nnnnnnnnnnn

MMMMMMMMMM

WIRTSCHAFTS
UNIVERSITAT

WIEN VIENNA
UNIVERSITY OF
ECONOMICS

AND BUSINESS

nnnnnnnnnn

Bachelor Thesis

Data Interoperability in European
Railway Information Exchange: A

Study of GTFS and NeTEx
Fredrik Massmann

Date of Birth: 26.09.2001
Student ID: h12117343

Subject Area: Information Business
Studienkennzahl: h12117343
Supervisors: Sharom Hosseini Sohi and Dr. Amin Anjomshoaa

Date of Submission: 30. September 2025

Institute of Data, Process €& Knowledge Management, Vienna University of
Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

nnnnnnnnnnnnnnnnnnnn

Contents

1__Introduction| 7
2_The Benefits of Data Standards| 8
[2.1 Data Standards in the European Union| 9
[2.2 Network Timetable Exchange (NeTEx)) - the EU standard] . . 9
2.1 INeTExIStructurel o000 11

2.3 General Transit Feed Specification (GLLQ): the defacto stan- |
C dard 11
3 _Methodes 12
[3.1 Loading the Data] 12
3.2 Extraction of Stationsl 12
3.2.1 Extracted Informationl 15

[3.3 Comparison of Stations|. 15
[3.3.1 Key Issues to Identify the Stations in Both Formats| . . 17

[3.3.2 Merging Process|., 18

3.4 Wiki Data Basel 00 000 18
3.4.1 How to Connect the Third Source with INeTEx{or IGTES| 18

(3.5 Distance Calculationl 0. 20
[3.6 Extraction Irips| 21
[3.6.1 GTES Trips Extractionl. 21

[3.6.2 Ne'lex Journey Extraction| 23

4 Analysis 28
[4.1 Station Comparison - How many stations are shared? 29
4.1.1 Station Verfication via third Source] 32

[4.2 Data Quality - Distance between Stations| 35
[4.3 Irips and Journeys - Identifable stations| 38
[4.4 Results of the Analysisf 43
4.4.1 Possible Explanations|. 44

[5 Summary] 45
6 AdGE ™ = 56
6.1 Notebook: Third Sourcel 26
6.2 Notebook: Extractionl. 60
[6.3 Notebook: Comparingl 101
[6.4 Notebook: Data Quality| 118

List of Figures

[Illustrated Link between Stops and Route in [GLEFSl Source:

Selt-created graphic, based on descriptions “Reference - Gen-

eral Transit Feed Specification™ 2025

14

Comparison of two data structures: Nested Structure vs. Flatt

Structure Source: Screenshot made from Notebookl

14

[Illustrated Link between Stops Times, Routes and Trips, Source:

Selt-created graphic, based on descriptions “Reference - Gen-

eral Transit Feed Specification™ 2025

22

Mapping GTES "Irips to Netex Journey - 'T'he basics, Source:

Knowles, 2024 oo

24

Link from Service Journey to the Stop Places in Netex, Source:

self-created graphic, based on descriptions “I'imetable - Hand-

bok N801 (SIRI/NeTEX) - Entur”, 2025 “JourneyPattern (Ab-

stract in EPIP), ServicePattern - NeTEx Profil Osterreich -

Mobilitatsverbiinde”, 2025/ “PointinJourneyPattern (Abstract

in EPIP), StopPointInJourneyPattern - NeTEx Profil Oster-

reich - Mobilitatsverbiinde”, [2025 “ScheduledStopPoint, Ser-

viceLink - NeTEx Profil Osterreich - Mobilititsverbiinde”, [2025 25

[6

Code Illustration Journey Merging for Austria and Luxem-

bourg, Source: Selt-created graphic|

[7

Code [lustration Journey Merging for Norway (simplified),

pource: Selt-created graphic|o

Overlap between the shares of Austria Railway Stations GTFES

and Netex, Source: “OBB Open Data Datensiitze”, 2025 “Daten-

satze” 2020 o

[9

Overlap between the shares of Norway Railway Stations GTES

and Netex, Source: “Stops- and Timetable Data”, 2025|

(1O

Overlap between the shares of Luxembourg Railway Stations

G'TFES and Netex, Source: “Horaires et Arréts Des Transport

Publics (GTFS) - Portail Open Data”, 2025/“Data.Europa.Eu”,

| 0250 ...

M1

Austria’s not shared stations between [G1TFS (blue) and [Ne'TEx]

(red), Source: “OBB Open Data Datensitze”, 2025 “Daten-

satze”, 2025o

IE

Norway not shared stations between (G I'ES| (blue) and [Ne' kx|

(red), Source: “Stops- and Timetable Data”, 2025

3

Luxembourg’s not shared stations between (blue) and

| [NeTEX(red), Source: “Horaires et Arréts Des Transport Publics

(GTFS) - Portail Open Data”, 2025 “Data.Europa.Eu”, 2025

33

4

Overlap between the shares of Norway’'s Railway Stations Wiki

and [NeTExl Source: “Stops- and Timetable Data”, 2025. . . .

34

5

Overlap between the shares of Austria’s Railway Stations Wiki

and Netex, Source: “OBB Open Data Datensitze”, 2025 “Daten-

SELZET, 202D .« . e e e

35

6

Distance Comparison per Austrian’s Station between Wikl

data, netex and GTFS, Source: “OBB Open Data Datensitze”,

2025 “Datensatze”, 2025

36

(17

Distance Comparison per Norway’s Station between Wiki data

netex and G'TES, Source: “Stops- and Timetable Data”, 2025 .

37

IE

Example Station Weitlanbrunn - different coordinates between

Netex (red), GTFS (blue) and Wiki (green), Source: “OBB

Open Data Datensatze”, 2025 “Datensatze”, 2025(.

37

1K

Distance Comparison per Austrian’s Station between GTES

and NeTex, Source: “OBB Open Data Datensitze”, [2025 “Daten-

SEZE, 2025] « o e e e

38

R0

Distance Comparison per Austrian’s Station between Ne'lex

and G'TES, Source: “Stops- and Timetable Data”, 2025

39

PRI

Netex: Stops with refering [D and Stops without in Austria,

pource: “Datensatze”, 2025/

40

P2

Netex: Stops with refering [D and Stops without in Austria,

oource: “MVO - Datenbereitstellungsplattform”, [2025]|

40

23

Netex: Stops with refering ID and Stops without in Luxem-

bourg, Source: “Data.Furopa.Eu”, 2025

PZ

GTES: Stops with refering ID and Stops without in Lux-

embourg, Source: “Horaires et Arréts Des Transport Publics

(GTFS) - Portail Open Data”, 2025

[25

Netex: Stops with refering [D and Stops without in Norway,

pource: “Stops- and Timetable Data”, 2025

26

GTES: Stops with refering [D and Stops without in Norway,

dource: “Stops- and Timetable Data”, 2025

List of Tables

(1 Comparison of GI'FS and NeTEx attributes| 16
2 Overview of aids and tools used in the thesisl 55

Abstract

This thesis examines the interoperability of European railway data
by comparing the General Transit Feed Specification (GTFS), a widely
used global standard, with the Network Timetable Exchange (NeTEx),
the official EU standard. While rail is the most sustainable mode
of long-distance travel, fragmented data standards have the poten-
tial to reduce its attractiveness compared to air and road transport.
The study utilised datasets from Austria, Norway and Luxembourg
to analyse stations and trips, with a view to evaluating structural
differences, data quality and identifier consistency. The methods em-
ployed include data extraction, merging, and cross-validation with a
third source (Wikidata) to verify accuracy. The results demonstrate
that while GTFS offers simplicity and global adoption, NeTEx pro-
vides richer detail but suffers from inconsistent implementation across
countries. Key issues include mismatched identifiers, inaccurate coor-
dinates, and incomplete station referencing. The findings emphasise
the necessity for harmonised identifiers, such as UIC codes, and coor-
dinated efforts to enhance data quality. ..

1 Introduction

Travelling by train across national borders within Europe is a task that
presents a considerable challenge. The following factors are cited by passen-
gers as justifications for their preference to travel by car or plane rather than
by rail: delays, inflexibility, unsatisfactory customer service, longer travel
time, and the unintegrated system of rail travel across European countries.
In order to illustrate the issue of customer complaints, the following data will
be presented: the journey time from Amsterdam to Copenhagen by plane is
1 hour and 20 minutes, whereas the journey time by train is 12 hours and
10 minutes. It is evident that there is a substantial discrepancy in terms of
travel time and customer comfort. Nevertheless, it is clear that rail travel is
the most environmentally sustainable mode of transportation. It is particu-
larly salient to compare long-distance travel with air travel. It is therefore
essential to ensure that the rail network offers greater appeal to passengers
in order to facilitate the transition towards a more sustainable future. Oven-
hagen, [2021

The European Commission has announced its intention to enhance the pas-
senger rail system by leveraging the existing EU regulation and policy frame-
work for rail. The implementation of the a single european rail area within
all member nations is a key objective of the European Union. In order to
achieve this ambitious objective, the European Commission adopted an ac-
tion plan that encompasses the modifications of the Trans-European Trans-
port Network (TEN-T]). “Action Plan to Boost Passenger Rail - European
Commission”; 2025/ In order to achieve the objective of integrating each in-
dividual transportation system into a unified entity, there is a necessity for
standardisation. “Trans-European Transport Network (TEN-T) - European
Commission”, 2025

On the one side, there was a requirement for standardisation from com-
panies and an early user perspective. According to Goldstein’s and Dyson’s
book, in 2005 major tech companies in the USA were already offering navi-
gation applications such as Google Maps, MapQuest and Yahoo, which were
designed to assist users. However, it appears that the platforms had a lack
of public-available data. Following the development of standards by Google
and the subsequent global rollout of the standard for public transit data, it
has become a worldwide standard. The standard developed by Google has

become an open source project of mulitple companies and communitys, this
standard is today known as [GTES Goldstein and Dyson, 2013

On the other side, the EU’s approach differs in that it is not only interested
in creating a standard for all member state, but in establishing a compre-
hensive information infrastructure. The National Access Points initiative is
a data infrastructure project that aims to make public data available from
designated national access points. These infrastructures are designed to pro-
vide data on all types of transportation. “National Access Points - European
Commission”, 2025 The objective is to establish a standardised, open data
space within the EU for the efficient exchange of mobility data. “Unlocking
the Potential of Mobility Data | Shaping Europe’s Digital Future”, |2025| As
outlined in the Commission’s delegated regulation of May 2017, the use of
data formats such as [NeTFEx] and the underlying data system Transmodel is
required for National Access Points. European Commission, 2017

The following formats are utilised for the purpose of such data exchange:
and NeTEXl The primary function of the first one is the exchange of
public transport timetables and stops, while the second is designed for the
transfer of more complex public transport data. Skille, |2024| In this Thesis
both data standards and will be analyzed in terms of their
useability and quality of their relying information.

2 The Benefits of Data Standards

Data standards play a crucial role in the FEuropean vision to achieve cli-
mate neutrality in the railway sector by 2050. Standardisation is intended
to integrate disparate mobility sectors, thereby enhancing the efficiency and
sustainability of the European transport system and promoting intercon-
nectedness. The implementation of a robust standard that is widely adopted
throughout Europe has the potential to enhance the size of the internal mar-
ket, while concurrently ensuring legal certainty and maintaining the global
or regional leadership in technology. From an economic perspective, the
fundamental purpose of standards is to facilitate the development of more
straightforward and accessible interfaces for European companies. Neverthe-
less, over the course of the previous decade, there has been an increase in
the pressure exerted by companies from non-European countries throughout
standards. “International Standardisation: The European Rail Associations
Vison”, 2021

2.1 Data Standards in the European Union

Since 2014, NeTEx has been in development. According to the official NeTEx]
Transmodel website, it has already been implemented in 15 European states
and the United Kingdom. “NeTEx — Transmodel”, [2025/“Data Models”, |2025
Nevertheless, a more detailed perspective will provide a report for National
Access Points by Napcore. According to Napcore, the [NeTEx] is already in
operation in 10 European Union states . The remainder of the project is still
in various stages of development. “Activity WG3 NAP Content and Acces-
sibility | NAPCORE”, 2024| In comparison, has been implmeneted in
over 100 countries and 10,000 agencies on a global scale. “Why Use GTFS?
- General Transit Feed Specification”, 2025 The term is frequently cited as
a de facto standard, given its extensive utilisation in millions of application
since 2006. Antrim and Barbeau, 2017

In the following discussion, a concise overview of the two distinct standards,
and [GTES], will be provided. The principal differences between them
will be identified, as well as their respective benefits. The present study will
concentrate on the utilisation of both standards in the analysis of stations
and trips, as well as an international comparison of and data
via three member states of the European Union. The countries under dis-
cussion here are Austria, Norway and Luxembourg.

Austria and Norway are already using data files on an operational
level and Luxembourg is in an unknown state of developing according to
Napcore. “Activity WG3 NAP Content and Accessibility | NAPCORE”, 2024.
Nevertheless, the three states in question have consistently published
and files on their designated national access point, national rail op-
erator or european websites. “OBB Open Data Datensitze”, 2025 “MVO
- Datenbereitstellungsplattform”, 2025/ “Stops- and Timetable Data”, 2025
“Data.Europa.Eu”, |2025| “Horaires et Arréts Des Transport Publics (GTFS)
- Portail Open Data”, 2025

2.2 [NeTEx - the EU standard

[NeTExlis an Extensible Markup Language (XMLI)-based open data standard
that was developed by the Comité Européen de Normalisation with
a view to facilitating the exchange of public transport schedules and associ-
ated data. The following information is to be converted into format:
public transport network topology, scheduled timetables, fare information,
european passenger information profile, alternative modes exchange format

and european passenger information accessibility profile. Skille, 2024/ “Ne-
TEx — Transmodel”, 2025

The[NeTEx framework is based on three distinct models: Transmodel, Standard
Interface for Real-time Information (SIRI) and Identification of Fixed Ob-
jects in Public Transport (IEOPT]). The initial Transmodel constitutes a
conceptual data model for public transport, thus providing an architectural
framework for comprehending the information within public transport. It is
argued that this data model should represent a more simple architecture for
public service companies and operators. The Transmodel has the capacity
to accommodate a wide range of public transport operations, encompassing
various modes such as buses, trolleybuses and light rail systems, including
subways. Soares and Martins, 2013

The model is a reference model that is utilised for the identifica-
tion of fixed objects in the real world. Tt accomplishes this by providing an
identifier for the object in question, determining its function, establishing
a topology for the objects in relation to each other, linking attributes and
properties to them, and localising them unambiguously by their coordinates.
The fundamental function of the is encompassing the scheduling of
timetables through stop identification, journey planning, guidance, accessi-
bility, real-time information and navigation. This encompasses stop finding,
interchange paths and walking to points of interest. Soares and Martins, |2013

is intended to serve as a model for the representation of public trans-
port concepts. This objective should include enhancing the efficiency and
updateability of the system, facilitating a complex exchange of data between
two systems, and utilising it in modern web services architectures. The lat-
ter would render it more usable for passenger information and operational
applications. Soares and Martins, 2013/ In accordance with the principles
outlined in the 04 Framework, is designed to exhibit a high
degree of flexibility. This adaptability is a key advantage, allowing it to meet
the diverse requirements of different organisations. It is important to note
that different sections of an organisation may be responsible for different
parts of the data. Nicholas JS Knowles, 2015 For instance, the organisation
of the regional Austrian railway system is the responsibility of seven differ-
ent regional operators, each of which is responsible for the management of
their respective region and the provision of data pertaining to that region.
“Verkehrsverbiinde in Osterreich”, [2025

10

2.2.1 Structure

The structure of NeTEXl is an [XMTJ file which is more flexible and adoptable
since the nodes of the netex tree structure Knowles, 2024 are adaptable and
modular for different stake holders. is equipped with a framework
containing frames which defines basic components. Each Frame defines the
components. Each component must contain a specific set of elements, as
defined by the frame. Each component can be augmented with additional el-
ements as required, provided that the base elements of the component remain
unchanged. Each Frame is specialized on a specific function the site frame for
stop data, the timetable frame for timetable and the fare frame for fara data.
Nicholas JS Knowles, 2015 Therefore, each analysed data set from the dif-
ferent states could provide a different structure, with some cases containing
more information than others. For instance Austria has two separate files for
Stations and Journeys as well as different of sources. The OBB provides the
Geo Data set, which focuses on geometric data “OBB Open Data Datensiitze”,
2025, while the Mobilitéits Verbiinde Osterreich’s data set contains journeys,
including OBB journeys “MVO - Datenbereitstellungsplattform”, 2025, The
Norway netex data sets and Luxembourg data sets contains all information
in one data set “Stops- and Timetable Data”, [2025|“Data.Europa.Eu”, 2025.

As is an [XMTI] structured file and designed by frames within a frame-
work, each element has a domain in which it can be distinctly identified.
Therefore each element can be called by a specific domain. Fabrizio Ar-
neodo, [2015| For instance, the domain used for this analysis was
“http://www.netex.org.uk/netex//netex:“. In addition, it was necessary to
add an element name to the end of the link to specify the domain.

2.3 [GTFSE the defacto standard

is an open standard that provides a standardised data format for
public transit agencies. The format is employed for the purpose of
describing data by the inclusion of information such as stops or fares. Its

utilisation is most prevalent in the domain of trip planning. com-
prises two constituent elements. The Schedule and Realtime.

The first one contains information about routes, schedules, fares, and ge-
ographic transit details. The schedule is a simple text file format that
is contained within a zip file. According to the MobilityData, the utilisation
of this system is expected to be more straightforward, as it does not require
the use of proprietary software. The second one comprises information that

11

is capable of being updated with regard to vehicle position, service alerts and
trip changes. The software utilises the Protocol Buffers format, which repre-
sents an alternative version of [XMI] files “Protocol Buffers”, 2025 There is a
symbiotic relationship between Realtime and Schedule. “What
Is GTFES? - General Transit Feed Specification”, 2025 “Overview - General
Transit Feed Specification”, 2025

3 Methodes

The analysis of both data formats was conducted using Python, a program-
ming language that supports the processing of fundamental data formats
such as XML and CSV. “Xml.Etree.ElementTree — The ElementTree XML
API”, 2025 “Pandas.Read csv — Pandas 2.3.2 Documentation”, 2025

3.1 Loading the Data

Initially, it is imperative to load the data into the programming environment
in order to facilitate its processing and utilisation. Nevertheless, an initial
discrepancy emerges between the and formats. is stored
in the form of a single zip file, which contains multiple text files. “Reference -
General Transit Feed Specification”, 2025/ The text files are processed through
a looping procedure, whereby they are converted into dataframes and stored
in a dictionary, with their corresponding name tags.

In comparison, files consist of multiple files or zipped fold-
ers containing further files or folders. It appears that the information
regarding the manner in which [NeTEXx files are stored remains undisclosed.
In order to address the challenges posed by these customised and random
network file structures, a recursive loop is required. This loop selects every
entry in the data file. In the case of an file, it will be added a list.
Conversely, if the file is a folder, the function recursively calls itself to add all
XMT] files. The NeTEx[XMIJ files are stored into a list to preprocess them
for the next step the extraction of information.

3.2 Extraction of Stations

The process of extracting information involves the utilisation of a
“stop” named dataframe, which serves as the repository for the stored infro-
mation of rail stations “Reference - General Transit Feed Specification”, |2025
The utilisation of a simple name filter, facilitated by the process of looping

12

through the zipped file, enables the selection of the desired text file. As
the files have already been converted into a dataframe, the extraction
process is straightforward. However, it should be noted that does not
include an identification to determine the type of stop in question. For in-
stance, it is not possible to distinguish between a bus stop and a train station
by only examining the stop dataframe. As the present thesis is exclusively
concerned with a consideration of train stations, it is necessary to filter the
“stop“ dataframe. The format provides a link between the “stop“ file
and the “route” file, with the “route type“ identifying the type of route. The
“route type“field comprises an ID ranging from zero to seven and eleven and
twelve, which provides a means of distinguishing between the various vehicle
types that are utilised to operate specific routes. “Reference - General Tran-
sit Feed Specification”, 2025 However, it appears that an extended version of
these IDs also exists. According to the provided definition, all “route types*
that commence with the numerals 1 or 4 and consist of three characters
are considered to be associated with rail transport. “Extended GTFS Route
Types | Static Transit”, [2025| In the context of the present study, numerical
values beginning with 1 or 4 and comprising three characters, in addition
to the numbers 1, 2, 5, 7 and 12, have been identified as correlating with a
vehicle associated with any kind of rail transport.

In order to establish a connection between the designated “route type“ and
the designated stops, it is necessary to refer to the link provided below. The
route dataframe comprises a “route type“, which is connected to a “route
id“. The “route id“ in question refers to the “trip“ dataframe. The “trip“
dataframe is linked to the “stop times“ dataframe by their “Trip id“. The
“stop times“ field contains a “Trip id“ and a “stop id*, which refer to the stop
dataframe. “Reference - General Transit Feed Specification”, 2025 Following
fig is illustrated above desribed connection [I} All the necessary dataframes
were loaded, after which the merge functions were utilised in order to estab-
lish the previously described filter.

In comparison to [GTES, the extraction process is different due to
the different XM format. The XMI format is distinguished by its provision
of a deep nested structure, in contrast to the more flat structure charac-
teristic of the Comma Separated Values) ([CSV]) format. Both formats are
illustrated 2| Knowles, 2024

Asg previously stated, the file structure is more complex, since the
result of the loading function was a list of multiple [XMTlfiles, with a number
reaching into the thousands. In order to extract all the necessary informa-
tion, it is necessary to iterate through the list of files and search for

13

stops.txt

stop_times.txt

stop_name arrival_time m
stop_Llat departure_time service_id
stop_lon e agency_id
location_type trip_headsign route_short_name

route_type

route_color

Figure 1: [Illustrated Link between Stops and Route in Source: Self-
created graphic, based on descriptions “Reference - General Transit Feed
Specification”, [2025

(b) Structure already trans-
: formed into a dataframe because it
(a) Structure of StopPlaces is already a csv file

Figure 2: Comparison of two data structures: Nested Structure vs. Flatt
Structure Source: Screenshot made from Notebook

14

the following “StopPlace” Key. As mentioned above, we searched through
the XMT] files using the domain links to find our key. Nicholas JS Knowles,
2015 It is important to note that all [KXMI] files are defined as containing
fundamental and indispensable information. For instance, the coordinates of
the station are stored in a nested structure into the “StopPlace node, firstly
in the “Centroid“ node, and secondly in the “Location” node. It is evident
that the latitude and longitude elements within the “Location node contain
the requested values. “Stops - Handbok N801 (SIRI/NeTEX) - Entur”, 2024
“Stop Places - NeTEx Profil Osterreich - Mobilititsverbiinde”, [08,/09 /2025,
18:06:33| However, it has been observed that supplementary nodes and ele-
ments can be appended and that these contain further information in addition
to other data sets. For instance, the Austria Geo Data set contains a greater
number of elements per station than the other data set. “Datenbeschreibun
Osterreich Netex-XML”, 2024 “MVO - Datenbereitstellungsplattform”, 2025
The process entails the extraction of each individual file, with the val-
ues then being stored in a dictionary. The dictionaries are stored in lists.
Following the extraction process, all files are systematically compiled into a
comprehensive list. This list is then flattened, which means that the multiple
lists of dictionaries are consolidated into one. The objective is to create a
dataframe that facilitates the reading of both formats and enhances their
comparability. Following the extraction process, two data frames have been
obtained. These will now be subjected to a comparative process known as
the station dataframe. [6.2]

3.2.1 Extracted Information

As demonstrated in the subsequent table, the extraction process yielded the
following information. As previously stated, this does not imply that all of
these values are present within each data set.

3.3 Comparison of Stations

In order to perform a comparison between the and [NeTEx dataframes,
a unique identifier is required. The objective is to identify a station in
both data sets with absolute clarity. Nevertheless, it would seem that the
key is not always identical in both data formats, with the type of value
differing and being non-comparable with that of other countries. “Stops-
and Timetable Data”, 2025 “Data.Europa.Eu”, 2025 “Horaires et Arréts Des
Transport Publics (GTFS) - Portail Open Data”, 2025 “MVO - Datenbereit-
stellungsplattform”, 2025 “OBB Open Data Datensitze”, 2025 “Datensitze”,
2025

15

Table 1: Comparison of GTFS and NeTEx attributes

GTFS

10.
11.

12.

. Station ID (id_gtfs)

Route type
(route_type_gtfs)

Station name (name_gtfs)

Latitude (lat_gtfs)

. Longitude (lon_gtfs)

Stop description
(stop_desc)

Location type
(Location_type)

Parent station
(parent_station_gtfs)

. Wheelchair board-

ing possibility
(wheelchair_boarding_gtfs)

Time zone (stop_timezone)

Platform
(platform_code_gtfs)

Vehicle type
(vehicle_type)

16

NeTEx

10.

11.

12.

13.

Station ID (id_netex)

Reference 1D
(ref_id_netex)

StopPlace type
(StopPlaceType_netex)

Station name (name_netex)
Latitude (lat_netex)
Longitude (lon_netex)

EVA number (Interne
Bahnhofsnummer)
(EVA_Nr_netex)

UIC code (UIC_Code_netex)
Quay IDs (Quay_ids_netex)

Wheelchair access
(WheelchairAccess_netex)

Assistance facility
(AssistanceFacility_netex)

Assistance availability

(AssistanceAvailability_netex)

Access facility
(AccessFacility_netex)

3.3.1 Key Issues to Identify the Stations in Both Formats

As can be seen from the Austria Data sets, the identifiers are similar to each
other. The Austrian dataframe contains an [FOPT] which has been
intended for integration into the Transmodel since 2006. Nevertheless, since
2009, the development of the format has incorporated these types of
IDs within its structure. The [EFOPT] has been developed for the purpose of
identifying fixed objects, including stops and points of interest. “History —
Transmodel”, [10/09/2025, 11:57:38 As demonstrated in the Austrian NeTEx]
file, the is present as “43-7402“. In contrast, the dataframe
exhibits the following structure: “at:48:134:0:2%. The data
format uses a different structure because, rather than referring to a train
station, each entry refers to a track at a station. “Key:Ref:IFOPT — Open-
StreetMap Wiki”, 2025 However it has been observed that there is a similarity
in the pattern of the IDs. Each station in the netx file makes reference to an
identical [FOPT] as the file, such as “at:43:7402¢. “OBB Open Data
Datenséatze”, 2025 “Datensitze”, 2025| It is possible to disregard the final two
digits in order to facilitate a comparison of both IDs whilst maintaining ref-
erence to the same station. 6.2l

In the Luxembourg data set, an alternative form of identification is employed.

In the data set, the ID is expressed as a sequence of nine integral dig-

its, for example, “500000079“. The NeTEx dataframe comprises a sequence of
numbers embedded within a string, for instance “DE::StopPlace:220401001 _::“.

It is noticable that the identifiers vary in terms of their data type. “Data.Europa.Eu”,
2025 “Horaires et Arréts Des Transport Publics (GTFS) - Portail Open Data”,

2025/ In order to merge the two data sets, the pattern was identified and the
number was extracted from the string by identifying a sequence of numbers

with the length of nine. The newly created integer type was saved for the
purpose of comparing both data sets. [6.2

The Norway data sets do have the same identifiers for their stations. Both
identifiers are regarded as string types and manifest the following pattern:
“NSR:StopPlace:1“. However, it should be noted that the structure of the
GTFS file differs from that of the Luxembourg’s file and is similar to
the Austria file. Each track line, known as a “Quay”, is stored as an entry
for a train station. The actual station ID is specified in the “parent station”
column. “Stops- and Timetable Data”, 2025 Therefore, the data set
needed to be summarised so that multiple “Quay“ IDs would refer to a single
entry of a rail station. Nevertheless, this constitutes a new format that does
not correspond with the Luxembourg type of ID or the from the

17

Austrian data sets.

3.3.2 Merging Process

Initially, the pattern of the ID will be subjected to analysis and filtered ac-
cording to the previously delineated conditions and characteristics. Following
the identification of the pattern, measures will be implemented to ensure both
IDs are made identifiable. The number in the Austria data
set will be reduced by their final two characters, while in the Luxembourg
[NeTEx data set, the ID within the string will be extracted and in the norway
data set the “Quays* will be changed to stations IDs. Following the
execution of the abovementioned processes, an outer merge function will be
executed on each dataframe. The utilisation of the outer merge ensures that
the dataframes themselves remain unaffected. It is evident that, in the event
of a comparison being made between the stations, no entry will be filtered or
deleted “Pandas.DataFrame.Merge — Pandas 2.3.2 Documentation”, 2025,
6.2

3.4 Wiki Data Base

In order to verify the correctnesss for each stations within the data formats, it
is necessary to consult a third source. The Wiki database comprises millions
of entries within a knowledge graph, and it is readily accessible due to its
free availability. Structured data is stored within the knowledge base, and
can be accessed using SPARQL queries. Furthermore, it is possible to edit
the SPARQL query request in a highly detailed manner. It is possible to set
multiple conditions specific to the task at its core and gather only the data
that is required for the specific purpose in question. Bielefeldt et al., 2018

3.4.1 How to Connect the Third Source with [NeTEx or

In order to connect the Wiki database and the or data sets,
a key is required. As previously stated, the and data frames
have been connected. The next step is to identify another key that can
be used to distinguish each station in all three or at least two data sets.
According to the data description for the Austrian data set, there
is one key-value pair called “EVA-N1“. This short discription is matching
with the Description for the [BNRlaccording to the Deutschlandtarifsverbund
GmbH. The is used for their electronic processing and fare calculation
in the sales systems. Deutschlandtarifverbund GmbH, 2025/ “Datenbeschrei-
bun Osterreich Netex-XML?”, 2024 As stated in the internal documents of

18

the Verkehrsbund Bremen/Niedersachsen, the “EVA Nr“ and the IDs
are typically synchronised within the Hafas System. Raffael Rittmeier, 2016
Hafas is a system developed by Hacon that is utilised by prominent rail op-
erators such as the Deutsche Bahn “Hacon - A Siemens Company”, 2025/ and
by the OBB Scotty App. “Dreifache Auszeichnung Fiir OPNV-Apps von Ha-
con”, 2025 It plays a crucial role in the management of their timetables and
the conversion of data from diverse sources into a unified format. “HAFAS
Rohdaten Format (HRDF) — Open Data-Plattform Mobilitidt Schweiz”, [2025
“HAFAS.Engine english”, 2025/ These only indicates a connection between
the “EVA-N1r*“ and thd[BNRl Nevertheless, the wiki database provides such
for stations “IBNR ID”, 2025 It is therefore hypothesised that a
connection can be established between the wiki database and the Austrian
[NeTEx data set from the “EVA-N1“ to the 6.11

The Norway data set contains a so called Union Internationale des
Chemins de fer (UIC) country code. A code is a unique identifier used
to refer to railway stations. The first two digits denote the country of origin,
while the remaining numbers are used to identify a specific station. railways,
2015 “Open Data about Railway Stations”, 2025, It appears also in the Wiki
data base “UIC Station Code”, 2025, therefore a connection can be estab-
lished between the Wiki data and Norway data.

Two of the three distinct NeTEx] data sets from different states contain iden-
tifiers that match those of the Wiki database. However non of the[GTES data
sets contians any of those identifiers which might match with the Wiki data
base identifiers. “Stops- and Timetable Data”, [2025 “Horaires et Arréts Des
Transport Publics (GTFS) - Portail Open Data”, 2025 “Datensétze”, 2025
Nonetheless, in the context of the SPARQL query, an attempt was made
to retrieve the [FOPT] because the Wiki data base provides it as an object
“Identification of Fixed Objects in Public Transport”, 2025. It would be an
attempt to compare the Austrian and data sets with the wiki
data base.

Given the nature of the wiki database as a knowledge graph comprising
multiple entities, the collection of [FOPT] MBNR] [UIC] and coordinates is
essential. For example the Vienna Main Station consist all of these enti-
ties. “Wien Hauptbahnhof”, 2025 An alternative option would be to utilise
data from OpenStreetMap. However, it appears that the Open Street Maps
knowledge graph contains solely [UICkode, with no [BNRl “Key:Uic_ref —
OpenStreetMap Wiki”, [2025| The undertaking of a comparison would be com-
plicated for countries that do not utilise codes, such as Austria. As

19

stated in the Osterreichische Bundes Bahnen data description for
their Geo Data set, the netex data set includes an “EVA“ number, which
is equivalent to an “Datenbeschreibun Osterreich Netex-XML”, 2024
“OBB Open Data Datensitze”, 2025

The fundamental concept was to extract all subjects that met the follow-
ing criteria per country in a single SPARQL request: train stations, tram
stops or small train stations that have an [UIC] code, [FOPT] or [IBNR] and
that have coordinates. Train stations are represented as object “QQ55488
“Railway Station”, 2025/ and any kind of subclass like small train stations
by “P31¢ and “P2790“. “Subclass Of”, [2025| “Instance Of”, 2025 In addition,
it was imperative to ensure the inclusion of all requested stations. To this
end, the limit of collected stations was set at a value greater than the actual
number for each country. To illustrate this, for Austria, the number of sta-
tions was set at 2,000, whereas the actual number is 1,031. “Zahlen, Daten,
Fakten”, 2025 Following SPARK-QL Querry is seen below. [6.1

SPARK-QL Querry Request:

SELECT 7station 7stationlLabel 7coordinate 7ifopt 7ibnr 7uic WHERE
{{

?station wdt:P31/wdt:P279% wd:(55488 ;

instance or subclass of train station

wdt:P17 wd:Q{country_code} .

for located in Austria (Q40)

OPTIONAL {{ ?station wdt:P7824 7ifopt. }} # IFOPT code
OPTIONAL {{ ?station wdt:P954 ?ibnr. }} # IBNR

OPTIONAL {{ ?station wdt:P722 7uic. }} # UIC

OPTIONAL {{ ?station wdt:P625 7coordinate. }} # Coordinates

SERVICE wikibase:label {{ bd:serviceParam wikibase:language
"[AUTO_LANGUAGE] ,de,en". }}}}
LIMIT {limit}

3.5 Distance Calculation

In the event of there being a match between the keys from the Wiki database
and the keys from the various data sets, a method is required to verify
whether the information regarding the coordinates of the stations is also
matching. In the case of there being a difference between the two sets, it is

20

necessary to calculate the discrepancy between them. Therefore a compar-
ison was made between the or and the Wiki data set. The
calculation of the distance between the two coordinates was performed by
implementing the so-called Haversine formula. The haversine formula is a
mathematical technique used to calculate the distance between two coor-
dinates on a circle. It operates under the assumption that the radius of
the Earth is 6,367.45 kilometres. It is evident that the Harversine forumla
does not take into account the surface of the Earth. Maria et al., 2020
My approach to the Haversine formula in Python was informed by the in-
terpretation via Java Script. “Calculate Distance and Bearing between Two
Latitude/Longitude Points Using Haversine Formula in JavaScript”, 2025

For each unique matching entry of the merged dataframe of Wiki data and
the NeTEx|and data frame, the coordinates were applied to the haver-
sine function. The results were saved into a list and then added as a column
to the merged data frame. [6.4

3.6 Extraction Trips

In order to extract the information relevant to trips, the following minimum
data elements should be considered for extraction: the stops of a trip, in
particular the start and end destinations. However, it is already known that
[NeTExl and stored their information differently due to the nature of
their different formats. Soares and Martins, 2013

3.6.1 GTFS Trips Extraction

The GTFS trips are stored in the “trip“ section of the file, and the
stops of the trips are linked within the “stop times* section via “Trip ID“ to
the trip data frame. “Reference - General Transit Feed Specification”, 2025,
A straightforward merge process has the ability to establish a connection
between the two data frames by way of the “Trip ID* in “stop times. How-
ever, it is important to note that the Norway and Luxembourg data set also
contains bus trips, which must be filtered before. For instance the norway
data set contains 345.019 entries after the extraction process. “Stops- and
Timetable Data”, |2025 “Horaires et Arréts Des Transport Publics (GTFS) -
Portail Open Data”, 2025 As previously stated in the Chapter, entitled "Ex-
traction of Stations’ [3.2] a similar filter was applied; this time an alternative
approach was adopted. As seen in figure 3. Therefore, it is possible to apply
a filter to the “trips* dataframe by selecting only those “route IDs“ for which
the train “route type“ is specified. The “trips“ and the “routes dataframes

21

are connected by their “route id“. In order to select the appropriate stops
for each journey, the stop times dataframe was filtered using the remaining
trips id from the filtering process of the trip dataframe. “Reference - General
Transit Feed Specification”, 2025 For instance in the norway data set remains
47.439 entries after the filtering process “Stops- and Timetable Data”, 2025,
As previously stated, the accurate identification of a train journey in the
route dataframe is not uniform across all states. Therefore, all route IDs
were filtered on the basis that the first character was 1 or 4, and that the
ID had three characters and the numbers 2, 12, 5, 7, as was the case for
the stations stated in Chapter “Reference - General Transit Feed Spec-
ification”, 2025/'Extended GTFS Route Types | Static Transit”, 2025, The
target information are the “stop ids“ within the “stop times“ dataframe. The
“stop ID“ refere to the “stops” dataframe. “Reference - General Transit Feed
Specification”, 2025/ In this case, it is linked to the already extracted train
stations. By combining these information a trip can be illustrated by using
the “stop times* and the refered “stops“. “Reference - General Transit Feed
Specification”, [2025

Following the preparation of all three data frames, the “Trip ID“ data frame

stop timox.x st |

arrival_time service_id
departure_time trip_id agency_id
Qid trip_headsign route_short_name

route_color

Figure 3: [[llustrated Link between Stops Times, Routes and Trips, Source:
Self-created graphic, based on descriptions “Reference - General Transit Feed
Specification”, [2025

was iterated. It is vital to ensure that each “Irip ID* is taken and verified as
it appears in the stop times dataframe. If it was found in the stop times data
frame, a small data frame that had been filtered by the current looped “Trip
ID* was extracted and added to the matching “Trip ID* inside a dictionary.
The dictionary was then included as a new “Stop on Trip“ column in the
“trips ¢ dataframe. In the event that a matching “Irip ID* was not found in
the “stop times “ dataframe, a “None* value was added to a dictionary, which

22

was then applied to the “Stops on Trips“ column. This process was applied
to the Austrian and Luxembourg data sets. [6.2

However, it should be noted that the values of the Norway data “stop ID*
set differ slightly. This is due to the fact that, while the Norwegian “stop
times“structure remains the same, the “stop ID“ is not linked to a direct
“Stop Place ID“, as is the case for the other states. Instead, it refers to
a quay, which is a track of a train station. In order to address this issue,
it is necessary to extract the stations dataframe and identify the quays and
matching stations, as outlined in chapter "Key Issues to identify the Stations
in Both Formats" Each quay stored in the nested dataframe structure
will then be searched in the station dataframe. If a match is found, it will
be added to the current entry. If no match is found, a ’None’ value will be
added. “Stops- and Timetable Data”, 2025 “Datensétze”, 2025 “Horaires et
Arréts Des Transport Publics (GTFS) - Portail Open Data”, 2025

3.6.2 NeTex Journey Extraction

According to the Framework paper, the way of extracting is also
present in the [NeTEX files. As specified in the files, the “trip* and
“stop times“ should correspond to the “vehicle journey* and “Call* in NeTEx]
As previously outlined, the “stop times“ contained within the files are
the key source of information regarding the “Stop ID“, which is the target
data. As illustrated in the following figure [5| the “Service Journey“ is linked
to the “Scheduled Stop Points* via “Call“, which contain the relevant infor-
mation regarding the “Stop Place*. Knowles, 2024

Nevertheless, the documented process of converting the Trips to the
Journey did not work for any of the data sets analysed. is
a data format that can be used at multiple operational levels. It is charac-
terised by its flexibility, allowing users to select the structure that best suits
their needs. Nicholas JS Knowles, 2015 Therefore, it cannot be guaranteed
that the described connections are present in the data sets. Another ap-
proach is needed.

As per the findings of the analysis, the link from “Service Journey“ to the
“Stop Place* was discovered as illustrated in figure 5| According to the rel-
evant handbooks for the Austrian and Norway Netex formats, information
regarding “Stop Places” is to be found in the “Stop Assignment” or “Sched-
uled Stop Point* section. Both sections refer directly to a “Stop Place* via
a “Stop Place Ref®. It is for this reason that they act as our objective data.

23

1
4 You say route, we say LINE...

1 You say frip, we say VEHICLE JOURNEY...

4 You say stop_times, we say CALL...

4 You say headsign ,we say DESTINATION DISPLAY

R — - === = -
| -1 - N 4 = e]
— o |
R =] =10 |

Figure 4: Mapping GTFS Trips to Netex Journey - The basics, Source:
Knowles, 2024

However, navigating from the “Service Journey“ to the target information
is a complex, multi-tiered process that involves traversing the nested layers
of the files. A “Service Journey“ comprises a “Timetable Passing
Time"* node within its designated section. The “Timetable Passing Time’s"
entries comprise multiple entries, which are the actual made stops of the
journey. Each stop in the “Journey Pattern® refers to a “Service Journey*
or “Journey Pattern®. The “Service Journey Pattern® provides a framework
for each journey, including a node called “Stop Point” in “Journey Pattern‘.
This node features multiple entries, similar to those found in the “Journey
Pattern“. FEach “Stop Point“ in “Journey Pattern* entry contains a “Stop
Point in the Journey Pattern® ID, which can be connected with the same ID
from the “Service Journey“ section. Furthermore, each “Stop Point in the
“Journey Pattern® entry contains a “Scheduled Stop Place Ref“. This refer-
ence is directly linked to the “Scheduled Stop Point* section or “Passenger
Stop Assignment“. The first one contains a direct “Stop Place Ref*, and the
second one also contains a direct “Stop Place Ref* and a “Quay Ref“. The
“Quay Reference” is also linked to the “Stop Place” via multiple “Quay Ref-
erences” for one “Stop Place“. “Timetable - Handbok N801 (SIRI/NeTEX)
- Entur”, 2025 “JourneyPattern (Abstract in EPIP), ServicePattern - Ne-
TEx Profil Osterreich - Mobilititsverbiinde”, [2025 “PointinJourneyPattern
(Abstract in EPIP), StopPointInJourneyPattern - NeTEx Profil Osterreich -
Mobilitéatsverbiinde”, 2025 “ScheduledStopPoint, ServiceLink - NeTEx Profil
Osterreich - Mobilititsverbiinde”, 2025

24

Servicelourne Yy (Service)lourneyPattern

ServicelD ServiceJourneyPatterniD ScheduledStopPoint

TransportMode RouteView _’ 1
StartPointInPatternRef — LineRef StopPlaceRef
EndPointinPatternRef DirectionRef
TrainNumberRef StopPointinJourneyPattern
CimetabtedPassingTime (‘
StopPointinJourneyPattern 1 PassangerStopAssignment_id
Stop 1 StopPointinJourneyPattern 2 [——>| ScheduledStopPointRef 1
Stop2 StopPointinJourneyPattern 3 StopRlaceRef
Sp (‘ StopPointinJourneyPattern 1 QU
(‘_ _
StopPointinJourneyPattern

ScheduledStopPointRef
ArrivalTime Departure_Time
Departure_Time

StopPlace

StopPlace_id

Figure 5: Link from Service Journey to the Stop Places in Netex, Source:
Self-created graphic, based on descriptions “Timetable - Handbok N801
(SIRI/NeTEX) - Entur”, 2025 “JourneyPattern (Abstract in EPIP), Servi-
cePattern - NeTEx Profil Osterreich - Mobilitdtsverbiinde”, 2025 “Pointin-
JourneyPattern (Abstract in EPIP), StopPointInJourneyPattern - NeTEx
Profil Osterreich - Mobilititsverbiinde”, 2025 “ScheduledStopPoint, Ser-
viceLink - NeTEx Profil Osterreich - Mobilitétsverbiinde”, 2025

It is important to note that a variety of methods are employed by differ-
ent nation states for the structuring of their netex files. It is notable that
all data sets share the path from “Service Journey“ to “Passenger Stop As-
signment“. In the case of Austria and Luxembourg, the Netex files are to
be used, with the “Stop Point Ref“ to be referenced directly. Nevertheless,
the Norwegian [NeTEx approach involves the use of the path from “Quay
Ref* to “Stop Places®, thereby resulting in a process that is marginally more
complex. “Stops- and Timetable Data”, 2025 “Data.Europa.Eu”, 2025 “MVO
- Datenbereitstellungsplattform”, 2025

Four distinct extraction functions were developed to efficiently extract and
collate the necessary information from the four separate sections. Each func-
tion accepts the input of a single XML file. Prior to the selection of an ex-
traction method, a selection process will be implemented to determine which
XMT] files are to be extracted by which function. This selection process sys-
tematically iterates through all XMTIfiles, until all five names of the root are
found or not. Should a root be found, such as "ServiceJourney", "Service-

25

JourneyPattern", "JourneyPattern", "ScheduledStopPoint" or "Passenger-
StopAssignment”, the relevant extraction function will be called to extract
the necessary data. As the names of the nodes vary between the Netex files,
we require “ServiceJourney“ exclusively for the Norway data set “Timetable
- Handbok N801 (SIRI/NeTEX) - Entur”, 2025, Following the extraction
process, four data frames were created and applied to the merging process.
6.2]

First, part in merging process is filtering all “Service Journeys“ where their
“transport mode“or “journey type netex“ is rail. However, in the case of
the luxembourg data set this transport mode is not correctly implementated
therefore we need to prove wether the transport model does include None val-
ues. As mentioned previsously the Norway and the other two state’s structure
differs from each other, therefore we define wether the data set is norwagian
or not by simply apply a variable into the function which includes the name
of the country. Additionaly, each extracted data frame of the “Scheduled
Stop Point* does not contain any values about the “Stop Place Ref“. There-
fore, the “Passenger Stop Assignment® is the only one that can be used.

With regard to the non-Norwegian data sets from the “Service Journey Pat-
tern dataframe, every “Stop Point* in the “Journey Pattern“ and its cor-
responding “Scheduled Stop Point Ref* was extracted from each nested en-
try of the “Stop Point In Journey Pattern“ column to a dictionary called
“stop_point_to_scheduled*. The “Passenger Stop Assignment* dataframe
was then processed using a grouping process that selected only the “Scheduled
Stop Points”“ and the “Stop Place Reference“into a dictionary called “sched-
uled to stop place*. As seen from the dictionaries, the connections from
“Service Journey Pattern to the “Passenger Stop Assignment” and from the
“Passenger Stop Assignment® to “Stop Place* are represented in the two cre-
ate dictionaries “stop _point _to scheduled“ and “scheduled to stop place®.
An iteration was then applied to the “Service Journey*, with each row of the
“Timetabled Passing Time“ column being selected. Furthermore, a second
iteration was applied to all entries within the row. Each designated “Stop
Point in Journey Pattern® or “Stop® has been selected and verified to ensure
its inclusion in the “stop point to scheduled”, representing the connection
from the “Service Journey Pattern* to the “Passenger Stop Assignment®. If
the “Stop Point in Journey Pattern” or “Stop“ was found in the dictionary,
the “Scheduled StopPoint Ref* was used to add the matching value of the
“StopPlaceRef* from the second dictionary “scheduled to stop place* to
the entry of the current loop. If not match was found an None value was
added. This process is illustrated in following figure [6]

26

PassengerStopAssignment

PassengerStopAssignment_id
ScheduledStopPointRef
StopPlaceRef

QuayRef

TransportMode
StartPointinPatternRef

EndPointinPatternRef

selected
StopPointinJourneyPattern 1

ScheduledStopPointRef 1

selected Departure_Time

StopPointinjourneyPattern 1
ArrivalTime

Departure_Time

StopPlaceRef 1

Is ScheduledStopPointRef 1in Is ScheduledStopPointRef 1in
stop_point_to_scheduled? scheduled_to_stop_place?

_l—*.—» ScheduledStopPointRef 1
x None value is added x

StopPointinJourneyPattern 1

Figure 6: Code Illustration Journey Merging for Austria and Luxembourg,
Source: Self-created graphic

In case of the Norway data set an different but in principle similar ap-
proach was used as seen in figure [7] As the Norway structured uses
the “Quay* path to the “StopPlaces”, the station dataframe from the previous
chapter, ’Extraction of Station’ is required. As the station dataframe
allows for multiple “Quays®, given its presented cardinality of one to multiple,
only the “Passenger Stop Assignment“ can be used. “Stops - Handbok N801
(SIRI/NeTEX) - Entur”, 2025 “Timetable - Handbok N801 (SIRI/NeTEX)
- Entur”, 2025, Therefore, a flattening process is required to change the
current structure, whereby each “Quay* is associated with a station in its
own designated row. The new Station dataset and the “PassengerStopAs-
signment” are then merged together, as they both share a “Quay Reference”.
The new merged dataframe has been named “merged 1“. Furthermore, a
dataframe was created by extracting information from the Service Journey
Pattern dataframe. This dataset includes all “Stop Point in Journey Pat-
tern“ IDs with their corresponding “Scheduled Stop Point Ref*. Following
this, a second merging process is applied to the new dataframe and the al-
ready merged data frame “merge 1%, using their shared “Scheduled Stop
Point Ref“. This dataframe is labelled “merge 2. In the final step, the ini-
tial iteration is applied to the “Service Journey*, which selects each value in
the “TimetabledPassingTime netex column. The second iteration is then
applied to each nested value of the first iterated entry. In the event of the
“Stop Point in Journey Pattern® ID being found in the “merge 2 dataframe,
the corresponding “Stop Place Id“ is to be added to the current looped entry.

27

In the event of no match being found, a None Value was added. [6.2]

I
SelvicelD ServicelourneyPatterniD w PassengerStopAssignment id
TEETETEED StopPointinjourneyPattern e ScheduledstopPointRef
StartPointinPatternRef Statont (AL StopPlaceRef
EndPointinPatternRef StopPointinjourneyPattern 1 Stons PR QuayRef
TrainNumberRef StopPointinJourneyPattern 2 ’
jTimetabledPassineTime StopPointinjourneyPattern 3 bmnsmrmw lected
Stop 1 StopPointinjourneyPattern 1
Sopz ScheduledStopPointRef 1 —
D Departure_Time Station 1 Quay2 Quay_Ref
_ Station 2 Quay3

StopPointinJourneyPattern 1 ScheduledStopPointRef

ArrivalTime 1
¥ merged

1 1 station 1 Quay1

Departure_Time

+

Station 1

5 Station 1 Quay2

Is ScheduledStopPointRef 1 in the merged dataframe?
— _r’*l—' Station 1
StopPointinJourneyPattern 1
x None value is added

Figure 7: Code lllustration Journey Merging for Norway (simplified), Source:
Self-created graphic

As can already be seen, the different data formats within the
European Union differ from each other “Stops- and Timetable Data”, 2025
“Data.Europa.Eu”, |2025| “Horaires et Arréts Des Transport Publics (GTFS)
- Portail Open Data”, 2025 “MVO - Datenbereitstellungsplattform”, 2025
“OBB Open Data Datensitze”, 2025 “Datensitze”, 2025. Therefore, different
methods must be used to ensure that the data can be used for the thesis
analysis. However, in addition to the extraction guarantee, it is important to
note that processing time is another key factor. The different methods also
allow results to be obtained despite limited computational power.

4 Analysis

In the preprocess for each of the three chosen states Luxembourg, Austria
and Norway, the following data has been collated: a Wiki data set of all train
stations in the state, a station data set from the and NeTEX a trip
[GTTS data set and a[NeTEX journey data set. The following questions must
therefore be posed: The objective of this study is to determine the number
of stations that are matching within the [NeTEx and data set, and
to analyse the extent to which these stations are shared with the wiki data
set. With regard to the trips and journeys, it is necessary to establish the
number of trips that refer to a station within each own data set. Without
a reference, the trip would have contained missing stations. While there is
a possibility that an ID exists, it could not be located in the station data

28

frame. Additionally, it is assumed that each state has a single provider for
the two data formats, and therefore the sources of information are supposed
to be the same. In the Austrian case, the Osterreichische Bundesbahnen
(OBB) are responsible for the stations, netex and GTFS sets, and the netex
timetables from the Mobilititsverbund Osterreich data set, which includes
the OBB-provided timetables. “OBB Open Data Datensitze”, 2025 “Daten-
siatze”, 2025 “MVO - Datenbereitstellungsplattform”, 20250 The data sets
from Luxembourg are both provided by the Administration of Transport
Publics “Horaires et Arréts Des Transport Publics (GTFS) - Portail Open
Data”, 2025 “Data.Europa.Eu”, 2025. Entur, the national register operator
for all public transport, is responsible for the provision of the Norway data
sets. “Stops- and Timetable Data”, 2025. Therefore, this analysis also con-
siders whether this assumption is true.

4.1 Station Comparison - How many stations are shared?

As outlined in the chapter entitled 'Key Issues to identify the stations in
both formats’ with regard to the stations, the [NeTEx| and sta-
tion data sets have already been merged using the provided ID in the data
set. As we employed an outer merge process, it was possible to visualise the
shares of stations that are shared in the two formats and those that are not.
BIPIO][6-2l The venn diagrams show how many stations are shared between
the two formats. Additionally, the number of stations per state is given as a
reference value for the supposed minimum number of shared stations. [6.3
The official number for the Austrian station is 1031 “Zahlen, Daten, Fakten”,
2025, However, the data set and the data set both contain
more than 1031. contains 1056 stations and even more, with
1103 stations in total. It should be noted that both data sets feature a
significant number of stations in common with 1001. In comparison to the
Norway data set. The number of stations in both data formats is not ex-
act. The expected number is approximately 400 “NORWAY Train Travel
Information | Railec”, 2025 The data set comprises 509 elements,
whereas the set includes 901, thus showing a significant difference.
Both data sets shares 456 stations. For the Luxembourg data sets, the oppo-
site is true. Luxembourg is said to have 70 train stations “JUIL 2025 Carte
Reseau CFL_EN A3 PRINT” 2025, However, the data set con-
tains a significantly larger number of stations within the country, with 187
stations listed and the data set does show 79 stations. It is noteable
that there are no shared stations between and [NeTFEXx] formats from
Luxembourg. It should be noted that the data sets contain a greater number
of stations than there are in the state, as they also include stations from

29

Overlap between the shares of austria's Railway Stations id_netex and id_gtfs.
Actual number of stations: 1031

55 1001 102

id_netex g gtfs

Figure 8: Overlap between the shares of Austria Railway Stations GTFS and
Netex, Source: “OBB Open Data Datensétze”, 2025 “Datensétze”, 2025

30

Overlap between the shares of norway's Railway Stations id_netex and id_gtfs.
Actual number of stations: 400

53 456 445

id_netex
id_gtfs

Figure 9: Overlap between the shares of Norway Railway Stations GTFS and
Netex, Source: “Stops- and Timetable Data”, |2025

Overlap between the shares of luxembourg's Railway Stations id_netex and id_gtfs.
Actual number of stations: 70

187 79

id_gtfs

id_netex

Figure 10: Overlap between the shares of Luxembourg Railway Stations
GTFS and Netex, Source: “Horaires et Arréts Des Transport Publics (GTFS)
- Portail Open Data”, 2025 “Data.Europa.Eu”, 2025

31

neighbouring states. For instance, the Austrian data set includes stations
from Hungary. “Stops- and Timetable Data”, 2025 “Data.Europa.Eu”, 2025
“Horaires et Arréts Des Transport Publics (GTFS) - Portail Open Data”,
2025/“MVO - Datenbereitstellungsplattform”, 2025/“OBB Open Data Daten-
satze”, 2025 “Datensitze”, 2025

Following a thorough evaluation, it was determined that there was no clear
explanation for the absence of stations shared between the [TESand
files, at least in Norway and Austria. As illustrated in the accompanying
maps the not shared station was mapped in each states [[1][12] In Norway
and Austria, there is a notable absence of significant overlap between the
blue and red not shared stations, indicating potential missing
stations and whole regions in both the [GTES and [NeTEx| data sets. However,
in Luxembourg none of the NeTEx|stations are within Luxembourg’s borders
on the map [13] This suggests that the station’s coordinates are completely
inaccurate.

weastle
jon Tyne
n

POA Be Aaringy,
he! Groningen
effield g ngmq Szcrecin Bydgoszcz Bidlyst
glond AEx Beglin £
ningham / ; 3 pozna Warszawa
Nederlanc o
e (o] Magdeburg Polska Bpact
@ DiisseldH - o
e)
, Lubl!
Lill 0° - ° Frankfurt Dre: O Jurog !
S am Main L p =
e Nirgherg L" 0 flom
Pw\ Luxembourg 8’ BiHHMUA
0:.8¢ o LePcf Pt o i
o YepHiui '
9‘3 B mgnoi
France Suisse/Sviz goxa Xe
Sviz <L JN"V pch Opeca |
i K "°”"’o TN T s
Milano imisoara alat
Beorpaa
Beorpa
Torino Bucurest
ova @Bologna jjryatska E o Craloval g
Monaco hy Sarajevoy, Cp6uja Constanta
ar b Citta di S fe) - Ba
Ma:

Marseille or
® Gopun® bBArapua
Andorra

la Vella ®Cxonje Mnosaue

Istanbul

Figure 11: Austria’s not shared stations between (blue) and NeTEX]
(red), Source: “OBB Open Data Datensétze”, 2025 “Datensétze”, 2025

4.1.1 Station Verfication via third Source

As was stated in the preceding chapter, entitled "How to connect the third
source with NeTEX or a key was selected. The selection of the

32

TR v Sy o X v R

Figure 12: Norway not shared stations between [GTES (blue) and [NeTEX
(red), Source: “Stops- and Timetable Data”, 2025

Figure 13: Luxembourg’s not shared stations between [GTES] (blue) and
NeTEx (red), Source: “Horaires et Arréts Des Transport Publics (GTFS)
- Portail Open Data”, 2025 “Data.Furopa.Eu”, [2025

33

Overlap between the shares of norway's Railway Stations UIC_wiki and UIC_Code_netex.
Actual number of stations: 400

278 140 213

UIC_Code_netex
UIC_wiki

Figure 14: Overlap between the shares of Norway’s Railway Stations Wiki
and NeTEx, Source: “Stops- and Timetable Data”, 2025

was made in the Austrian data sets due to the fact that, in the major-
ity of cases, each station refers to such an IBNR in the wiki collected data.
With regard to the Norway and Luxembourg data set, the UIC code was
selected, with the majority of stations also adopting this code. However,
it is noteworthy that none of the data sets under analysis contain any
of the specified keys. The data sets from Norway and Austria are the
only ones to include the or [UIC] codes. It is therefore only possible to
make a direct comparison with the NeTEx and Wiki data set of Norway and
Austria. The Luxembourg data sets do not contain any of the keys wether
in the or formats. The merging function was applied to the
wiki data set and the data set by the shared key IDs. The resulting
shares are illustrated in the following figures

The wiki data will be used as the third source to verify the correctness of
the stations. The majority of the Austrian stations have been verified using
the wiki data set. A total of 1,008 stations are shared between the
and Wiki data sets. It should be noted that 197 stations of the Wiki data
set, and 48 stations of the data set, have not been shared. For the
Norwagian data sets the opposite is the case. The minority of 140 could be
verified by the Wiki data set. 278 stations from the Wiki data set and 213
stations from the Norway data set are not shared. Not all train stations in

34

the Norwegian data set appear to contain a UIC code. It is evident
that there is a discrepancy in the number of stations identified in the two
comparisons as illustrated in the figures. [0][I4 The number of stations in the
Wiki comparison is listed below the station number in Norway, which is from
353 to 400. In comparison to the initial and analysis, a dis-
crepancy of 146 stations is noteworthy. The higher number of stations within
the Wiki data set can be explained by the fact that the used SPARQL query
does not filter historical stations, which may still be in the Wiki database. [6.1

Overlap between the shares of austria's Railway Stations IBNR_wiki and EVA_Nr_netex.
Actual number of stations: 1031

197 1008 48

EVA_Nr_netex
IBNR_wiki

Figure 15: Overlap between the shares of Austria’s Railway Stations Wiki
and Netex, Source: “OBB Open Data Datensitze”, 2025 “Datensétze”, 2025

4.2 Data Quality - Distance between Stations

As outlined in the previous chapter, two of the three stations’ dataframes
were successfully verified. In order to verify the data quality, a comparison is
made between the Wsiki data coordinates and the coordinates of the

35

and data set. The distance was calculated using the Wiki data co-
ordinates as a reference point. The distance from the Wiki coordinates to
the NeTEX or coordinates was then calculated. The results are seen
in the following figures [I6|[I7] Each bar chart represents the distance of one
station, with the height of the bar representing the distance between the
or format and the Wiki Data coordinates. The bar charts for
both formats are marked in different colours: orange for [NeTEx] and blue
for [GTESl The greater the height, the greater the discrepancy between the
format coordinates and the Wiki coordinates.

For Norway, the mean distance between the Wiki coordinates and the
coordinates is 87.95 metres, and for NeTEx], it is 90.95 metres. In compar-
ison to Austria, the average distance from the Wiki coordinates is slightly
lower, at 43.15 and 43.12, respectively. As the figures clearly demonstrate,
the majority of stations in each state are far below 200 metres away from
the coordinates provided by Wiki. In both cases, there are outliers with a
distance greater than 900 metres. Despite the and data sets
being intended to be equivalent, there is a discrepancy in the coordinates
when compared to the Wiki coordinates. However, it is notable that the
Wiki coordinates are not as accurate as the other data sets in some cases.
Each format, including the wiki data, has its own issues with coordinates.
Ag illustrated in the following figures, one station was selected for inspection,
with a distance greater than 400 metres from the wiki coordinates In

Distance Comparison per Station between Wiki Data Station: austria

GTFS
Netex

Distance in meters to the wiki coordinates

Stations

Figure 16: Distance Comparison per Austrian’s Station between Wiki data,
netex and GTFS, Source: “OBB Open Data Datensétze”, [2025 “Datenséatze”,
2025

this instance, the Wiki and data sets are identical in terms of coordi-
nates, whereas the data set differs from both of them. Therefore, it

36

Distance Comparison per Station between Wiki Data Station: norway

s GTFS
0 Netex

H i

Distance in meters to the wiki coordinates
|

Stations

Figure 17: Distance Comparison per Norway’s Station between Wiki data,
netex and GTFS, Source: “Stops- and Timetable Data”, 2025

Figure 18: Example Station Weitlanbrunn - different coordinates between Ne-
tex (red), GTFS (blue) and Wiki (green), Source: “OBB Open Data Daten-
sitze”, 2025 “Datensétze”, 2025

37

is not clear which of these two formats performs better in terms of distances,
since the third Wiki source also does not contain an accurate value. This
raises the question of how much the distance differs between the two formats.

In addition, the following figures illustrate the significant differences between
the and coordinates [[9/20

It is evident that there is a discrepancy in the distances between the
and NeTEx] in both sets. The majority of the distances are still below 100
metres. However, it should be noted that despite the fact that these data are
provided by the same provider in Norway and Austria, “Stops- and Timetable
Data”, 2025/ “OBB Open Data Datensitze”, 2025 “Datensiitze”, 2025, there
is a discrepancy indicating that the NeTEx] and data sources are not
based on the same underlying database. Otherwise, the distance between the
NeTEx| and stations should be in close approximation to zero. This
would suggest that the coordinates used in and are from the
same source. However, this is not the case.

Distance Comparison per Station between NeTex and GTFS: austria
Distance GTFS and Netex

Distance in meters

Stations

Figure 19: Distance Comparison per Austrian’s Station between GTFS and
NeTex, Source: “OBB Open Data Datensétze”, 2025 “Datensétze”, 2025

4.3 Trips and Journeys - Identifable stations

In order to measure how many stops for a trip are actually referring to a real
stop ID, the following steps were made. Firstly, the station dataframe and
the trip and journey dataframes were loaded. Each trip and
journey is contained within a list of stops, with the referring to these
as Stops and the referring to them as Stop Places. The stops IDs
were selected and then compared with the stations collected in the stations
dataframe. A comprehensive count and illustration of all stops per trip and

38

Distance Comparison per Station between NeTex and GTFS: norway
Distance GTFS and Netex

Distance in meters

Stations

Figure 20: Distance Comparison per Austrian’s Station between NeTex and
GTFS, Source: “Stops- and Timetable Data”, |2025

non-referable stops was performed for each individual state. Each bar chart
represents a single trip or journey. The height of the bar chart indicates the
number of stops for each trip and journey. The green bar chart illustrates
the number of stops, while the blue bar chart shows the number of stops that
have been successfully verified by the station’s data frame. If a stop has not
been refered, the trip or journey will contain a stop that cannot be located
therefore it is a station without a name or any other information about this
stop. It is important to note that the greater the number of stops that are
successfully referenced by the station’s data frame, the less incomplett the
resulting trip or journey will be. [6.3

The Austrian data sets are illustrated in the following figures which shows
that the the majority of the stops in both formats are refering to station from
the station dataframe21|22] It has been noted that the successfully referred
stops vary between [NeTEx] and for each trip. It was discovered that
the Austrian data sets did not contain accurate references for 52 trips
from 9325. From these 52 trips, an average of 3.4 stops were missing per
trip, with an average of 4.7 stops per trip. In comparison with the
data set, 18,602 journeys were not accurately referred from a total of 36,835.
In the 18,602 journeys analysed, an average of 4.35 stops were refered, with
an average of 6.9 stops per journey. “MVO - Datenbereitstellungsplattform”,
2025 “OBB Open Data Datensitze”, 2025 “Datensitze”, 2025

In the case of Luxembourg, there is a significant difference in the number
of successfully referred stops across both formats. All stops on 2,292 trips
in the could be verified using the station dataframe. In compari-

39

son, from all stops, not a single complete journey from in total of
1731 could be verified by the station dataframe. As demonstrated in the
figures, the substantial discrepancy is evident 23|24} On average, it was pos-
sible to refer successfully from only 1 out of a total of 9 stops per journey.
“Data.Europa.Eu”, |2025| “Horaires et Arréts Des Transport Publics (GTFS)
- Portail Open Data”, 2025 In the case of Norway, all trips and journeys in

NeTex: Stops per trip vs. stops with ID within the austria data set

Number of stops

Number of Trips

Figure 21: Netex: Stops with refering ID and Stops without in Austria,
Source: “Datensétze”, 2025

GTFS: Stops per trip vs. stops with ID within the austria data set

Number of stops

Number of Trips

Figure 22: Netex: Stops with refering ID and Stops without in Austria,
Source: “MVO - Datenbereitstellungsplattform”, 2025

both formats contain a successfully verified station IDs. Each stop is referred
to as a legitimate station in the station data frame. A total of 47,439 trips
have been recorded for and 26,852 for NeTExl As illustrated in the
figured26][25] it is the only state where no stops are missing in both formats.

40

NeTex: Stops per trip vs. stops with ID within the data set.

“ Stops per trip
s = Stops per Trip with ID

Number of stops

. 3 0 1500 o

£ % Eq 000
Number of Trips.

Figure 23: Netex: Stops with refering ID and Stops without in Luxembourg,
Source: “Data.Europa.Eu”, 2025

GTFS: Stops per trip vs. stops with ID within the data set

= Stops per trip
m Stops per Trip with ID

Number of stops

s

oo
Number of Trips

Figure 24: GTFS: Stops with refering ID and Stops without in Luxembourg,
Source: “Horaires et Arréts Des Transport Publics (GTFS) - Portail Open
Data”, 2025

41

NeTex: Stops per trip vs. stops with ID within the norway data set

Stops per trip
= Stops per Trip with ID

Number of stops
¥ 3

15200
Number of Trips.

Figure 25: Netex: Stops with refering ID and Stops without in Norway,
Source: “Stops- and Timetable Data”, 2025

GTFS: Stops per trip vs. stops with ID within the norway data set

= Stops per trip
m Stops per Trip with ID

8

Number of stops
¥

Number of Trips

Figure 26: GTFS: Stops with refering ID and Stops without in Norway,
Source: “Stops- and Timetable Data”, 2025

42

“Stops- and Timetable Data”, 2025

In terms of stop verification, a lack of reference is evident, especially in the
format. It appears in the format for Austria. However, this
is less significant than the absence of references in As previosuly
in the beginning of this chapter outlined the lack of stop reference demon-
strates the unacurracy and imcompletnesses of the data. As outlined at the
beginning of this chapter, the lack of a stop reference demonstrates the in-
accuracy and incompleteness of the data. This is particularly significant for
Austria and Luxembourg, where the most references are missing. “Stops-
and Timetable Data”, 2025 “Data.FEuropa.Eu”, 2025 “Horaires et Arréts Des
Transport Publics (GTFS) - Portail Open Data”, 2025 “MVO - Datenbereit-
stellungsplattform”, 2025 “OBB Open Data Datensitze”, 2025 “Datensitze”,
2025

4.4 Results of the Analysis

Notably, it is complex to compare the two data formats, NeTEx and [GTEFS]
with each other. The assumption was that both data sets should come from
the same provider in each of the three states. It was also assumed that
they should use the same data and information sources.“Datensitze”, 2025
“MVO - Datenbereitstellungsplattform”, 2025/ “Horaires et Arréts Des Trans-
port Publics (GTFS) - Portail Open Data”, 2025 “Data.Europa.Eu”, 2025
“Stops- and Timetable Data”, 2025, The results of this analysis suggest that
this is not the case.

The lack of shared stations in both data formats suggests that they do not
originate from the same source. For example, examining the stations that are
not shared reveals no clear pattern. They appear to be chosen at random for
Norway and Austria. Verifying the stations using a third source is difficult
since the format does not include any additional information, such as
or codes “Reference - General Transit Feed Specification”, 2025l
Therefore, only a comparison with stations shared in and was
possible. As the verification of the stations by Wiki Data fluctuates signif-
icantly between Norway and Austria, it is possible that the information is
incorrect in all three formats. For example, there are significant differences
in the coordinates between the third source and and as well
as between the two formats. This indicates that, even if the provider is
the same, the two formats do not share the same source of information. If
they shared the same source, the analysis would measure a fluctuation much
closer to zero, since the coordinates are supposed to be the same for each

43

station. [1.2]

In terms of incomplete stations, the [NeTEx and formats differ in
the parts they share, as not all stations are shared between the two formats.
The number of stations shared in and for Austria is slightly
lower than the actual number of stations in Austria “MVO - Datenbereitstel-
lungsplattform”, 2025 “OBB Open Data Datensitze”, 2025“Datensitze”, [2025
“Zahlen, Daten, Fakten”, 2025l Norwegian shared stations cover a greater
number of stations in the country; however, there is a greater difference in
the number of stations in each format “Stops- and Timetable Data”, 2025
“NORWAY Train Travel Information | Railec”, 2025. In Luxembourg, no
stations were shared because none of the stations in the Netex dataset are in
Luxembourg, as can be seen in the figure [13]

In the case of incomplete trip references, the format achieved sig-
nificantly better results than the format in all three states. In all
three states, the dataset could successfully reference the majority of
its stops, and in two of the three states, it could reference all of them. By
contrast, Netex data was significantly more incomplete. Only one of the three
analysed states could reference all stops on a journey. The other two states
performed particularly poorly in this analysis. Only a small minority of jour-
neys in Luxembourg and around half of those in Austria could successfully
reference all stops. [1.3]“Stops- and Timetable Data”, 2025|“Data.Europa.Eu”,
2025 “Horaires et Arréts Des Transport Publics (GTFS) - Portail Open Data”,
2025/“MVO - Datenbereitstellungsplattform”, 2025/“OBB Open Data Daten-
satze”, 2025 “Datensitze”, 2025

4.4.1 Possible Explanations

According to the Napcore report, the standard is the most used ex-
change standard for static for Multi Model Travel Information (MMTIS)
realted information within the european union. It is used for the exchange of
data, supporting location search, supporting detailed common standard and
special fare queries and providing insight into existing trip plans and aux-
iliaryaspects and supporting trip plan computation. However, the standard
is not yet fully implemented on a wide scale. “Activity WG3 NAP Content
and Accessibility | NAPCORE”, 2024 One potential reason for this could be
the high level of effort required to implement such a standard. The
structure is more complex than the GTFS structure Knowles, 2024.
Furthermore, implementing as a standard requires the integration of
a comprehensive ecosystem. It is part of the Transmodel system, which incor-

44

porates a range of models including and Christophe Duquesne,
2023, Additionaly, the Transmodel ecosystem including [NeTEx] represents
more than a standard, it is a comprehensive, harmonised concept for an
open data space concerning European rail travel. One of the most significant
challenges that train operators must overcome is the financial burden associ-
ated with the implementation and training required to manage and maintain
such systems. It is vital that the benefits of such implementation outweigh
the cost. “Cen-Tc-278 nb5072 europeanfarerailprofilenetex-Callforexperts”,

2024| These could be a factor in the decision of many European states to not
implement a full solution.

In the case of GTFS, there is an possible additional reason why it performs
better in the analysis: this format is already used by passengers applications.
was developed by Google for the specific purpose of utilising Google
Maps. Goldstein and Dyson, 2013| In the world of map and navigation ap-
plications, Google Maps is the clear market leader in terms of popularity. It
is reported that 67 per cent of smartphone users prefer this navigation app.
wtw, 2025 It is therefore logical that a significant number of train operators
publish their data in format. This format is straightforward “Activ-
ity WG3 NAP Content and Accessibility | NAPCORE”, 2024, and simpler
to implement “Create - General Transit Feed Specification”, 2025, and many
people have an application that can access the information “Publish - General
Transit Feed Specification”, 2025 such as Google Maps.

5 Summary

To summarise, the thesis analysed and in terms of their sta-
tions and trips. A comparison was made between the stations in both for-
mats, as well as with stations from each member state, using the knowledge
graph from the Wiki database. Furthermore, the distance between the shared
stations was calculated using the coordinates of the sources. In both formats,
the trips were extracted and analysed to determine the number of stops per
trip that are referenceable with the stations within the same dataframe. It
was argued that both data formats should be provided by the same national
provider and therefore would theoretically share the same source of informa-
tion. However, this is not the case.

Following a thorough analysis and preparation, it was determined that both

formats present certain issues. With regard to the international standardi-
sation of data formats, there are a number of issues to consider. Problems

45

arise from the differing definitions of route types used in the various
data sets “Extended GTFS Route Types | Static Transit”, 2025 “Reference -
General Transit Feed Specification”, 2025l Furthermore, the standard
structure for stops is not shared, since each entry in the stop section of the
files appears in the Austrian and Norwegian data sets as a track line,
rather than a station, as in the Luxembourg data set. “Stops- and Timetable
Data”, 2025 -—Datensaetze2025 “Horaires et Arréts Des Transport Publics
(GTES) - Portail Open Data”, 2025

According to the convention, the identifier for train stations sup-
posed to be the or at least refering to it within the format Soares
and Martins, 2013, However, it should be noted that this applies exclu-
sively to the Austrian data sets. Norway and Luxembourg utilise their own
national IDs system , which can result in a more complex analysis of each
process. Furthermore, the significant absence of data in the data
sets is a notable issue. For instance, the Luxembourg data set does not in-
clude any stations in Luxembourg . Furthermore, approximately only half
of the Austrian journeys, including referable stops. Should a referable stop
not be included, the journey will contain missing information regarding the
referencing station of the stop. “MVO - Datenbereitstellungsplattform”, 2025
“OBB Open Data Datensétze”, 2025 “Datensiitze”, 2025 “Data.Europa.Eu”,
2025| “Stops- and Timetable Data”, 2025

The concept of a unified European rail network incorporating an open data
space within the European Union is an ambitious objective. Following a de-
tailed review of the available data formats, it has been determined that in
order to achieve this objective, it will be necessary to implement an enhanced
version of those data standards that are not currently available through
or NeTEx] To summarise, a key issue common to both data for-
mats in the three states is the requirement for a unique identifier for all
stations across Europe. For instance, the and the code are de-
signed to provide a solution to the problem. However, the current state of
implementation is suboptimal, as the analysis shows. Despite the majority
of train operators in Norway, Austria and Luxembourg being [UIC] partners,
“UIC Vademecum?”, [2025| further improvements can be made, such as imple-
menting the code for each station. It is evident that the current state
of data format maintenance is not sufficiently developed, particularly in the
case of standard, due to a lack of information.

46

References

Action Plan to boost passenger rail - European Commission. (2025, April 27).
Retrieved April 27, 2025, from https://transport.ec.europa.eu/news-
events/news/action-plan-boost-passenger-rail-2021-12-14 _en

Activity WG3 NAP content and accessibility | NAPCORE. (2024, January
30). Retrieved September 8, 2025, from https://www.napcore.eu /
documents/M3.5 4th report NAP data availability.pdf

Antrim, A., & Barbeau, S. J. (2017). Opening the Door to Multimodal Ap-
plications: Creation, Maintenance and Application of GTFS Data.
(17-03702). Retrieved September 8, 2025, from https://trid.trb.org/
View /1438473

Bielefeldt, A., Gonsior, J., & Krotzsch, M. (2018). Practical Linked Data
Access via SPARQL: The Case of Wikidata.

Calculate distance and bearing between two Latitude/Longitude points us-
ing haversine formula in JavaScript. (2025, September 12). Retrieved
September 12, 2025, from https: //www.movable-type.co.uk /scripts/
latlong.html

Cen-tc-278 nb5072_ europeanfarerailprofilenetez-callforexperts. (2024, Decem-
ber 3). Retrieved September 22, 2025, from https://www.cencenelec.
eu /media / CEN- CENELEC / News / Brief % 20News / 2025 / cen - tc-
278 nd072 europeantarerailprofilenetex-callforexperts.pdf

Christophe Duquesne. (2023, January 18). EN NeTFEz-introduction v.1-1.
Retrieved September 22, 2025, from https://transmodel-cen.eu/wp-
content/uploads/2024/05/EN NeTEx-introduction v.1-1.pdf

Create - General Transit Feed Specification. (2025, September 22). Retrieved
September 22, 2025, from https://gtfs.org/getting-started /create/

Data Models. (2025, September 8). DatadPT. Retrieved September 8, 2025,
from https: //datadpt-project.eu/data-models/

Data.europa.eu. (2025, September 8). Retrieved September 8, 2025, from
https: / / data.europa.eu / data / datasets / horaires- et - arrets- des-
transport-publics-netex?locale—en

Datenbeschreibun Osterreich Netex-XML. (2024).

Datensitze. (2025). OBB Open Data. Retrieved September 17, 2025, from
https://data.oebb.at/de/datensaetze

Deutschlandtarifverbund GmbH. (2025, September 10). Veroffentlichung des
DTV- und NRW-Entfernungswerk. https:/ /assets.static- bahn.de /
dam/jcr:4a072076-d5be-41a5-b864-a3cc074ebd e /1%20 Vorbemerkungen.
pdf

47

https://transport.ec.europa.eu/news-events/news/action-plan-boost-passenger-rail-2021-12-14_en
https://transport.ec.europa.eu/news-events/news/action-plan-boost-passenger-rail-2021-12-14_en
https://www.napcore.eu/documents/M3.5_4th_report_NAP_data_availability.pdf
https://www.napcore.eu/documents/M3.5_4th_report_NAP_data_availability.pdf
https://trid.trb.org/View/1438473
https://trid.trb.org/View/1438473
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://www.cencenelec.eu/media/CEN-CENELEC/News/Brief%20News/2025/cen-tc-278_n5072_europeanfarerailprofilenetex-callforexperts.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/News/Brief%20News/2025/cen-tc-278_n5072_europeanfarerailprofilenetex-callforexperts.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/News/Brief%20News/2025/cen-tc-278_n5072_europeanfarerailprofilenetex-callforexperts.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/05/EN_NeTEx-introduction_v.1-1.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/05/EN_NeTEx-introduction_v.1-1.pdf
https://gtfs.org/getting-started/create/
https://data4pt-project.eu/data-models/
https://data.europa.eu/data/datasets/horaires-et-arrets-des-transport-publics-netex?locale=en
https://data.europa.eu/data/datasets/horaires-et-arrets-des-transport-publics-netex?locale=en
https://data.oebb.at/de/datensaetze
https://assets.static-bahn.de/dam/jcr:4a072076-d5be-41a5-b864-a3cc074e5d1e/1%20Vorbemerkungen.pdf
https://assets.static-bahn.de/dam/jcr:4a072076-d5be-41a5-b864-a3cc074e5d1e/1%20Vorbemerkungen.pdf
https://assets.static-bahn.de/dam/jcr:4a072076-d5be-41a5-b864-a3cc074e5d1e/1%20Vorbemerkungen.pdf

Dreifache Auszeichnung fir OPNV-Apps von Hacon. (2025, September 10).
Retrieved September 10, 2025, from https://www.hacon.de /news /
meldungen /app-awards-2024/

European Commission. (2017, May 31). COMMISSION DELEGATED REG-
ULATION (EU) 2017/1926 of 31 May 2017 supplementing Directive
2010/40/EU of the European Parliament and of the Council with re-
gard to the provision of EU-wide multimodal travel information ser-
vices. Retrieved September 19, 2025, from https://eur-lex.europa.eu/
eli/reg _del/2017/1926/0j/eng
Usr_lan: EN.

FEzxtended GTFS Route Types | Static Transit. (2025, September 8). Google
for Developers. Retrieved September 8, 2025, from https://developers.
google.com /transit /gtfs /reference/extended-route-types

Fabrizio Arneodo. (2015, October). 01.NeTEz-Introduction- WhitePaper_1.03.
Retrieved September 20, 2025, from https://transmodel-cen.eu/wp-
content /uploads /2024 /07 /01.NeTEx-Introduction- WhitePaper 1.
03.pdf

Goldstein, B., & Dyson, L. (Eds.). (2013). Beyond transparency: Open data
and the future of civic innovation. Code for America Press.

Hacon - A Siemens Company. (2025, September 10). Retrieved September
10, 2025, from https://www.hacon.de/unternehmen/

HAFAS Rohdaten Format (HRDF) — Open Data-Plattform Mobilitit Schweiz.
(2025, September 10). Retrieved September 10, 2025, from https://
opentransportdata.swiss /de / cookbook / timetable-cookbook / hafas-
rohdaten-format-hrdf/

HAFAS.engine_english. (2025, September 10). Retrieved September 10, 2025,
from https:/ /www.hacon.de /fileadmin / user upload / Portfolio /
Factsheets/ HAFAS /HAFAS.engine english.pdf

History — Transmodel. (10/09/2025, 11:57:38). Retrieved September 10, 2025,
from |https: //transmodel-cen.eu/index.php/history /

Horaires et arréts des transport publics (GTFS) - Portail Open Data. (2025,
September 8). Retrieved September 8, 2025, from https:/ /data.public.
lu/en/datasets/horaires-et-arrets-des-transport-publics-gtfs /

IBNR ID. (2025, September 10). Retrieved September 10, 2025, from https:
/ /www.wikidata.org/wiki/Property:P954

Identification of Fized Objects in Public Transport. (2025). Retrieved Septem-
ber 11, 2025, from https://www.wikidata.org/wiki/ Q5988215

Instance of. (2025, September 12). Retrieved September 12, 2025, from https:
/ /www.wikidata.org/wiki/Property:P31

International Standardisation: The European Rail Associations Vison. (2021,
April 29). Retrieved September 8, 2025, from https://www.unife.org/

48

https://www.hacon.de/news/meldungen/app-awards-2024/
https://www.hacon.de/news/meldungen/app-awards-2024/
https://eur-lex.europa.eu/eli/reg_del/2017/1926/oj/eng
https://eur-lex.europa.eu/eli/reg_del/2017/1926/oj/eng
https://developers.google.com/transit/gtfs/reference/extended-route-types
https://developers.google.com/transit/gtfs/reference/extended-route-types
https://transmodel-cen.eu/wp-content/uploads/2024/07/01.NeTEx-Introduction-WhitePaper_1.03.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/07/01.NeTEx-Introduction-WhitePaper_1.03.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/07/01.NeTEx-Introduction-WhitePaper_1.03.pdf
https://www.hacon.de/unternehmen/
https://opentransportdata.swiss/de/cookbook/timetable-cookbook/hafas-rohdaten-format-hrdf/
https://opentransportdata.swiss/de/cookbook/timetable-cookbook/hafas-rohdaten-format-hrdf/
https://opentransportdata.swiss/de/cookbook/timetable-cookbook/hafas-rohdaten-format-hrdf/
https://www.hacon.de/fileadmin/user_upload/Portfolio/Factsheets/HAFAS/HAFAS.engine_english.pdf
https://www.hacon.de/fileadmin/user_upload/Portfolio/Factsheets/HAFAS/HAFAS.engine_english.pdf
https://transmodel-cen.eu/index.php/history/
https://data.public.lu/en/datasets/horaires-et-arrets-des-transport-publics-gtfs/
https://data.public.lu/en/datasets/horaires-et-arrets-des-transport-publics-gtfs/
https://www.wikidata.org/wiki/Property:P954
https://www.wikidata.org/wiki/Property:P954
https://www.wikidata.org/wiki/Q5988215
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P31
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf

wp-content /uploads/2021/05/INTERNATIONAL-STANDARDISATION-
THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf

JourneyPattern (Abstract in EPIP), ServicePattern - NeTEz Profil Osterre-
ich - Mobilitatsverbiinde. (2025, September 15). Retrieved September
15, 2025, from https:/ / mobilitaetsverbuende. atlassian . net / wiki /
spaces / NET / pages / 180715593 / JourneyPattern + Abstract + in +
EPIP+ServicePattern

JUIL 2025 Carte reseau CFL_EN A8 PRINT. (2025). Retrieved Septem-
ber 17, 2025, from https://www.cfl.lu/getattachment /50fc8908-06be-
462f-a8ba-8c49eb1{3927 /juil-2025 carte-reseau-cfl _en a3 print.
pdf

Key:ref:IFOPT — OpenStreetMap Wiki. (2025). Retrieved September 21, 2025,
from |https://wiki.openstreetmap.org/wiki/Key:ref:IFOPT

Key:uic_ ref — OpenStreetMap Wiki. (2025, September 8). Retrieved Septem-
ber 8, 2025, from https://wiki.openstreetmap.org/wiki/Key:uic ref

Knowles, N. (2024). Outline comparison and Mapping between NeTEx &
GTFS. https://transmodel-cen.eu/index.php /papers/

Maria, E., Budiman, E., Haviluddin, & Taruk, M. (2020). Measure distance
locating nearest public facilities using Haversine and Euclidean Meth-
ods. Journal of Physics: Conference Series, 1450(1), 012080. https:
7 /dot.org/10.1088/1742-6596 /14501 /012080

MVO - Datenbereitstellungsplattform. (2025, September 8). Retrieved Septem-
ber 8, 2025, from https://data.mobilitaetsverbuende.at/de/data-sets

National Access Points - European Commission. (2025). Retrieved September
19, 2025, from https: / /transport.ec.europa.eu / transport- themes /
smart- mobility /road /its-directive-and-action- plan /national-access-
points en

NeTEzx — Transmodel. (2025, April 29). Retrieved April 29, 2025, from https:
/ /transmodel-cen.eu/index.php /netex/

Nicholas JS Knowles. (2015, October). 04. Ne TEx-Framework- WhitePaper 1.07.
Retrieved September 8, 2025, from https://transmodel-cen.eu /wp-
content /uploads/2024/07/04.NeTEx-Framework- WhitePaper 1.07.
pdf

NORWAY Train Travel Information | railce. (2025). Retrieved September 17,
2025, from https://rail.cc/norway /xno

OBB Open Data Datensditze. (2025, September 8). OBB Open Data. Re-
trieved September 8, 2025, from https://data.oebb.at /de/datensaetze

Open data about railway stations. (2025). Retrieved September 11, 2025, from
https:/ /www.rijdendetreinen.nl/en /open-data/stations

49

https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180715593/JourneyPattern+Abstract+in+EPIP+ServicePattern
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180715593/JourneyPattern+Abstract+in+EPIP+ServicePattern
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180715593/JourneyPattern+Abstract+in+EPIP+ServicePattern
https://www.cfl.lu/getattachment/50fc8908-06be-462f-a8ba-8c49eb1f3927/juil-2025_carte-reseau-cfl_en_a3_print.pdf
https://www.cfl.lu/getattachment/50fc8908-06be-462f-a8ba-8c49eb1f3927/juil-2025_carte-reseau-cfl_en_a3_print.pdf
https://www.cfl.lu/getattachment/50fc8908-06be-462f-a8ba-8c49eb1f3927/juil-2025_carte-reseau-cfl_en_a3_print.pdf
https://wiki.openstreetmap.org/wiki/Key:ref:IFOPT
https://wiki.openstreetmap.org/wiki/Key:uic_ref
https://transmodel-cen.eu/index.php/papers/
https://doi.org/10.1088/1742-6596/1450/1/012080
https://doi.org/10.1088/1742-6596/1450/1/012080
https://data.mobilitaetsverbuende.at/de/data-sets
https://transport.ec.europa.eu/transport-themes/smart-mobility/road/its-directive-and-action-plan/national-access-points_en
https://transport.ec.europa.eu/transport-themes/smart-mobility/road/its-directive-and-action-plan/national-access-points_en
https://transport.ec.europa.eu/transport-themes/smart-mobility/road/its-directive-and-action-plan/national-access-points_en
https://transmodel-cen.eu/index.php/netex/
https://transmodel-cen.eu/index.php/netex/
https://transmodel-cen.eu/wp-content/uploads/2024/07/04.NeTEx-Framework-WhitePaper_1.07.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/07/04.NeTEx-Framework-WhitePaper_1.07.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/07/04.NeTEx-Framework-WhitePaper_1.07.pdf
https://rail.cc/norway/xno
https://data.oebb.at/de/datensaetze
https://www.rijdendetreinen.nl/en/open-data/stations

Ovenhagen, L. (2021). A design vision towards seamless European train jour-
neys. Retrieved September 19, 2025, from https:/ /repository.tudelft.
nl/record /uuid:01a0e501-2ela-469d-blc3-03df7abae737

Overview - General Transit Feed Specification. (2025, April 30). Retrieved
April 30, 2025, from https://gtfs.org/documentation /overview /

Pandas.DataFrame.merge — pandas 2.3.2 documentation. (2025, Septem-
ber 10). https://pandas.pydata.org /docs / reference / api/ pandas.
DatakFrame.merge.html

Pandas.read_ csv — pandas 2.3.2 documentation. (2025). Retrieved Septem-
ber 29, 2025, from https://pandas.pydata.org/docs /reference /api/
pandas.read csv.html

PointinJourneyPattern (Abstract in EPIP), StopPointInJourneyPattern -
NeTEz Profil Osterreich - Mobilititsverbiinde. (2025). Retrieved Septem-
ber 15, 2025, from https: //mobilitaetsverbuende.atlassian.net /wiki/
spaces / NET /pages /181141601 / PointinJourneyPattern + Abstract +
in+EPIP-+StopPointInJourneyPattern

Protocol Buffers. (2025, April 30). Retrieved April 30, 2025, from https:
/ /protobuf.dev/

Publish - General Transit Feed Specification. (2025, September 22). Retrieved
September 22, 2025, from https://gtfs.org/getting-started /publish /

Raffael Rittmeier. (2016, August 24). VDV-Schnittstellenparameter. Retrieved
September 10, 2025, from https://www.zvbn.de /media/data/06
20160824 Anlage-6-VDV-Schnittstellenparameter.pdf

Railway station. (2025, September 12). Retrieved September 12, 2025, from
https://www.wikidata.org/wiki/ Q55488

railways, U.-1. union of. (2015, July 30). Country Codes. UIC - International
union of railways. Retrieved September 11, 2025, from https:/ /uic.
org/support-activities /it /article /country-codes

Reference - General Transit Feed Specification. (2025, September 8). Re-
trieved September 8, 2025, from https:/ /gtfs.org/documentation /
schedule /reference/

ScheduledStopPoint, ServiceLink - NeTEz Profil Osterreich - Mobilititsver-
biinde. (2025). Retrieved September 15, 2025, from https: / /mobilitaetsverbuende.
atlassian.net /wiki/spaces/NET /pages/180944962 /ScheduledStopPoint -+
Servicelink

Skille, E. (2024). Standards for public transport data.

Soares, 1., & Martins, P. M. (2013). PUBLIC TRANSPORT STANDARD-
IZATION.

Stop Places - NeTEx Profil Osterreich - Mobilititsverbiinde. (08/09,/2025,
18:06:33). Retrieved September 8, 2025, from https://mobilitaetsverbuende.
atlassian.net /wiki/spaces/NET /pages /181272577 /Stop+Places

20

https://repository.tudelft.nl/record/uuid:01a0e501-2e1a-469d-b1c3-03df7abae737
https://repository.tudelft.nl/record/uuid:01a0e501-2e1a-469d-b1c3-03df7abae737
https://gtfs.org/documentation/overview/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181141601/PointinJourneyPattern+Abstract+in+EPIP+StopPointInJourneyPattern
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181141601/PointinJourneyPattern+Abstract+in+EPIP+StopPointInJourneyPattern
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181141601/PointinJourneyPattern+Abstract+in+EPIP+StopPointInJourneyPattern
https://protobuf.dev/
https://protobuf.dev/
https://gtfs.org/getting-started/publish/
https://www.zvbn.de/media/data/06_20160824_Anlage-6-VDV-Schnittstellenparameter.pdf
https://www.zvbn.de/media/data/06_20160824_Anlage-6-VDV-Schnittstellenparameter.pdf
https://www.wikidata.org/wiki/Q55488
https://uic.org/support-activities/it/article/country-codes
https://uic.org/support-activities/it/article/country-codes
https://gtfs.org/documentation/schedule/reference/
https://gtfs.org/documentation/schedule/reference/
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180944962/ScheduledStopPoint+ServiceLink
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180944962/ScheduledStopPoint+ServiceLink
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180944962/ScheduledStopPoint+ServiceLink
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181272577/Stop+Places
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181272577/Stop+Places

Stops - Handbok N801 (SIRI/NeTEX) - Entur. (2024, October 17). Retrieved
September 8, 2025, from https://enturas.atlassian.net /wiki/spaces/
PUBLIC /pages /728727661 /stops# StopPlace

Stops - Handbok N801 (SIRI/NeTEX) - Entur. (2025). Retrieved September
15, 2025, from https: / /enturas.atlassian.net /wiki/spaces/ PUBLIC/
pages /728727661 /stops# StopPlace.1

Stops- and Timetable data. (2025, September 8). Retrieved September 8,
2025, from https://developer.entur.org/stops-and-timetable-data

Subclass of. (2025, September 12). Retrieved September 12, 2025, from https:
/ /www.wikidata.org/wiki/Property:P279

Timetable - Handbok N801 (SIRI/NeTEX) - Entur. (2025, September 15).
Retrieved September 15, 2025, from https: / /enturas.atlassian.net /
wiki/spaces/PUBLIC/pages/ 728760393/ timetable# ServiceJourney

Trans-European Transport Network (TEN-T) - European Commission. (2025).
Retrieved September 8, 2025, from https://transport.ec.europa.eu/
transport - themes / infrastructure - and - investment / trans- european -
transport-network-ten-t en

UIC station code. (2025, September 11). Retrieved September 11, 2025, from
https://www.wikidata.org/wiki/Property:P722

UIC Vademecum. (2025). Retrieved September 11, 2025, from https:/ /
vademecum.uic.org/

Unlocking the potential of mobility data | Shaping Furope’s digital future.
(2025). Retrieved September 19, 2025, from https: //digital-strategy.
ec.europa.eu/en/policies/mobility-datal

Verkehrsverbiinde in Osterreich. (2025, September 8). Retrieved September 8,
2025, from https://www.bmimi.gv.at/themen/mobilitaet /transport/
nahverkehr /verkehrsverbuende /oesterreich.html

What is GTFS? - General Transit Feed Specification. (2025, April 30). Re-
trieved April 30, 2025, from https://gtfs.org/getting-started /what-
is-GTFS/

Why use GTFS? - General Transit Feed Specification. (2025, September 8).
Retrieved September 8, 2025, from https://gtfs.org/getting-started /
why-use-GTEFS/

Wien Hauptbahnhof. (2025, September 8). Retrieved September 8, 2025, from
https://www.wikidata.org/wiki/ Q697300

wtw. (2025, September 2). Essential Google Maps Statistics € Trends to
Watch in 2025. Retrieved September 22, 2025, from https:/ /www.
loopexdigital.com /blog/google-maps-statistics

Xml.etree. ElementTree — The ElementTree XML API. (2025). Python docu-
mentation. Retrieved September 29, 2025, from https://docs.python.
org/3/library /xml.etree.elementtree.html

o1

https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728727661/stops#StopPlace
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728727661/stops#StopPlace
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728727661/stops#StopPlace.1
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728727661/stops#StopPlace.1
https://developer.entur.org/stops-and-timetable-data
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P279
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728760393/timetable#ServiceJourney
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728760393/timetable#ServiceJourney
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://www.wikidata.org/wiki/Property:P722
https://vademecum.uic.org/
https://vademecum.uic.org/
https://digital-strategy.ec.europa.eu/en/policies/mobility-data
https://digital-strategy.ec.europa.eu/en/policies/mobility-data
https://www.bmimi.gv.at/themen/mobilitaet/transport/nahverkehr/verkehrsverbuende/oesterreich.html
https://www.bmimi.gv.at/themen/mobilitaet/transport/nahverkehr/verkehrsverbuende/oesterreich.html
https://gtfs.org/getting-started/what-is-GTFS/
https://gtfs.org/getting-started/what-is-GTFS/
https://gtfs.org/getting-started/why-use-GTFS/
https://gtfs.org/getting-started/why-use-GTFS/
https://www.wikidata.org/wiki/Q697300
https://www.loopexdigital.com/blog/google-maps-statistics
https://www.loopexdigital.com/blog/google-maps-statistics
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html

Zahlen, Daten, Fakten. (2025, September 8). OBB-Infrastruktur AG. Re-
trieved September 8, 2025, from https://infrastruktur.oebb.at /de/
unternehmen /zahlen-daten-fakten

02

https://infrastruktur.oebb.at/de/unternehmen/zahlen-daten-fakten
https://infrastruktur.oebb.at/de/unternehmen/zahlen-daten-fakten

List of Abbreviations

G T'ES| (General Transit Feed Specification|

[Network Timetable Exchange]
[nterne Bahnhofsnummer]
IEOPTI] [dentification of Fixed Objects in Public Transport]

CEN| [Comité Européen de Normalisation|

IFOPT] [dentification of Fixed Objects in Public Transport]

btandard Interface for Real-time Information
[UIC | [Union Internationale des Chemins de ferl
Multi Model Travel Informationl

[TEN-TI [Trans-European Transport Network]

XML [Extensible Markup Language]

CSV]|Comma Separated Values)|

23

List of Aids / Tools

o4

Table 2: Overview of aids and tools used in the thesis

Aid / Tool Usage Relevant Sec-
tions / Chap-
ters
Python Data prepro- | Chapter Meth-
cessing, analysis | odes, Chapter
and visualiza- | Analysis
tion

Jupyter Notebook | Interactive envi- | Chapter 77

ronment for ex-
ecuting Python
code

Documentation

Python Docs

Jupyter Project| |

LaTeX Thesis writing, | All chapters LaTeX Project |
typesetting, and
references
DeepL Write Thesis writing All chapters DeepL Write, |
DeepL Understanding | All chapters DeepL Transla- |
and transla- tor
tion of English
sources
ChatGPT Coding support, | Chapter Meth- | ChatGPT
error detection | odes, Chapter
and plot cre- | Analysis, Addi-
ation tional Material
PowerPoint Creating figures | Chapter Ex- | Microsoft. Pow-! |
traction of | lerPoint
Station, Chap-
ter GTFS Trip
Extraction,
Chapter NeTEx
Journey Ex-
traction

25

|

https://docs.python.org/3/
https://jupyter.org/
https://www.latex-project.org/
https://www.deepl.com/de/write
https://www.deepl.com/de/translator
https://www.deepl.com/de/translator
https://chat.openai.com/
https://www.microsoft.com/de-at/microsoft-365/powerpoint
https://www.microsoft.com/de-at/microsoft-365/powerpoint

6 Additional Material

6.1 Notebook: Third Source

o6

Wiki Data

WIKI Data set: One request per country (collecting all entries in a

single request)
. extract the stations from the wiki data base with identifable ids if available
» drawbacks: if we do not have an ID which is also represented in the netex or gtfs
datasets, we cannot sort the correct station
* benefits: one single request

For the Sparkql querry we only request subjects with the following entities:

. which are a train station/ train stop (small train station)
. which have anid codes (UIC, IFOPT, IBNR...)
. which have coordinates

from SPARQLWrapper import SPARQLWrapper, JSON
import pandas as pd

def sparl gl querry request(country code,country name,limit):

sparql = SPARQLWrapper("https://query.wikidata.org/sparql")
sparqgl.setQuery(f"""
SELECT ?station ?stationLabel ?coordinate ?ifopt ?ibnr ?uic WHERE

{{
?station wdt:P31/wdt:P279* wd:Q55488 ; # instance or subclass
of train station
wdt:P17 wd:Q{country code} . # located in
Austria (Q40)

OPTIONAL {{ ?station wdt:P7824 ?ifopt. }} # IFOPT code
OPTIONAL {{ ?station wdt:P954 ?ibnr. }} # IBNR

OPTIONAL {{ 7?station wdt:P722 ?uic. }} # UIC

OPTIONAL {{ ?station wdt:P625 ?coordinate. }} # Coordinates

SERVICE wikibase:label {{ bd:serviceParam wikibase:language
"[AUTO LANGUAGE],de,en". }}
I3
LIMIT {limit}t
nn II)
spargl.setReturnFormat (JSON)
wiki data query results = sparql.query().convert()

#print(wiki data query results)

create a list ot store the result

wiki data querry results list = []

iterate through the json format to extract information
for result in wiki data query results["results"]["bindings"]:

extract name
name = result.get("stationLabel",{}).get("value")

ifopt = result.get("ifopt",{}).get("value")

extract ibnr
ibnr = result.get("ibnr", {}).get("value")

extract uic
uic = result.get("uic", {}).get("value")

coordinates
make sure it is a string to apply later the replace function

otherwise issues will appear
coordinate = str(result.get("coordinate", {}).get("value")) #

"Point(lon lat)"

if the value is not None we extract the lat and lon

if coordinate != "None":
lon, lat = map(float, coordinate.replace("Point(",
IIII).rep'Lace(ll)ll’ IIII).Sp'Lit(II II))

otherwise it will be None as value for lat and lon

else:
lon = lat = None

add to the list

wiki data querry results list.append({"name wiki": name,
"UIC wiki": uic, "IBNR wiki": ibnr, "IFOPT wiki": ifopt,"lat wiki":
lat, "lon wiki": lon})

wiki data querry results df =
pd.DataFrame(wiki data querry results list)

Drop rows where 'name wiki' and 'lat wiki'/'lon wiki' appear
more than once, but keep the first
it appears that same train station which have also tram stations

have two ifopt numbers

df cleaned =
wiki data querry results df[~wiki data querry results df.duplicated(su
bset=["'name wiki', 'lat wiki', 'lon wiki'], keep='first')]

saving the dataframe in order to use for the second part
2 _compare

df cleaned.to csv(country name+ " " + 'wiki data df.csv')

return (df cleaned,wiki data query results)

Set up query parameters
country code = "40"
country name = "austria"
limit = 1031 + 1000

wiki data df, wiki data query results =
sparl gl querry request(country code, country name, limit)

country codes:
luxembourg q32
norway q20
austria q40

6.2 Notebook: Extraction

60

Data Extraction: Netex and GTFS

load necessary packages

#!pip install partridge

#!pip install pandas

#!pip install shapely

#!pip install osmium #open street maps tool
#!pip install sparkql

#!pip install geopandas

GTFS load

GTFS extraction
import partridge as ptg
import zipfile

import pandas as pd

def load gtfs(gtfs zip path):

Load the entire GTFS feed (no filters)
feed = ptg.load feed(gtfs zip path, view={})

extract all files within the zipped
gtfs list = []

loop trough all the files and save them in a list
with zipfile.ZipFile(gtfs zip path, 'r') as z:
for file name in z.namelist():
if file name.endswith('.txt"):
#print("Reading:", file name)

with z.open(file name) as f:
df = pd.read csv(f,low memory=False)
#print(df.head())

create a tulpe to store them into a list
(dictionary does not work: df is not hashable)

tulpe = (file name,df)

gtfs list.append(tulpe)

return gtfs list

Netex load
It appears that each netex file is not well standardised because the netex files of
other countries have different structures and hierarchies which make it really
difficult to work with them

Therefore a more robust approach is needed: recursive function which identifies
each single xml file in nested deep structures

import zipfile

import io

import xml.etree.ElementTree as ET
import os

def extract xml from zip(zip data, zip path=""):

"""Recursively extracts all .xml files from a zip (bytes or file),
including nested zips."""

xml files = []

with zipfile.ZipFile(io.BytesIO(zip data)) if isinstance(zip_data,
bytes) else zipfile.ZipFile(zip data, 'r') as zip ref:
for item name in zip ref.namelist():
full path = os.path.join(zip path, item name)

Skip directories
if item name.endswith('/'):
continue

with zip ref.open(item name) as file:
data = file.read()

another xml file was identified
if item name.endswith('.xml"'):
xml files.append((full path, data))

another zip folder was identified
elif item name.endswith('.zip'):
Recursive call
xml files.extend(extract xml from zip(data,
zip path=full path))

return xml files

def load netex(netex path):

"""l oad Netex .zip and extract all .xml files including those
inside nested zips and folders."""

all xml files = []

Outer zip
with zipfile.ZipFile(netex path, 'r') as outer zip:
for file name in outer zip.namelist():

another folder was identified
if file name.endswith('/"'):

continue # Skip directory names

with outer zip.open(file name) as file:
file data = file.read()

another zipped was identified
if file name.endswith('.zip'):
Recurse into nested zip

all xml files.extend(extract xml from zip(file data,
zip path=file name))

another xml file was identified
elif file name.endswith('.xml"):
all xml files.append((file name, file data))

return all xml files

Extraction Station: Modul 1
GTFS extraction: Stops (Station)

Since we focus on railway, the gtfs data sets do not include any simple solution as netex to differ
between bus stations and rail stations. Therefore we need to filter the data over following
connection:

Stop (Stop_ID) -> Stop_times (stop_id, trip_id) -> trips (trip_id, route_id) -> route (route_id,
route_type)

Our goal is the route_type which defines wether a trip is operated by bus or train
source: https://gtfs.org/documentation/schedule/reference/#routestxt
def stop extract gtfs(gtfs list):
use the data set above for extraction
for gtfs data in gtfs list:
if gtfs data[0] == "stops.txt":
stop df = gtfs data[1l]
Filtering the stop list by their type of trips

if gtfs data[0] == "stop times.txt":
stop_times df = gtfs data[l]

if gtfs data[0] == "trips.txt":
trips df = gtfs datall]

if gtfs data[0] == "routes.txt":
route df = gtfs data[l]

Filter the stations which are no train staitions
1. Keep only the needed columns

stop df filterd = stop df[["stop id"]] # or stop df if named
like that

stop times df = stop times df[["stop id", "trip id"]]
trips df = trips df[["trip id", "route id"]]
route df = route df[["route id", "route type"]]

2. Merge step by step with reduced data
stop trips = pd.merge(stop times df, trips df, on="trip id",
how="inner")
stop routes = pd.merge(stop trips, route df, on="route id",
how="inner")

stop modes = pd.merge(stop routes, stop df filterd,on="stop id",
how="inner")

3. Final: stop id o route type
result = stop modes[["stop id", "route type"]].drop duplicates()
result["route type"] = result["route type"].astype(str)

filter the results by their route type

also we consider norways special type of numbers
result filterd = result[

(

result["route type"].str.startswith(("1", "4")) &
(result["route type"].str.len() == 3)

result["rou‘te_type"].iSin(["l","Z", ||12||’ ||5||’ ||7||]))

stop final df = pd.merge(result filterd, stop df, on="stop id",
how="inner")

rename them to make them better readable
stop final df = stop final df.rename(columns={
‘stop id': 'id gtfs',
‘stop name': ‘'name gtfs',
"stop lat":"lat gtfs",
"stop lon":"lon gtfs",

"parent station":"parent station gtfs",
"wheelchair boarding":"wheelchair boarding gtfs",
“platform code":"platform code gtfs",

“route type":"route type gtfs"})

return stop final df

Netex extraction: StopPlace (Station)

. Netex files can consist of multiple xml files, each single file will be applied to the function
as xml_content

* astheresult alist of dictionaries (each entry is a dictionary) the content is provided for
each xml file

* thats why the extraction of netex is so complicated because you need to iterate over a list
of xml files to extract information

import pandas as pd
import geopandas as gpd
from shapely.geometry import Point

def stop extract netex(xml content, ns):
netex stops list = [] # Collect dictionaries here

Parse the XML content
tree ET.parse(io.BytesIO(xml content))
root = tree.getroot()

for stop place in root.findall('.//netex:StopPlace', ns):

reset all the variables in the case that no value was found
for some variables

netex id = PublicCode = name = latitude = longitude =
Wheelchair access list = AssistanceFacility = AssistanceAvailability =
AccessFacility = EVA Nr = None

extract ID
netex id = stop place.attrib.get('id")

exract PublicCode

PublicCode elem = stop place.find("netex:PublicCode",ns)
PublicCode = PublicCode elem.text if PublicCode elem is not
None else None

extract name
name elem = stop place.find('netex:Name', ns)
name = name_elem.text if name_elem is not None else None

extract the StopPlace type e.g. rail, bus, taxi
StopPlaceType elm = stop place.find("netex:StopPlaceType",ns)

StopPlaceType = StopPlaceType elm.text if StopPlaceType elm is
not None else None

{http://www.netex.org.uk/netex}StopPlaceType: railStation
extract coordinates

clear coordinate values
latitude = longitude = None

extract the coordinates of the station
centroid = stop place.find('netex:Centroid', ns)
if centroid is not None:
location = centroid.find('netex:Location', ns)
if location is not None:

lat elem = location.find('netex:Latitude', ns)
lon _elem = location.find('netex:Longitude’, ns)
latitude = float(lat elem.text) if lat elem is not

None else None

longitude = float(lon_elem.text) if lon elem is not
None else None

extract the each referenced key from the netex data set
keyList = stop place.find('netex:keyList', ns)
if keyList is not None:

iterate through the list of keys
for KeyValue in keylList:
if (KeyValue.find("netex:Key",ns)).text == "EVA-Nr":
EVA Nr elem = KeyValue.find("netex:Value",ns)

if EVA Nr_elem is not None:
EVA Nr = EVA Nr_elem.text

Quays

wheel chair access

quays = stop place.find('netex:quays', ns)
if quays is not None:

findall to get all entries for all quays
Quay = quays.findall('netex:Quay', ns)

iterate through the list to find the Quay to find

and if possible the uic code and quay id
the wheel chair information (Quay == Gleis, Plattform)

Wheelchair access list = []
quay id list = []

iterate the the entries of quay (quay = Bahngleis)
for x in Quay:

Quay ID and UIC code

reset each time to avoid error
quay_id = uicCode = None

quay id = x.attrib.get('id")
quay id list.append(quay id)

keyList = x.find('netex:keyList', ns)
if keylList is not None:
KeyValue = keyList.findall('netex:KeyValue', ns)
for y in KeyValue:
key elem = y.find('netex:Key', ns)

if key elem is not None and key elem.text ==
"uicCode":

uicCode elem = y.find('netex:Value', ns)
if uicCode _elem is not None:
uicCode = uicCode elem.text

Wheelchair access

case: if no label was found but the wheelchair
access information is still found
Label = WheelchairAccess = None

StopPlaceSpaceGroup =
x.find('netex:StopPlaceSpaceGroup', ns)
if StopPlaceSpaceGroup is not None:

store the information where the wheelchair
access 1s true or unknown
Label elem =
StopPlaceSpaceGroup.find('netex:Label', ns)
if Label elem is not None:
Label = str(Label elem.text)

SiteComponentGroup =
StopPlaceSpaceGroup.find('netex:SiteComponentGroup', ns)
if SiteComponentGroup is not None:

SiteElementObjectElementGroup =
SiteComponentGroup.find('netex:SiteElementObjectElementGroup', ns)
if SiteElementObjectElementGroup is not None:

SiteElementInternalGroup =
SiteElementObjectElementGroup.find('netex:SiteElementInternalGroup',
ns)

if SiteElementInternalGroup is not None:

AccessibilityAssessment =
SiteElementInternalGroup.find("netex:AccessibilityAssessment", ns)

if AccessibilityAssessment is not
None:

limitations =
AccessibilityAssessment.find('netex:limitations', ns)
if limitations is not None:

AccessibilityLimitation =
limitations.find('netex:AccessibilityLimitation', ns)

if AccessibilitylLimitation is
not None:

MobilityLimitationGroup =
AccessibilityLimitation.find('netex:MobilityLimitationGroup', ns)

if MobilityLimitationGroup
is not None:

WheelchairAccess elem
= MobilityLimitationGroup.find('netex:WheelchairAccess', ns)
if
WheelchairAccess elem is not None:
WheelchairAccess =

str(WheelchairAccess elem.text)
store the result

as a tuple of WheelchairAccess and label (where is the wheelchair
access)

Wheelchair access list.append((WheelchairAccess,Label))

People with reduced mobility (PWRM)

facilities = stop place.find("netex:facilities",ns)
if facilities is not None:
SiteFacilitySet =
facilities.find("netex:SiteFacilitySet",ns)

if SiteFacilitySet is not None:

CommonFacilityGroup =
SiteFacilitySet.find("netex:CommonFacilityGroup",ns)
if CommonFacilityGroup is not None:

AssistanceFacility: stations with staff to
provide aid for people

AssistanceFacilitylList =
CommonFacilityGroup.find("netex:AssistanceFacilityList",ns)

if AssistanceFacilitylList is not None:

AssistanceFacility elem =
AssistanceFacilitylList.find("netex:AssistanceFacility",ns)

if AssistanceFacility elem is not None:
AssistanceFacility =
str(AssistanceFacility elem.text)

AssistanceAvailability: staff which are
providing for poeple but must be booked previously

AssistanceAvailability elem =
CommonFacilityGroup.find("netex:AssistanceAvailability",ns)

if AssistanceAvailability elem is not None:

AssistanceAvailability =

str(AssistanceAvailability elem.text)

AccessFacility: if the facility is accessable with a
wheelchair (Hebeliftbihne)

SiteFacilityGroup =
SiteFacilitySet.find("netex:SiteFacilityGroup",ns)
if SiteFacilityGroup is not None:

AccessFacilitylList =
SiteFacilityGroup.find("netex:AccessFacilitylList",ns)

if AccessFacilitylList is not None:
AccessFacility elem =
AccessFacilityList.find("netex:AccessFacility",ns)

if AccessFacility elem is not None:
AccessFacility = str(AccessFacility elem.text)

add structured data
netex stops list.append({
"id netex": netex id,
"ref id netex":PublicCode,
"StopPlaceType netex": StopPlaceType,
“name netex": name,
"lat netex": latitude,
"lon netex": longitude,
"EVA Nr netex":EVA Nr,
"UIC Code netex":uicCode,
"Quay ids netex": quay id list,
"WheelchairAccess netex": Wheelchair access list,
"AssistanceFacility netex": AssistanceFacility,
"AssistanceAvailability netex": AssistanceAvailability,
"AccessFacility netex": AccessFacility

})

return the list
return netex stops list

Combine netex and gtfs

. Load: first load the data -> results gtfs a list of list, netex a list of xml files

. Extraction: gtfs find the correct list in our case "stops", netex search through all the
different xml files for the root you need in our case StopPlace)

Labeling issues within netex and gtfs

Is the labeling the same for each station/ stop (is the id the same) compare with Netex and other
data sets?

Austria case:

GTFS has a longer version of the IFOPT number which including a more detailed entries of each
location of a train stop:

o xy:41:3087:0:2 is the IFOPT ID for the Bad Sauerbrunn Bahnhof but the train station have
multiple other facilitys under the same ID core (xy:41:3087) e.g. Bus Stop, Entrance, Parc
and ride

* inour case we need to filter the core ids and summarize them into a single row in order
to merge the netex and the gtfs data set together

General case:

. each id of each data format can be different as the austrian data set had shwon
* eachid of each data format can have a different pattern
* Alsowe cannot assume that each id is even closely similar to each other or the same

=> Either automatic pattern recognition is required

ID issues in Netex and GTFS

this function identifies the ID pattern and sort them to the right
measures

import re

def identify id pattern(id str):
if pd.isna(id str):
return 'unknown'

if re.match(r'~[a-z]{2}:\d+:\d+(?::\d+)*$', id str) or
re.match(r'~[a-z]{2}-\d+-\d+', id str):
return 'austria' # ifopt style

elif id str.startswith('NSR:StopPlace:"') or
id str.startswith('NSR:Quay:"'):
return 'norway'

elif re.match(r'”~\d+$', id str):
return 'numeric id' # Luxembourg, simple numeric IDs

else:
return 'unknown'

special case if the ids of netex or gtfs have different data types
like number and string
import re

def extract digit number(id str, length):

if isinstance(id str, int):
id str = str(id str)

pattern = rf'(\d{{{length}}})' # Removed \b to allow matches next
to colons, underscores, etc.
match = re.search(pattern, str(id str))

return int(match.group(l)) if match is not None else None

def combine gtfs netex by ID(gtfs stops df,netex stops df):

Identify the id pattern of GTFS and NETEX
There will be issues within netex and gtfs because it appears the
do not use the same ids

we take the first entry of the gtfs and netex data set
gtfs id list = gtfs stops df["id gtfs"]
netex id list = netex stops df["id netex"]

for id gtfs, id netex in zip(gtfs id list, netex id list):
print("id type gtfs:",id gtfs)
print("id type netex:",id netex)

provide the id's as strings in order to identify their
patterns

id pattern netex = identify id pattern(str(id netex))

id pattern gtfs = identify id pattern(str(id gtfs))

in the case that the id pattern is known and the patterns
are the same in both data formats
if id pattern netex != "unknown" and id pattern gtfs !=
“unknown" and id pattern netex == id pattern gtfs:
then we can proceed the following measures
id pattern = id pattern netex = id pattern gtfs
break

in the case that one id is unknown and one id is numeric but
the patterns have different types

idea: the numeric values must appear in the string

identify the length of the id in order to find the same
length if integers within the other type of id

elif id pattern netex == "numeric id" or id pattern gtfs ==
“numeric_id" and id pattern netex != id pattern gtfs:

print("IDs have different types:")
print("GTFS:",id pattern gtfs)
print(“Netex:",id pattern netex)

the netex data set contains the numeric values -> the

gtfs data set must be adapted
if id pattern netex == "numeric id":

length = len(str(id netex))

call for each entry the extract digit number in
order to extract a number with the same length as the other id
gtfs stops df["id gtfs"] =
gtfs stops df["id gtfs"].apply(lambda x: extract digit number(x,
length))

change the id patter to numeric in order to perform
the right measures

id pattern = "numeric id"

break

the gtfs data set contains the numeric values -> the

netex data set must be adapted
elif id pattern gtfs == "numeric_ id":

only strings have length, no integer
length = len(str(id gtfs))

call for each entry the extract digit number in
order to extract a number with the same length as the other id
netex stops df["id netex"] =
netex stops df["id netex"].apply(lambda x: extract digit number(x,
length))

change the id patter to numeric in order to perform
the right measures

id pattern = "numeric id"

break

Measures to match the id type

print("ID type country:",id pattern)

Austria Type ID: IFOPT
gtfs: xy:43:1001:1:0
NEtex: xy:43:1001

Issue: xy:4001:1 -> also exist

if id pattern == "austria":

Extract the common part (e.g., 'xy:41:3087') from GTFS and
NeTEx IDs

because netex and gtfs contain different stations from other
countries

gtfs stops df['id gtfs'] =
gtfs stops df['id gtfs'].str.extract(r'~([a-z]{2}:\d+:\d+)"',
expand=False)

netex stops df['id netex'] =
netex stops df['ref id netex'].str.extract(r'~([a-z]{2}:\d+:\d+)",
expand=False)

Group by this prefix and take the first entry for name, lat,
lon

this does only work if the gtfs data set is sorted that the
first entry is actually the correct entry

gtfs stops df = gtfs stops df.groupby('id gtfs',
as_index=False).first()

merge both data sets together by their IFOPT ID
merged df = pd.merge(gtfs stops df, netex stops df,
left on= "id gtfs",
right on= "id netex",
how= "outer"

Norway
GTFS: NSR:Quay:100140/ NSR:StopPlace:890
Netex: NSR:StopPlace:1 / NSR:Quay:100

if id pattern == "norway":
replace all " " to make them more comparable
gtfs stops df["id gtfs"] =
gtfs stops df["id gtfs"].apply(lambda x: x.replace(" ",""))
netex stops df["id netex"] =
netex_stops_df["id_netex"].apply(lambda x: x.replace(" ",""))
the

gtfs stops df = (
gtfs stops df.groupby("parent station gtfs").agg(
parent station list gtfs=("id gtfs", list),

list of quays
route type gtfs=("route type gtfs", list),
name gtfs=("name gtfs", "first"),
keep first name
lat gtfs=("lat gtfs", "first"),
lon gtfs=("lon gtfs", "first"),
stop desc=("stop desc", list),
wheelchair boarding gtfs=("wheelchair boarding gtfs",
list),
stop_timezone=("stop timezone", list),
vehicle type=("vehicle type", list),
platform code gtfs=("platform code gtfs", list)
)
.reset _index()
)
gtfs stops df =
gtfs stops df.rename(columns={"parent station gtfs": "id gtfs"})

merge both data sets together by their IFOPT ID
merged df = pd.merge(gtfs stops df,netex stops df,
left _on="id gtfs",
right on="id netex",
how="outer")

numeric ids (Luxembourg)
GTFS: 10172
Netex: 1257

if id pattern == "numeric id":
convert both strings to integers

gtfs stops df["id gtfs"] =

gtfs stops df["id gtfs"].apply(lambda x: int(x))
netex stops df["id netex"] =

netex stops df["id netex"].apply(lambda x: int(x))

only if the id pattern was sorted the merging process will start
if id pattern != "unknown":

merge both data sets together by their IFOPT ID
merged df = pd.merge(gtfs stops df,netex stops df,
left _on="id gtfs",
right on="id netex",

how="outer")

return merged df

#merged df = combine gtfs netex by ID(gtfs stops reduced df 3,
all netex stops df 3)

Combine function
def combine gtfs netex(gtfs zip path, netex path, ns, country name):

Load
load the gtfs data
gtfs list = load gtfs(gtfs zip path)

load the netex data
parsed xml files = load netex(netex path)

print("Load completed")

Extraction netex

Why do we must iterate here?

- Netex consist of mulitple xml files stored in a list

- We need to iterate through all the files to extract the
information of each single xml file (because the information is not
seperate as in gtfs)

extract the netex train stop

if len(parsed xml files) != 0:

create a list to store all results
all netex stops list = []

iterate through each single xml file and search for a
StopPlace
for xml name, xml bytes in parsed xml files:

start the extraction function
netex stops list = stop extract netex(xml bytes, ns)

only if the extraction function find a StopPlace, we
will add it to a list
if len(netex stops list) != 0:
all netex stops list.append(netex stops list)
#print(netex stops list)

Flatten the list of lists into a single list because we have
list in list in lists

in order to proceed it into the dataframe

flat netex stop list = [item for sublist in
all netex stops list for item in sublist]

Create a DataFrame
all netex stops df = pd.DataFrame(flat netex stop list)
print("Extraction: netex completed")

Extraction gtfs

extract the gtfs train stop
if len(gtfs list) != 0:

gtfs extraction
gtfs stops reduced df = stop extract gtfs(gtfs list)
print("Extraction: gtfs completed")

combination of both gtfs and netex by id if possible

elimate all double values by their ids
gtfs stops reduced df =

gtfs stops reduced df.drop duplicates(subset="id gtfs")
all netex stops df =

all netex stops df.drop duplicates(subset='id netex"')

1if a railStation type exist in the StopPlaceType, we will filter

the dataframe by railStation
we asssume here that at least on value exist the whole data set

1s supposed to have such value
if (all netex stops df["StopPlaceType netex"] ==
"railStation").any() == True:
all netex stops df =
all netex stops df[all netex stops df["StopPlaceType netex"] ==
"railStation"]

only if both loading functions where sucessfull, the merge

function should be applied
if (len(gtfs list) != 0) and (len(parsed xml files) != 0):

merge both data sets

merged df = combine gtfs netex by ID(gtfs stops reduced df,
all netex stops df)

print("Merging completed")

1f one of the data formats was not sucessfully extracted
else:
merged df = None

saving the dataframe in order to use for the second part
2 compare
merged df.to csv(country name + " " + 'station merged df.csv')

return merged df, gtfs stops reduced df, all netex stops df

country name = "luxembourg"

Path to your GTFS zip file

gtfs zip path = "./data sets/"+ country name + " gtfs.zip"

Path to your outer zip file

netex path = "./data sets/"+ country name +" netex.zip"

define the path of the netex xml tree in order to find the stop
places

ns = {'netex': 'http://www.netex.org.uk/netex'}

merged df, gtfs df, netex df = combine gtfs netex(gtfs zip path,
netex path, ns, country name)

Load completed

Extraction: netex completed

Extraction: gtfs completed

id type gtfs: 500000079

id type netex: DE::StopPlace:220401001 ::
IDs have different types:

GTFS: numeric id

Netex: unknown

ID type country: numeric id

Merging completed

Extraction Trips: Modul 2

goals of extraction which information would be necessary for a trip

* stopsof trips

* endstop

. start point

. Rail number like (RE 123)

Issue file size:
GTFS Files include often all kinds of trips like bus, train, taxi etc.

It appears that the gtfs files contain a variable to filter each trip by their mode of transportation.
This means you can filter the data set over the route_mode variable which is defined by a
identifable id for each mode of transport
(https://ipeagit.github.io/gtfstools/reference/filter_by_route_type.html)

All numbers according starting with a 1and have 3 characters are consider as trains
Role of Route and Trip:
Route is the blue print: which tracks exist in norway/luxenburg at all

GTFS Extraction: Trips

1. Issue: Connecting stops of a trip to a matching trip

The stop for each trips are in a seperated list stop_times therefore we will extract
the information and merge these list together

Solution: We will extract from the stop_time dataframe all trips which have the id of
trip dataframe therefore we iterate through the rows of the trip_df in order to take
each single id and search for all entries with the same id in the stop_time dataframe.

2. Issue: Process time The data sets are too big to calculate every entry. Also, we do
only focus on the rail ways therefore we will filter the data set before apply the
Solution of 1. Issue.

E.g. the norway data set contains over 345.019 rows of trips by filtering it was reduced to 47.439
rows

2.1 Issue: Some data sets use the documantation provided by google the
other one use the documentation provided by gtfs
https://ipeagit.github.io/gtfstools/reference/filter by route type.htm
1

2.1 We also need to filter the stop times df because it has over
7.398.243 entries and after filtering it by the trip id 535.075
entries which is an enormous reducing of processing time

How can we link the route and the trip:

The route have an column which defines the route_type in our case rail way is in our interest.

Route_lId provides the type of route Stop_times provides the stop per trip the trip provides each
single trip

Route (route_id, route_type) -> trip (route_id) -> stop_times (route_id)
def trip extract gtfs(gtfs list, country name):

extract the trip dataframes
for trip list in gtfs list:

if trip list[0] == "trips.txt":
trip df = trip list[1]
break

extracting the stops per trip
for stop times list in gtfs list:

if stop times list[0] == "stop times.txt":
stop times df = stop times list[1]
break

extracting the routes in order to filter the trips df
for route list in gtfs list:

if route list[0O] == "routes.txt":
route df = route list[1]
break

rename them to make them better readable
add to all columns " gtfs"
for column in trip df:
new column name = (column + " gtfs")
trip df = trip df.rename(columns={column: new column name})

rename them to make them better readable
add to all columns " gtfs"
for column in stop times df:
new column name = (column + " gtfs")
stop times df = stop times df.rename(columns={column:
new column_name})

"Before we connect the stops of a trip to the an trip id we will
filter the dataframe in order to enhance the performance"

not all gtfs files use the same documentation to identify their
route type
convert all at once instead of each single one

route df["route type str"] = route df["route type"].astype(str)

route df = route df[

(
route df["route type str"].str.startswith(("1", "4")) &
(route df["route type str"].str.len() == 3)

route df["route type str"].isin(["2", "12", "5", "7"]))

We filter all trips by their route id and then we filter all
stop times by ther trip id which was filter before by the route id

convert the column into a list to use it as a filter
filter for trip = list(route df.route id)

we already changed the name with an gfts at the end
trip df = trip df[trip df['route id gtfs'].isin(filter for trip)]

convert the column into a list to use it as a filter
trip id filter for stop times = list(trip df.trip id gtfs)

we already changed the name with an gfts at the end

stop times df =
stop times df[stop times df['trip id gtfs'].isin(trip id filter for st
op times)]

"Now we connect the stops per trip to an trip id"

create a dictionary to store the stops and a unique id in order
to make it better sortable
create a dictionary with lists as containers
stops of trips dic = {"trip_id gtfs": [],
"stops on trip": []}

for index, row in trip df.iterrows():
Filter all rows where trip id is the same as from trip df
if not (stop times df[stop times df['trip id gtfs'] ==
row.trip id gtfs]).empty:

append to the lists of the dictionaries

stops of trips dic["trip id gtfs"].append(row.trip id gtfs)

stops of trips dic["stops on trip"].append(stop times df[stop times df
['trip id gtfs'] == row.trip id gtfs])
else:

stops of trips dic["trip id gtfs"].append(row.trip id gtfs)
stops of trips dic["stops on trip"].append(None)

create a dataframe of the dictionary in order to merge it with
the trip df
stops of trips df = pd.DataFrame(stops of trips dic)

merge both data sets together by their ID

trip merged df = pd.merge(trip df, stops of trips df,
left on= "trip id gtfs",
right on= "trip id gtfs",
how= "inner")

return trip merged df

This function is for norways special gtfs structure: it is changing
inside the nested dataframes name from stop id gtfs" to "quay id gtfs
and

add from the stations dataframe the following Quay which are refering
to the actual stop ids

def norway Quay to StopPlace(trip merged gtfs df, station df):

def process stops(stops on trip):
rename stop id gtfs -> quay id gtfs
stops on trip = stops on trip.rename(columns={"stop id gtfs":
"quay id gtfs"})

stop id gtfs list = []
for index, entry in stops on trip.iterrows():
match = station df[station df["parent station list gtfs"]
== entry.quay id gtfs]

if not match.empty:

stop id gtfs list.append(match.id gtfs.iloc[0])
else:

stop_id gtfs list.append(None)

assign the new list as a column
stops on trip["stop id gtfs"] = stop id gtfs list

return stops on trip

apply the function to each row's stops on trip DataFrame
trip merged gtfs df["stops on trip"] =
trip merged gtfs df["stops on trip"].apply(process stops)

return trip merged gtfs df

def start trip extraction gtfs(country name,gtfs zip path,
station df):

load gtfs
gtfs list = load gtfs(gtfs zip path)
print("gtfs loading completed")

extract the trips
trip merged gtfs df = trip extract gtfs(gtfs list,country name)
print("gtfs extraction completed")

For the norway GTFS data set the refered station within the
stops on trip are actually Quay not a Station therefore we need to
transform them to stations

if country name == "norway":

first we prepare the station df: defining columns and
filtering unecessary data

station df =
station df[["id gtfs","parent station list gtfs"]]

station df =
station df[station df["parent station list gtfs"].notna()]

flaten the embedded Quay list to single entries
station df["parent station list gtfs"] =
station df["parent station list gtfs"].apply(ast.literal eval) #
safely convert string - list
station df = station df.explode("parent station list gtfs",
ignore_index=True)

trip merged gtfs df =
norway Quay to StopPlace(trip merged gtfs df, station df)

saving the dataframe in order to use for the second part
2 _compare
trip merged gtfs df.to json(country name + " " +
"trip gtfs df.json’',
orient = "records", # row-wise list
of dicts
lines=False, # single JSON array
force ascii=False) # # keep special

characters readable

return trip merged gtfs df

country name = "norway"
gtfs zip path = "./data sets/"+ country name+" gtfs.zip"

#trip merged gtfs df =
start trip extraction gtfs(country name,gtfs zip path)

Netex extraction: SERVICE JOURNEY (Trips)

According to this: https://transmodel-cen.eu/wp-content/uploads/2024/06/2024-
June_DATA4PT_GTFS-NeTEx-Mapping_vf.pdf, the trips are supposed to be located in the
ServiceJourney section of the tree, however it appears that there is no guarantee that the
ServiceJourney or the link to the StopPlace is included into the Netex dataframe

Where is ServiceJourney not included?
. Austria

It appears that austria is a geo data only data set which does not include any journeys. However
the track line switches are included but no journey which could connect the track line switches
together to a stop in a journey. There is one austria data set which includes all OBB journeys:
https://data.mobilitaetsverbuende.at/de/data-sets

Where is the link not included?

. Luxenburg
. Norway

This should be where the information is stored in netex and gtfs

Concept GTFS file/field NeTEx element/attribute

Trip trips.txt(trip_id) <Servicelourney> (with an id)

Stops in stop times.txt(trip _id, <ServiceJourneyPattern>->

trip stop id, stop sequence) <StopPointInJourneyPattern> (ordered
list of stops)

Stop stops.txt (stop id, lat/lon, <StopPlace>/<Quay> (defines location,

definition name) name, ID)

s

Route routes.txt (route id) <Route>

Linktrip trips.txt.route id <ServiceJourney> references a

© route <JourneyPattern> which belongs to a

<Route>

source: https://transmodel-cen.eu/wp-content/uploads/2024/06/2024-June_DATA4PT_GTFS-
NeTEx-Mapping_vf.pdf

This is supposed to be the "standard" link from the Trip to StopPlace,
however it does not appear in any data set:

ServiceJourney (JourneyPatternRef) -> Service JourneyPattern
(ScheduledStopPointRef) -> ScheduledStopPoint (ScheduledStopPlaceRef) or
PassengerStopAssignment (ScheduledStopPlaceRef, StopPlaceRef) -> StopPlace

However this connection is not given in each single xml file

How do we solve this missing connection issue?

It appears that within the netex data standard, there is no common way to structure your data.
The structure for the xml file itself is the same thanks to the xml file standard however as we
learned the netex files appears in many ways. There is not only one xml file where all
information is stored, there can be multiple folders with different amounts of xml files. This
makes the netex standard the xml files more individual and matching to the specification and
purpose that multiple organizations at different levels could use netex exchange format.

https://transmodel-cen.eu/wp-content/uploads/2024/07/04.NeTEx-Framework-
WhitePaper_1.07.pdf

According to the netex handbook there might be another way how to get the connection from
ScheduledStopPoint to StopPlace via PassengerStopAssignment (source:
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728563886/network)

In the following we will search for each single xml file by following tags of the xml files:

ServiceJourney

ServiceJourneyPattern

ScheduledStopPoint

PassengerStopAssignment (a link between ScheduledStopPoint and StopPlace)

StopPlace (would not be necessary because we already extract this part) (Norway: Quay
within the Station dataframe)

e w2

to discover the structure of an xml file
def explore element(elem, level=0):

indent = " " * level

attrs = ", ".join([f'{k}="{v}""' for k, v in elem.attrib.items()])
tag str = f"{elem.tag} [{attrs}]" if attrs else elem.tag
print(f"{indent}{tag str}: {elem.text.strip() if elem.text else

YY)

for child in elem:
explore element(child, level + 1)

Extraction of each following elements:
1. ServiceJourney

def ServiceJourney extraction netex(xml content, ns):
ServiceJourney list = [] # Collect dictionaries here

Parse the XML content
tree ET.parse(io.BytesIO(xml content))
root tree.getroot()

for ServiceJdourney in root.findall('.//netex:ServiceJourney', ns):

reset all the variables in the case that no value was found
for some variables

netex service id = TransportMode = StartPointInPatternRef =
EndPointInPatternRef = TrainNumberRef = TimetabledPassingTime list =
None

extract ID
netex service id = ServiceJourney.attrib.get('id")

extract the type of the journey (e.g. bus, train)

TransportMode elem =
ServiceJourney.find('netex:TransportMode', ns)

if TransportMode elem is not None:

TransportMode = TransportMode elem.text

extract the the start and end point of each journey
noticeAssignments =
ServiceJourney.find('netex:noticeAssignments', ns)

if noticeAssignments is not None:
NoticeAssignment b =
noticeAssignments.find('netex:NoticeAssignment', ns)

StartPointInPatternRef = EndPointInPatternRef = None

extract the start and ending point of the journey
if NoticeAssignment b is not None:
#start elem =
NoticeAssignment b.find('netex:StartPointInPatternRef', ns)
#end elem =
NoticeAssignment b.find('netex:EndPointInPatternRef', ns)

start elem =

NoticeAssignment b.find('./netex:StartPointInPatternRef', ns)
end elem =

NoticeAssignment b.find('./netex:EndPointInPatternRef', ns)

if start elem is not None:
StartPointInPatternRef =
start elem.attrib.get('ref")
if end _elem is not None:
EndPointInPatternRef = end elem.attrib.get('ref"')

extract the train reference
trainNumbers = ServiceJourney.find('netex:trainNumbers', ns)
if trainNumbers is not None:

TrainNumberRef elem =
trainNumbers.find('netex:TrainNumberRef', ns)
if TrainNumberRef elem is not None:
TrainNumberRef = TrainNumberRef elem.attrib.get('ref")

Extraction of stops within the journey

extract all stops of the journey
passingTimes = ServiceJourney.find('netex:passingTimes', ns)
if passingTimes is not None:

findall to get all entries for all TimetabledPassingTime
TimetabledPassingTime =
passingTimes.findall('netex:TimetabledPassingTime', ns)

iterate through the list of passingtimes (stops on the
journey)

following information will be extracted
“"DE::StopPointInJourneyPattern:321018 1 0::"
"14:33:00"

H H R

the results will be stored in a list of dictionaries
TimetabledPassingTime list = []
for x in TimetabledPassingTime:

reset the values to ensure that no error appears if
one of these information is missing

StopPointInJourneyPatternRef = ArrivalTime =
DepartureTime = None

extract the stop in the journey

StopPointInJourneyPatternRef elem =
x.find('netex:StopPointInJourneyPatternRef', ns)

if StopPointInJourneyPatternRef elem is not None:

StopPointInJourneyPatternRef =
StopPointInJourneyPatternRef elem.attrib.get('ref")

extract the arrival time of the stop
ArrivalTime elem = x.find('netex:ArrivalTime', ns)
if ArrivalTime elem is not None:

ArrivalTime = str(ArrivalTime elem.text)

extract the departure time of the stop
DepartureTime elem = x.find('netex:DepartureTime', ns)
if DepartureTime elem is not None:

DepartureTime = str(DepartureTime elem.text)

create a dictionary to store the values and add it
to the list

TimetabledPassingTime list.append({"Stop":StopPointInJourneyPatternRef
"Arrival Time:":
ArrivalTime,
"Departure Time":
DepartureTime})

add structured data
ServiceJourney list.append({
"id service netex": netex service id,
"journey type netex":TransportMode, # luxenburg data set
includes this
"start point netex":StartPointInPatternRef,
"end point netex": EndPointInPatternRef,
"journey number netex": TrainNumberRef,
"TimetabledPassingTime netex": TimetabledPassingTime list

})

return the list
return ServiceJourney list

2. ServiceJourneyPattern

It appears that in the Norway data set the ServiceJourneyPattern is named JourneyPattern that
is why this function needs an specific tag

def ServiceJourneyPattern extraction netex(xml content, ns,tag name):
ServiceJourneyPattern list = [] # Collect dictionaries here

Parse the XML content
tree ET.parse(io.BytesIO(xml content))
root tree.getroot()

for ServiceJourneyPattern in root.findall('.//netex:'+ tag name ,
ns):

reset all the variables in the case that no value was found
for some variables

ServiceJourneyPattern id = RouteView = LineRef = DirectionRef
= StopPointInJourneyPattern results = None

extract ID
ServiceJourneyPattern id =
ServiceJourneyPattern.attrib.get('id")

extract routeView
RouteView elem = ServiceJourneyPattern.find('netex:RouteView',
) if RouteView elem is not None:
RouteView = RouteView elem.attrib.get('id")
LineRef elem = RouteView elem.find('netex:LineRef', ns)

if LineRef elem is not None:
LineRef = LineRef elem.attrib.get('ref"')

extract the direction if the journey
DirectionRef elem =
ServiceJourneyPattern.find('netex:DirectionRef', ns)
if DirectionRef elem is not None:
DirectionRef = DirectionRef elem.attrib.get('ref"')
extract all stops of the journey

pointsInSequence =
ServiceJourneyPattern.find('netex:pointsInSequence', ns)

if pointsInSequence is not None:

StopPointInJourneyPattern list =
pointsInSequence.findall('netex:StopPointInJourneyPattern', ns)

if StopPointInJourneyPattern list is not None:

create dictionary to store results

StopPointInJourneyPattern results = []

iterate through the list of
StopPointInJourneyPattern

for x in StopPointInJourneyPattern list:

reset the values to None to avoid errors if the
information was not found

ForBoarding = ScheduledStopPointRef =
StopPointInJourneyPattern id = None

extract the id of the STopPoint 1in
JourneyPattern
StopPointInJourneyPattern id = x.attrib.get("id")

extract the id of ScheduledStopPointRef
ScheduledStopPointRef elem =
x.find('netex:ScheduledStopPointRef', ns)

if ScheduledStopPointRef elem is not None:
ScheduledStopPointRef =
ScheduledStopPointRef elem.attrib.get("ref")

ForBoarding elem = x.find('netex:ForBoarding', ns)

if ForBoarding elem is not None:
ForBoarding = ForBoarding elem.text

add new values to the list of in the dictionary

StopPointInJourneyPattern results.append({"StopPointInJourneyPattern i
d":StopPointInJourneyPattern id,

"ScheduledStopPointRef": ScheduledStopPointRef,
"Departure Time":
ForBoarding})

add structured data

ServiceJourneyPattern list.append({
"ServiceJourneyPattern id": ServiceJourneyPattern id,
"RouteView": RouteView,
"LineRef": LineRef,

"DirectionRef": DirectionRef,
"StopPointInJourneyPattern":StopPointInJourneyPattern results,

})

return the list
return ServiceJourneyPattern list

3. ScheduledStopPoint

def ScheduledStopPoint extraction netex(xml content, ns):
ScheduledStopPoint list = [] # Collect dictionaries here

Parse the XML content
tree ET.parse(io.BytesIO(xml content))
root = tree.getroot()

for ScheduledStopPoint in
root.findall('.//netex:ScheduledStopPoint', ns):

reset all the variables in the case that no value was found
for some variables
ScheduledStopPoint id = Key = Value = keyList results = None

extract ID
ScheduledStopPoint id

ScheduledStopPoint.attrib.get('id")
extract all stops of the journey
keyList = ScheduledStopPoint.find('netex:keylList', ns)
if keyList is not None:
KeyValue list = keyList.findall('netex:KeyValue', ns)

if KeyValue list is not None:

keyList results = []
for x in KeyValue list:

Key elem = x.find('netex:Key', ns)
Value elem = x.find('netex:Value', ns)

if Value elem is not None and Key elem.text ==
"StopPlaceRef":

Value = Value elem.text

Key = Key elem.text
keyList results.append((Key, Value))

add structured data

ScheduledStopPoint list.append({
"id service netex": ScheduledStopPoint id,
"StopPlaceRef":keyList results

})

return the list
return ScheduledStopPoint list

4. PassengerStopAssignment
PassengerStopAssignment extraction

def PassengerStopAssignment extraction netex(xml content, ns):
PassengerStopAssignment list = [] # Collect dictionaries here

Parse the XML content
tree = ET.parse(io.BytesIO(xml content))
root = tree.getroot()

for PassengerStopAssignment in
root.findall('.//netex:PassengerStopAssignment', ns):

reset all the variables in the case that no value was found
for some variables

PassengerStopAssignment id = ScheduledStopPointRef =
StopPlaceRef = QuayRef = None

extract the id
PassengerStopAssignment id =
PassengerStopAssignment.attrib.get('id")

extract scheduledstoppoint reference
ScheduledStopPointRef elem =
PassengerStopAssignment.find('netex:ScheduledStopPointRef', ns)

if ScheduledStopPointRef elem is not None:
ScheduledStopPointRef =
ScheduledStopPointRef elem.attrib.get("ref")

StopPlaceRef elem =
PassengerStopAssignment.find('netex:StopPlaceRef', ns)

if StopPlaceRef elem is not None:
StopPlaceRef = StopPlaceRef elem.attrib.get("ref")

QuayRef elem = PassengerStopAssignment.find('netex:QuayRef',
ns)
if QuayRef elem is not None:

QuayRef = QuayRef elem.attrib.get("ref")

add structured data

PassengerStopAssignment list.append({
"PassengerStopAssignment id": PassengerStopAssignment id,
"ScheduledStopPointRef":ScheduledStopPointRef,
"StopPlaceRef": StopPlaceRef,
"QuayRef":QuayRef
})

return the list
return PassengerStopAssignment list

Testing and extraction: Selection of Extraction Methode

def testing extraction netex(xml files, ns):

here are the tags of our interest

tags of interest = {
"ServicelJourney": ".//netex:ServiceJourney",
“ServiceJourneyPattern": ".//netex:ServiceJourneyPattern",
"JourneyPattern": ".//netex:JourneyPattern",
"ScheduledStopPoint": ".//netex:ScheduledStopPoint",
"PassengerStopAssignment":".//netex:PassengerStopAssignment"

}

store results in list
ScheduledStopPoint all list = []
ServiceJourney all list = []
ServiceJourneyPattern all list

=[]
PassengerStopAssignment all list =

[]

we iterate through the list of xml files
for xml name, xml content in xml files:
tree = ET.parse(io.BytesIO(xml content))

root = tree.getroot()

then we iterate through the each single xml file
e.g.: tag name = ServiceJourney, path =
//netex:ServiceJourneyPattern"
for tag name, xpath in tags of interest.items():
#print("current loop:", tag name)
we use the findall function to test if on of the three
paths does found a match
found elements = root.findall(xpath, ns)

if found elements:
#print(f"Found {len(found elements)} {tag name}
elements")

optional: explore only the first one to check
structure
#explore element(found elements[0])

run the extraction functions (collect all)
if tag name == "ScheduledStopPoint":
ScheduledStopPoint list =
ScheduledStopPoint extraction netex(xml content, ns)

after each extraction we will add the results to
list

Otherwise would the loop cause error because we
would try to add a result to a list which was not defined in the
current loop

because it would be in the next one for example

ScheduledStopPoint all list.append(ScheduledStopPoint list)

if tag name == "ServiceJourney":
ServiceJourney list =
ServiceJourney extraction netex(xml content, ns)

ServiceJourney all list.append(ServiceJourney list)

if tag name == "ServiceJourneyPattern" or tag name ==
"JourneyPattern":
ServiceJourneyPattern list =
ServiceJourneyPattern extraction netex(xml content, ns, tag name)

ServiceJourneyPattern all list.append(ServiceJourneyPattern list)
if tag name == "PassengerStopAssignment":

PassengerStopAssignment list =
PassengerStopAssignment extraction netex(xml content, ns)

PassengerStopAssignment all list.append(PassengerStopAssignment list)

flaten each list in order to create a df

ScheduledStopPoint all flat list = [item for sublist in
ScheduledStopPoint all list for item in sublist]
ServiceJourney all flat list = [item for sublist in
ServiceJourney all list for item in sublist]
ServiceJourneyPattern all flat list = [item for sublist in
ServiceJourneyPattern all list for item in sublist]
PassengerStopAssignment all flat list = [item for sublist in
PassengerStopAssignment all list for item in sublist]

ScheduledStopPoint df =
pd.DataFrame(ScheduledStopPoint all flat list)

ServiceJourney df = pd.DataFrame(ServiceJourney all flat list)

ServiceJourneyPattern df =
pd.DataFrame(ServiceJourneyPattern all flat list)

PassengerStopAssignment df =
pd.DataFrame(PassengerStopAssignment all flat list)

return ScheduledStopPoint df, ServiceJourney df,
ServiceJourneyPattern df, PassengerStopAssignment df

Merging Process of ServiceJourney and StopPlace

import ast

def

connecting StopPointInJourneyPattern to StopPlace(ServiceJourney df,
ServiceJourneyPattern df, PassengerStopAssignment df,

station df ,country name):

clean all values which does not have TimetabledPassingTime netex
because this might causes error and takes process time
ServiceJourney df =
ServiceJourney df[ServiceJourney df["TimetabledPassingTime netex"].not
na()]

sometimes we can filter the dataframe by its mode of transport
(column: journey type netex)

this is only the case if not all values in journey type netex
are None

Only then we will filter

all none = ServiceJourney df["journey type netex"].isna().all()

if all none == False: # True if all values are NaN/None, False
otherwise

ServiceJourney df =
ServiceJourney df[ServiceJourney df["journey type netex"] == "rail"]

Following link exists between the ServiceJourney and StopPlace:

ServiceJourney df (ScheduledStopPointinJourney ref) ->
ServiceJourneyPattern df(ScheduledStopPoint ref) ->
PassengerStopAssignment df (StopPlaces ref)

this function will connect each StopPointInJourneyPattern id with
an matching StopPlaceRef

if country name != "norway":

first we create a dictionary where we store the connection
from StopPointInJourneyPattern to ScheduledStopPoint

stop point to scheduled = {}

for index, row in ServiceJourneyPattern df.iterrows():

for stop points in row["StopPointInJourneyPattern"]:
add the StopPointInJourneyPattern id as the key and
the ScheduledStopPointRef as the value in the dictionary

stop_point to scheduled[stop points.get("StopPointInJourneyPattern id"
)] = stop points.get("ScheduledStopPointRef")

second we filter the connection from ScheduledStopPoint to
StopPlace

scheduled to stop place =
PassengerStopAssignment df.groupby("ScheduledStopPointRef")
["StopPlaceRef"].first().to dict()

third we will iterate through each row of the
ServiceJourney df in order to iterate over each nested list of
dictionaries or dict

for index, row in ServiceJourney df.iterrows():

for stop _entry in row.TimetabledPassingTime netex:
now we iterate through the stop entry list or

dictionary
each trip can consist multiple stops on a journey or

sometimes only one

ScheduledStopPointRef =
stop point to scheduled.get(stop entry["Stop"], None)

1if the entry was found in the
stop point to scheduled dictionary and contains a value
if ScheduledStopPointRef is not None:
StopPlaceRef =
scheduled to stop place.get(ScheduledStopPointRef)

if ScheduledStopPointRef is None:
1if there is no value, None will be added
StopPlaceRef = None

stop _entry["StopPlaceRef"] = StopPlaceRef # modifies
in place

if country name == "norway":

first we prepare the station df: defining columns and
filtering unecessary data

station df station df[["id netex","Quay ids netex"]]

station df station df[station df["Quay ids netex"].notna()]

flaten the embedded Quay list to single entries

station df["Quay ids netex"] =
station df["Quay ids netex"].apply(ast.literal eval) # safely convert
string - list

station df = station df.explode("Quay ids netex",
ignore index=True)

PassengerStopAssignment df -> define the dataframe as well
PassengerStopAssignment df =
PassengerStopAssignment df[["ScheduledStopPointRef", "QuayRef"]]

merge the station df and the PassengerStopAssignment df by
their shared column: QuayRef/ Quay
merge 1 = pd.merge(PassengerStopAssignment df, station df,
left on="QuayRef",
right on="Quay ids netex",
how="inner")

define the ServiceJourneyPattern df test
ServiceJourneyPattern df =
ServiceJourneyPattern df[["StopPointInJourneyPattern"]]

create a dataframe from all the StopPointInJourneyPattern id
and matching ScheduledStopPointRef within the ServiceJourneyPattern
records = []

for index, row in ServiceJourneyPattern df.iterrows():
for sp in row["StopPointInJourneyPattern"]:
records.append({
"StopPointInJourneyPattern id":
sp.get("StopPointInJourneyPattern id"),
"ScheduledStopPointRef":
sp.get("ScheduledStopPointRef")

})
df flat = pd.DataFrame(records)

ServiceJourneyPattern df =
df flat.drop duplicates(subset=['StopPointInJourneyPattern id',
'ScheduledStopPointRef'])

merge now the ServiceJourneyPattern with the merged
station df and PassangerStopAssignment (merge 1)
merge 2 = pd.merge(merge 1, ServiceJourneyPattern df,
on="ScheduledStopPointRef",
how="inner")

finally: we will now iterate through each nested list of
dictionaries and check if there is a StopPlaceRef for each
StopPointinJourneyPattern

for index, row in ServiceJourney df.iterrows():

for Stop list in row["TimetabledPassingTime netex"]:

1f the current StopPointInJourneyPattern id in the
merge 2 where the connection from StopPointInJourneyPattern to
StopPlace is safed

if (merge 2["StopPointInJourneyPattern id"] ==
Stop list.get("Stop")).any() == True:

the relationship from StopPlace to
StopPointInJourneyPattern id is 1:n

Stop list["StopPlaceRef"] =
merge 2[merge 2["StopPointInJourneyPattern id"] ==
Stop list.get("Stop")]["id netex"].iloc[0]

else:

Stop list["StopPlaceRef"] = None
return ServiceJourney df

Start Netex Journey extraction

def start journey extration netex(netex path, ns, country name,
station df):
load the netex files

xml files = load netex(netex path)
print("netex load completed")

start the extraction from four different roots of each netex xml
tree

ScheduledStopPoint df, ServiceJourney df,

ServiceJourneyPattern df, PassengerStopAssignment df =
testing extraction netex(xml files, ns)

print("netex extraction completed")

#print("Length of ServiceJourney df:",len(ServiceJourney df))
link each topPointInJourneyPattern id a each StopPlaceRef
journey netex df =

connecting StopPointInJourneyPattern to StopPlace(ServiceJourney df,

ServiceJourneyPattern df, PassengerStopAssignment df,
station df ,country name)

saving the dataframe in order to use for the second part
2 _compare

journey netex df.to json(country name + " "

+
‘journey netex df.json',

orient = "records", # row-wise list
of dicts

lines=False, # single JSON array
force ascii=False) # # keep special
characters readable

print("netex file stored")

return journey netex df

Start Extraction of trips/journey for netex and
gtfs

country name = "luxembourg"

GTFS: Trip Extraction

gtfs zip path = "./data sets/"+ country name +" gtfs.zip"

station df = pd.read csv(country name +" station merged df.csv",
index col = 0)

trip merged gtfs df =
start trip extraction gtfs(country name,gtfs zip path,station df)

gtfs loading completed
gtfs extraction completed

Netex: Journey Extraction
Path to your outer zip file

if country name != "austria":
netex path = "./data sets/" + country name + " netex.zip"
elif country name == "austria":
netex path = "./data sets/" + country name + " journey netex.zip"

station df = pd.read csv(country name +" station merged df.csv",
index col = 0)

identify the structure of the NeTEx data
ns = {'netex': 'http://www.netex.org.uk/netex"'}

start the whole process might take 7 - 10 minutes
journey netex df = start journey extration netex(netex path, ns,
country name, station df)

netex load completed
netex extraction completed
netex file stored

6.3 Notebook: Comparing

101

Compare: GTFS and Netex

. How much of the data is the same, which is not and how much is missing?

Compare Stations: Modul 1

install necessary packages

#!pip install upsetplot
#!pip install matplotlib-venn

Merge the three sources together: Netex, GTFS and Wiki Data
def merge gtfs netex wiki(station df, wiki data df, country name):

1f no merging with the wiki data set is possible then the
station df is None

merged wiki df = pd.DataFrame()

Austria: IBNR

if country name == "austria":

clear the data sets before merging them (drop duplicates and
non values)

ordered wiki data df =
ordered wiki data df.drop duplicates(subset=["lat wiki","lon wiki"])

ordered station df =
station df.drop duplicates(subset=["EVA Nr netex"])
Drop duplicates and NaNs safely without inplace
modifications
ordered wiki data df =
(wiki data df.drop duplicates(subset=["lat wiki",
“lon wiki"]).dropna(subset=["lat wiki","lon wiki","IBNR wiki"]))

Step 2: Merge only on rows with valid IBNR/EVA numbers
merged wiki df = pd.merge(

ordered station df,

ordered wiki data df,

left on="EVA Nr netex",

right on="IBNR wiki",

how="outer"

)

drop all duplicates after the merge
merged wiki df =
merged wiki df.drop duplicates(subset=['EVA Nr netex',"IBNR wiki"])

Luxembourg/ Norway: UIC Code

check if we have the austrian country and whether the netex file
contains uic codes

If all colums are

if country name != "austria" and
station df["UIC Code netex"].isna().all() == False:

clear the data sets before merging them (drop duplicates and
non values)

ordered wiki data df =
ordered wiki data df.drop duplicates(subset=["lat wiki","lon wiki"])

ordered station df =
station df.drop duplicates(subset=["UIC Code netex"])
Drop duplicates and NaNs safely without inplace
modifications
ordered wiki data df =
(wiki data df.drop duplicates(subset=["lat wiki",
“lon wiki"]).dropna(subset=["lat wiki","lon wiki","UIC wiki"]))

Step 2: Merge only on rows with valid IBNR/EVA numbers
merged wiki df = pd.merge(
ordered station df,
ordered wiki data df,
left on="UIC Code netex",
right on="UIC wiki",
how="outer"
)
drop all duplicates after the merge
merged wiki df =
merged wiki df.drop duplicates(subset=['UIC Code netex',"UIC wiki"])

#1f country name == "luxembourg":

return (merged wiki df)

Visualize the difference between gtfs and netex and netex
and wiki data

Why can we not compare the wiki data with the gtfs data?
Austria, Luxembourg and Norway

* labeling issues: gtfs does not include a IBNR or UIC any other referenced ID for their
stations, therefore it is not possible to merge them together with the wiki data set
because of the missing key

. Netex contains an IBNR nummer (EVA_Nr_netex) which is really commen in wiki data for
austria train station therefore we can compare them

import matplotlib.pyplot as plt
from matplotlib venn import venn2

def venn plot(merged df, first key, second key, country name,
actual station number, first name, second name):

IBNR wiki and EVA Nr netex or gtfs and netex
first df = set(merged df[first key].dropna())
second df = set(merged df[second key].dropna())

plt.figure(figsize=(7, 7))
venn = venn2([first df, second df], set labels=(first key,
second key))

Change colors: light red, light green, light blue

check if there is even a set which can be colored otherwise
error will appear
for region, color in {'10': 'lightcoral', '0@1': 'lightgreen’',
"11': 'lightblue'}.items():
patch = venn.get patch by id(region)
if patch: # only if this region exists
patch.set color(color)

#venn.get patch by 1id('10').set color('lightcoral') # left
circle only

#venn.get patch by id('01').set color('lightgreen') # right
circle only

#venn.get patch by id('11').set color('lightblue") #
intersection

Add title with two lines
plt.title(
f"Overlap between the shares of {country name}'s Railway
Stations {first key} and {second key}.\n"
f"Actual number of stations: {actual station number}"

)

Save plot
filename =
f"{country name} stations {first name} {second name}.png"

plt.tight layout()
plt.savefig(filename, dpi=300, bbox inches="tight")

Show plot
plt.show()
plt.close()

create dataframe for non matched values

Rows with NeTEx ID only

wiki only = merged df[merged df[first key].notna() &
merged df[second key].isna()]

Rows with GTFS ID only
netex only = merged df[merged df[second key].notna() &

merged df[first key].isna()]

Combine them
not shared df = pd.concat([wiki only, netex only])

return not shared df

Compare the stations

def compare station gtfs netex wiki(station df, wiki data df,
first column _a, second column a,
first column b, second column b,
country name,

actual station number):

merge the three sources together

1if it was succesfull: merged wiki df is not empty

otherewise it is

merged wiki df = merge gtfs netex wiki(station df,
wiki data df,country name)

1f the merged wiki is empty, we have no commen key between netex

and wiki
if merged wiki df.empty == False:

Plot: Venn

plot the difference via venn plot

difference wiki data and netex: a
first name a = country name + " " + first column_a
second name a = country name + " " + second column_a

not shared wiki netex df = venn plot(merged wiki df,
first column a,
second column_a, # column to compare (first wiki, second netex)
country name,
actual station number, #
actual number

first name a,second name a)

saving the dataframe in order to use for the third part
3 data quality
merged wiki df.to csv(country name + " station + wiki df.csv")

print(" ")

difference between netex and gtfs: b
first name b = country name + " " + first column b
second name b = country name + " " + second column b

not shared netex gtfs df = venn plot(station df,

first column b,
second column b,

country name, # column to
compare (netex and gtfs)

actual station number, #
actual number of stations

first name b,second name b)

we can only return a list of not matching values if we can merge
the wiki data with the netex or gtfs data
if merged wiki df.empty == False:

return (merged wiki df, not shared wiki netex df,
not shared netex gtfs df)

else:
not shared wiki netex df = None
return (merged wiki df, not shared wiki netex df,
not shared netex gtfs df)

Not shared station mapping

import folium

def mapping not shared stations(not shared netex gtfs df):

center map around the mean of coordinates

center lat = not shared netex gtfs df[["lat gtfs",
"lat netex"]].stack().mean()

center lon = not shared netex gtfs df[["lon gtfs",
"lon netex"]].stack().mean()

create base map
m = folium.Map(location=[center lat, center lon], zoom start=6)

add GTFS stops (blue)
for , row in not shared netex gtfs df.iterrows():
if not pd.isna(row["lat gtfs"]) and not
pd.isna(row["lon gtfs"]):
folium.CircleMarker (
location=[row["lat gtfs"], row["lon gtfs"]],
radius=5,
color="blue",
fill=True,
fill color="blue",
popup=T"GTFS: {row['name gtfs']} ({row['id gtfs']})"
) .add _to(m)

add NeTEx stops (red)
for , row in not shared netex gtfs df.iterrows():
if not pd.isna(row["lat netex"]) and not
pd.isna(row["lon netex"]):
folium.CircleMarker (
location=[row["lat netex"], row["lon netex"]],
radius=5,
color="red",
fill=True,
fill color="red",
popup=f"NeTEx: {row['name netex']}
({row['id netex']})"
) .add_to(m)

save map
m.save(country name+"not shared map.html")

Start the Station comparison

country name = "austria"

norway 400
luxembourg 70
austria 1031

actual station number = 1031

load the merged gtfs and netex data set from 1 Extraction
import pandas as pd

station df = pd.read csv(country name
+" station merged df.csv",index col = 0, low memory=False)

load the wiki data for the matching country from

1.1 Wiki Data Querry

wiki data df = pd.read csv(country name+" wiki data df.csv",index col
= 0)

IBNR
if country name == "austria":

merged wiki df, not shared wiki netex df, not shared netex gtfs df
= compare station gtfs netex wiki(station df, wiki data df,

"IBNR wiki","EVA Nr netex",
"id netex", "id gtfs",

country name, actual station number)
IIC Code
if country name != "austria":
merged wiki df, not shared wiki netex df, not shared netex gtfs df
= compare station gtfs netex wiki(station df, wiki data df,

"UIC wiki","UIC Code netex",
"id netex", "id gtfs",

country name, actual station number)
map the not shared stations
mapping not shared stations(not shared netex gtfs df)

not shared netex gtfs df[['id gtfs',6 "name gtfs",
'id netex',"name netex","lat netex","lon netex","lat gtfs","lon gtfs"]

]

not shared wiki netex df[['UIC wiki', "name wiki",
'"UIC Code netex',"name netex"]]

Module 2: Analyze the trips

Questions:

1. How many stops on a trip are assigned to a stop id?
a. Isthe stop assigned with an id from the matching data set?

import pandas as pd

How many stops on a trip are assigned to a stop id?
def facts about gtfs trips(trips gtfs df, station df, country name):

amount of stops per trip list = []
amount of stops with ids per trip list = []

iterate through the rows

for index, row in trips gtfs df.iterrows():
we select only the stops on trip column
stop list = row["stops on trip"]

amount of stops per trip = 0
amount of stops with ids per trip = 0

iterate through the values of this column "stops on trip"
for stop in stop list:

stop id = stop.get("stop id gtfs")
#print(stop id)
each trip is iterated

Only if the have an ID, we test if the id is also into
the station df

if stop_id != None:

Austria

Each Country has its own ids:

ID at:43:1322:0:1

StopPlace ID: 43:1322

if the len of the filtered station df is greater
than O: we have a match

if station df[station df["id gtfs"] ==

(":".join(str(stop id).split(":")[:3]))].empty == False and
country name == "austria":

amount of stops per trip = 1 +
amount of stops per trip

amount of stops with ids per trip = 1 +
amount of stops with ids per trip

#print("find:",amount of stops per trip,
amount of stops with ids per trip)

1if the len of the filtered station df is 0: we
have we do not have a match and will add another stop
if station df[station df["id gtfs"] ==
(":".join(str(stop id).split(":")[:31))].empty == True and
country name == "austria":
amount of stops per trip = 1 +
amount of stops per trip

Others: Luxembourg, Norway

if the len of the filtered station df is greater
than O: we have a match
if station df[station df["id gtfs"] == stop id].empty
== False and country name != "austria":
amount of stops per trip =1 +
amount of stops per trip
amount of stops with ids per trip = 1 +
amount of stops with ids per trip
#print("find:",amount of stops per trip,
amount of stops with ids per trip)

1if the len of the filtered station df is
0: we have we do not have a match and will add another stop
if station df[station df["id gtfs"] == stop id].empty
== True and country name != "austria":
amount of stops per trip = 1 +
amount of stops per trip

1f the second loop is over, we will add the numbers to the
list
amount of stops per trip list.append(amount of stops per trip)

amount of stops with ids per trip list.append(amount of stops with ids
_per _trip)

#break

1if the loop is finsihed, we will add the list as a column to the
dataframe: trips gtfs df

trips gtfs df["stops per trip"] = amount of stops per trip list
trips gtfs df["stops per trip with id"] =
amount of stops with ids per trip list

return trips gtfs df

we use the same function as we used in the extraction modul:
1 Extraction

import re
def extract digit number(id str, length):

if isinstance(id str, int):
id str = str(id str)

pattern = rf' (\d{{{length}}})' # Removed \b to allow matches next
to colons, underscores, etc.
match = re.search(pattern, str(id str))

return int(match.group(l)) if match is not None else None

import pandas as pd
def facts about netex journey(journey netex df,station df,
country name):

Luxembourg Label issue: as already known for the extraction the
netex data StopPlace id appears as "DE::StopPlace:200101007 CdT::"
For the extraction and merging process with the gtfs data I
reduced this id by extracted the number of the string like this

200101007

Therefore we need to do the same for her as well as we did in the
ectraction part

We assume here that the ids will always have the same length

if country name == "luxembourg":

we will filter the dataset for columns which have a netex id
and choose the first entry ofter position to calculate the length of
the first entry

length =
len(str(station df[station df["id netex"].notna()].iloc[0O]

["id netex"]).replace(".0",""))

How many stops on a trip are assigned to a stop id?
#def facts about netex journeys(journey netex df):

amount of stops per trip list = []
amount of stops with ids per trip list = []

iterate through the rows

for index, row in journey netex df.iterrows():

we select only the stops on trip column
stop_list = row["TimetabledPassingTime netex"]

reset each counter before each iteration of a trip
amount of stops per trip = 0
amount of stops with ids per trip = 0

iterate through the values of this column
for stop in stop list:

StopPlaceRef = stop["StopPlaceRef"]

what kind of country Luxembourg as special case with
different stop ids
if country name == "luxembourg":
StopPlaceRef = extract digit number(StopPlaceRef,
length)

the Stop on the trip has no stopplace reference
if StopPlaceRef == None:
amount of stops per trip = 1 +
amount of stops per trip

a StopPlaceRef exists
if StopPlaceRef != None:

""" uxembourg
if a StopPlaceRef contains in the station df
if station df[station df["id netex"] ==
StopPlaceRef].empty == False and country name == "luxembourg":
amount of stops per trip = 1 +
amount of stops per trip
amount of stops with ids per trip = 1 +
amount of stops with ids per trip

1if the StopPlaceRef does not contain within the
station df, we will add only a another stop
if station df[station df["id netex"] ==
StopPlaceRef].empty == True and country name == "luxembourg":
amount of stops per trip =1 +
amount of stops per trip

nn IIOtherSII mnn

if a StopPlaceRef contains in the station df
if station df[station df["id netex"] ==
StopPlaceRef].empty == False and country name != "luxembourg":
amount of stops per trip = 1 +
amount of stops per trip
amount of stops with ids per trip = 1 +
amount of stops with ids per trip

if the StopPlaceRef does not contain within the
station df, we will add only a another stop
if station df[station df["id netex"] ==
StopPlaceRef].empty == True and country name != "luxembourg":
amount of stops per trip = 1 +
amount of stops per trip

add the values per trip (per row) to the lists
amount of stops per trip list.append(amount of stops per trip)

amount of stops with ids per trip list.append(amount of stops with ids
_per_trip)

#break
1f the loop is finsihed, we will add the list as a column to the
dataframe: trips gtfs df
journey netex df["stops per trip"] = amount of stops per trip list
journey netex df["stops per trip with id"] =
amount of stops with ids per trip list

return journey netex df

import matplotlib.pyplot as plt
stops per trip, stops per trip with id, id service netex
journey netex df

def bar plot trips with id or without(dataset, trip id, country name,
gtfs or netex):

stops per trip, stops per trip with id, id service netex
journey netex df

X = range(len(dataset)) # positions for bars
plt.figure(figsize=(24, 12))

Background bars (stops per trip)
plt.bar(

X,

dataset["stops per trip"],
width=0.8,
color="1lightgreen",
label="Stops per trip"

)

Foreground bars (stops per trip with id)
plt.bar(

X,
dataset["stops per trip with id"],
width=0.5,
color="steelblue",
label="Stops per Trip with ID",
zorder=3

)

X-axis labels (trip id gtfs)
#plt.xticks(x, journey netex df[trip id], rotation=90)

plt.ylabel("Number of stops", fontsize=24)

plt.xlabel("Number of Trips", fontsize=24)

plt.title(gtfs or netex + ":" + " Stops per trip vs. stops with ID
within the "+ country name + " data set", fontsize=24)

plt.legend(loc="upper right", fontsize=24)

plt.tight layout()

filename =

f"{country name} {gtfs or netex} ID comparison plot.png"
plt.savefig(filename, dpi=300, bbox inches="tight")
plt.show()
plt.close() # closes the figure so memory isn’t clogged

Start the Trip Analysis

def start trip analysis(journey netex df, trips gtfs df, station df,
country name):

this might take a while ca. 10 min

caculate the stops
journey netex df = facts about netex journey(journey netex df,
station df,country name)

trips gtfs df = facts about gtfs trips(trips gtfs df,
station df,country name)

print("Stops count completed")

plot the results

bar plot trips with id or without(trips gtfs df, "trip id gtfs",
country name, "GTFS")

bar plot trips with id or without(journey netex df,
"id service netex", country name, "NeTex")

return journey netex df, trips gtfs df

import pandas as pd
import os

country name = "norway"

loading the two data sets from the extraction
journey netex df = pd.read json(country name

+" journey netex df.json", orient = "records")

load the wiki data for the matching country from

1.1 Wiki Data Querry

trips gtfs df = pd.read json(country name +" trip gtfs df.json",orient
= "records")

load the reference data frame for the stations
station df = pd.read csv(country name
+" station merged df.csv",index col = 0)

journey netex df, trips gtfs df =
start trip analysis(journey netex df, trips gtfs df, station df,
country name)

How many stations of the trips are missing?

print("Trips in total:",len(trips gtfs df))

print("Trips which were not successfully

refered:", len(trips gtfs df[trips gtfs df["stops per trip"] !=
trips gtfs df["stops per trip with id"]]))

not succesfully refered trips =
trips gtfs df[trips gtfs df["stops per trip"] !=
trips gtfs df["stops per trip with id"]]

print("Avereage missing stops per

trip",not _succesfully refered trips["stops per trip with id"].mean(),"
from",len(not_succesfully refered trips),"trips

and",not succesfully refered trips["stops per trip"].mean(),"stops on

average")

print("Median of Missing stops per

trip",not succesfully refered trips["stops per trip with id"].median()
,"from",len(not _succesfully refered trips),"trips

and",not succesfully refered trips["stops per trip"].median(),"stops
on median")

Trips in total: 47439

Trips which were not successfully refered: 0

Avereage missing stops per trip nan from O trips and nan stops on
average

Median of Missing stops per trip nan from @ trips and nan stops on
median

print("Journeys in total:",len(journey netex df))

print("Journeys which were not successfully

refered:", len(journey netex df[journey netex df["stops per trip"] !=
journey netex df["stops per trip with id"]]))

not succesfully refered journey =
journey netex df[journey netex df["stops per trip"] !=
journey netex df["stops per trip with id"]]

print("Avereage missing stops per

Journey",not succesfully refered journey["stops per trip with id"].mea
n(),"from",len(not succesfully refered journey),"Journey

and",not succesfully refered journey["stops per trip"].mean(),"stops
on average")

print("Median of Missing stops per

Journey",not succesfully refered journey["stops per trip with id"].med
ian(),"from",len(not succesfully refered journey), "Journey

and",not succesfully refered journey["stops per trip"].median(),"stops
on median")

Journeys in total: 26852

Journeys which were not successfully refered: 0

Avereage missing stops per Journey nan from O Journey and nan stops on
average

Median of Missing stops per Journey nan from 0 Journey and nan stops
on median

Results: Overview

load the wiki data for the matching country from

1.1 Wiki Data Querry

wiki data df = pd.read csv("luxembourg"+" wiki data df.csv",index col
= 0)

print(len(wiki data df[wiki data df["IBNR wiki"].notna()])
len(wiki data df([wiki data df["UIC wiki"].notna()]),
len(wiki data df[wiki data df["IFOPT wiki"].notna()]

37 50 0

’

))

results = {"Applications": ["Extraction: Stops","Extraction: Trips",
"Wiki data", "Compare: stations", "Compare: Info trips","Data Quality:
Distance","Wiki IBNR entries","Wiki UIC entries","Wiki IFOPT
entries"],

"Austria": [True, True, True, True, True, True,
1210,142,01],

"Norway": [True, True, True, True, True, True, 151, 420,
o1,

"Luxembourg": [True, True, True, "Only gtfs and netex",
True, False,37 ,50 ,0],

}

results df = pd.DataFrame(results)

results df

6.4 Notebook: Data Quality

118

Data Quality:

* Arethe coordinates provide by netex or gtfs correct compared to a third source

#!pip install -U kaleido
#!pip install pyarrow
#!pip install plotly

Calculate distance

calculate the distance between both coordinates by using the
Haversine formula

https://www.movable-type.co.uk/scripts/latlong.html#:~:text=This
%20uses%20the%20' haversine'%20formula, where:

from math import sin, cos, sqrt, atan2, radians

def distance between coordinates(latl, lonl, lat2, lon2):
R = 6371 # Radius of Earth in kilometers

latl rad = radians(latl)

lonl rad = radians(lonl)

lat2 rad = radians(lat2)

lon2 rad = radians(lon2)

dlon = lon2 rad - lonl rad

dlat = lat2 rad - latl rad

a = sin(dlat / 2)**2 + cos(latl rad) * cos(lat2 rad) * sin(dlon /
e

c = 2 * atan2(sqrt(a), sqrt(l - a))

distance = R * ¢
return distance

Plot the distance from gtfs and netex and Wiki

import numpy as np
import matplotlib.pyplot as plt

def distance wiki netex gtfs barchart(output df, station name,
country name):

X = np.arange(len(output df[station name])) # numeric x-axis
positions

width = 0.4 # width of each bar

plt.figure(figsize=(32, 16))

Bars for Netex and GTFS

1f the gtfs columns does contain non values -> then we only plot
the netex column
if output df["distancen between gtfs to"].isna().all() == True:
plt.bar(x - width/2, output df["distancen between netex to"],
width, label="Netex", alpha=0.7)

the gtfs columns does not contain non values
if output df["distancen between gtfs to"].isna().all() == False:
plt.bar(x + width/2, output df["distancen between gtfs to"],
width, label="GTFS", alpha=0.7)
plt.bar(x - width/2, output df["distancen between netex to"],
width, label="Netex", alpha=0.7)

plt.title("Distance Comparison per Station between Wiki Data
Station: "+ country name, fontsize=40)

plt.xlabel("Stations", fontsize=40)

plt.ylabel("Distance in meters to the wiki coordinates",
fontsize=40)

plt.legend(fontsize=40)

Hide x labels (too many stations)
plt.xticks([]1, [])

plt.tight layout()

plt.grid(axis="y", linestyle="--", alpha=0.7)

plt.savefig(country name +" station distances barchart.png",
dpi=300)

plt.show()

plt.close()

Plot the distance from gtfs and netex

import numpy as np
import matplotlib.pyplot as plt

def distance gtfs netex(output df, station name, country name):

X = np.arange(len(output df[station name])) # numeric x-axis
positions

width = 0.4 # width of each bar

plt.figure(figsize=(32, 16))

Bars for Netex and GTFS

plt.bar(x - width/2, output df["distancen between netex to gtfs"],
width, label="Distance GTFS and Netex", alpha=0.7)

plt.title("Distance Comparison per Station between NeTex and GTFS:
"+ country name, fontsize=40)

plt.xlabel("Stations",fontsize=40)

plt.ylabel("Distance in meters", fontsize=40)

plt.legend(fontsize=40)

Hide x labels (too many stations)
plt.xticks([], [1)

plt.tight layout()
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.savefig(country name

+" station distances gtfs netex barchart.png", dpi=300)
plt.show()
plt.close()

Calculate the distancen between GTFS and Netex and Wiki

import matplotlib.pyplot as plt
import plotly.express as px

def distance calculator(input df, lat name third source,
lon name third source, station name, country name):

create a list to store the results
distance list gtfs = []
distance list netex = []
distance list netex gtfs = []

iterate through the merged dataframe to calculate each distance
between the two coordinates
for index, row in input df.iterrows():

calculate the distance between each coordinate pair
distance in meter gtfs =
distance between coordinates(row["lat gtfs"], row["lon gtfs"],
row[lat name third source], row[lon name third source]) *1000
distance in meter netex =
distance between coordinates(row["lat netex"], row["lon netex"],
row[lat name third source], row[lon name third source]) *1000
distance in meter gtfs netex =
distance between coordinates(row["lat netex"], row["lon netex"],
row["lat gtfs"], row["lon gtfs"]) *1000

add values to list

distance list gtfs.append(distance in meter gtfs)

distance list netex.append(distance in meter netex)

distance list netex gtfs.append(distance in meter gtfs netex)

create a new column in a new dataframe input

input df.loc[:, "distancen between gtfs to"] = distance list gtfs

input _df.loc[:, "distancen between netex to"] =
distance list netex

input df.loc[:, "distancen between netex to gtfs"] =

distance list netex gtfs

filter all NaN values for the gtfs OR the netex

why do we use "or" instead of "and": because if we would use an
"and" we would filter all values because both conditions must be true

output df = input df[input df["distancen between gtfs to"].notna()
| input df["distancen between netex to"].notna()]

print("number of matches between netex, gtfs and third source by
their coordinates:", len(output df))

print the result as an interactive plot
df melted = output df.melt(id vars= station name,
value vars=['distancen between netex to',
‘distancen between gtfs to'],

var _name='Distance Type', value name='Distance
in meter')

fig = px.line(df melted, x= station name, y='Distance in meter',
color='Distance Type',
title='Distance Comparison per Station')

fig.update layout(xaxis tickangle=1000, xaxis tickfont size=9)
fig.show()

also create a bar chart
distance wiki netex gtfs barchart(output df, station name,
country name)

create a plot for the distance between netex and gtfs
distance gtfs netex(output df, station name, country name)

calculate the mean difference between the stations
mean_netex = output df["distancen between netex to"].mean()
mean gtfs = output df["distancen between gtfs to"].mean()

print("avearage distance netex to third source:",mean netex)

print("avearage distance gtfs to third source:",mean gtfs)

return the df back
return (output df, mean netex, mean gtfs)

Mapping the stations

import folium

map the stations
def mapping far stations(stations over 400):

center map around the mean of coordinates

center lat = stations over 400[["lat gtfs",
“lat netex","lat wiki"]].stack().mean()

center lon = stations over 400[["lon gtfs",
“lon netex","lon wiki"]].stack().mean()

create base map
m = folium.Map(location=[center lat, center lon], zoom start=6)

add GTFS stops (blue)
for , row in stations over 400.iterrows():
if not pd.isna(row["lat gtfs"]) and not
pd.isna(row["lon gtfs"]):
folium.CircleMarker (
location=[row["lat gtfs"], row["lon gtfs"]],
radius=5,
color="blue",
fill=True,
fill color="blue",
popup=f"GTFS: {row['name gtfs']} ({row['id gtfs']})"
) .add_to(m)

add NeTEx stops (red)
for , row in stations over 400.iterrows():
if not pd.isna(row["lat netex"]) and not
pd.isna(row["lon netex"]):
folium.CircleMarker (
location=[row["lat netex"], row["lon netex"]],
radius=5,
color="red",
fill=True,
fill color="red",
popup=f"NeTEx: {row['name netex']}
({row['id netex']})"
) .add_to(m)

add wiki stops (red)
for , row in stations over 400.iterrows():
if not pd.isna(row["lat wiki"]) and not
pd.isna(row["lon wiki"]):
folium.CircleMarker(
location=[row["lat wiki"], row["lon wiki"]],
radius=5,
color="green",
fill=True,
fill color="red",
popup=f"WIKI: {row['name wiki']})"
) .add_to(m)

save map
m.save(country name+" distance map.html")

load the merged gtfs and netex data set from 2 Compare
import pandas as pd

country name = "norway"

station wiki df = pd.read csv(country name +
" station + wiki df.csv",index col = 0)

merged wiki distance df, mean netex, mean gtfs =
distance calculator(station wiki df ,"lat wiki",
"lon wiki","name wiki", country name)

number of matches between netex, gtfs and third source by their
coordinates: 140

{"config":{"plotlyServerURL":"https://plot.ly"}, "data":
[{"hovertemplate":"Distance

Type=distancen between netex to
name wiki=%{x}
Distance in
meter=%{y}<extra></extra>", "legendgroup":"distancen between netex to",
"line":{"color":"#636efa", "dash":"solid"}, "marker":
{"symbol":"circle"}, "mode":"lines", "name":"distancen between netex to"
,"orientation":"v", "showlegend":true, "type":"scatter","x":["Oslo
Sentralstasjon","Bryn Station","Grorud Station", "Hgybraten
Station","Fjellhamar Station","Strgmmen Station","Lillestrgm
station","Leirsund Station","Frogner Station","Bahnhof
Klgfta","Jessheim Station", "Hauerseter Station", "Dal
Station","Eidsvoll station","Nordstrand station","Ljan

station", "Hauketo station","Kolbotn station","Myrvoll
station","Oppegard station","Langhus station","As station","Vestby
station", "Kambo station","Moss station","Rygge station","Rade
station","Fredrikstad station","Bahnhof Sarpsborg", "Krakstad

station", "Skotbu station","Tomter station", "Knapstad

station", "Spydeberg station","Askim station","Slitu station", "Mysen
station","Eidsberg station", "Heia station", "Rakkestad

station", "Bahnhof Halden","Kjelsds Station","Monsrud Station","Lunner
Station","Gjgvik Station","Tangen Station","Stange Station", "Bahnhof
Hamar", "Brumunddal Station", "Moelv Station","Lillehammer
Station","Ringebu station","Vinstra Station","Kvam Station", "Otta
Station","Dovre Station","Dombas Station","Lesja Station","Lesjaverk
Station","Bjorli Station","Ilseng Station","Lgten Station","Elverum
station","Rena Station","Steinvik Station","Opphus Station","Evenstad
Station","Stai Station","Koppang Station","Atna Station", "Hanestad
Station","Bellingmo Station","Os Station","Bahnhof Rgros", "Bahnhof
Glamos","Reitan Station","Bahnhof Alen","Singsas Station","Hjerkinn
Station", "Kongsvoll Station", "Oppdal Station","Bahnhof Stgren", "Hovin
Station","Lundamo Station","Ler Station","Kval Station","Melhus
Station","Heimdal station", "Selsbakk station","Lademoen

station", "Leangen station","Bahnhof Hell","Stjgrdal station","Bahnhof
Rgra","Drevvatn station", "Bahnhof Bodg", "Skegyen station", "Lysaker
station", "Stabekk station", "Hgvik station", "Sandvika
station","Billingstad station","Hvalstad station", "Asker

station", "Heggedal station","Spikkestad station", "Brakergya

station", "Drammen station","Holmestrand station", "Hokksund

station", "Vestfossen station","Darbu station", "Kongsberg
station","Nordagutu station","Bg station", "Neslandsvatn

station", "Bahnhof Kristiansand", "Bahnhof Flaten", "Bgylestad
Station","Froland Station","Brastad
Station","Stoa","Arendal","Marnardal station","Forus station", "Hinna
station", "Haugastal" "Bahnhof Finse", "Bahnhof Myrdal", "Upsete
station","Voss station","Bulken station","Evanger
station","Bolstadﬁyri station","Bahnhof Dale", "Stanghelle

station", "Vaksdal station","Trengereid station", "Bahnhof

Bergen", “Bahnhof Flam"], "xaxis":"x","y":

{"bdata": "h+9EKEuBMODMFP71HgwzQCwzMA2LGi1Ahy9xQyR3CEDZzEF5qUYgQIbtqsA5
VvVVARbgy0cZ2NkC80dOR9TY5QMIEdEH7 dDXxAkKOaOKcxUEBM2/9Y9stLQCOgECtxHUpAOL
1i2XVCSODcTjECmtFGQP1BxJLBPjNAQ232az37RUBVE8phqe lMQGDBGFk+/
JJAAZrHPfSXCOAC52XVuR1+QAYau51XSFBAdTLA2PKk5I0AI1nc7+sgiQFVFKXWL6EJANXS
0zRaKLEAUyfi3a506QESOP61tmOFArCliaRxb0kAcGZa+6eQxQHSY4pVsiEJAVWPruYhiX
ECjQXfvjXcwQFvz7dL35W1Aerk8jWOLQECL21Vm4/ExQAg+Es1mQD9AtEjAal/
NTKkCPVU3GoJ5TQNzXUDHRs LJAVTRQRATgNEAFGC50EKgyQITNTIX35UVALHt0j1eF1OBVp
0X03S9AQJ7j9mxxFXNAN32eEulEEUChGEL+tnpbQPNE6zLbiFpAkkhvRAKWKEDT rDpl1EOB
WQONAJEqyiE5AiIWKT7n65QEDKEGZzSVBW8QAB/8++5JRhAGNUY/
8StJEBtvGZPsrt0QPxcaFLFMFJAIW/
OpaxDMUBcCG9Q0IhCQIw9hhhdNktAYEQ+VvY1PPkDzTKT/
vIJiQDuOKTEN10ZAimTO0JY30Q0Aim/
hvDoRFQJInVObvh7SdAmLQuAtHTNUAATFwuDbM+QKP/

QsAwuTxA+6ZGRi96UEDtUw]j tEJ00oQOmMPMGtASTZATWGIRCsX0ECzhdQB8rVUQFv3unjNZB
BAsCit16vSHOCLYkmiX/FmQPwDn9U/NTFAweVN/
NNdJECTwSbm4MIAQN9zmzH3fOTAO5sGWLbmPUCXNAKSbKRjQBR1vi8A1KkBAF5v1ZIYXWUD
NRR4aSr1dQA6KhRVkoYJAEzZp1l69rKUBH1Swc2292QFirnXYEeYhAY1MIMycAZEAjkyUto

t5YQ097+kS/2itAFSAjX5whUOA+P6r8/1Y1QCSYJc8DsDxALOeqAY/
KLUBQtkmqYjpUQDsLxkJFhQtAQmyRVPuxYEDLaZh7VIMxQJYQQFB4AMEpAXxvmMNMVY7GkCwy
vLjF4RDQAUe72Bs0OEBAdFsx2wXjZODI57XB+pcOQGS4ZAYUS5EZAw+P0Z+qfaEAFHFE7ild
AQEIvSgjcJzNAeWRKTul2POA+bTZoiNEwQNYEzCMMoUJASNyn4J7kLUB20WgJpURHQGCvd
mG2xkFAzjZQou4idkD1na+Y5DViQFXCK4iYukhAXx3uaOpjLEB4bnAODMOYQAW+HPUT1Dh
ALCgW+Sn4RODT7G0sI7CTQFkWVwWKTcolAhj6k1ltrfKUCoW3NtLoEoQKOavODbvjpAI3onV
/Vv8TEBOOAUQMKU3QPIO1fre2V5AHE6bSdbgKKALEZ15AB85QMqAZCanukBATXq3/
AczUEDOOAXTeNEXQEw/
CAnReChAzixAmHRjHUAP30eyIHtVQA==", "dtype":"f8"}, "yaxis":"y"},
{"hovertemplate":"Distance

Type=distancen between gtfs to
name wiki=%{x}
Distance in meter=
%s{y}<extra></extra>", "legendgroup":"distancen between gtfs to","line":
{"color":"#EF553B", "dash":"solid"}, "marker":
{"symbol":"circle"}, "mode":"lines", "name":"distancen between gtfs to",
"orientation":"v","showlegend":true, "type":"scatter","x":["0slo
Sentralstasjon","Bryn Station","Grorud Station", "Hgybraten
Station","Fjellhamar Station","Strgmmen Station","Lillestrgm
station","Leirsund Station","Frogner Station", "Bahnhof

Klgfta", "Jessheim Station", "Hauerseter Station", "Dal
Station","Eidsvoll station","Nordstrand station","Ljan

station", "Hauketo station","Kolbotn station","Myrvoll
station","Oppegdrd station","Langhus station","As station","Vestby
station","Kambo station","Moss station","Rygge station","Rade
station","Fredrikstad station","Bahnhof Sarpsborg", "Krdkstad

station", "Skotbu station","Tomter station","Knapstad

station", "Spydeberg station","Askim station","Slitu station", "Mysen
station","Eidsberg station","Heia station", "Rakkestad

station", "Bahnhof Halden","Kjelsds Station","Monsrud Station","Lunner
Station","Gjegvik Station","Tangen Station", "Stange Station", "Bahnhof
Hamar", "Brumunddal Station","Moelv Station","Lillehammer

Station", "Ringebu station","Vinstra Station","Kvam Station","Otta
Station","Dovre Station","Dombas Station","Lesja Station","Lesjaverk
Station","Bjorli Station","Ilseng Station","Lgten Station","Elverum
station"”,"Rena Station","Steinvik Station","Opphus Station","Evenstad
Station","Stai Station", "Koppang Station","Atna Station", "Hanestad
Station","Bellingmo Station","Os Station", "Bahnhof Rgros", "Bahnhof
Glamos","Reitan Station","Bahnhof Alen","Singsas Station","Hjerkinn
Station","Kongsvoll Station","Oppdal Station","Bahnhof Stgren","Hovin
Station","Lundamo Station","Ler Station","Kval Station", "Melhus
Station","Heimdal station", "Selsbakk station","Lademoen

station", "Leangen station","Bahnhof Hell","Stjgrdal station","Bahnhof
Ragra","Drevvatn station", "Bahnhof Bodg", "Skgyen station","Lysaker
station", "Stabekk station", "Hevik station", "Sandvika
station","Billingstad station", "Hvalstad station", "Asker

station", "Heggedal station","Spikkestad station","Brakergya

station", "Drammen station", "Holmestrand station", "Hokksund
station","Vestfossen station","Darbu station", "Kongsberg

station", "Nordagutu station","Bg station","Neslandsvatn

station", "Bahnhof Kristiansand", "Bahnhof Flaten", "Bgylestad

Station","Froland Station","Brastad

Station", "Stoa", "Arendal","Marnardal station","Forus station", "Hinna
station", "Haugastgl", "Bahnhof Finse","Bahnhof Myrdal", "Upsete
station","Voss station","Bulken station", "Evanger
station","Bolstadgyri station","Bahnhof Dale", "Stanghelle

station", "Vaksdal station","Trengereid station", "Bahnhof

Bergen", "Bahnhof Flam"],"xaxis":"x","y":

{"bdata": "qNRw3zXxX0C+cJQTCF80QL4LRqz8Ix1AJfG8Ib5CEOBIrJORsiAeQKx2Z1+n
KVJAAC8DWFKVQECYCxBKo4tIQG1LMAPgXkBAnUUT81iZ1UUDQiKO+JINtUQMpRPaBF+ENA6GO
+6Sa/+TEAOZj511y9UQAAAAAAAAPh/

MRm6MQokTOAK81VIHTAIQM80J fB+wDVAzLmgcV7cGUCkY10zmgl7QLXFalCrTlBAn71]e4
goGEAOhE/SvKsbQFIFKJ7uizJA90d6VOA40UAVCvYpBpY1QCAEVBVh4TXxA/6ms/
vVTfMEDwW7nV900M3QDu3JIMYIONEFAruBLMM/
1WOCRURNAKEOKkQFvz7dL35WLAVvOd1RPXbPKkAdxU34QSU2QAg+Es1mQD9Aru6+K+f4QkCPV
U3GoJ5TQNzXUDHRs LJAPsBxS7saKkARy11M3aEmQJAOnzqNIE9AK5cN4vT21ODAMTS63b5
KQF9YvrHppTJAj lJpGophNUDD8Dj4Ypg6QH32FTiwg19A0NUA/
vBsOEBPphmONNxVQPelsACkYkVAu9MQexhqLUA2k/
w59Uk2QHPhjAIzfDJACQTWU6KZNkB+R1gABbBWQC7tOUINEWFABTi37ulTMUA0J1QApC09
QP0JdZnGtVBA7WG5Ebg7LOD7UDBQNIZjQPwKtPKfVKhAhHO55DZGSODfskVFARK5QNbvza
M8AXxdAJJFUlrrcHOCTXE/
hP4FBQKWTPfcqMDNAWWBGESKITOBOVbcvW5IpQOmPMGtASTZA/
sQRA56uKUCjPgniVBFOQAutc064EyZAVc+Ct2AjBUBgXV4b38h1QBb54BPbPz1Aaaotvf+
TGUBgPMAh6R0OzQFTn+vfp6ipAvR78aPIqGkC9T3AYsk9iQ07eY51egkFAQXR60ZWTWUDYP
VigB7JdQHbN3h4KpoJA93ZHgRS0KkA1z01K9Jt2QJSSR7NxgIhAaGoxfp40ZEDqYZynx/
JbQCu/kj6YXCtAZzabfkkaQEBYLGZ31fUzQPuCo2X/wjpAMS8GIyyZLKkA/
+bycAXxUQFrjFHfbOSFApM5yo07PYEBg61lebxzs5QFQQyizZMEpA/
7TdSRBZJUBxazD7LjZBQDGRG1h90DxAA+02D7YZaEAGSsFjP1UU8QH+hukqtlUdAQsWRDjd
VaUDY+oNc4EtAQOIMP+Ng6UNAypvIySx+REA+AY4FX6k9QESSM82L+ERAtecbvDmSCODsN
tghht03QEUiyVCSCkdAzjZQou4idkB1ACHYQ+1iQDmgMszO1ENAl/xZ/
IJcJEB4bnAODMOYQFuUIVSwHjUVAMyj6Pfi+RODpXhapOyOUQNCQOBMGVY1AP4xiWf90GKA
090/
BsUE4QAoC40BYuS1AfIGLTeX+TEAfD1DejvM+QGFybz3xN1dAqJlggb9ReNEDH2V80vuYsQ
FCjVM9/RTxAbo/
ZGLIXUEBrAx4VBSZmQDudQ3FsS11Ab835skYtNOAGSrCW3MtVQA==",b "dtype":"f8"},k"
yaxis":"y"}1,"layout":{"legend": {"title":{"text":"Distance
Type"},"tracegroupgap":0}, "template":{"data":{"bar":[{"error_x":
{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"}, "marker":{"line":
{"color":"#E5ECF6", "width":0.5}, "pattern":

{"fillmode":"overlay",6 "size":10,"solidity":0.2}},"type":"bar"}], "barpo
lar": [{"marker":{"line":{"color":"#E5ECF6", "width":0.5}, "pattern":
{"fillmode":"overlay",6 "size":10,"solidity":0.2}},"type":"barpolar"}],"
carpet":[{"aaxis":

{"endlinecolor":"#2a3f5f","gridcolor":"white", "linecolor":"white", "min
orgridcolor":"white", "startlinecolor":"#2a3f5f"}, "baxis":
{"endlinecolor":"#2a3f5f","gridcolor":"white", "linecolor":"white", "min
orgridcolor":"white","startlinecolor":"#2a3f5f"}, "type":"carpet"}1], "ch
oropleth":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"choropleth"}], "contour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":

[[0,"#0d0887"],[0.1111111111111111, "#46039f"],
[0.2222222222222222,"#7201a8"], [0.3333333333333333, "#9c179e"],
[0.4444444444444444 , "#bd3786"], [0.5555555555555556, "#d8576b" 1,
[0.6666666666666666, "#ed7953"1,[0.7777777777777778, "#fb9f3a"],
[0.8888888888888888, "#fdca26"1],

[1,"#f0f921"]],"type":"contour"}], "contourcarpet":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}], "heatmap":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111, "#46039f"1],
[0.2222222222222222,"#7201a8"], [0.3333333333333333, "#9c179e"],
[0.4444444444444444 , "#bd3786"], [0.5555555555555556, "#d8576b"],
[0.6666666666666666, "#ed7953"]1,[0.7777777777777778, "#fb9f3a"],
[0.8888888888888888, "#fdcaz26"1],
[1,"#f0f921"]1],"type":"heatmap"}], "histogram": [{"marker": {"pattern":
{"fillmode":"overlay",6 "size":10,"solidity":0.2}},"type":"histogram"}],
"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111, "#46039f"1,
[0.2222222222222222,"#7201a8"], [0.3333333333333333, "#9c179e"1],
[0.4444444444444444 , "#bd3786"], [0.5555555555555556, "#d8576b" 1,
[0.6666666666666666, "#ed7953"]1,[0.7777777777777778, "#fb9f3a"],
[0.8888888888888888, "#fdca26"],

[1,"#f0f921"]1],"type":"histogram2d"}], "histogram2dcontour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[O0,"#0d0887"]1,[0.1111111111111111, "#46039f"],
[0.2222222222222222,"#7201a8"], [0.3333333333333333, "#9c179e"1],
[0.4444444444444444 ,"#bd3786"], [0.5555555555555556, "#d8576b" 1,
[0.6666666666666666, "#ed7953"1,[0.7777777777777778, "#fb9f3a"],
[0.8888888888888888, "#fdca26"],
[1,"#f0f921"]],"type":"histogram2dcontour"}], "mesh3d":[{"colorbar":
{"outlinewidth":0,"ticks":""}, "type":"mesh3d"}], "parcoords":[{"line":
{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}], "pie":
[{"automargin":true, "type":"pie"}],"scatter":[{"fillpattern":
{"fillmode":"overlay",6 "size":10,"solidity":0.2},"type":"scatter"}],"sc
atter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}}, "marker":
{"colorbar":

{"outlinewidth":0,"ticks":""}}, "type":"scatter3d"}], "scattercarpet":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}], "scattergeo":
[{"marker":{"colorbar":

{"outlinewidth":0,"ticks":""}}, "type":"scattergeo"}], "scattergl":
[{"marker":{"colorbar":

{"outlinewidth":0,"ticks":""}}, "type":"scattergl"}],"scattermap":
[{"marker":{"colorbar":

{"outlinewidth":0,"ticks":""}},6 "type":"scattermap"}], "scattermapbox":
[{"marker":{"colorbar":

{"outlinewidth":0,"ticks":""}}, "type":"scattermapbox"}], "scatterpolar"
:[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl
":[{"marker":{"colorbar":

{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}], "scatterterna
ry":[{"marker":{"colorbar":

{"outlinewidth":0,"ticks":""}}, "type":"scatterternary"}], "surface":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[O0,"#0d0887"]1,[0.1111111111111111, "#46039f"],
[0.2222222222222222,"#7201a8"], [0.3333333333333333, "#9c179e"1],
[0.4444444444444444 , "#bd3786"], [0.5555555555555556, "#d8576b" 1,
[0.6666666666666666, "#ed7953"]1,[0.7777777777777778, "#fb9f3a"1],
[0.8888888888888888, "#fdca26"1],
[1,"#f0f921"]1],"type":"surface"}],"table":[{"cells":{"fill":
{"color":"#EBFOF8"},"line":{"color":"white"}}, "header":{"fill":
{"color":"#C8D4E3"}, "line":

{"color":"white"}}, "type":"table"}1}, "layout":{"annotationdefaults":
{"arrowcolor":"#2a3f5f", "arrowhead":0, "arrowwidth":1}, "autotypenumbers
":"strict","coloraxis":{"colorbar":
{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":
[[0,"#8e0152"]1,[0.1, "#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1lb6da"],
[0.4,"#fdeOef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"]1,[0.7, "#bB8e186"],
[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]], "sequential":
[[0,"#0d0887"],[0.1111111111111111, "#46039f"1],
[0.2222222222222222,"#7201a8"], [0.3333333333333333, "#9¢c179e"],
[0.4444444444444444 , "#bd3786"], [0.5555555555555556, "#d8576b"],
[0.6666666666666666, "#ed7953"]1,[0.7777777777777778, "#fb9f3a"],
[0.8888888888888888, "#fdca26"],[1,"#f0f921"]], "sequentialminus":
[[O0,"#0d0887"]1,[0.1111111111111111, "#46039f"],
[0.2222222222222222,"#7201a8"], [0.3333333333333333, "#9c179e"1],
[0.4444444444444444 ,"#bd3786"], [0.5555555555555556, "#d8576b" 1,
[0.6666666666666666, "#ed7953"]1,[0.7777777777777778, "#fb9f3a"],
[0.8888888888888888, "#fdca26"],[1, "#f0f921"1]1}, "colorway":

["#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692"
, "#B6E880O" , "#FF97FF" , "#FECB52"], "font":{"color": "#2a3f5f"}, "geo":
{"bgcolor":"white", "lakecolor":"white", "landcolor": "#E5ECF6", "showlake
s":true, "showland":true, "subunitcolor":"white"}, "hoverlabel":
{"align":"left"}, "hovermode":"closest", "mapbox":
{"style":"light"}, "paper bgcolor":"white", "plot bgcolor":"#E5ECF6", "po
lar":{"angularaxis":

{"gridcolor":"white","linecolor":"white", "ticks":""},"bgcolor":"#E5ECF
6","radialaxis":

{"gridcolor":"white","linecolor":"white", "ticks":""}},"scene":
{"xaxis":

{"backgroundcolor":"#E5ECF6", "gridcolor":"white", "gridwidth":2,"lineco
lor":"white", "showbackground":true, "ticks":"","zerolinecolor":"white"}
,yaxis":

{"backgroundcolor": "#E5ECF6","gridcolor":"white", "gridwidth":2,"lineco
lor":"white", "showbackground":true, "ticks":"","zerolinecolor":"white"}
,"zaxis":

{"backgroundcolor":"#E5ECF6", "gridcolor":"white", "gridwidth":2,"lineco
lor":"white", "showbackground":true,"ticks":"","zerolinecolor":"white"}

},"shapedefaults":{"line": {"color":"#2a3f5f"}}, "ternary":{"aaxis":

{"gridcolor":"white","linecolor":"white",6 "ticks":""}, "baxis":
{"gridcolor":"white","linecolor":"white",6 "ticks":""},"bgcolor":"#E5ECF
6", "caxis":

{"gridcolor":"white","linecolor":"white", "ticks":""}},"title":
{"x":5.0e-2},"xaxis":

{"automargin":true, "gridcolor":"white","linecolor":"white", "ticks":"",
"title":

{"standoff":15},"zerolinecolor":"white", "zerolinewidth":2}, "yaxis":
{"automargin":true,"gridcolor":"white","linecolor":"white", "ticks":"",
"title":

{"standoff":15},"zerolinecolor": "white","zerolinewidth":2}}},"title":
{"text":"Distance Comparison per Station"},"xaxis":
{"anchor":"y","domain":[0,1],"tickangle":-80,"tickfont":
{"size":9},"title": {"text":"name wiki"}}, "yaxis":
{"anchor":"x","domain":[0,1],"title":{"text":"Distance in meter"}}}}

Distance Comparison per Station between Wiki Data Station: norway

B GTFS
| " Netex

Distance in meters to the wiki coordinates
L : 5 p

3

il Lol |.1..|.||..... bl

Stations

Distance Comparison per Station between NeTex and GTFS: norway

W Distance GTFS and Netex

Distance in meters

||h||‘|||||‘ ||II I||||II|I|I| u ‘ |||H|| ||||||||‘ ||||||‘|SI|I|1| | ||||||h||ll| |.||| | ||I|||| I||||.‘”|” ||| MI”h”“ll

tations

avearage distance netex to third source: 87.98512639957524
avearage distance gtfs to third source: 90.94894419626833

stations over 400 =
merged wiki distance df[(merged wiki distance df["distancen between ne
tex to"] > 400) |

(merged wiki distance df["distancen between gtfs to"] > 400)]

mapping far stations(stations over 400)

	Introduction
	The Benefits of Data Standards
	Data Standards in the European Union
	NeTEx - the EU standard
	NeTEx Structure

	GTFS: the defacto standard

	Methodes
	Loading the Data
	Extraction of Stations
	Extracted Information

	Comparison of Stations
	Key Issues to Identify the Stations in Both Formats
	Merging Process

	Wiki Data Base
	How to Connect the Third Source with NeTEx or GTFS

	Distance Calculation
	Extraction Trips
	GTFS Trips Extraction
	NeTex Journey Extraction

	Analysis
	Station Comparison - How many stations are shared?
	Station Verfication via third Source

	Data Quality - Distance between Stations
	Trips and Journeys - Identifable stations
	Results of the Analysis
	Possible Explanations

	Summary
	Additional Material
	Notebook: Third Source
	Notebook: Extraction
	Notebook: Comparing
	Notebook: Data Quality

