Semantic Web Technologies: From Theory to Standards

Axel Polleres
Digital Enterprise Research Institute, NUI Galway
The Semantic Web in W3C’s view:

1. Shall allow us to publish structured information on the Web: XML+RDF

2. Shall allow us to describe the structure of information in machine readable form: RDFS+OWL+RIF

3. Shall allow us to ask structured queries on the Web
Focus in this talk/paper:

- Which theory do these Sem. Web standards base on?
- What’s missing? (= Do these standards work together)

(Brief overview of own contributions/solutions in this area, details in the references, paper is meant as a literature survey, entry point)
“Prof. Scott Kelso gives a Keynote at AICS”
1. Structured Data on the Web

“Prof. Scott Kelso gives a Keynote at AICS”

<conference xmlns="http://aics.nuigalway.ie/ns/">
 <name>The 21st National Conference on Artificial Intelligence and Cognitive Science</name>
 <keynote id="talk1" href="http://aics.nuigalway.ie/invited.html">
 <presentedBy ref="person1">Scott Kelso</presentedBy>
 </keynote>
</conference>
“Prof. Scott Kelso gives a Keynote at AICS”

http://aics.nuigalway.ie/ns/aics2010

isA :Conference

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/person1

:presentedBy

“Scott Kelso”

/http://aics.nuigalway.ie/ns/person1

:presentedBy

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/aics2010

isA :Conference

“Prof. Scott Kelso gives a Keynote at AICS”

http://aics.nuigalway.ie/ns/person1

:presentedBy

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/aics2010

isA :Conference

“Prof. Scott Kelso gives a Keynote at AICS”

http://aics.nuigalway.ie/ns/person1

:presentedBy

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/aics2010

isA :Conference

“Prof. Scott Kelso gives a Keynote at AICS”

http://aics.nuigalway.ie/ns/person1

:presentedBy

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/aics2010

isA :Conference

“Prof. Scott Kelso gives a Keynote at AICS”

http://aics.nuigalway.ie/ns/person1

:presentedBy

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/aics2010

isA :Conference

“Prof. Scott Kelso gives a Keynote at AICS”

http://aics.nuigalway.ie/ns/person1

:presentedBy

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/aics2010

isA :Conference

“Prof. Scott Kelso gives a Keynote at AICS”

http://aics.nuigalway.ie/ns/person1

:presentedBy

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/aics2010

isA :Conference

“Prof. Scott Kelso gives a Keynote at AICS”

http://aics.nuigalway.ie/ns/person1

:presentedBy

http://aics.nuigalway.ie/ns/talk1

:hasKeynote

http://aics.nuigalway.ie/ns/aics2010

isA :Conference
1. Structured Data on the Web

“Prof. Scott Kelso gives a Keynote at AICS”

<http://aics.nuigalway.ie/ns/person1>
 :name "Scott Kelso" .

<http://aics.nuigalway.ie/ns/aics2010>
 rdf:type :Conference ;
 :hasKeynote <http://aics.nuigalway.ie/ns/talk1> .

<http://aics.nuigalway.ie/ns/talk1>
 :presentedBy
1. Structured Data on the Web

“Prof. Scott Kelso gives a Keynote at AICS”

name(person1, "Scott Kelso")
∧
Conference(aics2010)
∧
hasKeynote(aics2010, talk1)
∧
presentedBy(talk1,person1)

RDF+RDF Schema can be embedded in FOL [deBruijn et al. 2005] …
…or Datalog [deBruijn et al. 2007] [Ianni et al. 2009]
“Prof. Scott Kelso gives a Keynote at AICS”

name(person1, "Scott Kelso").

Conference(aics2010).

hasKeynote(aics2010, talk1).

presentedBy(talk1, person1).

RDF+RDF Schema can be embedded in FOL [deBruijn et al. 2005] …
…or Datalog [deBruijn et al. 2007] [Ianni et al. 2009]
RDF is the basis for Linked Data:

1. Everything gets a URI (conferences, people, talks, …)
2. These URIs are linked via RDF describing relations
3. Relations are URIs again (e.g. :name)
4. When I dereference the URIs, I should find more information about them
2. RDF can be described in terms of Ontologies and Rules → allows Reasoning!

name(person1, "Scott Kelso")

Conference(aics2010)
hasKeynote(aics2010, talk1)
presentedBy(talk1, person1).

Attendee(person1).
Attendee(person2).

∃hasKeynote ⊑ Talk
Talk ∧ ∃givenAt{aics2010} ⊑ ∃hasTopic{AI}

givenAt(E, T) :- hasKeynote(E, T).
attendedBy(T, P) :- Attendee(P), not presentedBy(T, P).

talk1 :hasTopic dbpedia:AI.
talk1 :attendedBy :person2.
2. RDF can be described in terms of Ontologies and Rules → *allows Reasoning!*

“Every keynote at an event is a talk”

“Every talk given at AICS2010 is about AI”

“If an event has a keynote, it is a speech given at the event”

“Every AICS attendee not presenting a talk is attending the talk.”

→ RDF Schema (RDFS)

→ Web Ont. Lang. (OWL)

→ Rule Interchange Format (RIF)

:hasKeynote rdfs:range :Talk.

∃hasKeynote.⊤ ⊆ Talk
Talk ∩ ∃givenAt{aics2010} ⊆ ∃hasTopic{AI}

givenAt(E,T) :- hasKeynote(E,T).
attendedBy(T,P) :- Attendee(P), not presentedBy(T,P).

Enabling networked knowledge.
2. RDF can be described in terms of Ontologies and Rules → *allows Reasoning!*

OWL’s theoretical foundation: Description Logics, $SHOIN$ [Horrocks and Patel-Schneider, 2004] $SROIQ$ [Horrocks et al. 2006]

RIF’s theoretical foundation: Logic programming, F-Logic, but also Datalog/Answer Set Programming, Deductive Databases

(some RIF dialects allow negation as failure)

RDF Schema: in essence in the intersection

(but strictly speaking more liberal than Description Logics)
2. Structured queries over Web data

- SPARQL = “SQL look-and-feel query language for the Web”
- allows us to ask structured queries such as:
 “Give me names of people presenting AI or SemanticWeb talks”

```
SELECT ?Talk ?N
  { { ?Talk :hasTopic dbpedia:AI . }
    UNION
    { ?Talk :hasTopic dbpedia:Semantic_Web . }
  }
}
```

Unions of conjunctive queries, but also advanced features such as outer joins (NOT EXISTS), value filtering, etc.
How do the standards interplay?

Challenges:

- Ontologies & Rules: OWL2 & RIF
- Querying Ontologies & Rules: SPARQL/OWL+RIF
- Data on the Web is NOT clean/consistent!
- Querying XML & RDF: XQuery & SPARQL

Some of these challenges in Detail & current solutions to follow...
Ontologies and Rules:

- **Decidability:**
 - OWL is decidable, Datalog with negation is decidable, but their union isn’t.

- **Nonmonotonicity:**
 - OWL/Description Logics are subsets of classical FO-Logic
 - Rule Languages with Negation as failure (Answer Set Programming, Well-founded semantics) rely on non-classical logics

→ *Can’t arbitrarily mix RIF with OWL without trouble!*
Approaches:

Combinations of LP and DL still a vivid field of research…

- Embedding LP and DL into common non-classical Logics: e.g.
 - first-order autoepistemic Logics [deBruijn, Eiter, Polleres, Tompits et al. 2007, 2010]

- Defining decidable language fragments to combine: e.g. Horn-SHIQ, OWL2RL, DL-safe rules, cf. Bibliography in the paper)

... which also means not yet mature for standardisation.

\[\exists \text{hasKeynote}^{-} \land \top \sqsubseteq \text{Talk} \]
\[\text{Talk} \sqcap \exists \text{givenAt}\{aics2010\} \sqsubseteq \exists \text{hasTopic}\{AI\} \]

\[
\text{givenAt}(E,T) \leftarrow \text{hasKeynote}(E,T).
\text{attendedBy}(T,P) \leftarrow \text{Attendee}(P), \text{not presentedBy}(T,P).
\]
Similar problems:

- **Decidability:**
 - Conjunctive queries with non-distinguished variables for expressive DLs is an active field of research... OWL2? Not yet known. [Glimm, Rudolph, KR2010]

- **Nonmonotonicity:**
 - SPARQL has NOT EXISTS/OPTIONAL ~ similar negation as failure.
Approaches:

“Give me all talks that have a chair?”

SELECT ?T { ?T :hasChair ?C }

Do I need to know the actual chairs to answer this question?

Two possible views on this query:

- **Yes:** Treat all query variables as distinguished (=output variables):
 - Non-monotonic constructs on top not a problem for this approach
 - SPARQL1.1 is currently exploring this route.

- **No:** in certain subsets of OWL this can be answered:
 - Subset of OWL translatable to SQL: OWL2QL
 - Subset of OWL translatable to extended versions of Datalog: Datalog± [Cali et al. 2009]

 BTW, query answering not only decidable but also tractable.
Is OWL suitable for Linked Data

- OWL DL Reasoning on data crawled from the Web almost certainly yields inconsistencies
- Assuming that the Semantic Web would be less messy than the HTML Web is very optimistic
- Example:
 - Source A says: `Document (<http://www.nuigalway.ie>)`
 - Source B says: `Organisation (<http://www.nuigalway.ie>)`
 - Ontology C says: `Document ⊑ ¬Organisation`
Approaches

- **OWL Reasoning on Web data needs to be scalable & noise tolerant**

- **Our approach**
 - Sound but incomplete reasoning
 - Use a robust/scalable fragment of OWL (OWL2RL)
 - Exploit authority of Web documents
 - Used in Sindice [Delbru et al. 2008], SWSE [Hogan et al. 2009]

- **Alternatives?**
 - Para-consistent reasoning?
 - RankingSources & Probabilistic Fuzzy Reasoning?
What if I want to translate RDF and OWL data back to XML/HTML?

Because RDF ≠ RDF/XML!!!

1) many different RDF/XML representations...

```
<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/"
         xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
  <rdf:Description rdf:nodeID="x">
    <rdf:nodeID rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
    <foaf:name>Charles</foaf:name>
  </rdf:Description>
  <rdf:Description rdf:about="alice/me">
    <rdf:nodeID rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
    <foaf:knows rdf:nodeID="x"/>
  </rdf:Description>
</rdf:RDF>
```

2) ... and actually a lot of RDF data residing in RDF stores, accessible via SPARQL endpoints already, rather than in RDF/XML
Our approach: XSPARQL (W3C submission, but not yet a standard)

- New query language... but don’t reinvent!

XQuery + SPARQL = XSPARQL [Akhtar et al. 2008]

```xml
<relations>
{ for $Person $Name
  from <relations.rdf>
  where { $Person foaf:name $Name }
  order by $Name
  return
    <person name="{$Name}"/>

  {for $FName
    from <relations.rdf>
    where {
      $Person foaf:knows $Friend .
      $Person foaf:name $Name .
      $Friend foaf:name $FName }
  return <knows>{$FName}</knows>
  }
</person>
}</relations>
```
Conclusions & Outlook
(Where’s the AI here?):

- Standards (RDF, OWL, SPARQL) are needed to enable structured querying about Web data. Wide adoption already:
 - RDF is becoming a ubiquitous standard
 - Lightweight OWL2 ontologies (FOAF, SIOC, GoodRelations, etc.) emerging
 - Lots of interesting datasets out there! (incl. Twitter, product descriptions/reviews)
 - SPARQL becoming quite popular as well, RIF to be seen
 - All these standards have clean formal foundations

- BUT:
 - Still not enough data out there
 - Still open KR problems on the border between standards (DL vs. LP vs. Query Languages)
 - Data is not clean (needs AI methods! e.g.: para-consistent reasoning? Ontology matching, NLP, IM/IR, etc.)
 - Query Optimisation in open federated environment is still barely understood, particularly combined with ontological inference.
 - Still a lot to be done 😊
More challenges, interesting pointers:

(not in the paper)

will have some very interesting position papers in its first issue, e.g.:

[http://www.semantic-web-journal.net/content/new-submission-towards-creating-knowledge-out-interlinked-data]

P. Hitzler, F. van Harmelen A Reasonable Semantic Web. SWJ, accepted for publication, 2010
[http://www.semantic-web-journal.net/content/new-submission-reasonable-semantic-web]

[http://www.semantic-web-journal.net/content/new-submission-can-we-ever-catch-web]
Standards: XML, RDF, OWL, SPARQL, RIF
Theory: Description Logics, Non-monotonic Reasoning, Database Theory
Practice/Practically Useful: Linked Data, Information Mining?, NLP?
Our approach: XSPARQL (W3C submission)

- New query language... but don’t reinvent!

XQuery + SPARQL = XSPARQL [Akhtar et al. 2008]

| Prolog: P | declare namespace prefix="namespace-URI"
or prefix prefix: <namespace-URI> |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Body: F</td>
<td>for var in XPath-expression</td>
</tr>
<tr>
<td></td>
<td>let var := XPath-expression</td>
</tr>
<tr>
<td></td>
<td>where XPath-expression</td>
</tr>
<tr>
<td></td>
<td>order by expression</td>
</tr>
<tr>
<td>L</td>
<td>for varlist</td>
</tr>
<tr>
<td>W</td>
<td>from / from named <dataset-URI></td>
</tr>
<tr>
<td>O</td>
<td>where {pattern }</td>
</tr>
<tr>
<td></td>
<td>order by expression</td>
</tr>
<tr>
<td></td>
<td>limit integer > 0</td>
</tr>
<tr>
<td></td>
<td>offset integer > 0</td>
</tr>
<tr>
<td>F'</td>
<td>or</td>
</tr>
<tr>
<td>D</td>
<td>or</td>
</tr>
<tr>
<td>W</td>
<td>or</td>
</tr>
<tr>
<td>M</td>
<td>or</td>
</tr>
<tr>
<td>Head: C</td>
<td>construct</td>
</tr>
<tr>
<td></td>
<td>{ template (with nested XSPARQL) }</td>
</tr>
<tr>
<td>R</td>
<td>return XML + nested XSPARQL</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
</tbody>
</table>