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Abstract

Accurate weather warnings are vital for minimizing the impacts of ex-

treme weather events on public safety and infrastructure. This thesis focuses

on the analysis of changed weather warnings issued by GeoSphere Austria,

to examine how these warnings evolve over time to improve forecasting ac-

curacy and reliability. With GeoSphere’s historical dataset, which tracks

the progression of warnings from their initial issuance to their final state,

the study identifies patterns in geographic scope, severity levels, numerical

adjustments, and cancellations.

The methodology involves pairing the first and last entries of each changed

warning to evaluate key modifications, while accounting for unique cases

like cancellations. Municipality-specific vectors are constructed to capture

localized warning dynamics to provide insights into how these changes vary

across regions. The analysis also explores lead times, to distinguish between

proactive and reactive warning adjustments and evaluates the frequency and

nature of same day updates.

The analysis revealed a nuanced approach in GeoSphere’s initial warn-

ings. While warnings often start with a broader geographic scope and are

refined to focus on fewer areas as forecasts become more precise, there were

also cases where the scope of warnings expanded due to updated information.

Cancellations, geographic scope adjustments, and severity level changes re-

veal areas for improvement in the warning system. While the overall system

demonstrates reliability, the frequent modifications underline the need for

enhanced forecasting precision to maintain public trust.

This research contributes to a deeper understanding of GeoSphere’s fore-

casting practices and identifies opportunities to optimize warning issuance.

The results lay the groundwork for improving the timeliness, accuracy, and

clarity of weather warnings, to support better preparedness for extreme

weather events in Austria.
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1 Introduction

Climate change is driving an increase in the intensity of extreme weather events
in Central Europe, including Austria. A study by World Weather Attribution
found that human-induced climate change has doubled the likelihood of intense
rainfall, such as that caused by Storm Boris in September [1]. This rain lead
to deadly floods in central Europe and caused significant damage in Austria. In
this context, timely weather alerts play a crucial role in enabling communities
to prepare for extreme weather events effectively. GeoSphere, Austria’s national
weather forecasting organization, informs the public about potential weather risks
and issues timely warnings to mitigate their impact.

This thesis examines GeoSphere’s historical dataset to conduct an in-depth analy-
sis of extreme weather events and specifically focuses on changed weather warnings.
The study aims to evaluate the accuracy and reliability of GeoSphere’s forecasting
system. Key factors, such as the affected municipalities, severity levels, and timing
of warnings will be considered to understand the dynamics of these adjustments.

This analysis focuses on comparing the initial warnings with the final entries in
the dataset to provide information on how the scope, severity, and timing evolved
over time. The final update is assumed to most accurately represent the actual
event, as it is the closest in time to the occurrence of the weather event. Through
this analysis, the thesis seeks to identify patterns and reasons for changes in those
warnings that could help improve the reliability of GeoSphere’s warning system to
enhance public safety and preparedness.

1.1 Importance of Weather Warnings

Weather warnings are essential tools for minimizing the impact of extreme weather
events on life, property, and infrastructure [8]. They serve as early warnings that
allow people, communities, and organizations to prepare and mitigate the poten-
tial consequences of severe weather. As described by NOAA’s National Weather
Service, "A warning is issued when a hazardous weather or hydrological event is
occurring, imminent, or likely. A warning means weather conditions pose a threat
to life or property. People in the path of the storm need to take protective action"
[13]. This highlights the critical role of warnings for timely and decisive action to
reduce harm.

The effectiveness of weather warnings depends on their clarity, accuracy, and time-
liness, therefore clear communication is vital to ensure the public acts upon warn-
ings appropriately [14]. However, challenges such as public perception, varying
levels of trust in the warning system, and the inherent uncertainty in weather
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forecasts can affect the overall impact of warnings on safety and preparedness [14].
These challenges underline the need for continuous refinement in technical preci-
sion and public communication. This thesis investigates changed weather warnings
in Austria to assess whether skepticism toward the warning system is justified.

Warnings are especially important due to the increasing climate variability and
extreme weather events. The frequency and severity of events such as floods,
hurricanes, and heat waves are on the rise and need systems that can predict and
communicate risks with high reliability [14]. GeoSphere Austria, as the national
meteorological authority, plays a pivotal role in issuing warnings that help save lives
and property. However, as this thesis focuses on changed warnings, the dynamics of
updates and cancellations become particularly relevant. Frequent modifications to
warnings, while often necessary to reflect the evolving nature of weather conditions,
can sometimes lead to confusion or skepticism among the public [14]. Evaluating
the effectiveness of warnings requires an understanding of their evolution and the
public’s response to them. Research suggests that timely updates can enhance
credibility, but inconsistent or frequent changes might diminish trust [14].

In conclusion, weather warnings are a cornerstone of public safety during extreme
weather events. Their design and implementation must balance accuracy with
clarity and consistency to ensure timely action. By studying how warnings evolve,
including cancellations and updates, this research contributes to the broader un-
derstanding of effective warning systems.

1.2 Uncertainty in Weather Warnings

City and county emergency managers face numerous time-sensitive decisions re-
lated to hazardous weather preparations. They determine the optimal timing and
usefulness of sharing weather forecasts with other local officials, such as fire de-
partment captains, public works supervisors, and school safety officials [9]. Kox
et al. investigate in [6] how emergency services in Germany perceive and respond
to extreme weather warnings through a survey conducted in 2012 with over 160
emergency workers. Their study examines the uncertainty associated with ex-
treme weather forecasts and how emergency personnel interpret and act on such
information. The concept of uncertainty, as outlined in the article, relates to the
probability of occurrence, but also links to gaps in knowledge or limited observa-
tions.

Germany’s weather warning system, which forms the basis of Kox et al.’s study,
operates in three distinct stages: early warnings issued days in advance, updates
as the event approaches, and final alerts on the day of the event [6]. This stepwise
approach aligns closely with GeoSphere’s process, which similarly includes early
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warnings and updates leading up to the actual weather event. Given the geographic
similarities between Germany and Austria, the findings of this study are equally
relevant for GeoSphere’s practices.

For the interviewed emergency workers, the most critical weather extremes are
strong winds, heavy rainfall, and thunderstorms. The study found that weather
warnings are often underestimated, particularly when significant time passes be-
tween the initial forecast and the event itself [6]. This observation parallels a key
aspect of this thesis, where it will be analyzed how late warnings are changed, as
well as how many are updated or cancelled on the same day or during the event
itself. Therefore, this study aims to assess whether GeoSphere’s initial warnings
are reliable or whether emergency personnel should prioritize later updates.

The findings of Kox et al. provide a foundational context for analyzing Geo-
Sphere’s weather warnings, particularly with respect to uncertainties and their
potential perception. The observed tendency to underestimate warnings under-
scores the importance of optimizing the communication of weather alerts. This
thesis will evaluate the accuracy of GeoSphere’s changed warnings to determine
whether the associated uncertainties are justified and if adjustments could enhance
the reliability.

1.3 Research Objective

The objective of this thesis is to identify patterns in how GeoSphere Austria’s
weather warnings are adjusted over time. The analysis compares the initial fore-
casts to the final outcomes to identify how the warning changed over time. This
involves evaluating how the number of affected municipalities changes over time,
whether there are shifts in the warning levels, and identifying if the warnings tend
to adopt a more cautious approach as a safety measure to minimize risk.

The goal is to gain a deeper understanding of how initial warnings evolve. The
analysis compares the first warning with the last recorded update, based on the
assumption that the final warning, being closest in time to the actual event, pro-
vides the most accurate representation. This evaluation also investigates whether
GeoSphere prioritizes a more conservative approach to ensure public safety and
how such an approach impacts the precision of the warnings. Finally, the analysis
seeks to identify patterns and areas for improvement to provide a foundation for
enhancing the accuracy and timeliness of GeoSphere’s warning system. This can
lead to more effective communication of weather risks and better preparedness for
extreme weather events.
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2 Background

Analyzing historical weather warnings offers insights into the reliability and evo-
lution of GeoSphere’s forecasting practices. This thesis examines the adjustments
made to warnings and assesses whether these updates prioritize public safety
through a cautious approach, which means that initial warnings often cover larger
areas or have higher severity levels. This strategy ensures that potential risks are
addressed early, even if subsequent updates refine or downgrade the warnings based
on new data. The goal is to identify areas where improvements could enhance the
overall effectiveness of the warning system.

2.1 The Impact of Climate Change on Extreme Weather

Events

The Intergovernmental Panel on Climate Change (IPCC) has reported an increase
in the frequency and intensity of extreme weather events due to climate change [10],
which has led to an increase in extreme weather events such as floods, droughts,
and heat waves. Disasters are becoming increasingly costly since their frequency
and intensity continue to rise. Extreme weather events have effects on public health
and cause issues such as heat exhaustion, respiratory problems, and injuries related
to flooding [2]. Health care systems experience problems due to damaged infras-
tructure and the growing demand for medical services, like the need for additional
staff to manage these crises effectively [2]. Therefore, precise weather forecasts are
more important than ever to inform the public about potential risks and to help
managing their impact [12]. This underscores the necessity for timely, accurate,
and consistent weather warnings to mitigate the impacts of such events.

In this context, it becomes particularly interesting to examine whether GeoSphere
effectively fulfills its role in providing accurate and timely warnings. Early and
reliable forecasts could reduce pressure on emergency services, since they help
communities to prepare in advance. Contrarily, the uncertainty associated with
frequent changes to weather warnings could contribute to public skepticism about
their reliability [7]. If warnings are perceived as inconsistent or overly cautious,
they might not be taken seriously, which leads to situations where emergency
services face increased strain due to a lack of public preparedness. Consequently, it
is important to analyze how often GeoSphere’s weather warnings were changed and
how early they are issued to give insights into their impact on public preparedness
and the demands placed on emergency services.
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2.2 GeoSphere Austria: Mission and Contributions

Since 2023, GeoSphere Austria has combined the Central Institute for Meteorology
and Geodynamics (ZAMG) and the Geological Survey of Austria (GBA), creating
the national authority for meteorology, climatology, and geology and combines over
300 years of expertise to tackle challenges like climate change, natural hazards, and
sustainable resource management [4]. GeoSphere’s network of monitoring stations
enables accurate data collection, modeling, and forecasting to enhance public safety
and resilience [3].

In 2023, GeoSphere issued 200 red-level and 30,000 orange-level warnings, which
indicates their active monitoring in response to observed extreme weather events.
GeoSphere also supports global initiatives, such as the United Nations SOFF pro-
gram, to establish robust weather monitoring networks, to provide universal access
to reliable warnings by 2027 [4].

Beyond forecasting, GeoSphere addresses geological risks like landslides and earth-
quakes and conducts climatological research on impacts of global warming and
strategies for mitigation and adaptation [5]. GeoSphere’s goal is to ensure that
Austria and its global partners are better prepared for environmental challenges
to contribute to a safer and more sustainable future [5]. GeoSphere’s website
(https://data.hub.geosphere.at/) offers direct access to data with detailed
records of past weather warnings. This thesis focuses specifically on analyzing
changes to these warnings to gain deeper insights into GeoSphere’s practices and
to identify areas where adjustments have been made.
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3 Methodology

In this section, we present a structured methodology to analyze the evolution
of weather warnings over time. The analysis focused on identifying changes in
geographic scope, severity levels, numerical values, and time, with separate con-
sideration for cancelled and changed warnings. The aim was to identify trends and
areas for improvement in GeoSphere’s forecasting practices. The process included
data preprocessing, analysis of distinct pairs of cancelled and changed warnings,
and the creation of warning-type-specific vectors to provide an overview of the
observed changes.

3.1 Analysis Approach

The analysis seeks to uncover whether warnings become more or less severe over
time, while distinguishing between changed and cancelled warnings for a more
precise evaluation.

Geographic changes involved assessing the number of impacted municipalities to
determine whether warnings initially cover a broad area, reflecting a cautious ap-
proach, or whether their geographic scope expands as more data becomes available.
Changes in severity levels, values, status, and warning types were analyzed by
comparing initial and final attributes for each sequence to identify whether these
levels increased, decreased, or remained stable. By separately analyzing changed
and cancelled warnings, the study provided a clearer understanding of how each
type of warning evolves and impacts the overall system.

Timing was another critical focus of the analysis. The lead time between the
issuance of warnings and the predicted weather events was evaluated to assess
GeoSphere’s effectiveness in providing timely preparation. The frequency of same-
day issuances and same-day modifications was also analyzed to evaluate respon-
siveness. Furthermore, the analysis examined whether the warning timeframes
changed to provide further insights into how the forecasts were adjusted to meet
evolving conditions.

The primary goal was to gain a deeper understanding of GeoSphere’s forecasting
methods. An evaluation of how both changed and cancelled warnings evolve helped
to determine whether the system has areas for improvement to create a more
reliable and effective warning system to offer clearer communication to the public
and enhance overall preparedness.
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3.2 Description of the Weather Warning Data

The dataset from GeoSphere contains weather warning data from 2011 to 2023
and forms the basis for analyzing the progression and evolution of these weather
warnings. Each warning is uniquely identified by a Warning-ID, represented by an
integer that distinguishes individual weather events. Within each Warning-ID, the
Sequence-ID distinguishes individual warnings that belong to the same weather
event. Each Sequence-ID represents a separate warning issued under the same
Warning-ID, meaning multiple warnings can exist within a single weather event,
each with its own Sequence-ID. If a warning for a particular region is updated, it
retains the same Sequence-ID.

The Change-ID indicates if a change was made to a warning. This parameter
helps to differentiate between unchanged warnings and those that were updated
and reflects adjustments in scope, severity, or other attributes during the warning
period. The Status field indicates whether a warning is currently active ("aktiv")
or has been cancelled ("aufgehoben").

The dataset includes the start and end times of each weather event, specifying
when the event is predicted to begin and conclude. The Created and Created

File columns both record the timestamps of when each warning was issued, but
they differ in precision and origin. While the Created File column provides exact
timestamps down to the second, extracted directly from the file name, the Created

column contains rounded timestamps for a broader reference. Essentially, one
timestamp comes from the file’s metadata, while the other is derived from the file
name itself.

Furthermore, the Municipality field lists the affected municipalities as integers that
represent different geographic regions in Austria. This allows for an analysis of
the geographic scope of warnings and any subsequent changes over time.
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The Warning Type categorizes the warnings into specific weather phenomena with
the following values:

• 1: Storm,

• 2: Rain,

• 3: Snow,

• 4: Black ice,

• 5: Thunderstorm,

• 6: Heat,

• 7: Cold.

The Value column provides a numerical measure that quantifies the expected in-
tensity of the weather event, based on the specific type of warning. It does not in-
dicate severity but rather the forecasted amount or magnitude of the phenomenon.
Finally, the Warning Level field captures the severity of each warning on a scale
of one to three. A value of 1 represents low severity (yellow), 2 indicates moderate
severity (orange), and 3 corresponds to high severity (red). This analysis will focus
on changes in status, times, affected municipalities, value, and warning level.

The analysis began with preprocessing the provided data set to ensure consistency
and readability. Since the original dataset contained fields in German, the column
names were renamed in English for clarity. Table 1 shows the original column
names along with the new names.

Original Column Name Renamed Column Name
warnid Warning-ID
chgid Change-ID

verlaufid Sequence-ID
status Status
begin Start Time
ende End Time

erstellt Created
created_file File Created
gemeinden Municipalities
warntyp Warning Type

wert Value
warnstufe Warning Level

It was found that missing values only occurred in rows where the warning status
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was "cancelled". In these cases, all values were missing except for Status, Warning-

ID, Change-ID, and File Created. This made it easy to address the missing values
without the need for complex manipulation. For the missing Sequence-ID, the
appropriate values from the warnings were inserted. Empty numeric fields, such
as Warning Type, Value, and Warning Level, were filled with 0. Similarly, empty
entries in the Municipalities field were replaced with an empty list ([]), and missing
timestamps in the Start Time and End Time fields were assigned placeholder
values of 1970-01-01 00:00:00. Since the missing values only occurred in cancelled
warnings, this approach ensured a consistent and error-free dataset without the
need for additional precautions.

Data types were standardized, with numerical columns converted to integers and
date-related fields reformatted into the datetime64format. This step ensured that
the dataset was clean, structured, and ready for analysis to enable efficient handling
of temporal, numerical, and categorical data.

3.3 Pairing First and Last Warnings

The aim of this analysis was to compare the initial and final warnings for each
sequence to identify changes in scope, severity, and other attributes over time.
Weather warnings without any updates consisted of only a single row, which sim-
plified filtering out unchanged warnings. Changed warnings were grouped by their
Sequence-ID within each unique Warning-ID to get a clear distinction between the
start and end states of a warning. Cancelled warnings were treated separately to
address their unique characteristics.

For changed warnings, the first entry represented the initial forecast, while the last
entry reflected the final state of the warning. In contrast, cancelled warnings posed
a unique challenge, as they were issued at the Warning-ID level and applied univer-
sally to all associated Sequence-IDs. To address this, additional rows were added
to pair cancellations with the appropriate Sequence-ID. This adjustment ensured
that cancellations could be accurately paired with the corresponding Sequence-IDs
for analysis, allowing a separate and focused evaluation of cancelled warnings.

The dataset was then sorted by Warning-ID and Sequence-ID to maintain a logical
order and provide a structured foundation for further analysis. This preprocessing
step ensured that all changes, including cancellations, could be analyzed system-
atically and provided an overview of how GeoSphere’s warnings evolved over time.
By separating changed and cancelled warnings, the analysis was able to provide
a more detailed and precise understanding of the dynamics of both updated and
discontinued warnings. While this sorting step was not strictly necessary for the
analysis itself, as grouping and aggregation inherently handle the data structure,
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its inclusion provided a logical and intuitive sequence for following changes in
warnings, particularly during initial data checks and visualizations.

3.4 Municipality Analysis Approach

Changes in the Municipalities field were analyzed by comparing the first and last
warnings to investigate how the list of affected areas evolved over time. The anal-
ysis focused on the actual municipalities impacted, rather than just the numeric
changes in their counts. To achieve this, the lists of municipalities in the first
and last warnings were transformed into sets. This transformation allowed for
the calculation of the symmetric difference between the two sets, mathematically
represented as:

∆(A,B) = (A \B) ∪ (B \ A).

In this context, A represents the set of municipalities affected by the initial warning
and B the set of municipalities affected by the final warning. (A \ B) is the set
of elements in A but not in B, capturing municipalities removed from the warning
scope. (B \A) is the set of elements in B but not in A and captures municipalities
newly added to the warning scope. The union (A \B)∪ (B \A) then provides the
total set of changes in the affected municipalities, regardless of whether they were
added or removed.

With that, we capture the elements present in one set but not in the other. This
approach ensured that any changes were detected in the actual municipalities, even
in cases where the total number of affected municipalities remained the same.

In addition to analyzing the changes of specific municipalities, the changes in the
number of affected municipalities were also examined. Instead of focusing on the
identities of the municipalities, this analysis compared the total counts of affected
municipalities in the first and last changed warnings. This provided a simpler but
complementary metric for evaluating the evolution of the changed warnings.

3.5 Changes in Weather Warning Timeframes

The analysis of temporal changes in weather warnings focused on capturing ad-
justments to the Start Time and End Time fields separately for changed and
cancelled warnings. To ensure uniformity, missing values in the cancelled dataset
were replaced with a placeholder timestamp of 1970-01-01 00:00:00. This place-
holder facilitated comparisons during the analysis while avoiding errors from null
or empty values.
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Then, each pair of rows was analyzed to compare the start times and end times,
categorizing changes into three groups: identical changes for both start and end
times, no changes for either field, or differing changes where one field was up-
dated while the other remained unchanged. This distinction allowed for a better
understanding of how the timing of warnings evolved.

In the analysis of cancelled warnings, placeholder timestamps in the Created col-
umn were often found, which made this column unsuitable for analysis. The accu-
rate creation timestamp from the File Created column was used instead. The File

Created column represents the exact time the file was created, rather than a times-
tamp extracted directly from the dataset. For cancelled warnings, the lead time
was calculated by comparing the File Created timestamp with the Start Time of
the preceding row. This adjustment ensured proper inclusion of cancelled warnings
in the lead time analysis.

The lead time evaluation for changed warnings also relied on precise timestamps
from the File Created and Start Time columns, this time for the same rows. The
File Created column provided more reliable timestamps and resolved inconsis-
tencies in the abstracted Created field. This ensured accurate calculations and
meaningful comparisons.

Furthermore, created warnings were analyzed using the first row of each pair to
evaluate how far in advance changed warnings were created before the predicted
event’s start time. Secondly, modified warnings were analyzed using the second
row of each pair to evaluate how far in advance warnings were changed before the
event’s start time. For cancelled warnings, the lead time was calculated using the
File Created timestamp compared to the Start Time of the preceding row. This
adjustment addressed the placeholder issue, as cancelled warnings lack an actual
start time.

The resulting lead times for changed and cancelled warnings were then aggregated
and analyzed separately. This approach ensured the accurate treatment of each
category while providing a comprehensive view of temporal adjustments in Geo-
Sphere’s weather warnings.

3.6 Evolution Vectors

To analyze how weather warnings evolved for individual municipalities and warn-
ings, municipality-specific and warning-specific evolution vectors were created.
The municipality-specific vectors captured key changes for different areas in at-
tributes such as the first and last warning levels, differences in values, and the
count of changed or cancelled warnings for each municipality. Similarly, the
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warning-specific vectors focused on changes within each warning and records shifts
in warning levels, differences in numerical values, and the changes of timeframes.

3.6.1 Municipality-Specific Evolution Vectors

Although the list of affected municipalities could change during updates, the anal-
ysis focused on the municipalities listed in the first row. Changes for the affected
municipalities during the warning lifecycle appear in the changed warnings count,
which is included in the evolution vector. The separation of changed and cancelled
warnings allows updates to ongoing warnings and cancellations to be tracked in-
dependently.

Each municipality has recorded counts of specific warning level transitions, value
changes within predefined ranges, and the total number of changes. The dataset
also includes the frequency of different warning types, such as rain, storms, or
snow, to highlight which types of warnings undergo the most adjustments. Addi-
tionally, the total number of modified warnings per municipality is included, with
a focus on cases where at least one attribute has changed. In the case of can-
celled warnings, the change count directly corresponds to cancellations to ensure
a structured comparison between evolving warnings and discontinued ones.

The final vector included a summary of the warning evolution for each municipality
with details of the frequency and scale of changes in the warnings they received.
This provides a framework for analyzing patterns in geographic expansion, severity
upgrades or downgrades, numerical refinements, and cancellations.

3.6.2 Warning-Specific Evolution Vectors

The last part of the code was to examines how individual warnings evolve over
time to reveal patterns and trends in updates and adjustments to attributes such
as warning levels, numerical values, geographic coverage, and timing. The findings
offer valuable insights into how warnings are managed and refined.

Initially, two separate CSV files were created to distinguish changed and cancelled
warnings. This separation allowed for a focused analysis of each category. Subse-
quently, these datasets were merged into a single CSV file to enable a comprehen-
sive evaluation of overall trends and comparisons between the two categories.

The final combined dataset includes key columns such as Warning-ID, Sequence-
ID, Difference in Municipality Numbers, Difference in Warning Type, Difference
in Warning Level, Start Time Changes, End Time Changes, Created Same Day as
Start, and Modified Same Day as Start. These columns encapsulate the essential
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changes for each warning. The consolidated dataset is stored in a single CSV file
to facilitate streamlined analysis and ensure easy access for future research.
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4 Results

The following section presents a detailed analysis of the evolution of changed and
cancelled weather warnings issued by GeoSphere Austria. The findings are struc-
tured to address key areas of interest, including changes in the geographic scope
of warnings, warning severity, and other relevant characteristics. Each subsection
highlights specific patterns and trends observed in the data and provides insight
into how these warnings were adjusted over time. It becomes visible that out
of 6,283 warnings, 4,418 were either changed or cancelled. This corresponds to
70.32% and shows that GeoSphere changes a majority of those warnings.

4.1 Cancelled Warnings

Cancelled warnings are a significant aspect of GeoSphere’s forecasting system.
They represent cases where the perceived risk level of a weather event diminished to
the point that no further warnings were deemed necessary. The decision to cancel
a weather warning could also stem from a meteorologist’s assessment that the
warning was no longer necessary. This is evident from the time elapsed between the
issuance and cancellation of the warning. This status is marked as "aufgehoben"
in the dataset and plays a critical role to understand the evolution of weather
warnings over time.

Out of 6,283 distinct warnings in the dataset, 875 of them were identified as can-
cellations, which corresponds to approximately 13.93%. These cancellations were
detected by comparing the status field across paired rows for each changed warn-
ing. Specifically, if the status of a warning transitioned to "aufgehoben", it was
recorded as a cancellation.

Cancellations have significant implications for interpreting other metrics. For in-
stance, when changes in warning levels, values, or affected municipalities result in
a reduction to zero, this often coincides with a cancelled warning. This context
is crucial to accurately understand downward trends in these metrics, as they fre-
quently reflect a reduction in the perceived risk level rather than an adjustment
in forecasting methodology. Additionally, weather forecasts generally improve in
accuracy as the event nears. This refinement process contributes to both modifi-
cations and cancellations, ensuring that warnings remain aligned with the latest
meteorological assessments.

The distribution of cancelled warnings underscores GeoSphere’s approach that
they often release a weather warning and then cancel it. Approximately 19.81%
of the changed warnings were issued preemptively to prioritize public safety but
were later cancelled when the risks diminished. Those changes lay the foundation
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to interpret other metrics.

4.2 Analysis of Municipality Changes

The analysis of changed municipalities highlights trends in how the geographic
scope of weather warnings changes over time. GeoSphere begins with broad initial
warnings to ensure readiness and then refines them as more precise data becomes
available. The evaluation recorded 2,742 changes in the list of affected munici-
palities, accounting for 77.59% of the total changed warnings and 43.64% of all
warnings. Changes based solely on the number of affected municipalities totaled
2,731, representing 77.28% of changed warnings and 43.47% of all warnings. The
average magnitude of these changes, measured as the absolute difference in the
number of municipalities between the first and last warnings, reached approxi-
mately 59.86 municipalities per warning.

The analysis revealed 1,380 warnings where the number of affected municipalities
increased, which reflects updates that expanded the scope to include additional
areas. In contrast, 1,351 warnings showed a reduction in scope, which often oc-
curred as forecasts refined the focus on risk areas. Another 803 warnings retained
the same number of affected municipalities between their initial and final states.

Figure 1 illustrates the distribution of these changes, with most adjustments clus-
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tered around zero. The numbers on the y-axis represent the count of warnings
experiencing specific changes in the number of affected municipalities on the x-
axis. The histogram shows a near-equal distribution of increases and decreases,
though decreases include significant outliers where forecasts excluded large num-
bers of municipalities.

These extreme changes, with increases or decreases exceeding 500 municipali-
ties, reflect substantial forecast updates influenced by unexpected developments or
changing weather patterns. Notably, such warnings often have a high Change-ID,
which indicates that they have been revised multiple times. This pattern suggests
rapidly changing weather conditions that necessitate frequent updates and high-
lights the uncertainty in forecasting under such dynamic circumstances. The high
frequency of changes underscores the challenges faced in accurately predicting
weather events with rapidly evolving impacts. Furthermore, given that Austria
comprises 2,093 municipalities [11], these warnings typically pertain to weather
events that impact a significant portion of the country and often cover almost the
entire nation. This widespread scope further emphasizes the scale and complexity
of these extreme weather situations. An example is the warning with Warning-ID
1093 and Sequence-ID 1, which underwent 13 changes. Each of these changes was
a cancellation that was later reactivated. Initially, there were only three Sequence-
IDs for this warning, but later, there were nine. This subdivision could explain
the reduction of 1,339 affected municipalities, as the original large-scale warning
may have been split into multiple smaller warnings, each covering a more specific
region. Such an extreme decrease could also indicate a significant adjustment in
the forecast, suggesting that the initially affected area was overestimated. Subse-
quent updates could also indicate that more precise data became available, leading
to a refinement of the warning. Given the magnitude of the municipality change,
this warning probably concerned a weather event that initially appeared to affect
almost the entire country.

GeoSphere’s approach ensures flexibility and responsiveness in adapting warnings
as new data emerges. The balance between increases and decreases in Figure 1 in
the number of affected municipalities highlights the dynamics of weather forecast-
ing, where updates continuously improve the precision of warnings while addressing
emerging risks. These findings underline the importance of adaptive forecasting
techniques and provide a basis for further optimizing warning accuracy.

The analysis of cancelled warnings revealed significant shifts in the number of
affected municipalities. Across all 875 cancelled warnings, changes were observed
in the geographic scope, with every instance involving a reduction in the number
of impacted municipalities, which represents 13.93% of the total warnings.
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The average magnitude of these changes, calculated as the absolute difference in
the number of municipalities between the first and last states of the warnings,
was approximately 136.4 municipalities per warning. This substantial reduction
underscores the role of cancellations in refining forecasts by excluding areas initially
predicted to be at risk.

Warning-ID Sequence-ID Municipality Changes Warning Type Warning Level
543 1 -1014 Rain 3
543 2 -1365 Rain 2
604 1 -1015 Storm 1
697 1 -1404 Storm 1
881 1 -1096 Thunderstorm 1

Table 2 presents five examples of cancelled warnings, in which the number of
affected municipalities decreased by more than 1,000. A rain warning saw a re-
duction of 1,014 affected municipalities at warning level 3, while another rain
warning experienced a larger decrease of 1,365 municipalities at warning level 2.
A storm warning resulted in 1,015 fewer affected municipalities at level 1, and
another storm warning resulted in a reduction of 1,404 municipalities, also at level
1. Additionally, a thunderstorm warning excluded 1,096 municipalities at warning
level 1. These cases illustrate substantial adjustments in the geographic scope of
weather warnings across different types and severity levels.

4.3 Warning Type Analysis

This part of the analysis focuses on evaluating changes in the type of warnings
issued over time. Specifically, the first and last warnings for each event were
compared to determine whether the type of weather event remained consistent or
changed during the warning evolution. "Warning Type" refers to categories such
as rain, storms, snow, heat, black ice, or thunderstorms, each represented by a
specific numerical value.

The analysis shows that changes in warning type without cancellations were ex-
tremely rare. Out of 7,068 warning type rows, only 2 instances involved changes in
the type of warning, representing just 0.06% of the cases where warnings changed,
and 0.03% of all warnings. These two changes occurred where a rain warning
shifted to a storm warning. This outcome aligns with expectations, as the type
of extreme weather event is typically determined with high confidence when the
warning is issued. Changes in warning type are inherently unlikely since the un-
derlying conditions leading to these events are distinct and unlikely to evolve into
entirely different phenomena.

These findings confirm the stability of GeoSphere’s weather classifications. Once a
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warning is issued, the type of event remains consistent in nearly all cases, reflect-
ing the system’s accuracy in identifying and categorizing extreme weather events.
The negligible number of changes underscores the reliability of GeoSphere’s initial
classifications.

The analysis of warning type changes for canceled warnings revealed that such
changes occurred in all 875 cases, accounting for 13.93% of the total 6,283 warnings.
These transitions exclusively involve cancellations, as the warning type is removed
when a warning is no longer active. The frequency of these cancellations for each
initial warning type is summarized in Table 3.

Initial Warning Type Final Warning Type Frequency
Rain Cancelled 4.71%
Storm Cancelled 4.55%

Thunderstorms Cancelled 2.23%
Snow Cancelled 1.85%

Black ice Cancelled 0.59%

The findings indicate that warning cancellations are highly consistent across dif-
ferent warning types. Rain warnings were the most frequently cancelled, followed
by storm and thunderstorm warnings.

4.4 Warning Level Analysis

The next part of the analysis focuses on adjustments made to the Warning Level.
The results show that out of a total of 3,534 changed warnings, 523 experienced a
change in the warning level. This corresponds to 14.80% of those warnings and to
8.32% of the total warnings.

Initial Warning Level Final Warning Level Frequency
Yellow Orange 5.28%
Orange Yellow 2.42%
Orange Red 0.32%

Red Orange 0.17%
Yellow Red 0.06%
Red Yellow 0.06%

Yellow Cancelled 10.55%
Orange Cancelled 3.07%

Red Cancelled 0.30%

23



Table 4 provides a breakdown of the warning level changes and reveals several key
patterns. The most frequent change from level 1 to level 2 occurred 332 times,
which represents 5.28% of all cases. This shows that warnings that are issued at the
lowest severity level were often escalated to moderate severity, which indicates that
GeoSphere occasionally underestimates the initial severity of weather events and
later adjusts the warnings upward as more data becomes available. These upward
adjustments highlight GeoSphere’s responsiveness to evolving weather conditions
but also point to opportunities to improve the accuracy of initial forecasts.

The second most frequent change, from level 2 to level 1, corresponding to 152
occurrences and 2.42% of all cases, demonstrates that moderate-level warnings
were often revised downward. Transitions from level 2 to level 3 occurred 20
times, accounting for 0. 32% of all 6,283 warnings, while transitions from level
3 to level 2 occurred 11 times, representing 0.18%. Rare changes, such as shifts
between levels 1 and 3 or 3 and 1, with 4 occurrences each, representing 0.06% of all
weather warnings, indicate that extreme adjustments in severity are uncommon.
These cases likely represent extraordinary weather scenarios or rapidly evolving
conditions that necessitate such significant changes.

While cancellations of warning changes to a lower severity are less important in this
context, the substantial number of upward adjustments, particularly from level 1
to level 2, suggests room for improvement in identifying higher-severity weather
risks earlier in the warning lifecycle for better public preparedness.

The analysis of warning level changes of cancelled warnings shows that all of the
875 cancelled warnings experienced changes in their warning levels. This result
aligns with expectations, as cancellations inherently involve a reduction in severity
or a transition to an inactive status.

The most frequent change occurred when yellow warnings were cancelled, with
663 instances which represents 10.55% of all warnings. This reflects the tendency
for less severe warnings to be reevaluated and cancelled more frequently as up-
dated information reduces the perceived risk. Orange warnings were cancelled 193
times, accounting for 3.07% of all warnings, while red warnings experienced only 19
cancellations, corresponding to 0.30%. These results indicate that higher-severity
warnings, such as red alerts, are less likely to be withdrawn, as they often represent
critical weather events where risks remain significant.

These changes, also summarized in Table 4, demonstrate the high frequency of can-
cellations at lower severity levels. They suggest that GeoSphere’s early warnings
aim to ensure preparedness by including potential risks. As updated data becomes
available, GeoSphere adjusts its forecasts, often withdrawing warnings when the
likelihood of impact diminishes. This practice reflects an effort to balance early
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caution with accurate targeting.

4.5 Value Analysis

In this part of the analysis, changes in the Value field are examined, which represent
specific numerical measures associated with different types of weather warnings.
Since each warning type uses a different unit of measurement, such as wind speed
for storms and temperature for heat warnings, these values are not directly com-
parable. Therefore, we analyze each warning type separately to better understand
how their value severity evolves over time.

Out of the 3,534 changed warnings in the dataset, 886 exhibited changes in their
values, corresponding to 25.07% of all changed warnings and 14.10% of all warn-
ings. This suggests that a significant portion of the warnings underwent adjust-
ments in their forecasted severity during their lifecycle.

Furthermore, the average percentage change across all warnings is 105.51%, mean-
ing that on average, the forecasted values of warnings increased by 5% from their
initial to final entries. This indicates that, in many cases, the severity of weather
events was updated upwards as more data became available. To analyze the direc-
tion of these changes, the differences were calculated as the second value minus the
first value for each pair. This approach provides insights into whether the severity
of warnings became more or less pronounced over time.

The average value changes for each warning type are as follows:

• Storm: 1.03 km/h,

• Rain: 2.96 mm/h,

• Snow: 1.93 cm,

• Black ice: 0.03,

• Thunderstorm: 0.04 strikes/km2.

In absolute terms, the average changes per warning type are:

• Storm: 3.45 km/h,

• Rain: 9.39 mm/h,

• Snow: 5.53 cm,

• Black ice: 0.06,

• Thunderstorm: 0.07 strikes/km2.
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These values for changed warnings reveal, that while many of the changes in val-
ues are relatively small, some warning types, particularly storms, rain, and snow
warnings, exhibit more pronounced adjustments in forecasted severity. For exam-
ple, storm warnings show a noticeable increase in value, with an average change
of 3.45 km/h. This suggests that storms were typically forecasted to become more
severe over time. For black ice warnings, no clear unit of measurement could
be determined, unlike other warning types, where changes in severity could be
quantified.

Rain warnings, with an average value change of 9.39 mm/h, and snow warnings,
showing an average change of 5.53 cm, also indicate relatively high variability
in forecasted severity. On the other hand, black ice warnings, with an average
change of just 0.06, and thunderstorm warnings, showing an average change of 0.07
strikes/km2, indicate relatively minor adjustments in their values. This suggests
that the severity of these events, in terms of the values used for warnings, tended
to remain stable over time, with smaller variations or less need for drastic updates.

For the cancelled warnings, the average value change per warning type is as follows:

• Storm: -75.31 km/h,

• Rain: -50.03 mm/h,

• Snow: -28.38 cm,

• Black ice: -1.00,

• Thunderstorm: -1.11 strikes/km2.

These values show that the magnitude of change in these warnings is substantial,
particularly for storm, rain, and snow warnings. For instance, storm warnings had
a significant average change of -75.31 km/h, reflecting the fact that severe weather
events, such as storms, were called off due to the diminishing threat. Similarly, rain
and snow warnings also exhibited notable reductions in their value, with averages
of -50.03 mm/h and -28.38 cm.

In contrast, black ice and thunderstorm warnings showed smaller reductions, with
changes of -1.00 and -1.11 strikes/km2, respectively. The reductions in these warn-
ings suggest that the initial forecasts of black ice or thunderstorms, while still
relevant, did not require the same magnitude of adjustment as the larger-scale
weather events like storms or heavy precipitation.
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4.6 Temporal Adjustments in Weather Warnings

The analysis of temporal adjustments in weather warnings provides a deeper un-
derstanding of how GeoSphere adapts its forecasts over time. These adjustments
focus on changes to the predicted start and end times of warnings.

For the changed warnings, a total of 973 start time changes, corresponding to
15.49% of the total warnings, and 1,335 end time changes, corresponding to 21.25%,
were identified in the dataset. End time changes occurred more frequently, which
suggests an approach to ensure warnings remain relevant as weather events often
last longer or shorter than initially predicted. In contrast, start time changes were
less common, indicating that initial forecasts of when events would begin were
generally more reliable.

Among these adjustments, 659 instances, which make up 10.49% of all warnings,
showed overlapping changes in both start and end times. Overlapping changes
refer to cases where both the start and end times were updated for the same
warning. This indicates that the forecast was thoroughly revised, likely to account
for significant changes in the weather conditions. Such revisions suggest a proactive
approach to ensure the warnings accurately reflect updated predictions for both
the onset and duration of weather events.

The distribution of start and end time changes, including their overlap, provides
a clearer picture of the extent to which adjustments were made to one or both
temporal aspects of the warnings. The differences in the frequency of start and end
time changes suggest distinct patterns. Start times were less likely to be updated,
in contrast, end times were adjusted more frequently, which demonstrates the
uncertainty involved in predicting the duration of weather events.

The frequent changes in end times demonstrate a focus on keeping warnings rel-
evant, while the less frequent changes in start times suggest confidence in initial
predictions unless substantial new data necessitated updates.

For the cancelled warnings, the analysis revealed that all 875 cases experienced
modifications in both their start and end times. This consistent adjustment ensures
that once a warning is cancelled, its entire temporal scope is updated accordingly.
The identical changes in start and end times across all cancelled warnings reflect a
standardized approach, where both timestamps are uniformly revised to accurately
mark the warning as inactive in all relevant records.

4.7 Lead Time Analysis of Warning Creation

Building on the chapter before which analyzed temporal adjustments in changed
warnings, this section specifically examines the lead time of warnings that under-
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went modifications. The analysis focuses on the time difference between when
these warnings were initially created or subsequently modified and their respec-
tive start times. The results provide insights into how much lead time GeoSphere
typically gives before issuing these warnings, or, in some cases, whether they were
created or altered after the predicted start time of the event. This is essential to
understand the proactive versus reactive nature of the system in responding to
evolving weather risks.

The histogram in Figure 2 shows the distribution of time differences for changed
warnings created or modified on the same day as the predicted weather event.
Negative values indicate warnings or modifications made after the event started,
while positive values represent actions taken before the event’s start time.

For same-day created warnings, represented by the blue bars, the number totaled
1,254 warnings, corresponding to 19.96% in total. The mean time difference was
-1.15 hours, with a median of -1.25 hours. This indicates that the majority of
warnings were issued close to the start of the event, often with a slight delay. The
minimum time difference of -14.41 hours highlights cases where warnings were
issued significantly after the event began, while the maximum lead time extended
to 15.67 hours.

Same-day modified warnings, shown in pink, amounted to 2,031, which makes up
32.33% of the total warnings. These warnings refer to cases where a warning was
issued and then modified on the same day of the predicted start time of the event.
These modifications had an average time difference of -0.60 hours and a median of
-0.97 hours. The minimum time difference of -18.61 hours shows substantial delays
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in some cases, while the maximum of 15.67 hours reflects proactive adjustments
made in advance.

The histogram in Figure 2 reveals that a significant portion of warnings, particu-
larly modifications, clustered around 0 hours, emphasizing real-time adjustments
made during or shortly after the event began. The broader distribution of modified
warnings indicates frequent updates in response to evolving conditions, compared
to created warnings which show a slightly narrower spread.

The histogram in Figure 3 illustrates the distribution of time differences for warn-
ings that were created or modified within a 6-hour window relative to the start
time of the weather event. The blue bars represent warnings created on the same
day as the event, while the pink bars indicate warnings modified on the same day.

A total of 591 warnings, which makes up 9.41% of the total warnings, were created
within the 6-hour window, which are scenarios where forecasts were issued either
shortly before or after the event’s onset. The clustering of blue bars around the 0
to -6 hour range indicates that many warnings were created in a reactive manner,
often as events were developing or after their start.

Conversely, the pink bars demonstrate a significantly higher count of same-day
modified warnings, with 1,455 cases, which correspond to 23.16% of the warn-
ings, falling within the 6-hour window. This suggests that modifications are more
frequent and often necessary as weather events unfold and more data becomes
available.

Overall, the chart highlights the importance of real-time adjustments in forecasting
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and provides insights into GeoSphere’s operational behavior in issuing and refining
weather warnings within critical timeframes. While the system manages to provide
lead times for many events, the reliance on last-minute changes suggests potential
for improving initial predictions to reduce the need for reactive adjustments.

The histogram in Figure 4 illustrates the distribution of time differences for can-
celled warnings that were created or modified on the same day as the predicted
weather event. Negative values represent warnings or modifications made after the
event began, while positive values indicate actions taken in advance of the event’s
start time.

For same-day created warnings, represented by the blue bars, the number totaled
270 warnings, which corresponds to 4.30% of the total warnings. The mean time
difference was -2.92 hours, with a median of -3.11 hours. This demonstrates that
the majority of these warnings were issued shortly after the event had already
started. The minimum time difference of -20.29 hours highlights instances where
warnings were issued long after the event had begun, while the maximum lead
time reached 14.42 hours.

Same-day modified warnings are shown in pink and amounted to 303, which makes
up for 4.82% of the total warnings. These modifications had an average time
difference of -1.31 hours and a median of -2.13 hours, indicating a tendency for
adjustments to occur close to or shortly after the event’s start. The minimum
time difference of -20.29 hours reveals substantial delays in a few cases, while the
maximum of 14.42 hours reflects proactive modifications made well in advance.
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The histogram in Figure 4 shows a noticeable clustering of warnings, especially
modifications, around 0 hours, that again emphasize real-time adjustments that
are made during or immediately after the event started. The broader distribution
for modifications compared to created warnings suggests that frequent updates
were made to refine the warnings.

The histogram in Figure 5 visualizes the distribution of time differences for can-
celled warnings that were created or modified within a 6-hour window around the
event’s start time. The blue bars represent warnings created within the window,
while the pink bars denote modified warnings.

A total of 71 warnings, which makes up 1.13% of the total warnings, were cre-
ated within this timeframe, which indicates instances where forecasts were issued
in close proximity to the event’s start. These cases often represent last-minute
forecasts or adjustments made as new data became available. The distribution of
created warnings is relatively narrow, clustering around the -6 to 0-hour range,
which highlights a tendency for these warnings to be issued and later cancelled re-
actively. On the other hand, 198 modified warnings, which corresponds to 3.15%,
were identified in the same window, showing that adjustments for cancelled warn-
ings were more frequent than new issuances.

This comparison demonstrates the importance of flexibility in weather warning sys-
tems, as a significant number of cancellations rely on modifications made shortly
before or after an event’s onset. It highlights GeoSphere’s adaptive approach in
handling cancelled warnings, where real-time updates play a crucial role in main-
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taining the accuracy and relevance of warnings, but also show room for improve-
ment.

4.8 Localized Assessment of Weather Warning Changes

The municipality-specific evolution vectors provide an overview of the changes
made to weather warnings across 2,750 different municipalities in Austria. These
vectors summarize key adjustments, such as transitions in warning levels, change
counts, and the distribution of warning types. This enables a better analysis of
how warnings evolved for each municipality and helps to identify trends in the
reliability of GeoSphere’s warning system on a local level.

A major advantage of these vectors lies in their ability to make data easily search-
able for each municipality. For a specific location, such as the municipality 60101
(Graz), it is possible to review a summary of all warnings that underwent changes
or cancellations and analyze the adjustments, as shown in Table 5 and 6. This
allows insights into the consistency and accuracy of forecasts at the municipal
level to help identify areas where the warning system was effective and areas that
require refinement.

Municipalities with fewer changes in their warning vectors generally indicate more
stable and precise forecasting, while locations with frequent modifications suggest
higher levels of uncertainty or rapidly changing weather conditions. The inclusion
of cancellation counts reflect GeoSphere’s approach in refining its warnings for dif-
ferent areas. The warning type distributions across all municipalities help identify
regions frequently impacted by specific weather events and offer input for targeted
improvements in forecasting.

Municipality Changed Warnings Warning Level Changes Warning Type Counts
Number Count (Initial → Final: Count) (Type: Count)

60101 400

1 → 2: 43
2 → 1: 7
2 → 3: 1
3 → 2: 1

Storm: 54
Rain: 54
Snow: 21

Black ice: 19
Thunderstorm: 252

Municipality Cancelled Warnings Warning Level Changes Warning Type Counts
Number Count (Initial → Final: Count) (Type: Count)

60101 93
1 → 0: 82
2 → 0: 11

Storm: 15
Rain: 28
Snow: 9

Black ice: 3
Thunderstorm: 38
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As illustrated in Tables 5 and 6, Graz experienced 400 changed warnings and
93 cancelled warnings. The vectors for Graz include statistics on warning level
transitions, and warning type distributions. For example, in changed warnings, the
most frequent level transition was from 1 to 2 with 43 times. Similarly, for cancelled
warnings, the majority of transitions involved warnings being downgraded from 1
to 0, consistent with the discontinuation of weather risks.

This example demonstrates how the municipality-specific vectors enable targeted
analysis of GeoSphere’s warning system at a local level. By making changes visible
at specific municipalities, these vectors provide a framework for evaluating the
performance and reliability of weather warnings in various regions.

4.9 Warning-Specific Datasets for Analyzing Weather Warn-

ing Adjustments

The ability to analyze and improve weather warnings relies on the availability
of structured and comprehensive datasets. To achieve this, new unified datasets
were created, combining key attributes of changed and cancelled warnings. These
datasets serve as a standardized foundation for evaluating the evolution of changed
and cancelled warnings, identifying patterns, and optimizing forecasting processes.
Consolidating different aspects of warnings into a single format enables for a better
analysis and provides insights into the changes made by GeoSphere in their weather
warnings.

The datasets integrate a range of information that captures different aspects of
warning adjustments. Each warning is assigned a unique identifier, making it
traceable throughout its lifecycle. Changes in the number of affected municipali-
ties, transitions between different warning types, and shifts in warning levels are
documented to provide insights into the geographic and risk-related adjustments
made during the warning. Numerical adjustments, such as intensity or magnitude
changes, are also included, along with indicators of modifications to the start and
end times of warnings. These attributes allow researchers to assess the accuracy
of initial forecasts and the rationale behind updates.

The datasets also highlight whether warnings were issued or modified on the same
day as the predicted event. This information sheds light on the lead time avail-
able to affected communities and the extent to which real-time adjustments were
necessary. Finally, the inclusion of a cancellation indicator enables an analysis
of warnings that were ultimately withdrawn and offer insights into potential false
positives.

By capturing a broad spectrum of attributes in a standardized format, the datasets
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support a wide range of analytical objectives. Researchers can identify patterns
in how warnings are adjusted, examine the timing of updates, and evaluate the
consistency of warnings across different municipalities. The data also provides
opportunities to study the accuracy of initial predictions and the effectiveness of
updates on the same day. These datasets are not only a foundation for under-
standing past warning behaviors, but also a tool for shaping the future prediction
technique of GeoSphere’s weather warning systems.
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5 Discussion

The analysis of GeoSphere’s weather warnings reveals key insights into their pro-
cesses and patterns. First, the results highlight the overall stability of the warning
system in terms of warning types and the rare modifications to them. This con-
sistency suggests that GeoSphere’s classification of weather events is robust and
reliable from the outset. However, changes such as cancellations or upward ad-
justments in warning levels reveal interesting dynamics.

The most frequent adjustment is the cancellation of lower severity warnings, indi-
cated by a warning level change from 1 to 0, and reflects a reassessment of risks
as conditions become less severe than expected. This behavior balances the need
to avoid over-alarming the public while maintaining credibility. In contrast, up-
ward adjustments, such as changes from level 1 to 2, occur only half as often and
indicate situations where initial forecasts underestimated the severity of the event.

The analysis of value changes further supports this duality of stability and respon-
siveness. While most warnings experience minimal adjustments, a considerable
proportion shows increases or decreases in severity. Positive changes suggest that
new data highlighted greater risks than initially predicted, while negative changes
reflect either overestimated initial forecasts or cancellations.

The analysis of temporal adjustments highlights GeoSphere’s strategy for main-
taining relevance in its warnings. The higher frequency of end time changes com-
pared to start time changes highlights the uncertainty in predicting the duration
of weather events. This is because forecasting the end time is more challenging,
as it is further in the future. The overlap of start and end time changes reveals
situations where forecasts were thoroughly revised and shows GeoSphere’s respon-
siveness to evolving conditions. This approach ensures that warnings remain up
to date.

The lead time analysis reveals critical insights into the timing of warnings. Many
warnings are issued just hours before the event’s predicted start, with a significant
portion of same-day warnings being created or modified in real time. This reac-
tive approach, particularly for modifications, reflects the challenges of forecasting
rapidly developing weather systems. Although GeoSphere demonstrates the abil-
ity to issue early alerts, the high frequency of last-minute changes highlights the
need for continuous updates to ensure accuracy.

The municipality-specific vectors developed in this thesis provide insights into
how warnings evolve across different regions. Municipalities with fewer changes
benefit from more stable forecasting, while those with frequent modifications may
experience higher uncertainty or rapidly changing conditions. This data can be
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instrumental in targeting areas for further refinement in the forecasting process.

Warning-specific vectors provide a detailed perspective on how individual warn-
ings evolve over time. Warnings with minimal changes indicate a higher degree of
forecasting accuracy and stability, while those with frequent adjustments highlight
events with greater uncertainty or dynamic conditions. This helps identifying pat-
terns in warning behaviors. By understanding the evolution of warnings, targeted
improvements can be made to enhance the precision and responsiveness of warning
systems.

The findings of this analysis offer valuable insights into GeoSphere’s weather warn-
ing system and suggest several areas for improvement. However, the most crucial
recommendation is to prioritize the communication of uncertainties in weather
warnings. Enhancing the way probabilities and potential variations are commu-
nicated will help the public better understand the inherent unpredictability of
weather events and the rationale behind warning updates.

One key finding is the stability in warning types, reflecting a reliable classification
process. However, the system occasionally issues low-severity warnings, which can
lead to unnecessary cancellations. Upward adjustments in warning levels indi-
cate the system’s adaptability, though they also suggest that the initial forecasts
may sometimes underestimate the severity of events. The frequent updates to end
times, compared to start times, highlight the challenge of predicting event dura-
tion. While real-time updates are crucial, increasing the lead time for warnings
would provide more time for preparation.

Clear and consistent messaging about the reasons for warning updates is essential.
By emphasizing the uncertainty inherent in weather predictions and highlighting
the potential for changes in severity or timing, GeoSphere can help the public
make more informed decisions. This transparent communication will not only
manage expectations, but also reduce confusion, especially when warnings evolve
in real-time. Ultimately, a clearer understanding of how forecasts change will foster
greater trust in the system and improve public preparedness.

In conclusion, focusing on clear communication of uncertainties would be an im-
pactful change GeoSphere could make. By consistently informing the public about
the rationale behind warning updates, whether due to new data, changing condi-
tions, or evolving forecasts, GeoSphere can strengthen its warning system. This
approach will ensure that the public is better equipped to respond to weather
events, to enhance confidence and effectiveness in weather preparedness.
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6 Conclusion and Future Work

This study examined how weather warnings issued by GeoSphere Austria have
evolved over time, specifically with respect to changes and cancellations. The
study reveals an efficient system that is proficient at properly classifying weather
phenomena, maintaining consistency in warning types, and responding to evolving
conditions through timely updates. The system’s strength lies in its ability to
adapt to new information and refine initial warnings as more data becomes avail-
able. This prioritization of safety is crucial, although frequent adjustments can
lead to public uncertainty regarding the severity and timing of events.

The results reveal a balance between stability and adaptability. While most warn-
ings are relatively consistent throughout their lifecycle, the system also shows
flexibility by modifying severity levels, values, affected municipalities, and start or
end times when necessary. This adaptability is critical for responding to changing
weather conditions, but requires clear communication to ensure public understand-
ing and trust. Miscommunications or frequent changes in warnings can undermine
the credibility of the system, even if the adjustments themselves are justified [14].

Future research could delve deeper into how the timing of updates impacts the
effectiveness of warnings in reducing risks and aiding preparation. Examining
whether earlier updates lead to better outcomes could provide insights into opti-
mizing lead times for more proactive warnings. Furthermore, exploring the rela-
tionship between the frequency of updates and public trust could guide improve-
ments in messaging strategies. Frequent updates may be necessary for accuracy
but could also lead to confusion or skepticism if not communicated effectively [14].

In conclusion, GeoSphere’s weather warning system is effective in delivering accu-
rate and timely warnings. However, to maximize its impact, it is crucial to focus
on the communication of uncertainties and adjustments. Transparent messaging
will foster better public understanding, improve preparation, and build trust in
the system. Ultimately, refining how uncertainties are conveyed will strengthen
the overall effectiveness of the system in safeguarding the public.
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Appendix

This analysis examines changes in warning messages, focusing on start and end
times, affected municipalities, warning levels, and other relevant attributes. The
goal is to identify patterns and gain a better understanding of how these warnings
evolve and are modified over time. Both changed and cancelled warnings are
considered in the study.

[ ]: # Importing necessary libraries

import pandas as pd # Pandas for data manipulation

import ast # Abstract Syntax Tree for handling Python expressions

import matplotlib.pyplot as plt # Matplotlib for plotting graphs

import numpy as np # Numpy for numerical operations

import dataframe_image as dfi # Library for exporting DataFrames

as images

from collections import defaultdict # Default dictionary for

handling default values

from matplotlib_venn import venn2 # Venn diagram for 2 sets

# Defining the file path for the warnings data

file_path = "data/warnings.csv"

# Reading the CSV file into a pandas DataFrame

warnings = pd.read_csv(file_path)

[ ]: # Counting unique warnings by ’Warning-ID’ and ’Sequence-ID’

unique_warnings = warnings[[’warnid’, ’verlaufid’]].dropna().

↪→drop_duplicates()

num_unique_warnings = unique_warnings.shape[0]

print(f"Number of unique warnings: {num_unique_warnings}")

In this step, we clean and structure the warning dataset to prepare it for further
analysis. This includes renaming columns for clarity, handling missing values,
and converting data types. We also identify and separate active and cancelled
warnings, ensuring that we can analyze changes over time. Finally, we filter out
duplicate or redundant entries and create two structured datasets: one for changed
warnings and one for cancelled warnings.

[ ]: # Renaming the columns in the warnings DataFrame to match

meaningful names
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warnings.columns = [’Warning-ID’, ’Change-ID’, ’Sequence-ID’,

’Status’, ’Start Time’, ’End Time’, ’Created’,

’File Created’, ’Municipalities’, ’Warning

Type’, ’Value’, ’Warning Level’]

# Filling missing values in specific columns with default values

warnings[’Sequence-ID’] = warnings[’Sequence-ID’].fillna(0)

warnings[’Municipalities’] = warnings[’Municipalities’].

↪→fillna(’[]’)

warnings[’Warning Type’] = warnings[’Warning Type’].fillna(0)

warnings[’Value’] = warnings[’Value’].fillna(0)

warnings[’Warning Level’] = warnings[’Warning Level’].fillna(0)

warnings[’Start Time’] = warnings[’Start Time’].fillna(0)

warnings[’End Time’] = warnings[’End Time’].fillna(0)

warnings[’Created’] = warnings[’Created’].fillna(0)

# Converting columns to appropriate data types (integers for ID/

↪→level columns, datetime for time-related columns)

warnings = warnings.astype({

’Sequence-ID’: ’int’,

’Warning Type’: ’int’,

’Value’: ’int’,

’Warning Level’: ’int’,

’Start Time’: ’datetime64[ns, UTC]’,

’End Time’: ’datetime64[ns, UTC]’,

’Created’: ’datetime64[ns, UTC]’,

’File Created’: ’datetime64[ns, UTC]’,

})

# Identifying rows where the status is ’aufgehoben’ (cancelled) by

grouping by ’Warning-ID’ and getting the last row

last_rows = warnings.groupby(’Warning-ID’).last().reset_index()

aufgehoben_rows = last_rows[last_rows[’Status’] == ’aufgehoben’]

# For each ’Warning-ID’, adding rows for the cancelled warnings

(where Sequence-ID > 0)

rows_to_add = []

for warn_id, group in warnings.groupby(’Warning-ID’):
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aufgehoben_row = aufgehoben_rows[aufgehoben_rows[’Warning-ID’]

== warn_id]

if not aufgehoben_row.empty:

for _, row in group.iterrows():

if row[’Sequence-ID’] > 0:

new_row = aufgehoben_row.iloc[0].copy()

new_row[’Sequence-ID’] = row[’Sequence-ID’]

rows_to_add.append(new_row)

# Concatenating the new rows with the original DataFrame and

sorting them by ’Warning-ID’ and ’Sequence-ID’

warnings_with_aufgehoben = pd.concat([warnings, pd.

↪→DataFrame(rows_to_add)], ignore_index = True)

warnings_with_aufgehoben =

warnings_with_aufgehoben[warnings_with_aufgehoben[’Sequence-ID’] >

0]

warnings_with_aufgehoben = warnings_with_aufgehoben.sort_values(by

= [’Warning-ID’, ’Sequence-ID’]).reset_index(drop = True)

# Filtering out warnings that have more than one entry for the

same Warning-ID and Sequence-ID (combined warnings)

group_counts = warnings_with_aufgehoben.groupby([’Warning-ID’,

’Sequence-ID’]).size().reset_index(name = ’Count’)

multiple_entries = group_counts[group_counts[’Count’] > 1]

# Merging warnings with multiple entries to find all combined

warnings

all_combined_warnings = warnings_with_aufgehoben.

↪→merge(multiple_entries[[’Warning-ID’, ’Sequence-ID’]],

on =

[’Warning-ID’, ’Sequence-ID’],

how =

’inner’)

# Sorting the combined warnings and identifying the first and last

occurrences of each Warning-ID and Sequence-ID combination

all_combined_warnings = all_combined_warnings.sort_values(by =

[’Warning-ID’, ’Sequence-ID’]).reset_index(drop = True)
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first_warnings = all_combined_warnings.groupby([’Warning-ID’,

’Sequence-ID’]).first().reset_index()

last_warnings = all_combined_warnings.groupby([’Warning-ID’,

’Sequence-ID’]).last().reset_index()

# Concatenating the first and last warnings and sorting them by

’Warning-ID’ and ’Sequence-ID’

combined_warnings = pd.concat([first_warnings, last_warnings],

ignore_index = True)

combined_warnings = combined_warnings.

↪→sort_values(by=[’Warning-ID’, ’Sequence-ID’]).reset_index(drop

= True)

# Extracting rows where the status is ’aufgehoben’ (cancelled)

cancelled_rows = combined_warnings[combined_warnings[’Status’] ==

’aufgehoben’]

# Initializing a list to store the rows that need to be removed or

cancelled

all_cancelled_rows = []

# Adding the previous row if its status is ’aktiv’ (active) when a

cancelled row is found

removed_indices = []

for index, row in cancelled_rows.iterrows():

if index > 0:

previous_row = combined_warnings.iloc[index - 1]

if previous_row[’Status’] == ’aktiv’:

all_cancelled_rows.append(previous_row)

all_cancelled_rows.append(row)

removed_indices.append(index - 1)

removed_indices.append(index)

# Creating a final DataFrame for the cancelled warnings and for

the changed warnings after removal

changed_warnings_final = pd.DataFrame(combined_warnings)

cancelled_warnings_final = pd.DataFrame(all_cancelled_rows)
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cancelled_warnings_final[’Warning-Sequence’] =

cancelled_warnings_final[’Warning-ID’].astype(str) + "_" +

cancelled_warnings_final[’Sequence-ID’].astype(str)

changed_warnings_final[’Warning-Sequence’] =

changed_warnings_final[’Warning-ID’].astype(str) + "_" +

changed_warnings_final[’Sequence-ID’].astype(str)

# Removing the cancelled warnings from the final changed warnings

DataFrame

changed_warnings_final =

changed_warnings_final[~changed_warnings_final[’Warning-Sequence’].

↪→isin(cancelled_warnings_final[’Warning-Sequence’])]

# Resetting the index of the changed warnings DataFrame after

removal

changed_warnings_final = changed_warnings_final.reset_index(drop =

True)

# Ensuring that the cancelled warnings DataFrame has the first

1750 rows if necessary

cancelled_warnings_final = cancelled_warnings_final.iloc[:1750].

↪→reset_index(drop = True)

# Displaying the final DataFrames

cancelled_warnings_final.head(10)

changed_warnings_final.head(10)

Before proceeding with further analysis, we check both the
changed_warnings_final and cancelled_warnings_final datasets for missing
values. This ensures data completeness and helps identify any gaps that may
require further cleaning or imputation. The results will indicate which columns
contain null values and how many entries are affected.

[ ]: # Checking for missing (null) values in the final DataFrames:

’changed_warnings_final’ and ’cancelled_warnings_final’

missing_values_in_changed = changed_warnings_final.isnull().sum()

# Counting missing values in ’changed_warnings_final’

missing_values_in_cancelled = cancelled_warnings_final.isnull().

↪→sum() # Counting missing values in ’cancelled_warnings_final’
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# Printing the result to show the number of missing values for

each column in both DataFrames

print("Missing values in changed_warnings_final:")

print(missing_values_in_changed) # Displaying missing values in

’changed_warnings_final’

print("\nMissing values in cancelled_warnings_final:")

print(missing_values_in_cancelled) # Displaying missing values in

’cancelled_warnings_final’

[ ]: cancelled_warnings_final.info()

changed_warnings_final.info()

print(len(cancelled_warnings_final))

In this step, we analyze changes in the affected municipalities for each warning.
We compare municipality lists between consecutive warning entries to detect ad-
ditions or removals. This helps in understanding how warnings evolve in terms of
geographic coverage and whether certain areas are repeatedly affected or removed
from alerts over time.

[ ]: # Function to calculate municipality changes by comparing two sets

of municipalities

def municipality_changes(first, last):

first_set = set(ast.literal_eval(first))

last_set = set(ast.literal_eval(last))

symmetric_difference = first_set.

↪→symmetric_difference(last_set)

return len(symmetric_difference)

# Creating a new column ’Municipality Changes’ and calculating

changes between consecutive rows

changed_warnings_final[’Municipality Changes’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_municipalities = changed_warnings_final.

↪→iloc[i][’Municipalities’]

second_municipalities = changed_warnings_final.iloc[i +

1][’Municipalities’]
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municipality_change =

municipality_changes(first_municipalities, second_municipalities)

changed_warnings_final.at[i, ’Municipality Changes’] = 0

changed_warnings_final.at[i + 1, ’Municipality Changes’] =

municipality_change

# Creating a new column ’Municipality Number Changes’ and

comparing the number of municipalities between consecutive rows

changed_warnings_final[’Municipality Number Changes’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_municipality_number = changed_warnings_final.

↪→iloc[i][’Municipalities’]

second_municipality_number = changed_warnings_final.iloc[i

+ 1][’Municipalities’]

first_length = len(set(ast.

↪→literal_eval(first_municipality_number)))

second_length = len(set(ast.

↪→literal_eval(second_municipality_number)))

if first_length != second_length:

changed_warnings_final.at[i, ’Municipality Number

Changes’] = 0

changed_warnings_final.at[i + 1, ’Municipality Number

Changes’] = 1

else:

changed_warnings_final.at[i, ’Municipality Number

Changes’] = 0

changed_warnings_final.at[i + 1, ’Municipality Number

Changes’] = 0

# Printing statistics about municipality rows and changes,

including percentage of changes and average number of changes

municipality_rows = len(changed_warnings_final[’Municipalities’])

print("Number of Municipality Rows:", municipality_rows)

print()
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municipality_changes =

changed_warnings_final[changed_warnings_final[’Municipality

Changes’] != 0]

print("Number of Municipality Changes:",

len(municipality_changes))

print("Percentage of Municipality Changes:",

round(len(municipality_changes) / (municipality_rows/2) * 100, 2),

"%")

# Calculating and displaying the average number of municipality

changes

average_municipality_changes =

changed_warnings_final[’Municipality Changes’].mean()

print("Average Municipality Changes: ",

round(average_municipality_changes, 2))

[ ]: # Function to calculate municipality changes by comparing two sets

of municipalities.

def municipality_changes(first, last):

first_set = set(ast.literal_eval(first))

last_set = set(ast.literal_eval(last))

symmetric_difference = first_set.

↪→symmetric_difference(last_set)

return len(symmetric_difference)

# Creating a new column ’Municipality Changes’ in the cancelled

warnings DataFrame and calculating changes.

cancelled_warnings_final[’Municipality Changes’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_municipalities = cancelled_warnings_final.

↪→iloc[i][’Municipalities’]

second_municipalities = cancelled_warnings_final.iloc[i +

1][’Municipalities’]

municipality_change =

municipality_changes(first_municipalities, second_municipalities)

cancelled_warnings_final.at[i, ’Municipality Changes’] = 0
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cancelled_warnings_final.at[i + 1, ’Municipality Changes’]

= municipality_change

# Creating a new column ’Municipality Number Changes’ and

comparing the number of municipalities between consecutive rows.

cancelled_warnings_final[’Municipality Number Changes’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_municipality_number = cancelled_warnings_final.

↪→iloc[i][’Municipalities’]

second_municipality_number = cancelled_warnings_final.

↪→iloc[i + 1][’Municipalities’]

first_length = len(set(ast.

↪→literal_eval(first_municipality_number)))

second_length = len(set(ast.

↪→literal_eval(second_municipality_number)))

if first_length != second_length:

cancelled_warnings_final.at[i, ’Municipality Number

Changes’] = 0

cancelled_warnings_final.at[i + 1, ’Municipality

Number Changes’] = 1

else:

cancelled_warnings_final.at[i, ’Municipality Number

Changes’] = 0

cancelled_warnings_final.at[i + 1, ’Municipality

Number Changes’] = 0

# Printing statistics about municipality rows and changes,

including percentage of changes and average number of changes.

municipality_rows =

len(cancelled_warnings_final[’Municipalities’])

print("Number of Municipality Rows:", municipality_rows)

print()

municipality_changes =

cancelled_warnings_final[cancelled_warnings_final[’Municipality

Changes’] != 0]
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print("Number of Municipality Changes:",

len(municipality_changes))

print("Percentage of Municipality Changes:",

round(len(municipality_changes) / (municipality_rows/2) * 100, 2),

"%")

# Calculating and displaying the average number of municipality

changes.

average_municipality_changes =

cancelled_warnings_final[’Municipality Changes’].mean()

print("Average Municipality Changes: ",

round(average_municipality_changes, 2))

This step examines how the number of affected municipalities changes between con-
secutive warnings. By comparing the count of municipalities in each warning pair,
we can identify whether the coverage area has increased, decreased, or remained
the same. This helps in assessing the scale and impact of warning modifications.

[ ]: ## Municipality Number Comparison: Counting and displaying the

number of municipality number changes

# and their percentage in the dataset.

municipality_rows = len(changed_warnings_final[’Municipalities’])

municipality_number_changes =

changed_warnings_final[changed_warnings_final[’Municipality Number

Changes’] == 1]

print("Number of Municipality Number Changes:",

int(len(municipality_number_changes)))

print("Percentage of Municipality Number Changes:",

round(len(municipality_number_changes) / (municipality_rows/2) *

100, 2), "%")

# Calculating the difference in the number of municipalities

between consecutive rows and storing the result.

changed_warnings_final[’Difference in Municipality Numbers’] = 0

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_municipalities = set(ast.

↪→literal_eval(changed_warnings_final.iloc[i][’Municipalities’]))
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second_municipalities = set(ast.

↪→literal_eval(changed_warnings_final.iloc[i +

1][’Municipalities’]))

first_length = len(first_municipalities)

second_length = len(second_municipalities)

difference = second_length - first_length

changed_warnings_final.at[i + 1, ’Difference in

Municipality Numbers’] = difference

changed_warnings_final.at[i, ’Difference in Municipality

Numbers’] = 0

# Extracting the differences in municipality numbers from every

second row for further analysis.

differences = changed_warnings_final.iloc[1::2][’Difference in

Municipality Numbers’]

# Calculating the average absolute difference in municipality

numbers.

absolute_differences = changed_warnings_final[’Difference in

Municipality Numbers’].abs()

average_municipality_number_change = absolute_differences.mean()

print("Average Municipality Number Changes (absolute values): ",

round(average_municipality_number_change, 2))

print()

# Counting the number of increases, decreases, and cases where the

number of municipalities remained unchanged.

positive_changes = differences > 0

negative_changes = differences < 0

no_changes = differences == 0

print(f"Number of Increases: {positive_changes.sum()}")

print(f"Number of Decreases: {negative_changes.sum()}")

print(f"Number of No Changes: {no_changes.sum()}")

print()
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# Visualizing the distribution of municipality number changes

using a histogram.

plt.figure(figsize = (8, 5))

bins = np.arange(-1000, 1001, 250)

plt.hist(differences, bins = bins, color = ’pink’, alpha = 0.8,

edgecolor = ’white’)

labels = [

f"({bins[i]}) - ({bins[i + 1]})" if bins[i] < 0 and bins[i +

1] < 0

else f"({bins[i]}) - {bins[i + 1]}" if bins[i] < 0

else f"{bins[i]} - ({bins[i + 1]})" if bins[i + 1] < 0

else f"{bins[i]} - {bins[i + 1]}"

for i in range(len(bins) - 1)

]

plt.xticks(ticks = (bins[:-1] + bins[1:]) / 2, labels = labels,

rotation = 45)

plt.xlabel("Change in the Number of Affected Municipalities",

fontsize = 12)

plt.xlim(-1000, 1000)

plt.ylabel("Frequency", fontsize = 12)

plt.tight_layout()

plt.savefig(’plots/

↪→changed_municipality_number_changes_distribution.png’)

plt.show()

[ ]: warnings_with_minus_1000 =

changed_warnings_final[changed_warnings_final[’Difference in

Municipality Numbers’] <= -1000]

warnings_with_minus_1000[[’Warning-ID’, ’Sequence-ID’,

’Change-ID’, ’Difference in Municipality Numbers’, ’Warning Type’,

’Warning Level’]].head(5)

[ ]: warning_1093 = warnings[warnings[’Warning-ID’] == 1093]

warning_1093

[ ]: # Municipality Number Comparison: Counting and displaying the

number of municipality number changes

# and their percentage in the cancelled warnings dataset.

municipality_rows =

len(cancelled_warnings_final[’Municipalities’])
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municipality_number_changes =

cancelled_warnings_final[cancelled_warnings_final[’Municipality

Number Changes’] == 1]

print("Number of Municipality Number Changes:",

int(len(municipality_number_changes)))

print("Percentage of Municipality Number Changes:",

round(len(municipality_number_changes) / (municipality_rows/2) *

100, 2), "%")

# Calculating the difference in the number of municipalities

between consecutive rows and storing the result.

cancelled_warnings_final[’Difference in Municipality Numbers’] = 0

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_municipalities = set(ast.

↪→literal_eval(cancelled_warnings_final.

↪→iloc[i][’Municipalities’]))

second_municipalities = set(ast.

↪→literal_eval(cancelled_warnings_final.iloc[i +

1][’Municipalities’]))

first_length = len(first_municipalities)

second_length = len(second_municipalities)

difference = second_length - first_length

cancelled_warnings_final.at[i + 1, ’Difference in

Municipality Numbers’] = difference

cancelled_warnings_final.at[i, ’Difference in Municipality

Numbers’] = 0

# Extracting the differences in municipality numbers from every

second row for further analysis.

differences = cancelled_warnings_final.iloc[1::2][’Difference in

Municipality Numbers’]

# Calculating the average absolute difference in municipality

numbers.
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absolute_differences = cancelled_warnings_final[’Difference in

Municipality Numbers’].abs()

average_municipality_number_change = absolute_differences.mean()

print("Average Municipality Number Changes (absolute values): ",

round(average_municipality_number_change, 2))

print()

# Counting the number of increases, decreases, and cases where the

number of municipalities remained unchanged.

positive_changes = differences > 0

negative_changes = differences < 0

no_changes = differences == 0

print(f"Number of Increases: {positive_changes.sum()}")

print(f"Number of Decreases: {negative_changes.sum()}")

print(f"Number of No Changes: {no_changes.sum()}")

print()

# Visualizing the distribution of municipality number changes

using a histogram.

plt.figure(figsize = (8, 5))

plt.hist(differences, bins = range(-1500, 1, 250), color = ’pink’,

alpha = 0.8, edgecolor = ’white’)

plt.xlabel("Change in the Number of Affected Municipalities",

fontsize = 12)

plt.xlim(-1500, 0)

plt.ylabel("Frequency", fontsize = 12)

bins = plt.hist(differences, bins = range(-1500, 1, 250), color =

’pink’, edgecolor = ’white’)[1]

labels = [

f"({int(bins[i])}) - ({int(bins[i + 1])})" if bins[i] < 0 and

bins[i + 1] < 0

else f"({int(bins[i])}) - {int(bins[i + 1])}" if bins[i] < 0

else f"{int(bins[i])} - ({int(bins[i + 1])})" if bins[i + 1] <

0

else f"{int(bins[i])} - {int(bins[i + 1])}"

for i in range(len(bins) - 1)

]
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plt.xticks(bins[:-1] + (bins[1] - bins[0]) / 2, labels, rotation =

45)

plt.tight_layout()

plt.savefig(’plots/

↪→cancelled_municipality_number_changes_distribution.png’)

plt.show()

[ ]: warnings_with_minus_1000 =

cancelled_warnings_final[cancelled_warnings_final[’Difference in

Municipality Numbers’] <= -1000]

warnings_with_minus_1000[[’Warning-ID’, ’Sequence-ID’,

’Change-ID’, ’Difference in Municipality Numbers’]].head(5)

[ ]: warning_543_1 =

cancelled_warnings_final[(cancelled_warnings_final[’Warning-ID’]

== 543) & (cancelled_warnings_final[’Sequence-ID’] == 1)]

warning_543_1[[’Warning-ID’, ’Sequence-ID’, ’Change-ID’, ’Warning

Type’, ’Warning Level’]].head(1)

[ ]: warning_543_2 =

cancelled_warnings_final[(cancelled_warnings_final[’Warning-ID’]

== 543) & (cancelled_warnings_final[’Sequence-ID’] == 2)]

warning_543_2[[’Warning-ID’, ’Sequence-ID’, ’Change-ID’, ’Warning

Type’, ’Warning Level’]].head(1)

[ ]: warning_604 =

cancelled_warnings_final[(cancelled_warnings_final[’Warning-ID’]

== 604) & (cancelled_warnings_final[’Sequence-ID’] == 1)]

warning_604[[’Warning-ID’, ’Sequence-ID’, ’Change-ID’, ’Warning

Type’, ’Warning Level’]].head(1)

[ ]: warning_697 =

cancelled_warnings_final[(cancelled_warnings_final[’Warning-ID’]

== 697) & (cancelled_warnings_final[’Sequence-ID’] == 1)]

warning_697[[’Warning-ID’, ’Sequence-ID’, ’Change-ID’, ’Warning

Type’, ’Warning Level’]].head(1)

[ ]: warning_881 =

cancelled_warnings_final[(cancelled_warnings_final[’Warning-ID’]

== 881) & (cancelled_warnings_final[’Sequence-ID’] == 1)]
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warning_881[[’Warning-ID’, ’Sequence-ID’, ’Change-ID’, ’Warning

Type’, ’Warning Level’]].head(1)

Here, we analyze changes in the type of warnings issued. By comparing consecutive
entries, we identify whether a warning has been modified to a different type, such
as shifting from one hazard category to another. This helps in understanding how
warnings evolve in response to new information or changing conditions.

[ ]: # Warning Type Changes: This block creates a new column to track

changes in warning types between consecutive rows.

changed_warnings_final[’Warning Type Changes’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_warning_type = changed_warnings_final.

↪→iloc[i][’Warning Type’]

second_warning_type = changed_warnings_final.iloc[i +

1][’Warning Type’]

if first_warning_type != second_warning_type:

changed_warnings_final.at[i, ’Warning Type Changes’] =

0

changed_warnings_final.at[i + 1, ’Warning Type

Changes’] = 1

else:

changed_warnings_final.at[i, ’Warning Type Changes’] =

0

changed_warnings_final.at[i + 1, ’Warning Type

Changes’] = 0

# Warning Type Comparison: This section calculates and prints the

number and percentage of warning type changes.

warning_type_rows = len(changed_warnings_final[’Warning Type’])

print("Number of Warning Type Rows:", warning_type_rows)

warning_type_changes =

changed_warnings_final[changed_warnings_final[’Warning Type

Changes’] != 0]

print("Number of Warning Type Changes:",

len(warning_type_changes))
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percentage_warning_type_changes = len(warning_type_changes) /

(warning_type_rows / 2) * 100

print("Percentage of Warning Type Changes:",

round(percentage_warning_type_changes, 2), "%")

print()

# Difference in Warning Type: This block records the specific

warning types that changed between consecutive rows.

changed_warnings_final[’Difference in Warning Type’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_warning_type = changed_warnings_final.

↪→iloc[i][’Warning Type’]

second_warning_type = changed_warnings_final.iloc[i +

1][’Warning Type’]

if first_warning_type != second_warning_type:

changed_warnings_final.at[i, ’Difference in Warning

Type’] = first_warning_type

changed_warnings_final.at[i + 1, ’Difference in

Warning Type’] = second_warning_type

else:

changed_warnings_final.at[i, ’Difference in Warning

Type’] = 0

changed_warnings_final.at[i + 1, ’Difference in

Warning Type’] = 0

# Counting the different Changes: This section counts the

frequency of each warning type change pair.

pair_change_frequencies = {}

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_warning_type_change = changed_warnings_final.

↪→iloc[i][’Difference in Warning Type’]

second_warning_type_change = changed_warnings_final.iloc[i

+ 1][’Difference in Warning Type’]

if first_warning_type_change !=

second_warning_type_change:
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pair = (first_warning_type_change,

second_warning_type_change)

if pair in pair_change_frequencies:

pair_change_frequencies[pair] += 1

else:

pair_change_frequencies[pair] = 1

# Creating a DataFrame to display the frequency of warning type

changes.

pair_change_frequencies_df = pd.DataFrame(

list(pair_change_frequencies.items()),

columns = [’Warning Type Change’, ’Frequency’]

).sort_values(by = ’Frequency’, ascending = False)

print(pair_change_frequencies_df)

[ ]: # Warning Type Changes: This section creates a new column to track

changes in warning types between consecutive rows.

cancelled_warnings_final[’Warning Type Changes’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_warning_type = cancelled_warnings_final.

↪→iloc[i][’Warning Type’]

second_warning_type = cancelled_warnings_final.iloc[i +

1][’Warning Type’]

if first_warning_type != second_warning_type:

cancelled_warnings_final.at[i, ’Warning Type Changes’]

= 0

cancelled_warnings_final.at[i + 1, ’Warning Type

Changes’] = 1

else:

cancelled_warnings_final.at[i, ’Warning Type Changes’]

= 0

cancelled_warnings_final.at[i + 1, ’Warning Type

Changes’] = 0

# Warning Type Comparison: This part calculates and displays the

number and percentage of warning type changes.
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warning_type_rows = len(cancelled_warnings_final[’Warning Type’])

print("Number of Warning Type Rows:", warning_type_rows)

warning_type_changes =

cancelled_warnings_final[cancelled_warnings_final[’Warning Type

Changes’] != 0]

print("Number of Warning Type Changes:",

len(warning_type_changes))

percentage_warning_type_changes = len(warning_type_changes) /

(warning_type_rows / 2) * 100

print("Percentage of Warning Type Changes:",

round(percentage_warning_type_changes, 2), "%")

print()

# Difference in Warning Type: This section stores the specific

warning types that changed between consecutive rows.

cancelled_warnings_final[’Difference in Warning Type’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_warning_type = cancelled_warnings_final.

↪→iloc[i][’Warning Type’]

second_warning_type = cancelled_warnings_final.iloc[i +

1][’Warning Type’]

if first_warning_type != second_warning_type:

cancelled_warnings_final.at[i, ’Difference in Warning

Type’] = first_warning_type

cancelled_warnings_final.at[i + 1, ’Difference in

Warning Type’] = second_warning_type

else:

cancelled_warnings_final.at[i, ’Difference in Warning

Type’] = 0

cancelled_warnings_final.at[i + 1, ’Difference in

Warning Type’] = 0

# Counting the different Changes: This section counts the

frequency of each warning type change pair.

pair_change_frequencies = {}
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for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_warning_type_change = cancelled_warnings_final.

↪→iloc[i][’Difference in Warning Type’]

second_warning_type_change = cancelled_warnings_final.

↪→iloc[i + 1][’Difference in Warning Type’]

if first_warning_type_change !=

second_warning_type_change:

pair = (first_warning_type_change,

second_warning_type_change)

if pair in pair_change_frequencies:

pair_change_frequencies[pair] += 1

else:

pair_change_frequencies[pair] = 1

# Creating a DataFrame to display the frequency of warning type

changes.

pair_change_frequencies_df = pd.DataFrame(

list(pair_change_frequencies.items()),

columns = [’Warning Type Change’, ’Frequency’]

).sort_values(by = ’Frequency’, ascending = False)

print(pair_change_frequencies_df)

This step examines how the severity of warnings changes over time. By comparing
the warning levels in consecutive entries, we can detect whether a warning has been
upgraded, downgraded, or remained the same. This analysis provides insights into
how risk assessments evolve as situations develop.

[ ]: # Warning Level Changes: This section creates a new column to

track changes in warning levels between consecutive rows.

changed_warnings_final[’Warning Level Changes’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_warning_level = changed_warnings_final.

↪→iloc[i][’Warning Level’]

second_warning_level = changed_warnings_final.iloc[i +

1][’Warning Level’]
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if first_warning_level != second_warning_level:

changed_warnings_final.at[i, ’Warning Level Changes’]

= 0

changed_warnings_final.at[i + 1, ’Warning Level

Changes’] = 1

else:

changed_warnings_final.at[i, ’Warning Level Changes’]

= 0

changed_warnings_final.at[i + 1, ’Warning Level

Changes’] = 0

# Warning Level Comparison: This part calculates and displays the

number and percentage of warning level changes.

warning_level_rows = len(changed_warnings_final[’Warning Level’])

print("Number of Warning Level Rows:", warning_level_rows)

warning_level_changes =

changed_warnings_final[changed_warnings_final[’Warning Level

Changes’] != 0]

print("Number of Warning Level Changes:",

len(warning_level_changes))

percentage_warning_level_changes = len(warning_level_changes) /

(warning_level_rows / 2) * 100

print("Percentage of Warning Level Changes:",

round(percentage_warning_level_changes, 2), "%")

print()

# Difference in Warning Level: This section stores the specific

warning levels that changed between consecutive rows.

changed_warnings_final[’Difference in Warning Level’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_warning_level = changed_warnings_final.

↪→iloc[i][’Warning Level’]

second_warning_level = changed_warnings_final.iloc[i +

1][’Warning Level’]

if first_warning_level != second_warning_level:

60



changed_warnings_final.at[i, ’Difference in Warning

Level’] = first_warning_level

changed_warnings_final.at[i + 1, ’Difference in

Warning Level’] = second_warning_level

else:

changed_warnings_final.at[i, ’Difference in Warning

Level’] = 0

changed_warnings_final.at[i + 1, ’Difference in

Warning Level’] = 0

# Counting the different Changes: This section counts the

frequency of each warning level change pair.

pair_change_frequencies = {}

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_warning_level_change = changed_warnings_final.

↪→iloc[i][’Difference in Warning Level’]

second_warning_level_change = changed_warnings_final.

↪→iloc[i + 1][’Difference in Warning Level’]

if first_warning_level_change !=

second_warning_level_change:

pair = (first_warning_level_change,

second_warning_level_change)

if pair in pair_change_frequencies:

pair_change_frequencies[pair] += 1

else:

pair_change_frequencies[pair] = 1

# Creating a DataFrame to display the frequency of warning level

changes.

pair_change_frequencies_df = pd.DataFrame(

list(pair_change_frequencies.items()),

columns = [’Warning Level Change’, ’Frequency’]

).sort_values(by = ’Frequency’, ascending = False)

print(pair_change_frequencies_df)
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[ ]: # Warning Level Changes: This section creates a new column to

track changes in warning levels between consecutive rows.

cancelled_warnings_final[’Warning Level Changes’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_warning_level = cancelled_warnings_final.

↪→iloc[i][’Warning Level’]

second_warning_level = cancelled_warnings_final.iloc[i +

1][’Warning Level’]

if first_warning_level != second_warning_level:

cancelled_warnings_final.at[i, ’Warning Level

Changes’] = 0

cancelled_warnings_final.at[i + 1, ’Warning Level

Changes’] = 1

else:

cancelled_warnings_final.at[i, ’Warning Level

Changes’] = 0

cancelled_warnings_final.at[i + 1, ’Warning Level

Changes’] = 0

# Warning Level Comparison: This part calculates and displays the

number and percentage of warning level changes.

warning_level_rows = len(cancelled_warnings_final[’Warning

Level’])

print("Number of Warning Level Rows:", warning_level_rows)

warning_level_changes =

cancelled_warnings_final[cancelled_warnings_final[’Warning Level

Changes’] != 0]

print("Number of Warning Level Changes:",

len(warning_level_changes))

percentage_warning_level_changes = len(warning_level_changes) /

(warning_level_rows / 2) * 100

print("Percentage of Warning Level Changes:",

round(percentage_warning_level_changes, 2), "%")

print()
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# Difference in Warning Level: This section stores the specific

warning levels that changed between consecutive rows.

cancelled_warnings_final[’Difference in Warning Level’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_warning_level = cancelled_warnings_final.

↪→iloc[i][’Warning Level’]

second_warning_level = cancelled_warnings_final.iloc[i +

1][’Warning Level’]

if first_warning_level != second_warning_level:

cancelled_warnings_final.at[i, ’Difference in Warning

Level’] = first_warning_level

cancelled_warnings_final.at[i + 1, ’Difference in

Warning Level’] = second_warning_level

else:

cancelled_warnings_final.at[i, ’Difference in Warning

Level’] = 0

cancelled_warnings_final.at[i + 1, ’Difference in

Warning Level’] = 0

# Counting the different Changes: This section counts the

frequency of each warning level change pair.

pair_change_frequencies = {}

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_warning_level_change = cancelled_warnings_final.

↪→iloc[i][’Difference in Warning Level’]

second_warning_level_change = cancelled_warnings_final.

↪→iloc[i + 1][’Difference in Warning Level’]

if first_warning_level_change !=

second_warning_level_change:

pair = (first_warning_level_change,

second_warning_level_change)

if pair in pair_change_frequencies:

pair_change_frequencies[pair] += 1

else:

pair_change_frequencies[pair] = 1
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# Creating a DataFrame to display the frequency of warning level

changes.

pair_change_frequencies_df = pd.DataFrame(

list(pair_change_frequencies.items()),

columns = [’Warning Level Change’, ’Frequency’]

).sort_values(by = ’Frequency’, ascending = False)

print(pair_change_frequencies_df)

This analysis focuses on changes in the Value field of warnings, which could rep-
resent measurements like temperature, wind speed, or water levels. By comparing
values in consecutive warnings, we can track how key warning parameters fluctuate
over time and assess the severity of these changes.

[ ]: # Value Changes: This section creates a new column to track

changes in the ’Value’ column between consecutive rows.

changed_warnings_final[’Value Changes’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_value = changed_warnings_final.iloc[i][’Value’]

second_value = changed_warnings_final.iloc[i + 1][’Value’]

if first_value != second_value:

changed_warnings_final.at[i, ’Value Changes’] = 0

changed_warnings_final.at[i + 1, ’Value Changes’] = 1

else:

changed_warnings_final.at[i, ’Value Changes’] = 0

changed_warnings_final.at[i + 1, ’Value Changes’] = 0

# Value Comparison: This part calculates and displays the number

and percentage of value changes.

value_rows = len(changed_warnings_final[’Value’])

print("Number of Value Rows:", value_rows)

value_changes =

changed_warnings_final[changed_warnings_final[’Value Changes’] !=

0]

print("Number of Value Changes:", (len(value_changes)))
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print("Percentage of Value Changes:", round((len(value_changes) /

((value_rows / 2)) * 100), 2), "%")

# Value Difference Changes: This section calculates the numerical

difference in values between consecutive rows.

changed_warnings_final[’Difference in Value Numbers’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_value = changed_warnings_final.iloc[i][’Value’]

second_value = changed_warnings_final.iloc[i + 1][’Value’]

difference = second_value - first_value

changed_warnings_final.at[i + 1, ’Difference in Value

Numbers’] = difference

changed_warnings_final.at[i, ’Difference in Value

Numbers’] = 0 # Set first row of each pair to 0

# Extract every second row (differences only) for analysis.

differences_values = changed_warnings_final.iloc[1::2][’Difference

in Value Numbers’]

# Calculating the absolute average change in values.

absolute_differences_values = differences_values.abs()

average_value_number_change = absolute_differences_values.mean()

print("Average Value Number Changes (absolute values): ",

round(average_value_number_change, 2))

[ ]: # Extract every second row (differences only) for analysis,

including the warning type

differences_values_with_type = changed_warnings_final.iloc[1::

↪→2][[’Warning Type’, ’Difference in Value Numbers’]]

# Calculate the average difference per warning type

average_changes_per_type = differences_values_with_type.

↪→groupby(’Warning Type’, as_index=False)[’Difference in Value

Numbers’].mean()

# Display the average change for each warning type
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print("Average Value Change per Warning Type:")

print(average_changes_per_type)

# Calculate the absolute average change per warning type

absolute_average_changes_per_type = differences_values_with_type.

↪→groupby(’Warning Type’, as_index=False)[’Difference in Value

Numbers’].apply(lambda x: x.abs().mean())

# Display the absolute average change for each warning type

print("Absolute Average Value Change per Warning Type:")

print(absolute_average_changes_per_type)

[ ]: # Add a new column for percentage change in value

changed_warnings_final[’Percentage Value Change’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_value = changed_warnings_final.iloc[i][’Value’]

second_value = changed_warnings_final.iloc[i + 1][’Value’]

if first_value != 0: # Avoid division by zero

percentage_change = (second_value / first_value) * 100

else:

percentage_change = None # Set to None if first value

is zero to avoid errors

changed_warnings_final.at[i + 1, ’Percentage Value

Change’] = percentage_change

changed_warnings_final.at[i, ’Percentage Value Change’] =

0 # Set first row of each pair to 0

# Extract every second row (percentage changes only) for analysis.

percentage_changes = changed_warnings_final.iloc[1::2][’Percentage

Value Change’]

# Calculate the average percentage change (excluding None values)

average_percentage_change = percentage_changes.dropna().mean()

print("Average Percentage Value Change: ",

round(average_percentage_change, 2), "%")
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[ ]: # Value Changes: This section creates a new column to track

changes in the ’Value’ column between consecutive rows.

cancelled_warnings_final[’Value Changes’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_value = cancelled_warnings_final.iloc[i][’Value’]

second_value = cancelled_warnings_final.iloc[i +

1][’Value’]

if first_value != second_value:

cancelled_warnings_final.at[i, ’Value Changes’] = 0

cancelled_warnings_final.at[i + 1, ’Value Changes’] =

1

else:

cancelled_warnings_final.at[i, ’Value Changes’] = 0

cancelled_warnings_final.at[i + 1, ’Value Changes’] =

0

# Value Comparison: This part calculates and displays the number

and percentage of value changes.

value_rows = len(cancelled_warnings_final[’Value’])

print("Number of Value Rows:", value_rows)

value_changes =

cancelled_warnings_final[cancelled_warnings_final[’Value Changes’]

!= 0]

print("Number of Value Changes:", (len(value_changes)))

print("Percentage of Value Changes:", round((len(value_changes) /

((value_rows / 2)) * 100), 2), "%")

# Value Difference Changes: This section calculates the numerical

difference in values between consecutive rows.

cancelled_warnings_final[’Difference in Value Numbers’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_value = cancelled_warnings_final.iloc[i][’Value’]

second_value = cancelled_warnings_final.iloc[i +

1][’Value’]
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difference = second_value - first_value

cancelled_warnings_final.at[i + 1, ’Difference in Value

Numbers’] = difference

cancelled_warnings_final.at[i, ’Difference in Value

Numbers’] = 0 # Set first row of each pair to 0

# Extract every second row (differences only) for analysis.

differences_values = cancelled_warnings_final.iloc[1::

↪→2][’Difference in Value Numbers’]

# Calculating the absolute average change in values.

absolute_differences_values = differences_values.abs()

average_value_number_change = absolute_differences_values.mean()

print("Average Value Number Changes (absolute values): ",

round(average_value_number_change, 2))

[ ]: # Extract every second row (differences only) for analysis,

including the warning type

differences_values_with_type = cancelled_warnings_final.iloc[1::

↪→2].copy() # Create a copy for modification

# Assign the ’Warning Type’ from the previous row (i.e., the first

row of the pair)

differences_values_with_type[’Warning Type’] =

cancelled_warnings_final.iloc[::2][’Warning Type’].values

# Calculate the average difference per warning type

average_changes_per_type = differences_values_with_type.

↪→groupby(’Warning Type’)[’Difference in Value Numbers’].mean()

# Calculate the absolute average change per warning type

absolute_average_changes_per_type = differences_values_with_type.

↪→groupby(’Warning Type’)[’Difference in Value Numbers’].

↪→apply(lambda x: x.abs().mean())

# Display the results with Warning Type

print("Average Value Change per Warning Type:")

for warning_type, value in average_changes_per_type.items():
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print(f"Warning Type {warning_type}: {value:.2f}")

print("\nAbsolute Average Value Change per Warning Type:")

for warning_type, value in absolute_average_changes_per_type.

↪→items():

print(f"Warning Type {warning_type}: {value:.2f}")

This analysis examines modifications in the start and end times of warnings. By
comparing timestamps between consecutive entries, we can identify delays, exten-
sions, or rescheduling of warnings. Understanding these time-based changes helps
in assessing how warnings are adjusted in response to evolving situations.

[ ]: # Changes in Start Time: This section tracks changes in the ’Start

Time’ column between consecutive rows.

changed_warnings_final[’Start Time Changes’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_start_time = changed_warnings_final.iloc[i][’Start

Time’]

second_start_time = changed_warnings_final.iloc[i +

1][’Start Time’]

if first_start_time != second_start_time:

changed_warnings_final.at[i, ’Start Time Changes’] =

first_start_time

changed_warnings_final.at[i + 1, ’Start Time Changes’]

= second_start_time

else:

changed_warnings_final.at[i, ’Start Time Changes’] = 1

changed_warnings_final.at[i + 1, ’Start Time Changes’]

= 1

# Changes in End Time: This section tracks changes in the ’End

Time’ column between consecutive rows.

changed_warnings_final[’End Time Changes’] = None

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_end_time = changed_warnings_final.iloc[i][’End

Time’]
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second_end_time = changed_warnings_final.iloc[i + 1][’End

Time’]

if first_end_time != second_end_time:

changed_warnings_final.at[i, ’End Time Changes’] =

first_end_time

changed_warnings_final.at[i + 1, ’End Time Changes’] =

second_end_time

else:

changed_warnings_final.at[i, ’End Time Changes’] = 1

changed_warnings_final.at[i + 1, ’End Time Changes’] =

1

# Count rows where ’Start Time Changes’ is not equal to 1

start_time_changes_count = int((changed_warnings_final[’Start Time

Changes’] != 1).sum()/2)

# Count rows where ’End Time Changes’ is not equal to 1

end_time_changes_count = int((changed_warnings_final[’End Time

Changes’] != 1).sum()/2)

print(f"Number of rows with changes in Start Time:

{start_time_changes_count}")

print(f"Number of rows with changes in End Time:

{end_time_changes_count}")

[ ]: # Changes in Start Time: This section tracks changes in the ’Start

Time’ column between consecutive rows.

cancelled_warnings_final[’Start Time Changes’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_start_time = cancelled_warnings_final.iloc[i][’Start

Time’]

second_start_time = cancelled_warnings_final.iloc[i +

1][’Start Time’]

if first_start_time != second_start_time:

cancelled_warnings_final.at[i, ’Start Time Changes’] =

first_start_time
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cancelled_warnings_final.at[i + 1, ’Start Time

Changes’] = second_start_time

else:

cancelled_warnings_final.at[i, ’Start Time Changes’] =

1

cancelled_warnings_final.at[i + 1, ’Start Time

Changes’] = 1

# Changes in End Time: This section tracks changes in the ’End

Time’ column between consecutive rows.

cancelled_warnings_final[’End Time Changes’] = None

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_end_time = cancelled_warnings_final.iloc[i][’End

Time’]

second_end_time = cancelled_warnings_final.iloc[i +

1][’End Time’]

if first_end_time != second_end_time:

cancelled_warnings_final.at[i, ’End Time Changes’] =

first_end_time

cancelled_warnings_final.at[i + 1, ’End Time Changes’]

= second_end_time

else:

cancelled_warnings_final.at[i, ’End Time Changes’] = 1

cancelled_warnings_final.at[i + 1, ’End Time Changes’]

= 1

# Count rows where ’Start Time Changes’ is not equal to 1

start_time_changes_count = int((cancelled_warnings_final[’Start

Time Changes’] != 1).sum()/2)

# Count rows where ’End Time Changes’ is not equal to 1

end_time_changes_count = int((cancelled_warnings_final[’End Time

Changes’] != 1).sum()/2)

print(f"Number of rows with changes in Start Time:

{start_time_changes_count}")
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print(f"Number of rows with changes in End Time:

{end_time_changes_count}")

This step analyzes whether the Start Time and End Time of warnings were mod-
ified together or independently. By comparing changes in these timestamps across
warning pairs, we can determine if adjustments are typically made simultaneously
or if only one time component is altered. This provides insights into how warnings
are updated over time.

[ ]: # Start Time Comparison: This section counts and displays the

number of start time changes in the dataset.

start_time_rows =

changed_warnings_final[changed_warnings_final[’Start Time’].

↪→notnull()]

print("Number of Start Time Rows:", len(start_time_rows))

# Filtering and counting rows where start time has changed.

start_time_changes =

changed_warnings_final[changed_warnings_final[’Start Time

Changes’].apply(lambda x: isinstance(x, pd.Timestamp))]

print("Number of Start Time Changes:", int(len(start_time_changes)

/ 2))

print()

# End Time Comparison: This section counts and displays the number

of end time changes in the dataset.

end_time_rows = changed_warnings_final[changed_warnings_final[’End

Time’].notnull()]

print("Number of End Time Rows:", len(end_time_rows))

# Filtering and counting rows where end time has changed.

end_time_changes =

changed_warnings_final[changed_warnings_final[’End Time Changes’].

↪→apply(lambda x: isinstance(x, pd.Timestamp))]

print("Number of End Time Changes:", int(len(end_time_changes) /

2))

print()

# Initializing counters and lists to categorize time changes.

same_time_changes = 0
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no_time_changes = 0

different_time_changes = 0

same_change_rows = []

no_change_rows = []

different_change_rows = []

# Iterating through the dataset in pairs to classify start and end

time changes.

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

start_time_change_1 = changed_warnings_final.

↪→iloc[i][’Start Time Changes’]

start_time_change_2 = changed_warnings_final.iloc[i +

1][’Start Time Changes’]

end_time_change_1 = changed_warnings_final.iloc[i][’End

Time Changes’]

end_time_change_2 = changed_warnings_final.iloc[i +

1][’End Time Changes’]

# Categorizing rows where both start and end times have

changed.

if (isinstance(start_time_change_1, pd.Timestamp) and

isinstance(start_time_change_2, pd.Timestamp) and

isinstance(end_time_change_1, pd.Timestamp) and

isinstance(end_time_change_2, pd.Timestamp)):

same_time_changes += 1

same_change_rows.append((i, i + 1))

# Categorizing rows where no changes occurred.

elif (start_time_change_1 == 1 and start_time_change_2 ==

1 and end_time_change_1 == 1 and end_time_change_2 == 1):

no_time_changes += 1

no_change_rows.append((i, i + 1))

# Categorizing rows where changes are inconsistent (one

row changed, the other didn’t).

else:

different_time_changes += 1
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different_change_rows.append((i, i + 1))

# Displaying counts of categorized changes.

print(f"Number of same changes (both datetime in both rows):

{same_time_changes}")

print(f"Number of no changes (all 1s): {no_time_changes}")

print(f"Number of different changes (one datetime, one 1 or null

in rows): {different_time_changes}")

[ ]: # Start Time Comparison: This section counts and displays the

number of start time rows and changes.

start_time_rows =

cancelled_warnings_final[cancelled_warnings_final[’Start Time’].

↪→notnull()]

print("Number of Start Time Rows:", len(start_time_rows))

start_time_changes =

cancelled_warnings_final[cancelled_warnings_final[’Start Time

Changes’].apply(lambda x: isinstance(x, pd.Timestamp))]

print("Number of Start Time Changes:", int(len(start_time_changes)

/ 2))

print()

# End Time Comparison: This section counts and displays the number

of end time rows and changes.

end_time_rows =

cancelled_warnings_final[cancelled_warnings_final[’End Time’].

↪→notnull()]

print("Number of End Time Rows:", len(end_time_rows))

end_time_changes =

cancelled_warnings_final[cancelled_warnings_final[’End Time

Changes’].apply(lambda x: isinstance(x, pd.Timestamp))]

print("Number of End Time Changes:", int(len(end_time_changes) /

2))

print()

# Initializing counters for time changes

same_time_changes = 0
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no_time_changes = 0

different_time_changes = 0

# Lists to store row indices of changes for potential debugging or

further analysis

same_change_rows = []

no_change_rows = []

different_change_rows = []

# Iterating through cancelled warnings in pairs to categorize

changes in start and end times.

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

start_time_change_1 = cancelled_warnings_final.

↪→iloc[i][’Start Time Changes’]

start_time_change_2 = cancelled_warnings_final.iloc[i +

1][’Start Time Changes’]

end_time_change_1 = cancelled_warnings_final.iloc[i][’End

Time Changes’]

end_time_change_2 = cancelled_warnings_final.iloc[i +

1][’End Time Changes’]

if (isinstance(start_time_change_1, pd.Timestamp) and

isinstance(start_time_change_2, pd.Timestamp) and

isinstance(end_time_change_1, pd.Timestamp) and

isinstance(end_time_change_2, pd.Timestamp)):

same_time_changes += 1

same_change_rows.append((i, i + 1))

elif (start_time_change_1 == 1 and start_time_change_2 ==

1 and end_time_change_1 == 1 and end_time_change_2 == 1):

no_time_changes += 1

no_change_rows.append((i, i + 1))

else:

different_time_changes += 1

different_change_rows.append((i, i + 1))

# Displaying results of time change analysis.

print(f"Number of same changes (both datetime in both rows):

{same_time_changes}")
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print(f"Number of no changes (all 0): {no_time_changes}")

print(f"Number of different changes (one datetime, one 0 or null

in rows): {different_time_changes}")

This step examines whether warnings were created or modified on the same day as
their start time. By analyzing these patterns, we can assess how quickly warnings
are issued and updated in response to evolving conditions. This helps in under-
standing the timeliness of warning systems and their adaptability to real-time
events.

[ ]: # Analyze the first rows of the pairs (Created Warnings):

# This section checks whether the ’File Created’ date is the same

as the ’Start Time’ date for the first row in each warning pair.

first_rows = changed_warnings_final.iloc[::2].copy()

first_rows[’Created Same Day as Start’] = first_rows.apply(

lambda row: row[’File Created’].date() == row[’Start Time’].

↪→date(), axis = 1

)

# Analyze the second rows of the pairs (Modified Warnings):

# This section checks if the ’Created Same Day as Start’ flag for

the first row is carried over to the second row.

second_rows = changed_warnings_final.iloc[1::2].copy()

second_rows[’Created Same Day as Start’] = second_rows.apply(

lambda row: first_rows.loc[row.name - 1, ’Created Same Day as

Start’] if row.name - 1 in first_rows.index else False,

axis = 1

)

# Check whether the second row (modified warnings) was modified on

the same day as ’Start Time’.

second_rows[’Modified Same Day as Start’] = second_rows.apply(

lambda row: (row[’File Created’].date() == first_rows.loc[row.

↪→name - 1, ’Start Time’].date())

if row[’Status’] == ’aufgehoben’

else row[’File Created’].date() == row[’Start Time’].date(),

axis = 1

)

# Initialize new columns with False to avoid missing values.
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changed_warnings_final[’Created Same Day as Start’] = False

changed_warnings_final[’Modified Same Day as Start’] = False

# Assign values only to the second row of each warning pair.

changed_warnings_final.loc[second_rows.index, ’Created Same Day as

Start’] = second_rows[’Created Same Day as Start’]

changed_warnings_final.loc[second_rows.index, ’Modified Same Day

as Start’] = second_rows[’Modified Same Day as Start’]

# Convert to boolean type for consistency.

changed_warnings_final[’Created Same Day as Start’] =

changed_warnings_final[’Created Same Day as Start’].astype(bool)

changed_warnings_final[’Modified Same Day as Start’] =

changed_warnings_final[’Modified Same Day as Start’].astype(bool)

# Count the number of warnings where ’Created Same Day as Start’

and ’Modified Same Day as Start’ are True (only considering second

rows).

same_day_created_count =

changed_warnings_final[(changed_warnings_final.index % 2 == 1) &

(changed_warnings_final[’Created Same Day as Start’] == True)].

↪→shape[0]

same_day_modified_count =

changed_warnings_final[(changed_warnings_final.index % 2 == 1) &

(changed_warnings_final[’Modified Same Day as Start’] == True)].

↪→shape[0]

# Print results.

print(f"Number of Same Day Created Warnings:

{same_day_created_count}")

print(f"Number of Same Day Modified Warnings:

{same_day_modified_count}")

# Display the first 10 rows of the modified DataFrame for

verification.

#changed_warnings_final.head(10)

[ ]: # Define categories (fixing duplicates): This section defines the

categories for the visualization.
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categories = [’Created Same Day as Start’, ’Not Created Same Day

as Start’,

’Modified Same Day as Start’, ’Not Modified Same Day

as Start’]

# Compute values directly from `changed_warnings_final`: This

calculates the number of warnings for each category.

values = [

changed_warnings_final[(changed_warnings_final.index % 2 == 1)

& (changed_warnings_final[’Created Same Day as Start’] == True)].

↪→shape[0],

changed_warnings_final[(changed_warnings_final.index % 2 == 1)

& (changed_warnings_final[’Created Same Day as Start’] == False)].

↪→shape[0],

changed_warnings_final[(changed_warnings_final.index % 2 == 1)

& (changed_warnings_final[’Modified Same Day as Start’] == True)].

↪→shape[0],

changed_warnings_final[(changed_warnings_final.index % 2 == 1)

& (changed_warnings_final[’Modified Same Day as Start’] ==

False)].shape[0]

]

print(values)

# Create bar chart to visualize the number of warnings created and

modified on the same or different day.

plt.figure(figsize = (10, 6))

plt.bar(categories, values, color = [’skyblue’, ’lightpink’,

’lightgreen’, ’orange’])

# Add titles and labels to the chart.

plt.title("Warnings Created and Modified on the Same or Different

Day", fontsize = 14)

plt.xlabel("Categories", fontsize = 12)

plt.ylabel("Number of Warnings", fontsize = 12)

# Save and show the chart.

plt.tight_layout()
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plt.savefig(’plots/

↪→changed_warnings_same_day_created_modified_warnings.png’)

plt.show()

[ ]: # Extract warnings that were created on the same day as the start

time.

same_day_created_warnings =

changed_warnings_final[(changed_warnings_final.index % 2 == 1) &

(changed_warnings_final[’Created Same Day as Start’] == True)].

↪→copy()

# Calculate the time difference in hours for same-day created

warnings.

same_day_created_warnings.loc[:, ’Time Difference in Hours’] =

same_day_created_warnings.apply(

lambda row: (row[’Start Time’] - row[’File Created’]).

↪→total_seconds() / 3600

if row[’Start Time’].date() == row[’File Created’].date()

else None, axis = 1

)

# Extract warnings that were modified on the same day as the start

time.

same_day_modified_warnings =

changed_warnings_final[(changed_warnings_final.index % 2 == 1) &

(changed_warnings_final[’Modified Same Day as Start’] == True)].

↪→copy()

# Calculate the time difference in hours for same-day modified

warnings.

same_day_modified_warnings.loc[:, ’Time Difference in Hours’] =

same_day_modified_warnings.apply(

lambda row: (row[’Start Time’] - row[’File Created’]).

↪→total_seconds() / 3600

if row[’Start Time’].date() == row[’File Created’].date()

else None, axis = 1

)
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# Compute descriptive statistics for time differences in same-day

created warnings.

created_mean = same_day_created_warnings[’Time Difference in

Hours’].mean()

created_median = same_day_created_warnings[’Time Difference in

Hours’].median()

created_min = same_day_created_warnings[’Time Difference in

Hours’].min()

created_max = same_day_created_warnings[’Time Difference in

Hours’].max()

# Compute descriptive statistics for time differences in same-day

modified warnings.

modified_mean = same_day_modified_warnings[’Time Difference in

Hours’].mean()

modified_median = same_day_modified_warnings[’Time Difference in

Hours’].median()

modified_min = same_day_modified_warnings[’Time Difference in

Hours’].min()

modified_max = same_day_modified_warnings[’Time Difference in

Hours’].max()

# Print statistics for same-day created warnings.

print("Time Difference of Same Day Created Warnings in Hours:")

print(f"Mean: {created_mean:.2f}, Median: {created_median:.2f},

Min: {created_min:.2f}, Max: {created_max:.2f}\n")

# Print statistics for same-day modified warnings.

print("Time Difference of Same Day Modified Warnings in Hours:")

print(f"Mean: {modified_mean:.2f}, Median: {modified_median:.2f},

Min: {modified_min:.2f}, Max: {modified_max:.2f}\n")

# Visualization: Histogram showing the distribution of time

differences for same-day created and modified warnings.

plt.figure(figsize = (12, 6))

plt.hist(same_day_modified_warnings[’Time Difference in Hours’],

bins = 30, alpha = 0.8, label = ’Same Day Modified’, color =

’pink’)
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plt.hist(same_day_created_warnings[’Time Difference in Hours’],

bins = 30, alpha = 0.6, label = ’Same Day Created’, color =

’cornflowerblue’)

# Add titles and labels.

plt.xlabel("Time Difference in Hours", fontsize = 12)

plt.ylabel("Number of Warnings", fontsize = 12)

plt.legend()

# Save and display the plot.

plt.tight_layout()

plt.savefig(’plots/

↪→changed_time_difference_created_modified_warnings.png’)

plt.show()

[ ]: # Define a time window (6 hours in seconds)

time_window_seconds = 6 * 3600

# Filter same-day created warnings within the 6-hour window

same_day_created_in_window = same_day_created_warnings[

same_day_created_warnings[’Time Difference in Hours’].apply(

lambda x: -6 <= x <= 6 if x is not None else False

)

]

# Filter same-day modified warnings within the 6-hour window

same_day_modified_in_window = same_day_modified_warnings[

same_day_modified_warnings[’Time Difference in Hours’].apply(

lambda x: -6 <= x <= 6 if x is not None else False

)

]

# Count the number of warnings in the 6-hour window

created_count_in_window = same_day_created_in_window.shape[0]

modified_count_in_window = same_day_modified_in_window.shape[0]

# Print counts and display filtered data

print(f"Number of Same Day Created Warnings in 6-hour window:

{created_count_in_window}")
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print(f"Number of Same Day Modified Warnings in 6-hour window:

{modified_count_in_window}")

# Visualization: Histogram for 6-hour window

plt.figure(figsize = (12, 6))

plt.hist(

same_day_modified_in_window[’Time Difference in Hours’],

bins = 15,

alpha = 0.8,

label = ’Same Day Modified’,

color=’pink’

)

plt.hist(

same_day_created_in_window[’Time Difference in Hours’],

bins = 15,

alpha = 0.6,

label = ’Same Day Created’,

color = ’cornflowerblue’

)

# Add labels

plt.xlabel("Time Difference in Hours", fontsize = 12)

plt.ylabel("Number of Warnings", fontsize = 12)

plt.legend()

# Save and display the plot

plt.tight_layout()

plt.savefig(’plots/changed_same_day_created_modified_6h_window.

↪→png’)

plt.show()

[ ]: # Analyze the first rows of the pairs (Created Warnings):

# This section checks whether the ’File Created’ date is the same

as the ’Start Time’ date for the first row in each warning pair.

first_rows = cancelled_warnings_final.iloc[::2].copy()

first_rows[’Created Same Day as Start’] = first_rows.apply(

lambda row: row[’File Created’].date() == row[’Start Time’].

↪→date(), axis = 1

)
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# Analyze the second rows of the pairs (Modified Warnings):

# This section checks if the ’Created Same Day as Start’ flag for

the first row is carried over to the second row.

second_rows = cancelled_warnings_final.iloc[1::2].copy()

second_rows[’Created Same Day as Start’] = second_rows.apply(

lambda row: first_rows.loc[row.name - 1, ’Created Same Day as

Start’] if row.name - 1 in first_rows.index else False,

axis = 1

)

# Check whether the second row (modified warnings) was modified on

the same day as ’Start Time’.

second_rows[’Modified Same Day as Start’] = second_rows.apply(

lambda row: (row[’File Created’].date() == first_rows.loc[row.

↪→name - 1, ’Start Time’].date())

if row[’Status’] == ’aufgehoben’

else row[’File Created’].date() == row[’Start Time’].date(),

axis = 1

)

# Initialize new columns with False to avoid missing values.

cancelled_warnings_final[’Created Same Day as Start’] = False

cancelled_warnings_final[’Modified Same Day as Start’] = False

# Assign values only to the second row of each warning pair.

cancelled_warnings_final.loc[second_rows.index, ’Created Same Day

as Start’] = second_rows[’Created Same Day as Start’]

cancelled_warnings_final.loc[second_rows.index, ’Modified Same Day

as Start’] = second_rows[’Modified Same Day as Start’]

# Convert to boolean type for consistency.

cancelled_warnings_final[’Created Same Day as Start’] =

cancelled_warnings_final[’Created Same Day as Start’].astype(bool)

cancelled_warnings_final[’Modified Same Day as Start’] =

cancelled_warnings_final[’Modified Same Day as Start’].

↪→astype(bool)
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# Count the number of warnings where ’Created Same Day as Start’

and ’Modified Same Day as Start’ are True (only considering second

rows).

same_day_created_count =

cancelled_warnings_final[(cancelled_warnings_final.index % 2 == 1)

& (cancelled_warnings_final[’Created Same Day as Start’] ==

True)].shape[0]

same_day_modified_count =

cancelled_warnings_final[(cancelled_warnings_final.index % 2 == 1)

& (cancelled_warnings_final[’Modified Same Day as Start’] ==

True)].shape[0]

# Print results.

print(f"Number of Same Day Created Warnings:

{same_day_created_count}")

print(f"Number of Same Day Modified Warnings:

{same_day_modified_count}")

# Display the first 10 rows of the modified DataFrame for

verification.

#cancelled_warnings_final.head(10)

[ ]: # Define categories (fixing duplicates): This section defines the

categories for the visualization.

categories = [’Created Same Day as Start’, ’Not Created Same Day

as Start’,

’Modified Same Day as Start’, ’Not Modified Same Day

as Start’]

# Compute values directly from `cancelled_warnings_final`: This

calculates the number of warnings for each category.

values = [

cancelled_warnings_final[(cancelled_warnings_final.index % 2

== 1) & (cancelled_warnings_final[’Created Same Day as Start’] ==

True)].shape[0],

cancelled_warnings_final[(cancelled_warnings_final.index % 2

== 1) & (cancelled_warnings_final[’Created Same Day as Start’] ==

False)].shape[0],
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cancelled_warnings_final[(cancelled_warnings_final.index % 2

== 1) & (cancelled_warnings_final[’Modified Same Day as Start’] ==

True)].shape[0],

cancelled_warnings_final[(cancelled_warnings_final.index % 2

== 1) & (cancelled_warnings_final[’Modified Same Day as Start’] ==

False)].shape[0]

]

print(values)

# Create bar chart to visualize the number of warnings created and

modified on the same or different day.

plt.figure(figsize = (10, 6))

plt.bar(categories, values, color = [’skyblue’, ’lightpink’,

’lightgreen’, ’orange’])

# Add titles and labels to the chart.

plt.title("Warnings Created and Modified on the Same or Different

Day", fontsize = 14)

plt.xlabel("Categories", fontsize = 12)

plt.ylabel("Number of Warnings", fontsize = 12)

# Save and show the chart.

plt.tight_layout()

plt.savefig(’plots/

↪→cancelled_warnings_same_day_created_modified_warnings.png’)

plt.show()

[ ]: # Iterate through all row pairs (first and second row) to compute

the time difference for same-day created warnings.

for i in range(0, len(cancelled_warnings_final), 2):

# Check if the second row satisfies the ’Created Same Day as

Start’ condition

if cancelled_warnings_final.iloc[i + 1][’Created Same Day as

Start’] == True:

# Calculate the time difference between ’Start Time’ and

’File Created’ for both rows

cancelled_warnings_final.at[i, ’Created Time Difference in

Hours’] = (
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(cancelled_warnings_final.at[i, ’Start Time’] -

cancelled_warnings_final.at[i + 1, ’File Created’]).

↪→total_seconds() / 3600

if cancelled_warnings_final.at[i, ’Start Time’].date()

== cancelled_warnings_final.at[i + 1, ’File Created’].date()

else None

)

cancelled_warnings_final.at[i + 1, ’Created Time

Difference in Hours’] = (

(cancelled_warnings_final.at[i + 1, ’Start Time’] -

cancelled_warnings_final.at[i, ’File Created’]).total_seconds() /

3600

if cancelled_warnings_final.at[i + 1, ’Start Time’].

↪→date() == cancelled_warnings_final.at[i, ’File Created’].date()

else None

)

# Compute statistics for ’Same Day Created Warnings’

created_mean = cancelled_warnings_final[’Created Time Difference

in Hours’].mean()

created_median = cancelled_warnings_final[’Created Time Difference

in Hours’].median()

created_min = cancelled_warnings_final[’Created Time Difference in

Hours’].min()

created_max = cancelled_warnings_final[’Created Time Difference in

Hours’].max()

# Print summary statistics for same-day created warnings.

print("Time Difference of Same Day Created Warnings in Hours:")

print(f"Mean: {created_mean:.2f}, Median: {created_median:.2f},

Min: {created_min:.2f}, Max: {created_max:.2f}\n")

# Compute the time difference for same-day modified warnings.

for i in range(0, len(cancelled_warnings_final), 2):

# Check if the second row satisfies the ’Modified Same Day as

Start’ condition

if cancelled_warnings_final.iloc[i + 1][’Modified Same Day as

Start’] == True:
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# Calculate the time difference between ’Start Time’ and

’File Created’ for modified warnings

cancelled_warnings_final.at[i, ’Modified Time Difference

in Hours’] = (

(cancelled_warnings_final.at[i, ’Start Time’] -

cancelled_warnings_final.at[i + 1, ’File Created’]).

↪→total_seconds() / 3600

if cancelled_warnings_final.at[i, ’Start Time’].date()

== cancelled_warnings_final.at[i + 1, ’File Created’].date()

else None

)

cancelled_warnings_final.at[i + 1, ’Modified Time

Difference in Hours’] = (

(cancelled_warnings_final.at[i + 1, ’Start Time’] -

cancelled_warnings_final.at[i, ’File Created’]).total_seconds() /

3600

if cancelled_warnings_final.at[i + 1, ’Start Time’].

↪→date() == cancelled_warnings_final.at[i, ’File Created’].date()

else None

)

# Compute statistics for ’Same Day Modified Warnings’

modified_mean = cancelled_warnings_final[’Modified Time Difference

in Hours’].mean()

modified_median = cancelled_warnings_final[’Modified Time

Difference in Hours’].median()

modified_min = cancelled_warnings_final[’Modified Time Difference

in Hours’].min()

modified_max = cancelled_warnings_final[’Modified Time Difference

in Hours’].max()

# Print summary statistics for same-day modified warnings.

print("Time Difference of Same Day Modified Warnings in Hours:")

print(f"Mean: {modified_mean:.2f}, Median: {modified_median:.2f},

Min: {modified_min:.2f}, Max: {modified_max:.2f}\n")

# Visualization: Histogram of time differences for same-day

created and modified warnings.
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plt.figure(figsize = (12, 6))

plt.hist(cancelled_warnings_final[’Modified Time Difference in

Hours’], bins = 30, alpha = 0.8, label = ’Same Day Modified’,

color = ’pink’)

plt.hist(cancelled_warnings_final[’Created Time Difference in

Hours’], bins = 30, alpha = 0.6, label = ’Same Day Created’, color

= ’cornflowerblue’)

# Add titles and labels to the chart.

plt.xlabel("Time Difference in Hours", fontsize = 12)

plt.ylabel("Number of Warnings", fontsize = 12)

plt.legend()

# Save and show the histogram.

plt.tight_layout()

plt.savefig(’plots/

↪→cancelled_time_difference_created_modified_warnings.png’)

plt.show()

[ ]: # Define a time window (6 hours in seconds)

time_window_seconds = 6 * 3600

# Filter same-day created warnings within the 6-hour window

same_day_created_in_window = cancelled_warnings_final[

(cancelled_warnings_final[’Created Time Difference in Hours’]

>= -6) &

(cancelled_warnings_final[’Created Time Difference in Hours’]

<= 6)

].copy()

# Filter same-day modified warnings within the 6-hour window

same_day_modified_in_window = cancelled_warnings_final[

(cancelled_warnings_final[’Modified Time Difference in Hours’]

>= -6) &

(cancelled_warnings_final[’Modified Time Difference in Hours’]

<= 6)

].copy()

# Count the number of warnings in the 6-hour window
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created_count_in_window = same_day_created_in_window.shape[0]

modified_count_in_window = same_day_modified_in_window.shape[0]

# Print counts and display filtered data

print(f"Number of Same Day Created Warnings in 6-hour window:

{created_count_in_window}")

print(f"Number of Same Day Modified Warnings in 6-hour window:

{modified_count_in_window}")

# Visualization: Histogram showing the distribution of time

differences for same-day created and modified warnings within the

6-hour window.

plt.figure(figsize = (12, 6))

plt.hist(

same_day_modified_in_window[’Modified Time Difference in

Hours’],

bins = 15,

alpha = 0.8,

label = ’Same Day Modified (6h Window)’,

color = ’pink’

)

plt.hist(

same_day_created_in_window[’Created Time Difference in

Hours’],

bins = 15,

alpha = 0.6,

label = ’Same Day Created (6h Window)’,

color = ’cornflowerblue’

)

# Add labels

plt.xlabel("Time Difference in Hours", fontsize = 12)

plt.ylabel("Number of Warnings", fontsize = 12)

plt.legend()

# Save and display the plot

plt.tight_layout()

plt.savefig(’plots/cancelled_same_day_created_modified_6h_window.

↪→png’)
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plt.show()

In this step, we generate vectors for each municipality to summarize how warnings
have changed over time in different locations. These vectors capture information
such as warning level changes, value fluctuations, and frequency of modifications.
This approach allows for a municipality-level analysis of warning trends and risk
patterns.

[ ]: # Initializing a dictionary to store various changes at the

municipality level.

municipality_changes = defaultdict(lambda: {

’Warning Level Changes Count’: defaultdict(int), # Dictionary

to count specific warning level changes

’Cancelled Warnings’: 0, # Count of cancelled warnings per

municipality

’Warning Type Counts’: defaultdict(int), # Dictionary to

count warning types

’Changed Warnings Count’: 0 # Count of total changed warnings

per municipality

})

# Iterating through changed warnings in pairs to track changes in

warning levels, values, and types.

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

first_row = changed_warnings_final.iloc[i]

second_row = changed_warnings_final.iloc[i + 1]

# Extract relevant fields from both rows in the pair.

warning_level_start = first_row[’Warning Level’]

warning_level_end = second_row[’Warning Level’]

diff_value_numbers = second_row[’Difference in Value

Numbers’]

warning_type = first_row[’Warning Type’]

# Processing each municipality in pairs.

first_row_municipalities = ast.

↪→literal_eval(first_row[’Municipalities’])

for municipality in first_row_municipalities:
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municipality_changes[municipality][’Changed Warnings

Count’] += 1 # Increment warning count

if warning_level_start != warning_level_end:

warning_level_change = (warning_level_start,

warning_level_end)

municipality_changes[municipality][’Warning Level

Changes Count’][warning_level_change] += 1

municipality_changes[municipality][’Warning Type

Counts’][warning_type] += 1

# Converting the dictionary into a DataFrame, sorting the

municipalities.

municipality_vectors_df = pd.DataFrame([

{

’Municipality’: municipality,

’Changed Warnings Count’: changes[’Changed Warnings

Count’], # Include total warning count

’Warning Level Changes Count’:

dict(sorted(changes[’Warning Level Changes Count’].items())),

’Warning Type Counts’: dict(sorted(changes[’Warning Type

Counts’].items()))

}

for municipality, changes in sorted(municipality_changes.

↪→items())

])

# Ensuring the ’Municipality’ column is treated as an integer for

consistency.

municipality_vectors_df[’Municipality’] =

municipality_vectors_df[’Municipality’].astype(int)

# Displaying the first few rows of the DataFrame.

#municipality_vectors_df.head()

# Filter the DataFrame for the municipality Graz (60101)
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graz_data =

municipality_vectors_df[municipality_vectors_df[’Municipality’] ==

60101]

graz_data

[ ]: # Initializing a dictionary to store various changes at the

municipality level.

municipality_changes = defaultdict(lambda: {

’Warning Level Changes Count’: defaultdict(int), # Dictionary

to count specific warning level changes

’Cancelled Warnings’: 0, # Count of cancelled warnings per

municipality

’Warning Type Counts’: defaultdict(int), # Dictionary to

count warning types

’Cancelled Warnings Count’: 0 # Count of total changed

warnings per municipality

})

# Iterating through cancelled warnings in pairs to track changes

in warning levels, values, and types.

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

first_row = cancelled_warnings_final.iloc[i]

second_row = cancelled_warnings_final.iloc[i + 1]

# Extract relevant fields from both rows in the pair.

warning_level_start = first_row[’Warning Level’]

warning_level_end = second_row[’Warning Level’]

diff_value_numbers = second_row[’Difference in Value

Numbers’]

warning_type = first_row[’Warning Type’]

# Processing each municipality in pairs.

first_row_municipalities = ast.

↪→literal_eval(first_row[’Municipalities’])

for municipality in first_row_municipalities:

municipality_changes[municipality][’Cancelled Warnings

Count’] += 1 # Increment warning count
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if warning_level_start != warning_level_end:

warning_level_change = (warning_level_start,

warning_level_end)

municipality_changes[municipality][’Warning Level

Changes Count’][warning_level_change] += 1

municipality_changes[municipality][’Warning Type

Counts’][warning_type] += 1

# Converting the dictionary into a DataFrame, sorting the

municipalities.

municipality_vectors_df = pd.DataFrame([

{

’Municipality’: municipality,

’Cancelled Warnings Count’: changes[’Cancelled Warnings

Count’], # Include total warning count

’Warning Level Changes Count’:

dict(sorted(changes[’Warning Level Changes Count’].items())),

’Warning Type Counts’: dict(sorted(changes[’Warning Type

Counts’].items()))

}

for municipality, changes in sorted(municipality_changes.

↪→items())

])

# Ensuring the ’Municipality’ column is treated as an integer for

consistency.

municipality_vectors_df[’Municipality’] =

municipality_vectors_df[’Municipality’].astype(int)

# Displaying the first few rows of the DataFrame.

municipality_vectors_df.head()

# Filter the DataFrame for the municipality Graz (60101)

graz_data =

municipality_vectors_df[municipality_vectors_df[’Municipality’] ==

60101]

graz_data

In this step, we create vectors that summarize changes for each individual warning.

93



These vectors capture key modifications, such as changes in warning type, level,
affected municipalities, and timing. By structuring warnings this way, we can
analyze trends, detect patterns, and better understand how warnings evolve over
time.

[ ]: # Iterate through each pair of rows in the dataframe to correct

’Start Time Changes’

for i in range(0, len(changed_warnings_final), 2):

# Ensure the second row exists within range

if i + 1 < len(changed_warnings_final):

# Check if the first row contains a timestamp in ’Start

Time Changes’

if isinstance(changed_warnings_final.at[i, ’Start Time

Changes’], pd.Timestamp):

# Assign False to the first row and True to the second

row

changed_warnings_final.at[i, ’Start Time Changes’] =

False

changed_warnings_final.at[i + 1, ’Start Time Changes’]

= True

else:

changed_warnings_final.at[i, ’Start Time Changes’] =

False

changed_warnings_final.at[i + 1, ’Start Time Changes’]

= False

# Iterate through each pair of rows in the dataframe to correct

’End Time Changes’

for i in range(0, len(changed_warnings_final), 2):

# Ensure the second row exists within range

if i + 1 < len(changed_warnings_final):

# Check if the first row contains a timestamp in ’End Time

Changes’

if isinstance(changed_warnings_final.at[i, ’End Time

Changes’], pd.Timestamp):

# Assign False to the first row and True to the second

row

changed_warnings_final.at[i, ’End Time Changes’] =

False
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changed_warnings_final.at[i + 1, ’End Time Changes’] =

True

else:

changed_warnings_final.at[i, ’End Time Changes’] =

False

changed_warnings_final.at[i + 1, ’End Time Changes’] =

False

# Iterate through each pair of rows to combine ’Difference in

Warning Type’ and ’Difference in Warning Level’ into a tuple for

the second row

for i in range(0, len(changed_warnings_final), 2):

if i + 1 < len(changed_warnings_final):

# Create a tuple of ’Difference in Warning Type’ and

’Difference in Warning Level’ from the first row and assign it to

the second row

warning_type_tuple = (int(changed_warnings_final.at[i,

’Difference in Warning Type’]), int(changed_warnings_final.at[i +

1, ’Difference in Warning Type’]))

warning_level_tuple = (int(changed_warnings_final.at[i,

’Difference in Warning Level’]), int(changed_warnings_final.at[i +

1, ’Difference in Warning Level’]))

# Assign these tuples to the second row

changed_warnings_final.at[i + 1, ’Difference in Warning

Type’] = warning_type_tuple

changed_warnings_final.at[i + 1, ’Difference in Warning

Level’] = warning_level_tuple

changed_warnings_final.at[i, ’Difference in Warning Type’]

= 0

changed_warnings_final.at[i, ’Difference in Warning

Level’] = 0

# Display the first few rows of the modified dataframe for

verification

changed_warnings_final.head()

[ ]: # Relevant columns for the vector

vector_columns = [

95



’Difference in Municipality Numbers’, ’Difference in Warning

Type’, ’Difference in Warning Level’,

’Difference in Value Numbers’, ’Start Time Changes’, ’End Time

Changes’,

’Created Same Day as Start’, ’Modified Same Day as Start’

]

# Extract every second row (only consider modified rows)

changed_filtered = changed_warnings_final.iloc[1::2].copy().

↪→reset_index(drop = True)

# Select only the desired columns for the final vector

changed_vectors = changed_filtered[[’Warning-ID’, ’Sequence-ID’] +

vector_columns]

# Add the ’Cancelled’ column and set all values to False

changed_vectors.loc[:, ’Cancelled’] = False

# Save the result to a CSV file

changed_vectors.to_csv("changed_warning_vectors.csv", index =

False)

[ ]: # Load the CSV file

file_path = "changed_warning_vectors.csv"

changed_vectors = pd.read_csv(file_path)

# Convert True/False columns to numeric (if needed)

changed_vectors[’Created Same Day as Start’] =

changed_vectors[’Created Same Day as Start’].astype(bool)

changed_vectors[’Modified Same Day as Start’] =

changed_vectors[’Modified Same Day as Start’].astype(bool)

# Count how many warnings were Created Same Day as Start

created_same_day_count = changed_vectors[’Created Same Day as

Start’].sum()

# Count how many warnings were Modified Same Day as Start

modified_same_day_count = changed_vectors[’Modified Same Day as

Start’].sum()
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# Print results

print(f"Number of warnings Created Same Day as Start:

{created_same_day_count}")

print(f"Number of warnings Modified Same Day as Start:

{modified_same_day_count}")

[ ]: # Iterate through each pair of rows in the dataframe to correct

’Start Time Changes’

for i in range(0, len(cancelled_warnings_final), 2):

# Ensure the second row exists within range

if i + 1 < len(cancelled_warnings_final):

# Check if the first row contains a timestamp in ’Start

Time Changes’

if isinstance(cancelled_warnings_final.at[i, ’Start Time

Changes’], pd.Timestamp):

# Assign False to the first row and True to the second

row

cancelled_warnings_final.at[i, ’Start Time Changes’] =

False

cancelled_warnings_final.at[i + 1, ’Start Time

Changes’] = True

else:

cancelled_warnings_final.at[i, ’Start Time Changes’] =

False

cancelled_warnings_final.at[i + 1, ’Start Time

Changes’] = False

# Iterate through each pair of rows in the dataframe to correct

’End Time Changes’

for i in range(0, len(cancelled_warnings_final), 2):

# Ensure the second row exists within range

if i + 1 < len(cancelled_warnings_final):

# Check if the first row contains a timestamp in ’End Time

Changes’

if isinstance(cancelled_warnings_final.at[i, ’End Time

Changes’], pd.Timestamp):

# Assign False to the first row and True to the second

row
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cancelled_warnings_final.at[i, ’End Time Changes’] =

False

cancelled_warnings_final.at[i + 1, ’End Time Changes’]

= True

else:

cancelled_warnings_final.at[i, ’End Time Changes’] =

False

cancelled_warnings_final.at[i + 1, ’End Time Changes’]

= False

# Iterate through each pair of rows to combine ’Difference in

Warning Type’ and ’Difference in Warning Level’ into a tuple for

the second row

for i in range(0, len(cancelled_warnings_final), 2):

if i + 1 < len(cancelled_warnings_final):

# Create a tuple of ’Difference in Warning Type’ and

’Difference in Warning Level’ from the first row and assign it to

the second row

warning_type_tuple = (int(cancelled_warnings_final.at[i,

’Difference in Warning Type’]), int(cancelled_warnings_final.at[i

+ 1, ’Difference in Warning Type’]))

warning_level_tuple = (int(cancelled_warnings_final.at[i,

’Difference in Warning Level’]), int(cancelled_warnings_final.at[i

+ 1, ’Difference in Warning Level’]))

# Assign these tuples to the second row

cancelled_warnings_final.at[i + 1, ’Difference in Warning

Type’] = warning_type_tuple

cancelled_warnings_final.at[i + 1, ’Difference in Warning

Level’] = warning_level_tuple

cancelled_warnings_final.at[i, ’Difference in Warning

Type’] = 0

cancelled_warnings_final.at[i, ’Difference in Warning

Level’] = 0

# Display the first few rows of the modified dataframe for

verification

cancelled_warnings_final.head()
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[ ]: # Relevant columns for the vector

vector_columns = [

’Difference in Municipality Numbers’, ’Difference in Warning

Type’, ’Difference in Warning Level’,

’Difference in Value Numbers’, ’Start Time Changes’, ’End Time

Changes’,

’Created Same Day as Start’, ’Modified Same Day as Start’

]

# Extract every second row (only consider modified rows)

cancelled_filtered = cancelled_warnings_final.iloc[1::2].copy().

↪→reset_index(drop = True)

# Select only the desired columns for the final vector

cancelled_vectors = cancelled_filtered[[’Warning-ID’,

’Sequence-ID’] + vector_columns]

# Add the ’Cancelled’ column and set all values to True

cancelled_vectors.loc[:, ’Cancelled’] = True

# Save the result to a CSV file

cancelled_vectors.to_csv("cancelled_warning_vectors.csv", index =

False)

[ ]: # Load the CSV file

file_path = "cancelled_warning_vectors.csv"

cancelled_vectors = pd.read_csv(file_path)

# Convert True/False columns to numeric (if needed)

cancelled_vectors[’Created Same Day as Start’] =

cancelled_vectors[’Created Same Day as Start’].astype(bool)

cancelled_vectors[’Modified Same Day as Start’] =

cancelled_vectors[’Modified Same Day as Start’].astype(bool)

# Count how many warnings were Created Same Day as Start

created_same_day_count = cancelled_vectors[’Created Same Day as

Start’].sum()

# Count how many warnings were Modified Same Day as Start
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modified_same_day_count = cancelled_vectors[’Modified Same Day as

Start’].sum()

# Print results

print(f"Number of warnings Created Same Day as Start:

{created_same_day_count}")

print(f"Number of warnings Modified Same Day as Start:

{modified_same_day_count}")

[ ]: # Load the two CSV files into DataFrames

changed_warning_vectors = pd.read_csv(’changed_warning_vectors.

↪→csv’)

cancelled_warning_vectors = pd.

↪→read_csv(’cancelled_warning_vectors.csv’)

# Merge the two DataFrames based on ’Warning-ID’ and ’Sequence-ID’

merged_vectors = pd.merge(changed_warning_vectors,

cancelled_warning_vectors, on = [’Warning-ID’, ’Sequence-ID’,

’Difference in Municipality Numbers’, ’Difference in Warning

Type’, ’Difference in Warning Level’,

’Difference in Value Numbers’, ’Start Time Changes’, ’End Time

Changes’, ’Created Same Day as Start’,

’Modified Same Day as Start’, ’Cancelled’], how = ’outer’)

# Sort the resulting DataFrame by ’Warning-ID’ and ’Sequence-ID’

merged_vectors_sorted = merged_vectors.sort_values(by =

[’Warning-ID’, ’Sequence-ID’])

# Save the merged and sorted DataFrame to a CSV file

merged_vectors_sorted.to_csv("warning_vectors.csv", index = False)
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