Knowledge Management using Semantic Web Technologies

Axel Polleres
The goal of this talk is...

...to introduce & illustrate the potential of Semantic Web Standard Technologies & Linked Data in Knowledge Management...

... show examples of rapidly increasing adoption

... industrial uptake
 – Google, Facebook, BestBuy, BBC, NYT, Cisco, Alcatel-Lucent, etc.

... and still a lot of research challenges!
Drowning in Information…

Emerging Enterprise 2.0 technologies promise to help me structure my knowledge…

Do they?
Let’s ask someone else…

Found that on Twitter yesterday, thanks to @kidehen… quite a **bold** statement:

Information is growing faster than organizations can make sense of it

So, what did we gain with all those tools?

- Some limited search functionality + Data silos

Is this Knowledge Management?
What is Knowledge Management? – Roots and Reality

Some well known models and their current reality...

Sveiby, 1996 - What is Knowledge Management?

| Knowledge = objects that can be identified and handled in information systems (Management of Information) |
| Knowledge = are processes, a complex set of dynamic skills, know-how, etc, that is constantly changing. (Management of people) |

Observation: By Web 2.0/Enterprise 2.0 we can observe convergence, i.e. most of the processes and also social interactions people involve in, become visible as information items!

Challenge1: We can’t access these information items in a uniform way: scattered over closed data silos, using different formats (e.g. XML, RDB, specific APIs).
What is Knowledge Management? – Roots and Reality

- **Nonaka & Takeuchi, 1995 -**

![Diagram](image)

Observation: By Web 2.0/Enterprise 2.0 we can observe convergence, i.e. Socialization and Externalization, that is “spreading” and “publishing” knowledge become one!

Challenge 2: Assume we have overcome Problem 1, how can we enrich, use, and share gained knowledge and make it reusable in possibly unforeseen ways?
Main challenges

Challenge 1: access information items in a uniform way: scattered over closed data silos, using different formats.

Challenge 2: Enrich, use, and share gained knowledge and make it reusable in possibly unforeseen ways?
Some examples of things I can’t do…

- **Use case 1:** Almost “Traditional” Web Search: “*Find Organizations active in Knowledge Management?*”
 - Google ? bing ? Not quite…

- **Use case 2:** Intranet + Web Data: DERI + uni-trier.de
 - “My colleagues just told me that another colleague in DERI had an interesting paper about *blogger analysis*... but I don't remember his name and. How to find the colleague and his telephone number?”
Linked Data to the rescue!

Idea: rely on widely deployed existing infrastructure

- **Strong Standards** (standard Web technologies)
- **Simple Principles**
 (+ Advanced Technologies)
This proposal concerns the **management of general information** about accelerators and experiments at CERN [...] based on a **distributed hypertext system**.
The Web of Data 2011...

- Globally Unique identifiers (URIs)
- Typed Links between Entities (RDF)
- A common protocol (HTTP)

<p about="#me">I studied here</p>

```
<p about="#me">I studied <a rel="foaf:schoolHomepage" href="http://www.tuwien.ac.at">here</a></p>
```

polleres.net#me → xmlns.com/foaf/0.1/schoolHomepage → www.tuwien.ac.at

Person → **Document**
1. Everything gets a URI (papers, people, talks, organizations, topics…)
2. These URIs are linked via RDF describing relations
3. Relations are URIs again (e.g. :name)
4. When I dereference the URIs, I should find more information about them, defining them.
Linked Data Ontologies = RDF Vocabularies (OWL, RDFS)

Image from http://blog.dbtune.org/public/.081005_lod_constellation_m.jpg; Giasson, Bergman
Example: Find Organizations active in Knowledge Management?

RDF addresses Challenge 1: access information items in a uniform way

Subject	Predicate	Object
www.deri.ie | type | o1:SciOrg
www.deri.ie | ont:name | “Digital Ent…”
www.deri.ie | ont:topic | o1:KMngmt
www.know.at | type | o1:SciOrg
www.know.at | ont:label | “KNOW Cen…”
www.know.at | ont:topic | o1:WissMngmt
Linked Data “organizes itself”!

- **Socially:** by Reuse of links and URLs
- **Automatically:** by inference using ontologies (OWL) semantics!

"Digital Enterprise Research Institute"
name: http://www.deri.ie/ns/deri

"KNOW Center"
name: http://know-center.tugraz.at/this

MyOntology = sameAs myOnt:WissMngmt

"Digital Enterprise Research Institute"
Socially: by Reuse of links and URLs

ScientificOrganization subclassOf Organization

FOAF-Ontology

DBpedia

http://www.deri.ie/ns/deri

http://know-center.tugraz.at/this

OWL
Example: Find Organizations active in Knowledge Management?

Linked Data + OWL + SPARQL address Challenge 2: Enrich, use, and share gained knowledge and make it reusable in possibly unforeseen ways.

SPARQL

SELECT ?X WHERE {
 ?X foaf:topic dbpedia:KnowledgeManagement .
}
Semantic Web Standards provide the technical basis we need

Applicability
Web Data, Cities, Enterprises, Personal Desktop, strong industry interest!

RIF Rules
{ X lengthInFt LF } AND
LM = LF * 0.3048
→
{ X lengthInM LF }

SPARQL1.1 Query
SELECT ?X
WHERE
{?X a foaf:Organization.
 ?X foaf:topic dbpedia:KM.}

ONTOSSES
Classes Attributes
subclassOf subPropertyOf
⊆ = sameAs

Relations

Publish/ retrieve

Web
URIs/HTTP

HTTP Server guidelines
META-Links
Embedding RDF in e.g. HTML
SPARQL Endpoints

+ off-the-shelf components:
• Standard Web Servers
• Crawlers
• RDF Stores
• Query Engines
• Inference Engines

Enabling networked knowledge.
Semantic Web Standards provide the technical basis we need

RIF

{ X lengthInFt
LM = LF
→
{ X lengthInM

Ontologies
Classes = Attributes Relations

OWL

= ⊆
describe

Query

SELECT ?X
WHERE
{?X a
foaf:Organization
?X
foaf:topic
dbpedia:KM.}

SPARQL
RDF

Web

HTTP Server guidelines
META-Links
Embedding RDF in e.g. HTML
SPARQL Endpoints

URIs
HTTP/Publish/retrieve + off-the-shelf components:
• Standard Web Servers
• Crawlers
• RDF Stores
• Query Engines
• Inference Engines

Industry News, News, Publishing
Cisco Signs a €500,000 Deal with Ireland’s DERI
By Angela Guess on February 25, 2011 11:45 AM

Cisco has signed a deal with the Digital Enterprise Research Institute at Irish university NUI Galway “to create the next wave of enterprise social networking tools for the workplace of tomorrow.” The deal is estimated at €500,000: €400,000 for the further development of Cisco Quad, an “enterprise social networking and collaboration platform,” and €100,000 for a strategic research project entitled “Advances in Real-Time Data Integration.”

Murali Sitaram, vice president and general manager of Enterprise Collaboration at Cisco, commented, “DERI is a recognized global leader in the semantic web... And this partnership with DERI enables us to accelerate our research and development in this area, enabling Quad as a social semantic platform for the enterprise.”

The article continues, “DERI software engineers, based at Cisco’s research and development facility in Oranmore, Galway, will use semantic search and integration technology to link information in more intelligent and useful ways to improve communication and collaboration within companies. The two-year contract builds on existing research agreements between the two organizations.”

Representatives from Cisco will be speaking on Using Semantic Technology to Revolutionize Traditional Business Models at SemTech 2011 in June.

Image: Courtesy Cisco
Semantic Web Technologies vs. Knowledge Management Challenges

Challenge 1: access information items in a uniform way: scattered over closed data silos, using different formats.

- RDF + URIs (+ HTTP) =

addresses Challenge 1 ... partially:

- Open Question... How to get structured non-RDF data into RDF?

Challenge 2: Enrich, use, and share gained knowledge and make it reusable in possibly unforeseen ways?

- SPARQL1.1, RIF, OWL

address Challenge 2 ... partially:

- Open Question... How to build scalable infrastructures and applications that leverage these technologies?
How to get structured non-RDF data into RDF?
How do I get my data to and from RDF?

- RDF processors available off-the-shelf, scale reasonably well, but existing systems don’t provide nor consume RDF readily
- Change those systems? No! ... Prohibitively expensive
 - Fetch users/developers where they are:
 1. Cater for their formats
 2. Cater for their tools

Drupal 7

Confluence

SQL

RMDB

JSON

XML

RSS

XMPP

Enabling networked knowledge.
Cater for different formats: XSPARQL

Our approach: A unified Query/Transformation Layer...

- Language & Engine to transform between any of these formats

- [ESWC2008]

 New version soon available on sourceforge!

 http://xsparql.deri.org

- [SemTech2011]

- Industry partner: Alcatel-Lucent Bell Labs

Clean Formal semantics, extends both XQuery and SPARQL conservatively!
XSPARQL Example: SIOC-2-RSS

- **XSPARQL+SIOC enables customised RSS export**:

```
<channel>
  <title>
    {for $name
        where { [a sioc:Forum] sioc:name $name }
        return $name}
  </title>

{for $seeAlso
    where { [a sioc:Forum] sioc:container_of [rdfs:seeAlso $seeAlso] }
  return <item>
    {for $title $descr $date
      from $seeAlso
        where { [a sioc:Post] dc:title $title;
          sioc:content $descr;
          dcterms:created $date }
      return <title>$title</title>
        <description>$descr</description>
        <pubDate>$date</pubDate>}
  </item>
```

"Great stuff,... I have not seen any SIOC to RSS xslt examples or vice versa" (John Breslin, creator of SIOC)
Cater for existing tools: Semantic Drupal

- **Drupal**: One of the most Popular Content Management Systems on Internet and Intranet sites… (estimated +7M Websites)

 - RDFCCK “One-click-install module” to export Linked Data RDF
 - SPARQL_EP “One-click-install module” to create a SPARQL Endpoint for your Drupal Website
 - SPARQLViews: dynamically query external SPARQL endpoints to enrich your site.
 - EVOC: Module to link to existing ontologies.

Deployments of some of these modules. e.g. ISWC2010, FIS2010 websites

Most notable achievement:

- Drupal 7 (out now!) supports RDF natively!
How to build scalable infrastructures and applications on Linked Data?
Web scalable inference?

SAOR: Scalable Authoritative OWL Reasoner

Observation: Sound & complete OWL Reasoning does NOT scale to the Web!

Our Goal:
- **Efficient** rule-based OWL Reasoner, implements lightweight/scalable subset of OWL2RL standard
- **Distributed**
- **Robust**: determines trustworthiness of Web documents using Linked Data/Web Architecture principles
- **Field tested on real Linked Data**
- Evaluated reasoning over ~1 billion RDF facts from 4 million Web documents

[IJSWIS2009, ISWC2010, Hogan2011]
SAOR: main ideas

1. Extract **Tbox** (i.e. Ontologies) from Data in memory

2. Eliminate **unauthoritative** Tbox

3. Encode OWL in **Datalog** rules that don’t need ABox-joins

 \[
 \begin{align*}
 & C \sqsubseteq D \\
 \Rightarrow & \ rdfs:subClassOf \ ?C . \ ?s a ?C . \Rightarrow ?s a ?D . \\
 & C \equiv D \\
 \Rightarrow & \ rdfs:equivalentClass \ ?D . \ ?s a ?C . \Rightarrow ?s a ?D . \\
 & \equiv \ rdfs:equivalentClass \ ?D . \ ?s a ?D . \Rightarrow ?s a ?C . \\
 & P \sqsubseteq Q \\
 \Rightarrow & \ rdfs:subPropertyOf \ ?Q . \ ?s ?P ?o . \Rightarrow ?s ?Q ?o . \\
 & P \equiv Q \\
 \Rightarrow & \ rdfs:equivalentProperty \ ?Q . \ ?s ?P ?o . \Rightarrow ?s ?Q ?o . \\
 & \equiv \ rdfs:equivalentProperty \ ?Q . \ ?s ?Q ?o . \Rightarrow ?s ?P ?o . \\
 & P \equiv P'_0 \\
 \Rightarrow & \ inverseOf \ ?Q . \ ?s ?P ?o . \Rightarrow ?o ?Q ?s . \\
 & \equiv \ inverseOf \ ?Q . \ ?s ?Q ?o . \Rightarrow ?o ?P ?s . \\
 & \sqsubseteq \forall P^{-}.C \\
 \Rightarrow & \ rdfs:domain \ ?C . \ ?s ?P ?o . \Rightarrow ?s a ?C . \\
 & \sqsubseteq \forall P.C \\
 \Rightarrow & \ rdfs:range \ ?C . \ ?s ?P ?o . \Rightarrow ?o a ?C . \\
 & P \equiv P^{-} \\
 & \exists P.x \ ?C : hasValue \ ?x ; \ onProperty \ ?P . \ ?y ?P ?x . \Rightarrow ?y a ?C . \\
 & \forall P.x \ ?C : hasValue \ ?x ; \ onProperty \ ?P . \ ?y a ?C . \Rightarrow ?y ?P ?x . \\
 & C_1 \sqcup \ldots \sqcup C_n \ ?C : \text{unionOf} \ (\ ?C_1 \ldots ?C_i \ldots ?C_n) . \ ?x a ?C_i . \Rightarrow ?x a ?C . \\
 & (\geq \text{LP}) \ ?C : \minCardinality \ ?P . \ ?x ?P ?y . \Rightarrow ?x a ?C . \\
 & C_1 \cap \ldots \cap C_n \ ?C : \text{intersectionOf} \ (\ ?C_1 \ldots ?C_i \ldots ?C_n) . \ ?y a ?C_i . \Rightarrow ?y a ?C_i , \ldots , ?C_n . \\
 & C_1 \cap \ldots \cap C_n \ ?C : \text{intersectionOf} \ (\ ?C_1) . \ ?y a ?C_1 . \Rightarrow ?y a ?C_1 .
 \end{align*}
\]

4. Run rules **linearly** over non-ontology RDF Data (Abox)

[IJSWIS2009, ISWC2010, Hogan2011]
Consolidation: Find out when different Web sources are speaking about the same *thing* (document, book, person, event…) and “join the dots”

- **Reasoning:** use OWL to find new matches – this is not enough!

- **Needs Statistical methods:** use patterns in the data, Idea: exploit shared **discriminating** properties

Combined Approach - Preliminary results: [NeFoRS2010]

- **Scalable:** distributed sorts and scans
- **Robust:** takes some measures to ensure correctness of results
- **Accuracy?**… good for reasoning… (statistical? open question)

- Field tested on real Linked Data
- Evaluated reasoning/consolidation over ~1 billion facts from 4 million Web documents
“Realtime” Linked Data Querying? Possible?

Current Research:

[WWW2010, WWWJ2011]
Hybrid Index “Data Summaries”

Evaluation of different possible index structures for source selection: [WWWJ2011]:

- Inverted URI indices
- Schema Level index
- Multi-dimensional histograms
- QTree
Next steps:

- Data Context (Location, Time, Trust, Provenance) [AAAI2010, ISWC2010b, FP6-InContext], Policies....
- ... and its applications, e.g. Rich Presence [CollaborateCom2010]
Take home messages

- As Web 2.0 and the Enterprise are converging... information&knowledge become even more unmanageable ☹

 ... but:

- **Semantic Web Standards & Linked Data** provide a promising technical basis for Enterprise Knowledge Management:
 - Strong Standards
 - Affordable, scalable tools
 - Allow for Bottom-up deployment

- **Promising prospects for Applied Research:**
 - Growing Industry Interest (big players)
 - Potentially new business models (SMEs)

- **Urgent needs for Foundational Research:**
 - Web Science “in its own right” as an emerging discipline rooted in KM
 - Social component of Linked Data (Knowl.Worker+Knowl.engineers)
 - New ways of thinking needed for Reasoning & Data Management

Thank you! Questions?