	updates:	deal	with	
inconsistency	within	new	knowledge

:Place	owl:disjointWith :Organisation .
:based_near rdfs:domain :Organisation.
:based_near rdfs:range :Place.

Safe	Rewriting	– for	the	SPARQL	enthusiasts:
MINUS	vs.	FILTER	NOT	EXISTS

DELETE{?Z	a	:Place} INSERT{?X	:locatedIn ?Y}	
WHERE{		{?Y :locatedIn ?X}		

UNION	{?V	:locatedIn ?Z}}

Safe	rewriting via	FILTER	NOT	EXISTS	doesn't work
(Corner	case example):

DELETE{?Z	a	:Place} INSERT{?X	:locatedIn ?Y}	
WHERE{		{?Y :locatedIn ?X}		

UNION	{?V	:locatedIn ?Z}}
FILTER	NOT	EXISTS{
{?X1 :locatedIn?Y}		UNION	{?V1	:locatedIn?Z1}
}}
FILTER	NOT	EXISTS{
{?X :locatedIn?Y2}		UNION	{?V2	:locatedIn ?Z2}	

}}

Safe	rewriting via	FILTER	NOT	EXISTS	doesn't work:

Exists whenever the WHERE	clause is satisfied!

disjoint sets of variables

Simply renaming the whole WHERE	clause is not	possible.

Safe	Rewriting	– for	the	SPARQL	enthusiasts:
MINUS	vs.	FILTER	NOT	EXISTS

• MINUS	removesvariable	bindings of the WHERE	clause that can be combinedwith
some result of the query in	its right-hand	side.

• Only variables	from the left-hand	side of MINUS	are "visible"	in	ist	right-hand	side:	
great for our case!

DELETE{?Z	a	:Place} INSERT{?X	:locatedIn ?Y}	
WHERE{		{?Y :locatedIn ?X}		

UNION	{?V	:locatedIn ?Z}}
MINUS{
{?X1 :locatedIn?Y}		UNION	{?V1	:locatedIn?Z1}
}}
MINUS{
{?X :locatedIn?Y2}		UNION	{?V2	:locatedIn?Z2}

}}

Extra	union branches do	not	matter!

Safe	rewriting via	MINUS:	works!

Safe	Rewriting	– for	the	SPARQL	enthusiasts:
MINUS	vs.	FILTER	NOT	EXISTS

So, how can we do SPARQL updates
that preserve consistency (and
materialization?

§ Dealing with Different forms of inconsistencies:
§ Intrinsic inconsistencies within updates

§ … solution: “safe” rewriting
§ Inconsistencies between “old” and “new” knowledge

§ … Different solution strategies:
§ Brave
§ Cautious
§ Fainthearted (somewhere in between ;-))

SPARQL	updates:	deal	with	
inconsistency	w.r.t.	 the	old	knowledge

Idea: adapt	Sem2
mat (rewriting-based)	semantics

• Brave:	when	in	conflict,	prefer	new	knowledge						
– cf.	FastEvol [Calvanese et	al	2010]

• Cautious:	when	in	conflict,	stick	to	the	old	
knowledge
– In	batch	updates,	allow	variable	bindings	only	where	the	
insert	clause	does	not	produce	a	clash

• Fainthearted:	relaxation	of	cautious	semantics
– the	same	batch	update	might	resolve	clashes	by	deleting	
conflicting	parts	of	the	old	knowledge!

Example:	Brave	Sem2
mat

INSERT{?X	:based_near?Y}	WHERE{?Y	:locatedIn ?X}

INSERT{?X	:based_near?Y}	
WHERE{?Y	:locatedIn ?X		

MINUS{	 {?Y1	:locatedIn?X}
UNION	{?Y	:locatedIn?X2}}}

Preprocess:	
safe	rewriting

:Place	owl:disjointWith :Organisation .
:based_near rdfs:domain :Organisation.
:based_near rdfs:range :Place.

INSERT{?X	:	based_near ?Y}	WHERE{?X	:locatedIn ?Y}

INSERT{?X	:based_near ?Y}
WHERE{?X	:locatedIn ?Y		

MINUS{		{?Y1	:locatedIn ?X}	
UNION	{?Y	:locatedIn ?Y2}}

OPTIONAL	{?X3	:based_near ?X}	
OPTIONAL	{?Y	:based_near?Y3}}

Brave	Sem2
mat

DELETE	{?X	a	:Place	.	?X3	:based_near ?X	.	
?Y	a	:Organization.	?Y	:based_near ?Y3	}

Bind	variables	
in	DELETE

. ?X		a	:Organisation	.	?Y	a	:Place}

Potential	
clashes

Example:	Brave	Sem2
mat

:Place	owl:disjointWith :Organisation .
:based_near rdfs:domain :Organisation.
:based_near rdfs:range :Place.

INSERT{?X	:based_near ?Y}	WHERE{?X	:locatedIn ?Y}

ASK	WHERE{?X	:locatedIn ?Y	.	
{{?X	:a	:Place}	UNION	{?Y	:a	:Organization}}	}

Cautious	Sem2
mat

Example:	Cautious	Sem2
mat

:Place	owl:disjointWith :Organisation .
:based_near rdfs:domain :Organisation.
:based_near rdfs:range :Place.

Yes
Stop

No
Apply Brave	Sem2

mat

We	assume	materialised store!

DELETE{?X	:Place}
INSERT{?X	:based_near ?Y}	WHERE{?X	:locatedIn ?Y}

ASK	WHERE{?X	:locatedIn ?Y	.	
{{?X	:a	:Place}	UNION	{?Y	:a	:Organization}}	}

Cautious	Sem2
mat

Example:	Cautious	Sem2
mat

Yes
Stop

No
Apply Brave	Sem2

mat

:Place	owl:disjointWith :Organisation .
:based_near rdfs:domain :Organisation.
:based_near rdfs:range :Place.

Removes	
some	
clashes!

Handled	by	
“DELETE”…	(we	
don’t	 want	to	be	
too	cautious)

:Place	owl:disjointWith :Organisation .
:based_near rdfs:domain :Organisation.
:based_near rdfs:range :Place.

Finally:

Example:	Fainthearted	Sem2
mat

DELETE{?X	:Place	.	}
INSERT{?X	:based_near ?Y	. ?X		a	:Organisation	.	?Y	a	:Place}	
WHERE{?X :locatedIn ?Y	MINUS{		{?Y1	:locatedIn ?X}	

UNION	{?Y	:locatedIn ?Y2}}
MINUS	{{?X	a	:Place}	UNION {?Y	a	:Organisation}}}

Fainthearted	 Sem2
mat

DELETE{?X	:Place}
INSERT{?X	:based_near ?Y}	WHERE{?X	:locatedIn ?Y}

Do	inserts	only	with	non-clashing	variable	bindings		

Again,	handled	
by	“DELETE”

Fainthearted semantics:	pitfalls,	 e.g.	
clashes removed by different bindings

DELETE	{?Z	a	:Place}
INSERT	{?X	:based_near ?Y}
WHERE	{	…	}

Old	state:
:NLC	a	:Place

µ1 =	[?X	↦	:NLC,…]:	clash

µ2 =	[…,?Z	↦	:NLC,..]:	Clears the clash!

Idea:	give up on	update	atomicity.	Delete	for all	µiof the WHERE	
pattern,	insert only where not	clashing;	for this we have to "separate"	
DELETE	and INSERT...	More	involved rewritingà paper

• Atomic	updates:	for each variable	binding µ of the
WHERE	clause either both delete and insert or none.

• Insert	with µ1depends on	the deletion with µ2...	our
initial	approach would be too cautious.

• By atomiticy,	if µ2 also	causes insertion (which might
depend on	the deletion by some µ3,	etc).

Putting	the	pieces	together:
What	else	you	find	in	the	paper

• Details,	general	rewriting	algorithms	for	Brave,	
Cautious	and Feinthearted	Update	Semantics

• Experiment	on	some	updates	with	LUBM50	
(to	show	feasibility)
- no	clear	winner	in	terms	of	performance...
- optimizations	are	on	our	agenda.

• Working	prototype,	in	principle	pluggable	
on	top	of	arbitrary	SPARQL	engines,	
available	at:

http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-inconsistency-resolver/

What’s	next?
• SPARQL	Update	+	Entailments
– from	the	“one	ring”	to	the	“Holy	Grail”:
– SPARQL	Updates	for	full	OBDA?	(i.e.	incl mappings)

• Initial	work	to	extend	our	work	to	updates	over	DBPedia
including	mappings - forthcoming!
(sneak	preview:	short	paper	at	AMW2016,	next	week,	Panama)

