
Bachelor Thesis

Data Interoperability in European
Railway Information Exchange: A
Study of GTFS and NeTEx

Fredrik Massmann

Date of Birth: 26.09.2001

Student ID: h12117343

Subject Area: Information Business

Studienkennzahl: h12117343

Supervisors: Sharom Hosseini Sohi and Dr. Amin Anjomshoaa

Date of Submission: 30. September 2025

Institute of Data, Process & Knowledge Management, Vienna University of
Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Contents

1 Introduction 7

2 The Bene�ts of Data Standards 8
2.1 Data Standards in the European Union 9
2.2 Network Timetable Exchange (NeTEx) - the EU standard . . 9

2.2.1 NeTEx Structure . 11
2.3 General Transit Feed Speci�cation (GTFS): the defacto stan-

dard . 11

3 Methodes 12
3.1 Loading the Data . 12
3.2 Extraction of Stations . 12

3.2.1 Extracted Information 15
3.3 Comparison of Stations . 15

3.3.1 Key Issues to Identify the Stations in Both Formats . . 17
3.3.2 Merging Process . 18

3.4 Wiki Data Base . 18
3.4.1 How to Connect the Third Source with NeTEx or GTFS 18

3.5 Distance Calculation . 20
3.6 Extraction Trips . 21

3.6.1 GTFS Trips Extraction 21
3.6.2 NeTex Journey Extraction 23

4 Analysis 28
4.1 Station Comparison - How many stations are shared? 29

4.1.1 Station Ver�cation via third Source 32
4.2 Data Quality - Distance between Stations 35
4.3 Trips and Journeys - Identifable stations 38
4.4 Results of the Analysis . 43

4.4.1 Possible Explanations 44

5 Summary 45

6 Additional Material 56
6.1 Notebook: Third Source . 56
6.2 Notebook: Extraction . 60
6.3 Notebook: Comparing . 101
6.4 Notebook: Data Quality . 118

2

List of Figures

1 [Illustrated Link between Stops and Route in GTFS. Source:
Self-created graphic, based on descriptions �Reference - Gen-
eral Transit Feed Speci�cation�, 2025 14

2 Comparison of two data structures: Nested Structure vs. Flatt
Structure Source: Screenshot made from Notebook 14

3 [Illustrated Link between Stops Times, Routes and Trips, Source:
Self-created graphic, based on descriptions �Reference - Gen-
eral Transit Feed Speci�cation�, 2025 22

4 Mapping GTFS Trips to Netex Journey - The basics, Source:
Knowles, 2024 . 24

5 Link from Service Journey to the Stop Places in Netex, Source:
Self-created graphic, based on descriptions �Timetable - Hånd-
bok N801 (SIRI/NeTEX) - Entur�, 2025 �JourneyPattern (Ab-
stract in EPIP), ServicePattern - NeTEx Pro�l Österreich -
Mobilitätsverbünde�, 2025 �PointinJourneyPattern (Abstract
in EPIP), StopPointInJourneyPattern - NeTEx Pro�l Öster-
reich - Mobilitätsverbünde�, 2025 �ScheduledStopPoint, Ser-
viceLink - NeTEx Pro�l Österreich - Mobilitätsverbünde�, 2025 25

6 Code Illustration Journey Merging for Austria and Luxem-
bourg, Source: Self-created graphic 27

7 Code Illustration Journey Merging for Norway (simpli�ed),
Source: Self-created graphic 28

8 Overlap between the shares of Austria Railway Stations GTFS
and Netex, Source: �ÖBB Open Data Datensätze�, 2025 �Daten-
sätze�, 2025 . 30

9 Overlap between the shares of Norway Railway Stations GTFS
and Netex, Source: �Stops- and Timetable Data�, 2025 31

10 Overlap between the shares of Luxembourg Railway Stations
GTFS and Netex, Source: �Horaires et Arrêts Des Transport
Publics (GTFS) - Portail Open Data�, 2025 �Data.Europa.Eu�,
2025 . 31

11 Austria's not shared stations between GTFS (blue) and NeTEx
(red), Source: �ÖBB Open Data Datensätze�, 2025 �Daten-
sätze�, 2025 . 32

12 Norway not shared stations between GTFS (blue) and NeTEx
(red), Source: �Stops- and Timetable Data�, 2025 33

13 Luxembourg's not shared stations between GTFS (blue) and
NeTEx (red), Source: �Horaires et Arrêts Des Transport Publics
(GTFS) - Portail Open Data�, 2025 �Data.Europa.Eu�, 2025 . 33

3

14 Overlap between the shares of Norway's Railway Stations Wiki
and NeTEx, Source: �Stops- and Timetable Data�, 2025 34

15 Overlap between the shares of Austria's Railway Stations Wiki
and Netex, Source: �ÖBB Open Data Datensätze�, 2025 �Daten-
sätze�, 2025 . 35

16 Distance Comparison per Austrian's Station between Wiki
data, netex and GTFS, Source: �ÖBB Open Data Datensätze�,
2025 �Datensätze�, 2025 . 36

17 Distance Comparison per Norway's Station betweenWiki data,
netex and GTFS, Source: �Stops- and Timetable Data�, 2025 . 37

18 Example Station Weitlanbrunn - di�erent coordinates between
Netex (red), GTFS (blue) and Wiki (green), Source: �ÖBB
Open Data Datensätze�, 2025 �Datensätze�, 2025 37

19 Distance Comparison per Austrian's Station between GTFS
and NeTex, Source: �ÖBB Open Data Datensätze�, 2025 �Daten-
sätze�, 2025 . 38

20 Distance Comparison per Austrian's Station between NeTex
and GTFS, Source: �Stops- and Timetable Data�, 2025 39

21 Netex: Stops with refering ID and Stops without in Austria,
Source: �Datensätze�, 2025 40

22 Netex: Stops with refering ID and Stops without in Austria,
Source: �MVO - Datenbereitstellungsplattform�, 2025 40

23 Netex: Stops with refering ID and Stops without in Luxem-
bourg, Source: �Data.Europa.Eu�, 2025 41

24 GTFS: Stops with refering ID and Stops without in Lux-
embourg, Source: �Horaires et Arrêts Des Transport Publics
(GTFS) - Portail Open Data�, 2025 41

25 Netex: Stops with refering ID and Stops without in Norway,
Source: �Stops- and Timetable Data�, 2025 42

26 GTFS: Stops with refering ID and Stops without in Norway,
Source: �Stops- and Timetable Data�, 2025 42

4

List of Tables

1 Comparison of GTFS and NeTEx attributes 16
2 Overview of aids and tools used in the thesis 55

5

Abstract

This thesis examines the interoperability of European railway data

by comparing the General Transit Feed Speci�cation (GTFS), a widely

used global standard, with the Network Timetable Exchange (NeTEx),

the o�cial EU standard. While rail is the most sustainable mode

of long-distance travel, fragmented data standards have the poten-

tial to reduce its attractiveness compared to air and road transport.

The study utilised datasets from Austria, Norway and Luxembourg

to analyse stations and trips, with a view to evaluating structural

di�erences, data quality and identi�er consistency. The methods em-

ployed include data extraction, merging, and cross-validation with a

third source (Wikidata) to verify accuracy. The results demonstrate

that while GTFS o�ers simplicity and global adoption, NeTEx pro-

vides richer detail but su�ers from inconsistent implementation across

countries. Key issues include mismatched identi�ers, inaccurate coor-

dinates, and incomplete station referencing. The �ndings emphasise

the necessity for harmonised identi�ers, such as UIC codes, and coor-

dinated e�orts to enhance data quality. . .

6

7

1 Introduction

Travelling by train across national borders within Europe is a task that
presents a considerable challenge. The following factors are cited by passen-
gers as justi�cations for their preference to travel by car or plane rather than
by rail: delays, in�exibility, unsatisfactory customer service, longer travel
time, and the unintegrated system of rail travel across European countries.
In order to illustrate the issue of customer complaints, the following data will
be presented: the journey time from Amsterdam to Copenhagen by plane is
1 hour and 20 minutes, whereas the journey time by train is 12 hours and
10 minutes. It is evident that there is a substantial discrepancy in terms of
travel time and customer comfort. Nevertheless, it is clear that rail travel is
the most environmentally sustainable mode of transportation. It is particu-
larly salient to compare long-distance travel with air travel. It is therefore
essential to ensure that the rail network o�ers greater appeal to passengers
in order to facilitate the transition towards a more sustainable future. Oven-
hagen, 2021

The European Commission has announced its intention to enhance the pas-
senger rail system by leveraging the existing EU regulation and policy frame-
work for rail. The implementation of the a single european rail area within
all member nations is a key objective of the European Union. In order to
achieve this ambitious objective, the European Commission adopted an ac-
tion plan that encompasses the modi�cations of the Trans-European Trans-
port Network (TEN-T). �Action Plan to Boost Passenger Rail - European
Commission�, 2025 In order to achieve the objective of integrating each in-
dividual transportation system into a uni�ed entity, there is a necessity for
standardisation. �Trans-European Transport Network (TEN-T) - European
Commission�, 2025

On the one side, there was a requirement for standardisation from com-
panies and an early user perspective. According to Goldstein's and Dyson's
book, in 2005 major tech companies in the USA were already o�ering navi-
gation applications such as Google Maps, MapQuest and Yahoo, which were
designed to assist users. However, it appears that the platforms had a lack
of public-available data. Following the development of standards by Google
and the subsequent global rollout of the standard for public transit data, it
has become a worldwide standard. The standard developed by Google has

7

become an open source project of mulitple companies and communitys, this
standard is today known as GTFS. Goldstein and Dyson, 2013

On the other side, the EU's approach di�ers in that it is not only interested
in creating a standard for all member state, but in establishing a compre-
hensive information infrastructure. The National Access Points initiative is
a data infrastructure project that aims to make public data available from
designated national access points. These infrastructures are designed to pro-
vide data on all types of transportation. �National Access Points - European
Commission�, 2025 The objective is to establish a standardised, open data
space within the EU for the e�cient exchange of mobility data. �Unlocking
the Potential of Mobility Data | Shaping Europe's Digital Future�, 2025 As
outlined in the Commission's delegated regulation of May 2017, the use of
data formats such as NeTEx and the underlying data system Transmodel is
required for National Access Points. European Commission, 2017

The following formats are utilised for the purpose of such data exchange:
GTFS and NeTEx. The primary function of the �rst one is the exchange of
public transport timetables and stops, while the second is designed for the
transfer of more complex public transport data. Skille, 2024 In this Thesis
both data standards NeTEx and GTFS will be analyzed in terms of their
useability and quality of their relying information.

2 The Bene�ts of Data Standards

Data standards play a crucial role in the European vision to achieve cli-
mate neutrality in the railway sector by 2050. Standardisation is intended
to integrate disparate mobility sectors, thereby enhancing the e�ciency and
sustainability of the European transport system and promoting intercon-
nectedness. The implementation of a robust standard that is widely adopted
throughout Europe has the potential to enhance the size of the internal mar-
ket, while concurrently ensuring legal certainty and maintaining the global
or regional leadership in technology. From an economic perspective, the
fundamental purpose of standards is to facilitate the development of more
straightforward and accessible interfaces for European companies. Neverthe-
less, over the course of the previous decade, there has been an increase in
the pressure exerted by companies from non-European countries throughout
standards. �International Standardisation: The European Rail Associations
Vison�, 2021

8

2.1 Data Standards in the European Union

Since 2014, NeTEx has been in development. According to the o�cial NeTEx
Transmodel website, it has already been implemented in 15 European states
and the United Kingdom. �NeTEx � Transmodel�, 2025 �Data Models�, 2025
Nevertheless, a more detailed perspective will provide a report for National
Access Points by Napcore. According to Napcore, the NeTEx is already in
operation in 10 European Union states . The remainder of the project is still
in various stages of development. �Activity WG3 NAP Content and Acces-
sibility | NAPCORE�, 2024 In comparison, GTFS has been implmeneted in
over 100 countries and 10,000 agencies on a global scale. �Why Use GTFS?
- General Transit Feed Speci�cation�, 2025 The term is frequently cited as
a de facto standard, given its extensive utilisation in millions of application
since 2006. Antrim and Barbeau, 2017

In the following discussion, a concise overview of the two distinct standards,
NeTEx and GTFS , will be provided. The principal di�erences between them
will be identi�ed, as well as their respective bene�ts. The present study will
concentrate on the utilisation of both standards in the analysis of stations
and trips, as well as an international comparison of GTFS and NeTEx data
via three member states of the European Union. The countries under dis-
cussion here are Austria, Norway and Luxembourg.

Austria and Norway are already using NeTEx data �les on an operational
level and Luxembourg is in an unknown state of developing according to
Napcore. �Activity WG3 NAP Content and Accessibility | NAPCORE�, 2024.
Nevertheless, the three states in question have consistently published NeTEx
and GTFS �les on their designated national access point, national rail op-
erator or european websites. �ÖBB Open Data Datensätze�, 2025 �MVO
- Datenbereitstellungsplattform�, 2025 �Stops- and Timetable Data�, 2025
�Data.Europa.Eu�, 2025 �Horaires et Arrêts Des Transport Publics (GTFS)
- Portail Open Data�, 2025

2.2 NeTEx - the EU standard

NeTEx is an Extensible Markup Language (XML)-based open data standard
that was developed by the Comité Européen de Normalisation (CEN) with
a view to facilitating the exchange of public transport schedules and associ-
ated data. The following information is to be converted into XML format:
public transport network topology, scheduled timetables, fare information,
european passenger information pro�le, alternative modes exchange format

9

and european passenger information accessibility pro�le. Skille, 2024 �Ne-
TEx � Transmodel�, 2025

The NeTEx framework is based on three distinct models: Transmodel, Standard
Interface for Real-time Information (SIRI) and Identi�cation of Fixed Ob-
jects in Public Transport (IFOPT). The initial Transmodel constitutes a
conceptual data model for public transport, thus providing an architectural
framework for comprehending the information within public transport. It is
argued that this data model should represent a more simple architecture for
public service companies and operators. The Transmodel has the capacity
to accommodate a wide range of public transport operations, encompassing
various modes such as buses, trolleybuses and light rail systems, including
subways. Soares and Martins, 2013

The IFOPT model is a reference model that is utilised for the identi�ca-
tion of �xed objects in the real world. It accomplishes this by providing an
identi�er for the object in question, determining its function, establishing
a topology for the objects in relation to each other, linking attributes and
properties to them, and localising them unambiguously by their coordinates.
The fundamental function of the IFOPT is encompassing the scheduling of
timetables through stop identi�cation, journey planning, guidance, accessi-
bility, real-time information and navigation. This encompasses stop �nding,
interchange paths and walking to points of interest. Soares and Martins, 2013

NeTEx is intended to serve as a model for the representation of public trans-
port concepts. This objective should include enhancing the e�ciency and
updateability of the system, facilitating a complex exchange of data between
two systems, and utilising it in modern web services architectures. The lat-
ter would render it more usable for passenger information and operational
applications. Soares and Martins, 2013 In accordance with the principles
outlined in the 04 NeTEx Framework, NeTEx is designed to exhibit a high
degree of �exibility. This adaptability is a key advantage, allowing it to meet
the diverse requirements of di�erent organisations. It is important to note
that di�erent sections of an organisation may be responsible for di�erent
parts of the data. Nicholas JS Knowles, 2015 For instance, the organisation
of the regional Austrian railway system is the responsibility of seven di�er-
ent regional operators, each of which is responsible for the management of
their respective region and the provision of data pertaining to that region.
�Verkehrsverbünde in Österreich�, 2025

10

2.2.1 NeTEx Structure

The structure of NeTEx is an XML �le which is more �exible and adoptable
since the nodes of the netex tree structure Knowles, 2024 are adaptable and
modular for di�erent stake holders. NeTEx is equipped with a framework
containing frames which de�nes basic components. Each Frame de�nes the
components. Each component must contain a speci�c set of elements, as
de�ned by the frame. Each component can be augmented with additional el-
ements as required, provided that the base elements of the component remain
unchanged. Each Frame is specialized on a speci�c function the site frame for
stop data, the timetable frame for timetable and the fare frame for fara data.
Nicholas JS Knowles, 2015 Therefore, each analysed data set from the dif-
ferent states could provide a di�erent structure, with some cases containing
more information than others. For instance Austria has two separate �les for
Stations and Journeys as well as di�erent of sources. The ÖBB provides the
Geo Data set, which focuses on geometric data �ÖBB Open Data Datensätze�,
2025, while the Mobilitäts Verbünde Österreich's data set contains journeys,
including ÖBB journeys �MVO - Datenbereitstellungsplattform�, 2025. The
Norway netex data sets and Luxembourg data sets contains all information
in one data set �Stops- and Timetable Data�, 2025 �Data.Europa.Eu�, 2025.

As NeTEx is an XML structured �le and designed by frames within a frame-
work, each element has a domain in which it can be distinctly identi�ed.
Therefore each element can be called by a speci�c domain. Fabrizio Ar-
neodo, 2015 For instance, the domain used for this analysis was
�http://www.netex.org.uk/netex//netex:�. In addition, it was necessary to
add an element name to the end of the link to specify the domain.

2.3 GTFS: the defacto standard

GTFS is an open standard that provides a standardised data format for
public transit agencies. The GTFS format is employed for the purpose of
describing data by the inclusion of information such as stops or fares. Its
utilisation is most prevalent in the domain of trip planning. GTFS com-
prises two constituent elements. The GTFS Schedule and GTFS Realtime.

The �rst one contains information about routes, schedules, fares, and ge-
ographic transit details. The GTFS schedule is a simple text �le format that
is contained within a zip �le. According to the MobilityData, the utilisation
of this system is expected to be more straightforward, as it does not require
the use of proprietary software. The second one comprises information that

11

is capable of being updated with regard to vehicle position, service alerts and
trip changes. The software utilises the Protocol Bu�ers format, which repre-
sents an alternative version of XML �les �Protocol Bu�ers�, 2025. There is a
symbiotic relationship between GTFS Realtime and GTFS Schedule. �What
Is GTFS? - General Transit Feed Speci�cation�, 2025 �Overview - General
Transit Feed Speci�cation�, 2025

3 Methodes

The analysis of both data formats was conducted using Python, a program-
ming language that supports the processing of fundamental data formats
such as XML and CSV. �Xml.Etree.ElementTree � The ElementTree XML
API�, 2025 �Pandas.Read_csv � Pandas 2.3.2 Documentation�, 2025

3.1 Loading the Data

Initially, it is imperative to load the data into the programming environment
in order to facilitate its processing and utilisation. Nevertheless, an initial
discrepancy emerges between the NeTEx and GTFS formats. GTFS is stored
in the form of a single zip �le, which contains multiple text �les. �Reference -
General Transit Feed Speci�cation�, 2025 The text �les are processed through
a looping procedure, whereby they are converted into dataframes and stored
in a dictionary, with their corresponding name tags. NeTEx 6.2

In comparison, NeTEx �les consist of multiple XML �les or zipped fold-
ers containing further XML �les or folders. It appears that the information
regarding the manner in which NeTEx �les are stored remains undisclosed.
In order to address the challenges posed by these customised and random
network �le structures, a recursive loop is required. This loop selects every
entry in the data �le. In the case of an XML �le, it will be added a list.
Conversely, if the �le is a folder, the function recursively calls itself to add all
XML �les. The NeTEx XML �les are stored into a list to preprocess them
for the next step the extraction of information. 6.2

3.2 Extraction of Stations

The process of extracting GTFS information involves the utilisation of a
�stop� named dataframe, which serves as the repository for the stored infro-
mation of rail stations �Reference - General Transit Feed Speci�cation�, 2025
The utilisation of a simple name �lter, facilitated by the process of looping

12

through the zipped �le, enables the selection of the desired text �le. As
the GTFS �les have already been converted into a dataframe, the extraction
process is straightforward. However, it should be noted that GTFS does not
include an identi�cation to determine the type of stop in question. For in-
stance, it is not possible to distinguish between a bus stop and a train station
by only examining the stop dataframe. As the present thesis is exclusively
concerned with a consideration of train stations, it is necessary to �lter the
�stop� dataframe. The GTFS format provides a link between the �stop� �le
and the �route� �le, with the �route type� identifying the type of route. The
�route type��eld comprises an ID ranging from zero to seven and eleven and
twelve, which provides a means of distinguishing between the various vehicle
types that are utilised to operate speci�c routes. �Reference - General Tran-
sit Feed Speci�cation�, 2025 However, it appears that an extended version of
these IDs also exists. According to the provided de�nition, all �route types�
that commence with the numerals 1 or 4 and consist of three characters
are considered to be associated with rail transport. �Extended GTFS Route
Types | Static Transit�, 2025 In the context of the present study, numerical
values beginning with 1 or 4 and comprising three characters, in addition
to the numbers 1, 2, 5, 7 and 12, have been identi�ed as correlating with a
vehicle associated with any kind of rail transport. 6.2

In order to establish a connection between the designated �route type� and
the designated stops, it is necessary to refer to the link provided below. The
route dataframe comprises a �route type�, which is connected to a �route
id�. The �route id� in question refers to the �trip� dataframe. The �trip�
dataframe is linked to the �stop times� dataframe by their �Trip id�. The
�stop times� �eld contains a �Trip id� and a �stop id�, which refer to the stop
dataframe. �Reference - General Transit Feed Speci�cation�, 2025 Following
�g is illustrated above desribed connection 1. All the necessary dataframes
were loaded, after which the merge functions were utilised in order to estab-
lish the previously described �lter. 6.2

In comparison to GTFS, the NeTEx extraction process is di�erent due to
the di�erent XML format. The XML format is distinguished by its provision
of a deep nested structure, in contrast to the more �at structure charac-
teristic of the Comma Separated Values) (CSV) format. Both formats are
illustrated 2. Knowles, 2024
As previously stated, the NeTEx �le structure is more complex, since the
result of the loading function was a list of multiple XML �les, with a number
reaching into the thousands. In order to extract all the necessary informa-
tion, it is necessary to iterate through the list of XML �les and search for

13

Figure 1: [Illustrated Link between Stops and Route in GTFS. Source: Self-
created graphic, based on descriptions �Reference - General Transit Feed
Speci�cation�, 2025

(a) NeTEx Structure of StopPlaces

(b) GTFS Structure already trans-

formed into a dataframe because it

is already a csv �le

Figure 2: Comparison of two data structures: Nested Structure vs. Flatt
Structure Source: Screenshot made from Notebook

14

the following �StopPlace� Key. As mentioned above, we searched through
the XML �les using the domain links to �nd our key. Nicholas JS Knowles,
2015 It is important to note that all XML �les are de�ned as containing
fundamental and indispensable information. For instance, the coordinates of
the station are stored in a nested structure into the �StopPlace� node, �rstly
in the �Centroid� node, and secondly in the �Location� node. It is evident
that the latitude and longitude elements within the �Location� node contain
the requested values. �Stops - Håndbok N801 (SIRI/NeTEX) - Entur�, 2024
�Stop Places - NeTEx Pro�l Österreich - Mobilitätsverbünde�, 08/09/2025,
18:06:33 However, it has been observed that supplementary nodes and ele-
ments can be appended and that these contain further information in addition
to other data sets. For instance, the Austria Geo Data set contains a greater
number of elements per station than the other data set. �Datenbeschreibun
Österreich Netex-XML�, 2024 �MVO - Datenbereitstellungsplattform�, 2025
The process entails the extraction of each individual XML �le, with the val-
ues then being stored in a dictionary. The dictionaries are stored in lists.
Following the extraction process, all �les are systematically compiled into a
comprehensive list. This list is then �attened, which means that the multiple
lists of dictionaries are consolidated into one. The objective is to create a
dataframe that facilitates the reading of both formats and enhances their
comparability. Following the extraction process, two data frames have been
obtained. These will now be subjected to a comparative process known as
the station dataframe. 6.2

3.2.1 Extracted Information

As demonstrated in the subsequent table, the extraction process yielded the
following information. As previously stated, this does not imply that all of
these values are present within each data set. 6.2

3.3 Comparison of Stations

In order to perform a comparison between the GTFS and NeTEx dataframes,
a unique identi�er is required. The objective is to identify a station in
both data sets with absolute clarity. Nevertheless, it would seem that the
key is not always identical in both data formats, with the type of value
di�ering and being non-comparable with that of other countries. �Stops-
and Timetable Data�, 2025 �Data.Europa.Eu�, 2025 �Horaires et Arrêts Des
Transport Publics (GTFS) - Portail Open Data�, 2025 �MVO - Datenbereit-
stellungsplattform�, 2025 �ÖBB Open Data Datensätze�, 2025 �Datensätze�,
2025

15

Table 1: Comparison of GTFS and NeTEx attributes

GTFS

1. Station ID (id_gtfs)

2. Route type
(route_type_gtfs)

3. Station name (name_gtfs)

4. Latitude (lat_gtfs)

5. Longitude (lon_gtfs)

6. Stop description
(stop_desc)

7. Location type
(location_type)

8. Parent station
(parent_station_gtfs)

9. Wheelchair board-
ing possibility
(wheelchair_boarding_gtfs)

10. Time zone (stop_timezone)

11. Platform
(platform_code_gtfs)

12. Vehicle type
(vehicle_type)

NeTEx

1. Station ID (id_netex)

2. Reference ID
(ref_id_netex)

3. StopPlace type
(StopPlaceType_netex)

4. Station name (name_netex)

5. Latitude (lat_netex)

6. Longitude (lon_netex)

7. EVA number (Interne
Bahnhofsnummer (IBNR))
(EVA_Nr_netex)

8. UIC code (UIC_Code_netex)

9. Quay IDs (Quay_ids_netex)

10. Wheelchair access
(WheelchairAccess_netex)

11. Assistance facility
(AssistanceFacility_netex)

12. Assistance availability
(AssistanceAvailability_netex)

13. Access facility
(AccessFacility_netex)

16

3.3.1 Key Issues to Identify the Stations in Both Formats

As can be seen from the Austria Data sets, the identi�ers are similar to each
other. The Austrian NeTEx dataframe contains an IFOPT, which has been
intended for integration into the Transmodel since 2006. Nevertheless, since
2009, the development of the NeTEx format has incorporated these types of
IDs within its structure. The IFOPT has been developed for the purpose of
identifying �xed objects, including stops and points of interest. �History �
Transmodel�, 10/09/2025, 11:57:38 As demonstrated in the Austrian NeTEx
�le, the IFOPT is present as �43-7402�. In contrast, the GTFS dataframe
exhibits the following IFOPT structure: �at:48:134:0:2�. The GTFS data
format uses a di�erent structure because, rather than referring to a train
station, each entry refers to a track at a station. �Key:Ref:IFOPT � Open-
StreetMap Wiki�, 2025 However it has been observed that there is a similarity
in the pattern of the IDs. Each station in the netx �le makes reference to an
identical IFOPT as the GTFS �le, such as �at:43:7402�. �ÖBB Open Data
Datensätze�, 2025 �Datensätze�, 2025 It is possible to disregard the �nal two
digits in order to facilitate a comparison of both IDs whilst maintaining ref-
erence to the same station. 6.2

In the Luxembourg data set, an alternative form of identi�cation is employed.
In the GTFS data set, the ID is expressed as a sequence of nine integral dig-
its, for example, �500000079�. The NeTEx dataframe comprises a sequence of
numbers embedded within a string, for instance �DE::StopPlace:220401001_::�.
It is noticable that the identi�ers vary in terms of their data type. �Data.Europa.Eu�,
2025 �Horaires et Arrêts Des Transport Publics (GTFS) - Portail Open Data�,
2025 In order to merge the two data sets, the pattern was identi�ed and the
number was extracted from the string by identifying a sequence of numbers
with the length of nine. The newly created integer type was saved for the
purpose of comparing both data sets. 6.2

The Norway data sets do have the same identi�ers for their stations. Both
identi�ers are regarded as string types and manifest the following pattern:
�NSR:StopPlace:1�. However, it should be noted that the structure of the
GTFS �le di�ers from that of the Luxembourg's GTFS �le and is similar to
the Austria �le. Each track line, known as a �Quay�, is stored as an entry
for a train station. The actual station ID is speci�ed in the �parent station�
column. �Stops- and Timetable Data�, 2025 Therefore, the GTFS data set
needed to be summarised so that multiple �Quay� IDs would refer to a single
entry of a rail station. Nevertheless, this constitutes a new format that does
not correspond with the Luxembourg type of ID or the IFOPT from the

17

Austrian data sets. 6.2

3.3.2 Merging Process

Initially, the pattern of the ID will be subjected to analysis and �ltered ac-
cording to the previously delineated conditions and characteristics. Following
the identi�cation of the pattern, measures will be implemented to ensure both
IDs are made identi�able. The IFOPT number in the Austria GTFS data
set will be reduced by their �nal two characters, while in the Luxembourg
NeTEx data set, the ID within the string will be extracted and in the norway
GTFS data set the �Quays� will be changed to stations IDs. Following the
execution of the abovementioned processes, an outer merge function will be
executed on each dataframe. The utilisation of the outer merge ensures that
the dataframes themselves remain una�ected. It is evident that, in the event
of a comparison being made between the stations, no entry will be �ltered or
deleted �Pandas.DataFrame.Merge � Pandas 2.3.2 Documentation�, 2025.
6.2

3.4 Wiki Data Base

In order to verify the correctnesss for each stations within the data formats, it
is necessary to consult a third source. The Wiki database comprises millions
of entries within a knowledge graph, and it is readily accessible due to its
free availability. Structured data is stored within the knowledge base, and
can be accessed using SPARQL queries. Furthermore, it is possible to edit
the SPARQL query request in a highly detailed manner. It is possible to set
multiple conditions speci�c to the task at its core and gather only the data
that is required for the speci�c purpose in question. Bielefeldt et al., 2018

3.4.1 How to Connect the Third Source with NeTEx or GTFS

In order to connect the Wiki database and the GTFS or NeTEx data sets,
a key is required. As previously stated, the NeTEx and GTFS data frames
have been connected. The next step is to identify another key that can
be used to distinguish each station in all three or at least two data sets.
According to the data description for the Austrian NeTEx data set, there
is one key-value pair called �EVA-Nr�. This short discription is matching
with the Description for the IBNR according to the Deutschlandtarifsverbund
GmbH. The IBNR is used for their electronic processing and fare calculation
in the sales systems. Deutschlandtarifverbund GmbH, 2025 �Datenbeschrei-
bun Österreich Netex-XML�, 2024 As stated in the internal documents of

18

the Verkehrsbund Bremen/Niedersachsen, the �EVA Nr� and the IBNR IDs
are typically synchronised within the Hafas System. Ra�ael Rittmeier, 2016
Hafas is a system developed by Hacon that is utilised by prominent rail op-
erators such as the Deutsche Bahn �Hacon - A Siemens Company�, 2025 and
by the ÖBB Scotty App. �Dreifache Auszeichnung Für ÖPNV-Apps von Ha-
con�, 2025 It plays a crucial role in the management of their timetables and
the conversion of data from diverse sources into a uni�ed format. �HAFAS
Rohdaten Format (HRDF) � Open Data-Plattform Mobilität Schweiz�, 2025
�HAFAS.Engine_english�, 2025 These only indicates a connection between
the �EVA-Nr� and theIBNR. Nevertheless, the wiki database provides such
IBNR for stations �IBNR ID�, 2025. It is therefore hypothesised that a
connection can be established between the wiki database and the Austrian
NeTEx data set from the �EVA-Nr� to the IBNR. 6.1

The Norway data NeTEx set contains a so called Union Internationale des
Chemins de fer (UIC) country code. A UIC code is a unique identi�er used
to refer to railway stations. The �rst two digits denote the country of origin,
while the remaining numbers are used to identify a speci�c station. railways,
2015 �Open Data about Railway Stations�, 2025. It appears also in the Wiki
data base �UIC Station Code�, 2025, therefore a connection can be estab-
lished between the Wiki data and Norway NeTEx data.

Two of the three distinct NeTEx data sets from di�erent states contain iden-
ti�ers that match those of the Wiki database. However non of the GTFS data
sets contians any of those identi�ers which might match with the Wiki data
base identi�ers. �Stops- and Timetable Data�, 2025 �Horaires et Arrêts Des
Transport Publics (GTFS) - Portail Open Data�, 2025 �Datensätze�, 2025
Nonetheless, in the context of the SPARQL query, an attempt was made
to retrieve the IFOPT because the Wiki data base provides it as an object
�Identi�cation of Fixed Objects in Public Transport�, 2025. It would be an
attempt to compare the Austrian NeTEx and GTFS data sets with the wiki
data base.

Given the nature of the wiki database as a knowledge graph comprising
multiple entities, the collection of IFOPT, IBNR, UIC and coordinates is
essential. For example the Vienna Main Station consist all of these enti-
ties. �Wien Hauptbahnhof�, 2025 An alternative option would be to utilise
data from OpenStreetMap. However, it appears that the Open Street Maps
knowledge graph contains solely UICcode, with no IBNR. �Key:Uic_ref �
OpenStreetMap Wiki�, 2025 The undertaking of a comparison would be com-
plicated for countries that do not utilise UIC codes, such as Austria. As

19

stated in the Österreichische Bundes Bahnen (ÖBB) data description for
their Geo Data set, the netex data set includes an �EVA� number, which
is equivalent to an IBNR. �Datenbeschreibun Österreich Netex-XML�, 2024
�ÖBB Open Data Datensätze�, 2025 6.1

The fundamental concept was to extract all subjects that met the follow-
ing criteria per country in a single SPARQL request: train stations, tram
stops or small train stations that have an UIC code, IFOPT or IBNR, and
that have coordinates. Train stations are represented as object �Q55488�
�Railway Station�, 2025 and any kind of subclass like small train stations
by �P31� and �P2790�. �Subclass Of�, 2025 �Instance Of�, 2025 In addition,
it was imperative to ensure the inclusion of all requested stations. To this
end, the limit of collected stations was set at a value greater than the actual
number for each country. To illustrate this, for Austria, the number of sta-
tions was set at 2,000, whereas the actual number is 1,031. �Zahlen, Daten,
Fakten�, 2025 Following SPARK-QL Querry is seen below. 6.1

SPARK-QL Querry Request:

SELECT ?station ?stationLabel ?coordinate ?ifopt ?ibnr ?uic WHERE

{{

?station wdt:P31/wdt:P279* wd:Q55488 ;

instance or subclass of train station

wdt:P17 wd:Q{country_code} .

for located in Austria (Q40)

OPTIONAL {{ ?station wdt:P7824 ?ifopt. }} # IFOPT code

OPTIONAL {{ ?station wdt:P954 ?ibnr. }} # IBNR

OPTIONAL {{ ?station wdt:P722 ?uic. }} # UIC

OPTIONAL {{ ?station wdt:P625 ?coordinate. }} # Coordinates

SERVICE wikibase:label {{ bd:serviceParam wikibase:language

"[AUTO_LANGUAGE],de,en". }}}}

LIMIT {limit}

3.5 Distance Calculation

In the event of there being a match between the keys from the Wiki database
and the keys from the various data sets, a method is required to verify
whether the information regarding the coordinates of the stations is also
matching. In the case of there being a di�erence between the two sets, it is

20

necessary to calculate the discrepancy between them. Therefore a compar-
ison was made between the GTFS or NeTEx and the Wiki data set. The
calculation of the distance between the two coordinates was performed by
implementing the so-called Haversine formula. The haversine formula is a
mathematical technique used to calculate the distance between two coor-
dinates on a circle. It operates under the assumption that the radius of
the Earth is 6,367.45 kilometres. It is evident that the Harversine forumla
does not take into account the surface of the Earth. Maria et al., 2020
My approach to the Haversine formula in Python was informed by the in-
terpretation via Java Script. �Calculate Distance and Bearing between Two
Latitude/Longitude Points Using Haversine Formula in JavaScript�, 2025 6.4

For each unique matching entry of the merged dataframe of Wiki data and
the NeTEx and GTFS data frame, the coordinates were applied to the haver-
sine function. The results were saved into a list and then added as a column
to the merged data frame. 6.4

3.6 Extraction Trips

In order to extract the information relevant to trips, the following minimum
data elements should be considered for extraction: the stops of a trip, in
particular the start and end destinations. However, it is already known that
NeTEx and GTFS stored their information di�erently due to the nature of
their di�erent formats. Soares and Martins, 2013

3.6.1 GTFS Trips Extraction

The GTFS trips are stored in the �trip� section of the GTFS �le, and the
stops of the trips are linked within the �stop times� section via �Trip ID� to
the trip data frame. �Reference - General Transit Feed Speci�cation�, 2025.
A straightforward merge process has the ability to establish a connection
between the two data frames by way of the �Trip ID� in �stop times�. How-
ever, it is important to note that the Norway and Luxembourg data set also
contains bus trips, which must be �ltered before. For instance the norway
data set contains 345.019 entries after the extraction process. �Stops- and
Timetable Data�, 2025 �Horaires et Arrêts Des Transport Publics (GTFS) -
Portail Open Data�, 2025 As previously stated in the Chapter, entitled 'Ex-
traction of Stations' 3.2, a similar �lter was applied; this time an alternative
approach was adopted. As seen in �gure 3. Therefore, it is possible to apply
a �lter to the �trips� dataframe by selecting only those �route IDs� for which
the train �route type� is speci�ed. The �trips� and the �routes� dataframes

21

are connected by their �route id�. In order to select the appropriate stops
for each journey, the stop times dataframe was �ltered using the remaining
trips id from the �ltering process of the trip dataframe. �Reference - General
Transit Feed Speci�cation�, 2025 For instance in the norway data set remains
47.439 entries after the �ltering process �Stops- and Timetable Data�, 2025.
As previously stated, the accurate identi�cation of a train journey in the
route dataframe is not uniform across all states. Therefore, all route IDs
were �ltered on the basis that the �rst character was 1 or 4, and that the
ID had three characters and the numbers 2, 12, 5, 7, as was the case for
the stations stated in Chapter 3.2. �Reference - General Transit Feed Spec-
i�cation�, 2025�Extended GTFS Route Types | Static Transit�, 2025. The
target information are the �stop ids� within the �stop times� dataframe. The
�stop ID� refere to the �stops� dataframe. �Reference - General Transit Feed
Speci�cation�, 2025 In this case, it is linked to the already extracted train
stations. By combining these information a trip can be illustrated by using
the �stop times� and the refered �stops�. �Reference - General Transit Feed
Speci�cation�, 2025

Following the preparation of all three data frames, the �Trip ID� data frame

Figure 3: [Illustrated Link between Stops Times, Routes and Trips, Source:
Self-created graphic, based on descriptions �Reference - General Transit Feed
Speci�cation�, 2025

was iterated. It is vital to ensure that each �Trip ID� is taken and veri�ed as
it appears in the stop times dataframe. If it was found in the stop times data
frame, a small data frame that had been �ltered by the current looped �Trip
ID� was extracted and added to the matching �Trip ID� inside a dictionary.
The dictionary was then included as a new �Stop on Trip� column in the
�trips � dataframe. In the event that a matching �Trip ID� was not found in
the �stop times � dataframe, a �None� value was added to a dictionary, which

22

was then applied to the �Stops on Trips� column. This process was applied
to the Austrian and Luxembourg data sets. 6.2

However, it should be noted that the values of the Norway data �stop ID�
set di�er slightly. This is due to the fact that, while the Norwegian �stop
times�structure remains the same, the �stop ID� is not linked to a direct
�Stop Place ID�, as is the case for the other states. Instead, it refers to
a quay, which is a track of a train station. In order to address this issue,
it is necessary to extract the stations dataframe and identify the quays and
matching stations, as outlined in chapter "Key Issues to identify the Stations
in Both Formats" 3.3.1. Each quay stored in the nested dataframe structure
will then be searched in the station dataframe. If a match is found, it will
be added to the current entry. If no match is found, a 'None' value will be
added. �Stops- and Timetable Data�, 2025 �Datensätze�, 2025 �Horaires et
Arrêts Des Transport Publics (GTFS) - Portail Open Data�, 2025

3.6.2 NeTex Journey Extraction

According to the Framework paper, the GTFS way of extracting is also
present in the NeTEx �les. As speci�ed in the GTFS �les, the �trip� and
�stop times� should correspond to the �vehicle journey� and �Call� in NeTEx.
As previously outlined, the �stop times� contained within the GTFS �les are
the key source of information regarding the �Stop ID�, which is the target
data. As illustrated in the following �gure 5 the �Service Journey� is linked
to the �Scheduled Stop Points� via �Call�, which contain the relevant infor-
mation regarding the �Stop Place�. Knowles, 2024

Nevertheless, the documented process of converting the GTFS Trips to the
NeTEx Journey did not work for any of the data sets analysed. NeTEx is
a data format that can be used at multiple operational levels. It is charac-
terised by its �exibility, allowing users to select the structure that best suits
their needs. Nicholas JS Knowles, 2015 Therefore, it cannot be guaranteed
that the described connections are present in the data sets. Another ap-
proach is needed.

As per the �ndings of the analysis, the link from �Service Journey� to the
�Stop Place� was discovered as illustrated in �gure 5. According to the rel-
evant handbooks for the Austrian and Norway Netex formats, information
regarding �Stop Places� is to be found in the �Stop Assignment� or �Sched-
uled Stop Point� section. Both sections refer directly to a �Stop Place� via
a �Stop Place Ref�. It is for this reason that they act as our objective data.

23

Figure 4: Mapping GTFS Trips to Netex Journey - The basics, Source:
Knowles, 2024

However, navigating from the �Service Journey� to the target information
is a complex, multi-tiered process that involves traversing the nested layers
of the NeTEx �les. A �Service Journey� comprises a �Timetable Passing
Time� node within its designated section. The �Timetable Passing Time's�
entries comprise multiple entries, which are the actual made stops of the
journey. Each stop in the �Journey Pattern� refers to a �Service Journey�
or �Journey Pattern�. The �Service Journey Pattern� provides a framework
for each journey, including a node called �Stop Point� in �Journey Pattern�.
This node features multiple entries, similar to those found in the �Journey
Pattern�. Each �Stop Point� in �Journey Pattern� entry contains a �Stop
Point in the Journey Pattern� ID, which can be connected with the same ID
from the �Service Journey� section. Furthermore, each �Stop Point� in the
�Journey Pattern� entry contains a �Scheduled Stop Place Ref�. This refer-
ence is directly linked to the �Scheduled Stop Point� section or �Passenger
Stop Assignment�. The �rst one contains a direct �Stop Place Ref�, and the
second one also contains a direct �Stop Place Ref� and a �Quay Ref�. The
�Quay Reference� is also linked to the �Stop Place� via multiple �Quay Ref-
erences� for one �Stop Place�. �Timetable - Håndbok N801 (SIRI/NeTEX)
- Entur�, 2025 �JourneyPattern (Abstract in EPIP), ServicePattern - Ne-
TEx Pro�l Österreich - Mobilitätsverbünde�, 2025 �PointinJourneyPattern
(Abstract in EPIP), StopPointInJourneyPattern - NeTEx Pro�l Österreich -
Mobilitätsverbünde�, 2025 �ScheduledStopPoint, ServiceLink - NeTEx Pro�l
Österreich - Mobilitätsverbünde�, 2025

24

Figure 5: Link from Service Journey to the Stop Places in Netex, Source:
Self-created graphic, based on descriptions �Timetable - Håndbok N801
(SIRI/NeTEX) - Entur�, 2025 �JourneyPattern (Abstract in EPIP), Servi-
cePattern - NeTEx Pro�l Österreich - Mobilitätsverbünde�, 2025 �Pointin-
JourneyPattern (Abstract in EPIP), StopPointInJourneyPattern - NeTEx
Pro�l Österreich - Mobilitätsverbünde�, 2025 �ScheduledStopPoint, Ser-
viceLink - NeTEx Pro�l Österreich - Mobilitätsverbünde�, 2025

It is important to note that a variety of methods are employed by di�er-
ent nation states for the structuring of their netex �les. It is notable that
all data sets share the path from �Service Journey� to �Passenger Stop As-
signment�. In the case of Austria and Luxembourg, the Netex �les are to
be used, with the �Stop Point Ref� to be referenced directly. Nevertheless,
the Norwegian NeTEx approach involves the use of the path from �Quay
Ref� to �Stop Places�, thereby resulting in a process that is marginally more
complex. �Stops- and Timetable Data�, 2025 �Data.Europa.Eu�, 2025 �MVO
- Datenbereitstellungsplattform�, 2025

Four distinct extraction functions were developed to e�ciently extract and
collate the necessary information from the four separate sections. Each func-
tion accepts the input of a single XML �le. Prior to the selection of an ex-
traction method, a selection process will be implemented to determine which
XML �les are to be extracted by which function. This selection process sys-
tematically iterates through all XML �les, until all �ve names of the root are
found or not. Should a root be found, such as "ServiceJourney", "Service-

25

JourneyPattern", "JourneyPattern", "ScheduledStopPoint" or "Passenger-
StopAssignment", the relevant extraction function will be called to extract
the necessary data. As the names of the nodes vary between the Netex �les,
we require �ServiceJourney� exclusively for the Norway data set �Timetable
- Håndbok N801 (SIRI/NeTEX) - Entur�, 2025. Following the extraction
process, four data frames were created and applied to the merging process.
6.2

First, part in merging process is �ltering all �Service Journeys� where their
�transport mode�or �journey type netex� is rail. However, in the case of
the luxembourg data set this transport mode is not correctly implementated
therefore we need to prove wether the transport model does include None val-
ues. As mentioned previsously the Norway and the other two state's structure
di�ers from each other, therefore we de�ne wether the data set is norwagian
or not by simply apply a variable into the function which includes the name
of the country. Additionaly, each extracted data frame of the �Scheduled
Stop Point� does not contain any values about the �Stop Place Ref�. There-
fore, the �Passenger Stop Assignment� is the only one that can be used. 6.2

With regard to the non-Norwegian data sets from the �Service Journey Pat-
tern� dataframe, every �Stop Point� in the �Journey Pattern� and its cor-
responding �Scheduled Stop Point Ref� was extracted from each nested en-
try of the �Stop Point In Journey Pattern� column to a dictionary called
�stop_point_to_scheduled�. The �Passenger Stop Assignment� dataframe
was then processed using a grouping process that selected only the �Scheduled
Stop Points� and the �Stop Place Reference�into a dictionary called �sched-
uled_to_stop_place�. As seen from the dictionaries, the connections from
�Service Journey Pattern� to the �Passenger Stop Assignment� and from the
�Passenger Stop Assignment� to �Stop Place� are represented in the two cre-
ate dictionaries �stop_point_to_scheduled� and �scheduled_to_stop_place�.
An iteration was then applied to the �Service Journey�, with each row of the
�Timetabled Passing Time� column being selected. Furthermore, a second
iteration was applied to all entries within the row. Each designated �Stop
Point in Journey Pattern� or �Stop� has been selected and veri�ed to ensure
its inclusion in the �stop_point_to_scheduled�, representing the connection
from the �Service Journey Pattern� to the �Passenger Stop Assignment�. If
the �Stop Point in Journey Pattern� or �Stop� was found in the dictionary,
the �Scheduled StopPoint Ref� was used to add the matching value of the
�StopPlaceRef� from the second dictionary �scheduled_to_stop_place� to
the entry of the current loop. If not match was found an None value was
added. This process is illustrated in following �gure 6. 6.2

26

Figure 6: Code Illustration Journey Merging for Austria and Luxembourg,
Source: Self-created graphic

In case of the Norway data set an di�erent but in principle similar ap-
proach was used as seen in �gure 7. As the Norway NeTEx structured uses
the �Quay� path to the �StopPlaces�, the station dataframe from the previous
chapter, 'Extraction of Station' 3.2, is required. As the station dataframe
allows for multiple �Quays�, given its presented cardinality of one to multiple,
only the �Passenger Stop Assignment� can be used. �Stops - Håndbok N801
(SIRI/NeTEX) - Entur�, 2025 �Timetable - Håndbok N801 (SIRI/NeTEX)
- Entur�, 2025. Therefore, a �attening process is required to change the
current structure, whereby each �Quay� is associated with a station in its
own designated row. The new Station dataset and the �PassengerStopAs-
signment� are then merged together, as they both share a �Quay Reference�.
The new merged dataframe has been named �merged_1�. Furthermore, a
dataframe was created by extracting information from the Service Journey
Pattern dataframe. This dataset includes all �Stop Point in Journey Pat-
tern� IDs with their corresponding �Scheduled Stop Point Ref�. Following
this, a second merging process is applied to the new dataframe and the al-
ready merged data frame �merge_1�, using their shared �Scheduled Stop
Point Ref�. This dataframe is labelled �merge_2�. In the �nal step, the ini-
tial iteration is applied to the �Service Journey�, which selects each value in
the �TimetabledPassingTime_netex� column. The second iteration is then
applied to each nested value of the �rst iterated entry. In the event of the
�Stop Point in Journey Pattern� ID being found in the �merge_2� dataframe,
the corresponding �Stop Place Id� is to be added to the current looped entry.

27

In the event of no match being found, a None Value was added. 6.2

Figure 7: Code Illustration Journey Merging for Norway (simpli�ed), Source:
Self-created graphic

As can already be seen, the di�erent NeTEx data formats within the
European Union di�er from each other �Stops- and Timetable Data�, 2025
�Data.Europa.Eu�, 2025 �Horaires et Arrêts Des Transport Publics (GTFS)
- Portail Open Data�, 2025 �MVO - Datenbereitstellungsplattform�, 2025
�ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025. Therefore, di�erent
methods must be used to ensure that the data can be used for the thesis
analysis. However, in addition to the extraction guarantee, it is important to
note that processing time is another key factor. The di�erent methods also
allow results to be obtained despite limited computational power. 6.2

4 Analysis

In the preprocess for each of the three chosen states Luxembourg, Austria
and Norway, the following data has been collated: a Wiki data set of all train
stations in the state, a station data set from the GTFS and NeTEx, a trip
GTFS data set and a NeTEx journey data set. The following questions must
therefore be posed: The objective of this study is to determine the number
of stations that are matching within the NeTEx and GTFS data set, and
to analyse the extent to which these stations are shared with the wiki data
set. With regard to the trips and journeys, it is necessary to establish the
number of trips that refer to a station within each own data set. Without
a reference, the trip would have contained missing stations. While there is
a possibility that an ID exists, it could not be located in the station data

28

frame. Additionally, it is assumed that each state has a single provider for
the two data formats, and therefore the sources of information are supposed
to be the same. In the Austrian case, the Österreichische Bundesbahnen
(ÖBB) are responsible for the stations, netex and GTFS sets, and the netex
timetables from the Mobilitätsverbund Österreich data set, which includes
the ÖBB-provided timetables. �ÖBB Open Data Datensätze�, 2025 �Daten-
sätze�, 2025 �MVO - Datenbereitstellungsplattform�, 2025. The data sets
from Luxembourg are both provided by the Administration of Transport
Publics �Horaires et Arrêts Des Transport Publics (GTFS) - Portail Open
Data�, 2025 �Data.Europa.Eu�, 2025. Entur, the national register operator
for all public transport, is responsible for the provision of the Norway data
sets. �Stops- and Timetable Data�, 2025. Therefore, this analysis also con-
siders whether this assumption is true.

4.1 Station Comparison - How many stations are shared?

As outlined in the chapter entitled 'Key Issues to identify the stations in
both formats' 3.3.1 with regard to the stations, the NeTEx and GTFS sta-
tion data sets have already been merged using the provided ID in the data
set. As we employed an outer merge process, it was possible to visualise the
shares of stations that are shared in the two formats and those that are not.
8 9 9 6.2. The venn diagrams show how many stations are shared between
the two formats. Additionally, the number of stations per state is given as a
reference value for the supposed minimum number of shared stations. 6.3
The o�cial number for the Austrian station is 1031 �Zahlen, Daten, Fakten�,
2025. However, the GTFS data set and the NeTEx data set both contain
more than 1031. NeTEx contains 1056 stations and GTFS even more, with
1103 stations in total. It should be noted that both data sets feature a
signi�cant number of stations in common with 1001. In comparison to the
Norway data set. The number of stations in both data formats is not ex-
act. The expected number is approximately 400 �NORWAY Train Travel
Information | Railcc�, 2025. The NeTEx data set comprises 509 elements,
whereas the GTFS set includes 901, thus showing a signi�cant di�erence.
Both data sets shares 456 stations. For the Luxembourg data sets, the oppo-
site is true. Luxembourg is said to have 70 train stations �JUIL 2025_Carte
Reseau CFL_EN_A3_PRINT�, 2025. However, the NeTEx data set con-
tains a signi�cantly larger number of stations within the country, with 187
stations listed and the GTFS data set does show 79 stations. It is noteable
that there are no shared stations between GTFS and NeTEx formats from
Luxembourg. It should be noted that the data sets contain a greater number
of stations than there are in the state, as they also include stations from

29

Figure 8: Overlap between the shares of Austria Railway Stations GTFS and
Netex, Source: �ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025

30

Figure 9: Overlap between the shares of Norway Railway Stations GTFS and
Netex, Source: �Stops- and Timetable Data�, 2025

Figure 10: Overlap between the shares of Luxembourg Railway Stations
GTFS and Netex, Source: �Horaires et Arrêts Des Transport Publics (GTFS)
- Portail Open Data�, 2025 �Data.Europa.Eu�, 2025

31

neighbouring states. For instance, the Austrian data set includes stations
from Hungary. �Stops- and Timetable Data�, 2025 �Data.Europa.Eu�, 2025
�Horaires et Arrêts Des Transport Publics (GTFS) - Portail Open Data�,
2025 �MVO - Datenbereitstellungsplattform�, 2025 �ÖBB Open Data Daten-
sätze�, 2025 �Datensätze�, 2025

Following a thorough evaluation, it was determined that there was no clear
explanation for the absence of stations shared between the GTFS and NeTEx
�les, at least in Norway and Austria. As illustrated in the accompanying
maps the not shared station was mapped in each states 11 12. In Norway
and Austria, there is a notable absence of signi�cant overlap between the
blue NeTEx and red GTFS not shared stations, indicating potential missing
stations and whole regions in both the GTFS and NeTEx data sets. However,
in Luxembourg none of the NeTEx stations are within Luxembourg's borders
on the map 13. This suggests that the station's coordinates are completely
inaccurate.

Figure 11: Austria's not shared stations between GTFS (blue) and NeTEx
(red), Source: �ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025

4.1.1 Station Ver�cation via third Source

As was stated in the preceding chapter, entitled 'How to connect the third
source with NeTEx or GTFS 3.4.1, a key was selected. The selection of the

32

Figure 12: Norway not shared stations between GTFS (blue) and NeTEx
(red), Source: �Stops- and Timetable Data�, 2025

Figure 13: Luxembourg's not shared stations between GTFS (blue) and
NeTEx (red), Source: �Horaires et Arrêts Des Transport Publics (GTFS)
- Portail Open Data�, 2025 �Data.Europa.Eu�, 2025

33

Figure 14: Overlap between the shares of Norway's Railway Stations Wiki
and NeTEx, Source: �Stops- and Timetable Data�, 2025

IBNR was made in the Austrian data sets due to the fact that, in the major-
ity of cases, each station refers to such an IBNR in the wiki collected data.
With regard to the Norway and Luxembourg data set, the UIC code was
selected, with the majority of stations also adopting this code. 6.1 However,
it is noteworthy that none of the GTFS data sets under analysis contain any
of the speci�ed keys. The NeTEx data sets from Norway and Austria are the
only ones to include the IBNR or UIC codes. It is therefore only possible to
make a direct comparison with the NeTEx and Wiki data set of Norway and
Austria. The Luxembourg data sets do not contain any of the keys wether
in the NeTEx or GTFS formats. The merging function was applied to the
wiki data set and the NeTEx data set by the shared key IDs. The resulting
shares are illustrated in the following �gures 15 14.

The wiki data will be used as the third source to verify the correctness of
the stations. The majority of the Austrian stations have been veri�ed using
the wiki data set. A total of 1,008 stations are shared between the NeTEx
and Wiki data sets. It should be noted that 197 stations of the Wiki data
set, and 48 stations of the NeTEx data set, have not been shared. For the
Norwagian data sets the opposite is the case. The minority of 140 could be
veri�ed by the Wiki data set. 278 stations from the Wiki data set and 213
stations from the Norway data set are not shared. Not all train stations in

34

the Norwegian NeTEx data set appear to contain a UIC code. It is evident
that there is a discrepancy in the number of stations identi�ed in the two
comparisons as illustrated in the �gures. 9 14. The number of stations in the
Wiki comparison is listed below the station number in Norway, which is from
353 to 400. In comparison to the initial NeTEx and GTFS analysis, a dis-
crepancy of 146 stations is noteworthy. The higher number of stations within
the Wiki data set can be explained by the fact that the used SPARQL query
does not �lter historical stations, which may still be in the Wiki database. 6.1

Figure 15: Overlap between the shares of Austria's Railway Stations Wiki
and Netex, Source: �ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025

4.2 Data Quality - Distance between Stations

As outlined in the previous chapter, two of the three stations' dataframes
were successfully veri�ed. In order to verify the data quality, a comparison is
made between the Wsiki data coordinates and the coordinates of the GTFS

35

and NeTEx data set. The distance was calculated using the Wiki data co-
ordinates as a reference point. The distance from the Wiki coordinates to
the NeTEx or GTFS coordinates was then calculated. The results are seen
in the following �gures 16 17. Each bar chart represents the distance of one
station, with the height of the bar representing the distance between the
NeTEx or GTFS format and the Wiki Data coordinates. The bar charts for
both formats are marked in di�erent colours: orange for NeTEx and blue
for GTFS. The greater the height, the greater the discrepancy between the
format coordinates and the Wiki coordinates.

For Norway, the mean distance between the Wiki coordinates and the GTFS
coordinates is 87.95 metres, and for NeTEx, it is 90.95 metres. In compar-
ison to Austria, the average distance from the Wiki coordinates is slightly
lower, at 43.15 and 43.12, respectively. As the �gures clearly demonstrate,
the majority of stations in each state are far below 200 metres away from
the coordinates provided by Wiki. In both cases, there are outliers with a
distance greater than 900 metres. Despite the NeTEx and GTFS data sets
being intended to be equivalent, there is a discrepancy in the coordinates
when compared to the Wiki coordinates. However, it is notable that the
Wiki coordinates are not as accurate as the other data sets in some cases.
Each format, including the wiki data, has its own issues with coordinates.
As illustrated in the following �gures, one station was selected for inspection,
with a distance greater than 400 metres from the wiki coordinates 18. In

Figure 16: Distance Comparison per Austrian's Station between Wiki data,
netex and GTFS, Source: �ÖBB Open Data Datensätze�, 2025 �Datensätze�,
2025

this instance, the Wiki and GTFS data sets are identical in terms of coordi-
nates, whereas the NeTEx data set di�ers from both of them. Therefore, it

36

Figure 17: Distance Comparison per Norway's Station between Wiki data,
netex and GTFS, Source: �Stops- and Timetable Data�, 2025

Figure 18: Example StationWeitlanbrunn - di�erent coordinates between Ne-
tex (red), GTFS (blue) and Wiki (green), Source: �ÖBB Open Data Daten-
sätze�, 2025 �Datensätze�, 2025

37

is not clear which of these two formats performs better in terms of distances,
since the third Wiki source also does not contain an accurate value. This
raises the question of how much the distance di�ers between the two formats.
In addition, the following �gures illustrate the signi�cant di�erences between
the GTFS and NeTEx coordinates 19 20.

It is evident that there is a discrepancy in the distances between the GTFS
and NeTEx in both sets. The majority of the distances are still below 100
metres. However, it should be noted that despite the fact that these data are
provided by the same provider in Norway and Austria, �Stops- and Timetable
Data�, 2025 �ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025, there
is a discrepancy indicating that the NeTEx and GTFS data sources are not
based on the same underlying database. Otherwise, the distance between the
NeTEx and GTFS stations should be in close approximation to zero. This
would suggest that the coordinates used in NeTEx and GTFS are from the
same source. However, this is not the case.

Figure 19: Distance Comparison per Austrian's Station between GTFS and
NeTex, Source: �ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025

4.3 Trips and Journeys - Identifable stations

In order to measure how many stops for a trip are actually referring to a real
stop ID, the following steps were made. Firstly, the station dataframe and
the GTFS trip and NeTEx journey dataframes were loaded. Each trip and
journey is contained within a list of stops, with the GTFS referring to these
as Stops and the NeTEx referring to them as Stop Places. The stops IDs
were selected and then compared with the stations collected in the stations
dataframe. A comprehensive count and illustration of all stops per trip and

38

Figure 20: Distance Comparison per Austrian's Station between NeTex and
GTFS, Source: �Stops- and Timetable Data�, 2025

non-referable stops was performed for each individual state. Each bar chart
represents a single trip or journey. The height of the bar chart indicates the
number of stops for each trip and journey. The green bar chart illustrates
the number of stops, while the blue bar chart shows the number of stops that
have been successfully veri�ed by the station's data frame. If a stop has not
been refered, the trip or journey will contain a stop that cannot be located
therefore it is a station without a name or any other information about this
stop. It is important to note that the greater the number of stops that are
successfully referenced by the station's data frame, the less incomplett the
resulting trip or journey will be. 6.3

The Austrian data sets are illustrated in the following �gures which shows
that the the majority of the stops in both formats are refering to station from
the station dataframe21 22. It has been noted that the successfully referred
stops vary between NeTEx and GTFS for each trip. It was discovered that
the Austrian GTFS data sets did not contain accurate references for 52 trips
from 9325. From these 52 trips, an average of 3.4 stops were missing per
trip, with an average of 4.7 stops per trip. In comparison with the NeTEx
data set, 18,602 journeys were not accurately referred from a total of 36,835.
In the 18,602 journeys analysed, an average of 4.35 stops were refered, with
an average of 6.9 stops per journey. �MVO - Datenbereitstellungsplattform�,
2025 �ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025

In the case of Luxembourg, there is a signi�cant di�erence in the number
of successfully referred stops across both formats. All stops on 2,292 trips
in the GTFS could be veri�ed using the station dataframe. In compari-

39

son, from all NeTEx stops, not a single complete journey from in total of
1731 could be veri�ed by the station dataframe. As demonstrated in the
�gures, the substantial discrepancy is evident 23 24. On average, it was pos-
sible to refer successfully from only 1 out of a total of 9 stops per journey.
�Data.Europa.Eu�, 2025 �Horaires et Arrêts Des Transport Publics (GTFS)
- Portail Open Data�, 2025 In the case of Norway, all trips and journeys in

Figure 21: Netex: Stops with refering ID and Stops without in Austria,
Source: �Datensätze�, 2025

Figure 22: Netex: Stops with refering ID and Stops without in Austria,
Source: �MVO - Datenbereitstellungsplattform�, 2025

both formats contain a successfully veri�ed station IDs. Each stop is referred
to as a legitimate station in the station data frame. A total of 47,439 trips
have been recorded for GTFS and 26,852 for NeTEx. As illustrated in the
�gures26 25, it is the only state where no stops are missing in both formats.

40

Figure 23: Netex: Stops with refering ID and Stops without in Luxembourg,
Source: �Data.Europa.Eu�, 2025

Figure 24: GTFS: Stops with refering ID and Stops without in Luxembourg,
Source: �Horaires et Arrêts Des Transport Publics (GTFS) - Portail Open
Data�, 2025

41

Figure 25: Netex: Stops with refering ID and Stops without in Norway,
Source: �Stops- and Timetable Data�, 2025

Figure 26: GTFS: Stops with refering ID and Stops without in Norway,
Source: �Stops- and Timetable Data�, 2025

42

�Stops- and Timetable Data�, 2025

In terms of stop veri�cation, a lack of reference is evident, especially in the
NeTEx format. It appears in the GTFS format for Austria. However, this
is less signi�cant than the absence of references in NeTEx. As previosuly
in the beginning of this chapter outlined the lack of stop reference demon-
strates the unacurracy and imcompletnesses of the data. As outlined at the
beginning of this chapter, the lack of a stop reference demonstrates the in-
accuracy and incompleteness of the data. This is particularly signi�cant for
Austria and Luxembourg, where the most references are missing. �Stops-
and Timetable Data�, 2025 �Data.Europa.Eu�, 2025 �Horaires et Arrêts Des
Transport Publics (GTFS) - Portail Open Data�, 2025 �MVO - Datenbereit-
stellungsplattform�, 2025 �ÖBB Open Data Datensätze�, 2025 �Datensätze�,
2025

4.4 Results of the Analysis

Notably, it is complex to compare the two data formats, NeTEx and GTFS,
with each other. The assumption was that both data sets should come from
the same provider in each of the three states. It was also assumed that
they should use the same data and information sources.�Datensätze�, 2025
�MVO - Datenbereitstellungsplattform�, 2025 �Horaires et Arrêts Des Trans-
port Publics (GTFS) - Portail Open Data�, 2025 �Data.Europa.Eu�, 2025
�Stops- and Timetable Data�, 2025. The results of this analysis suggest that
this is not the case.

The lack of shared stations in both data formats suggests that they do not
originate from the same source. For example, examining the stations that are
not shared reveals no clear pattern. They appear to be chosen at random for
Norway and Austria. Verifying the stations using a third source is di�cult
since the GTFS format does not include any additional information, such as
IBNR or UIC codes �Reference - General Transit Feed Speci�cation�, 2025.
Therefore, only a comparison with stations shared in NeTEx and GTFS was
possible. As the veri�cation of the stations by Wiki Data �uctuates signif-
icantly between Norway and Austria, it is possible that the information is
incorrect in all three formats. For example, there are signi�cant di�erences
in the coordinates between the third source and GTFS and NeTEx, as well
as between the two formats. 4.1 This indicates that, even if the provider is
the same, the two formats do not share the same source of information. If
they shared the same source, the analysis would measure a �uctuation much
closer to zero, since the coordinates are supposed to be the same for each

43

station. 4.2

In terms of incomplete stations, the NeTEx and GTFS formats di�er in
the parts they share, as not all stations are shared between the two formats.
The number of stations shared in GTFS and NeTEx for Austria is slightly
lower than the actual number of stations in Austria �MVO - Datenbereitstel-
lungsplattform�, 2025 �ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025
�Zahlen, Daten, Fakten�, 2025. Norwegian shared stations cover a greater
number of stations in the country; however, there is a greater di�erence in
the number of stations in each format �Stops- and Timetable Data�, 2025
�NORWAY Train Travel Information | Railcc�, 2025. In Luxembourg, no
stations were shared because none of the stations in the Netex dataset are in
Luxembourg, as can be seen in the �gure 13. 4.1

In the case of incomplete trip references, the GTFS format achieved sig-
ni�cantly better results than the NeTEx format in all three states. In all
three states, the GTFS dataset could successfully reference the majority of
its stops, and in two of the three states, it could reference all of them. By
contrast, Netex data was signi�cantly more incomplete. Only one of the three
analysed states could reference all stops on a journey. The other two states
performed particularly poorly in this analysis. Only a small minority of jour-
neys in Luxembourg and around half of those in Austria could successfully
reference all stops. 4.3 �Stops- and Timetable Data�, 2025 �Data.Europa.Eu�,
2025 �Horaires et Arrêts Des Transport Publics (GTFS) - Portail Open Data�,
2025 �MVO - Datenbereitstellungsplattform�, 2025 �ÖBB Open Data Daten-
sätze�, 2025 �Datensätze�, 2025

4.4.1 Possible Explanations

According to the Napcore report, the NeTEx standard is the most used ex-
change standard for static for Multi Model Travel Information (MMTIS)
realted information within the european union. It is used for the exchange of
data, supporting location search, supporting detailed common standard and
special fare queries and providing insight into existing trip plans and aux-
iliaryaspects and supporting trip plan computation. However, the standard
is not yet fully implemented on a wide scale. �Activity WG3 NAP Content
and Accessibility | NAPCORE�, 2024 One potential reason for this could be
the high level of e�ort required to implement such a NeTEx standard. The
NeTEx structure is more complex than the GTFS structure Knowles, 2024.
Furthermore, implementing NeTEx as a standard requires the integration of
a comprehensive ecosystem. It is part of the Transmodel system, which incor-

44

porates a range of models including SIRI and NeTEx. Christophe Duquesne,
2023. Additionaly, the Transmodel ecosystem including NeTEx represents
more than a standard, it is a comprehensive, harmonised concept for an
open data space concerning European rail travel. One of the most signi�cant
challenges that train operators must overcome is the �nancial burden associ-
ated with the implementation and training required to manage and maintain
such systems. It is vital that the bene�ts of such implementation outweigh
the cost. �Cen-Tc-278_n5072_europeanfarerailpro�lenetex-Callforexperts�,
2024 These could be a factor in the decision of many European states to not
implement a full NeTEx solution.

In the case of GTFS, there is an possible additional reason why it performs
better in the analysis: this format is already used by passengers applications.
GTFS was developed by Google for the speci�c purpose of utilising Google
Maps. Goldstein and Dyson, 2013 In the world of map and navigation ap-
plications, Google Maps is the clear market leader in terms of popularity. It
is reported that 67 per cent of smartphone users prefer this navigation app.
wtw, 2025 It is therefore logical that a signi�cant number of train operators
publish their data in GTFS format. This format is straightforward �Activ-
ity WG3 NAP Content and Accessibility | NAPCORE�, 2024 and simpler
to implement �Create - General Transit Feed Speci�cation�, 2025, and many
people have an application that can access the information �Publish - General
Transit Feed Speci�cation�, 2025 such as Google Maps.

5 Summary

To summarise, the thesis analysed GTFS and NeTEx in terms of their sta-
tions and trips. A comparison was made between the stations in both for-
mats, as well as with stations from each member state, using the knowledge
graph from the Wiki database. Furthermore, the distance between the shared
stations was calculated using the coordinates of the sources. In both formats,
the trips were extracted and analysed to determine the number of stops per
trip that are referenceable with the stations within the same dataframe. It
was argued that both data formats should be provided by the same national
provider and therefore would theoretically share the same source of informa-
tion. However, this is not the case.

Following a thorough analysis and preparation, it was determined that both
formats present certain issues. With regard to the international standardi-
sation of data formats, there are a number of issues to consider. Problems

45

arise from the di�ering de�nitions of route types used in the various GTFS
data sets �Extended GTFS Route Types | Static Transit�, 2025 �Reference -
General Transit Feed Speci�cation�, 2025. Furthermore, the standard GTFS
structure for stops is not shared, since each entry in the stop section of the
GTFS �les appears in the Austrian and Norwegian data sets as a track line,
rather than a station, as in the Luxembourg data set. �Stops- and Timetable
Data�, 2025 -�Datensaetze2025 �Horaires et Arrêts Des Transport Publics
(GTFS) - Portail Open Data�, 2025

According to the NeTEx convention, the identi�er for train stations sup-
posed to be the IFOPT or at least refering to it within the format Soares
and Martins, 2013. However, it should be noted that this applies exclu-
sively to the Austrian data sets. Norway and Luxembourg utilise their own
national IDs system , which can result in a more complex analysis of each
process. Furthermore, the signi�cant absence of data in the NeTEx data
sets is a notable issue. For instance, the Luxembourg data set does not in-
clude any stations in Luxembourg . Furthermore, approximately only half
of the Austrian journeys, including referable stops. Should a referable stop
not be included, the journey will contain missing information regarding the
referencing station of the stop. �MVO - Datenbereitstellungsplattform�, 2025
�ÖBB Open Data Datensätze�, 2025 �Datensätze�, 2025 �Data.Europa.Eu�,
2025 �Stops- and Timetable Data�, 2025 4.3

The concept of a uni�ed European rail network incorporating an open data
space within the European Union is an ambitious objective. Following a de-
tailed review of the available data formats, it has been determined that in
order to achieve this objective, it will be necessary to implement an enhanced
version of those data standards that are not currently available through
GTFS or NeTEx. To summarise, a key issue common to both data for-
mats in the three states is the requirement for a unique identi�er for all
stations across Europe. For instance, the IFOPT and the UIC code are de-
signed to provide a solution to the problem. However, the current state of
implementation is suboptimal, as the analysis shows. Despite the majority
of train operators in Norway, Austria and Luxembourg being UIC partners,
�UIC Vademecum�, 2025 further improvements can be made, such as imple-
menting the UIC code for each station. It is evident that the current state
of data format maintenance is not su�ciently developed, particularly in the
case of NeTEx standard, due to a lack of information.

46

References

Action Plan to boost passenger rail - European Commission. (2025, April 27).
Retrieved April 27, 2025, from https://transport.ec.europa.eu/news-
events/news/action-plan-boost-passenger-rail-2021-12-14_en

Activity WG3 NAP content and accessibility | NAPCORE. (2024, January
30). Retrieved September 8, 2025, from https://www.napcore.eu/
documents/M3.5_4th_report_NAP_data_availability.pdf

Antrim, A., & Barbeau, S. J. (2017). Opening the Door to Multimodal Ap-
plications: Creation, Maintenance and Application of GTFS Data.
(17�03702). Retrieved September 8, 2025, from https://trid.trb.org/
View/1438473

Bielefeldt, A., Gonsior, J., & Krötzsch, M. (2018). Practical Linked Data
Access via SPARQL: The Case of Wikidata.

Calculate distance and bearing between two Latitude/Longitude points us-
ing haversine formula in JavaScript. (2025, September 12). Retrieved
September 12, 2025, from https://www.movable-type.co.uk/scripts/
latlong.html

Cen-tc-278_n5072_europeanfarerailpro�lenetex-callforexperts. (2024, Decem-
ber 3). Retrieved September 22, 2025, from https://www.cencenelec.
eu/media/CEN-CENELEC/News/Brief%20News/2025/cen - tc -
278_n5072_europeanfarerailpro�lenetex-callforexperts.pdf

Christophe Duquesne. (2023, January 18). EN_NeTEx-introduction_v.1-1.
Retrieved September 22, 2025, from https://transmodel-cen.eu/wp-
content/uploads/2024/05/EN_NeTEx-introduction_v.1-1.pdf

Create - General Transit Feed Speci�cation. (2025, September 22). Retrieved
September 22, 2025, from https://gtfs.org/getting-started/create/

Data Models. (2025, September 8). Data4PT. Retrieved September 8, 2025,
from https://data4pt-project.eu/data-models/

Data.europa.eu. (2025, September 8). Retrieved September 8, 2025, from
https : / / data . europa . eu / data / datasets / horaires - et - arrets - des -
transport-publics-netex?locale=en

Datenbeschreibun Österreich Netex-XML. (2024).
Datensätze. (2025). ÖBB Open Data. Retrieved September 17, 2025, from

https://data.oebb.at/de/datensaetze
Deutschlandtarifverbund GmbH. (2025, September 10). Verö�entlichung des

DTV- und NRW-Entfernungswerk. https ://assets .static- bahn.de/
dam/jcr:4a072076-d5be-41a5-b864-a3cc074e5d1e/1%20Vorbemerkungen.
pdf

47

https://transport.ec.europa.eu/news-events/news/action-plan-boost-passenger-rail-2021-12-14_en
https://transport.ec.europa.eu/news-events/news/action-plan-boost-passenger-rail-2021-12-14_en
https://www.napcore.eu/documents/M3.5_4th_report_NAP_data_availability.pdf
https://www.napcore.eu/documents/M3.5_4th_report_NAP_data_availability.pdf
https://trid.trb.org/View/1438473
https://trid.trb.org/View/1438473
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://www.cencenelec.eu/media/CEN-CENELEC/News/Brief%20News/2025/cen-tc-278_n5072_europeanfarerailprofilenetex-callforexperts.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/News/Brief%20News/2025/cen-tc-278_n5072_europeanfarerailprofilenetex-callforexperts.pdf
https://www.cencenelec.eu/media/CEN-CENELEC/News/Brief%20News/2025/cen-tc-278_n5072_europeanfarerailprofilenetex-callforexperts.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/05/EN_NeTEx-introduction_v.1-1.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/05/EN_NeTEx-introduction_v.1-1.pdf
https://gtfs.org/getting-started/create/
https://data4pt-project.eu/data-models/
https://data.europa.eu/data/datasets/horaires-et-arrets-des-transport-publics-netex?locale=en
https://data.europa.eu/data/datasets/horaires-et-arrets-des-transport-publics-netex?locale=en
https://data.oebb.at/de/datensaetze
https://assets.static-bahn.de/dam/jcr:4a072076-d5be-41a5-b864-a3cc074e5d1e/1%20Vorbemerkungen.pdf
https://assets.static-bahn.de/dam/jcr:4a072076-d5be-41a5-b864-a3cc074e5d1e/1%20Vorbemerkungen.pdf
https://assets.static-bahn.de/dam/jcr:4a072076-d5be-41a5-b864-a3cc074e5d1e/1%20Vorbemerkungen.pdf

Dreifache Auszeichnung für ÖPNV-Apps von Hacon. (2025, September 10).
Retrieved September 10, 2025, from https://www.hacon.de/news/
meldungen/app-awards-2024/

European Commission. (2017, May 31). COMMISSION DELEGATED REG-
ULATION (EU) 2017/1926 of 31 May 2017 supplementing Directive
2010/40/EU of the European Parliament and of the Council with re-
gard to the provision of EU-wide multimodal travel information ser-
vices. Retrieved September 19, 2025, from https://eur-lex.europa.eu/
eli/reg_del/2017/1926/oj/eng
Usr_lan: EN.

Extended GTFS Route Types | Static Transit. (2025, September 8). Google
for Developers. Retrieved September 8, 2025, from https://developers.
google.com/transit/gtfs/reference/extended-route-types

Fabrizio Arneodo. (2015, October). 01.NeTEx-Introduction-WhitePaper_1.03.
Retrieved September 20, 2025, from https://transmodel-cen.eu/wp-
content/uploads/2024/07/01.NeTEx-Introduction-WhitePaper_1.
03.pdf

Goldstein, B., & Dyson, L. (Eds.). (2013). Beyond transparency: Open data
and the future of civic innovation. Code for America Press.

Hacon - A Siemens Company. (2025, September 10). Retrieved September
10, 2025, from https://www.hacon.de/unternehmen/

HAFAS Rohdaten Format (HRDF) � Open Data-Plattform Mobilität Schweiz.
(2025, September 10). Retrieved September 10, 2025, from https://
opentransportdata.swiss/de/cookbook/timetable- cookbook/hafas-
rohdaten-format-hrdf/

HAFAS.engine_english. (2025, September 10). Retrieved September 10, 2025,
from https : / /www .hacon . de /�leadmin/user_upload/Portfolio /
Factsheets/HAFAS/HAFAS.engine_english.pdf

History � Transmodel. (10/09/2025, 11:57:38). Retrieved September 10, 2025,
from https://transmodel-cen.eu/index.php/history/

Horaires et arrêts des transport publics (GTFS) - Portail Open Data. (2025,
September 8). Retrieved September 8, 2025, from https://data.public.
lu/en/datasets/horaires-et-arrets-des-transport-publics-gtfs/

IBNR ID. (2025, September 10). Retrieved September 10, 2025, from https:
//www.wikidata.org/wiki/Property:P954

Identi�cation of Fixed Objects in Public Transport. (2025). Retrieved Septem-
ber 11, 2025, from https://www.wikidata.org/wiki/Q5988215

Instance of. (2025, September 12). Retrieved September 12, 2025, from https:
//www.wikidata.org/wiki/Property:P31

International Standardisation: The European Rail Associations Vison. (2021,
April 29). Retrieved September 8, 2025, from https://www.unife.org/

48

https://www.hacon.de/news/meldungen/app-awards-2024/
https://www.hacon.de/news/meldungen/app-awards-2024/
https://eur-lex.europa.eu/eli/reg_del/2017/1926/oj/eng
https://eur-lex.europa.eu/eli/reg_del/2017/1926/oj/eng
https://developers.google.com/transit/gtfs/reference/extended-route-types
https://developers.google.com/transit/gtfs/reference/extended-route-types
https://transmodel-cen.eu/wp-content/uploads/2024/07/01.NeTEx-Introduction-WhitePaper_1.03.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/07/01.NeTEx-Introduction-WhitePaper_1.03.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/07/01.NeTEx-Introduction-WhitePaper_1.03.pdf
https://www.hacon.de/unternehmen/
https://opentransportdata.swiss/de/cookbook/timetable-cookbook/hafas-rohdaten-format-hrdf/
https://opentransportdata.swiss/de/cookbook/timetable-cookbook/hafas-rohdaten-format-hrdf/
https://opentransportdata.swiss/de/cookbook/timetable-cookbook/hafas-rohdaten-format-hrdf/
https://www.hacon.de/fileadmin/user_upload/Portfolio/Factsheets/HAFAS/HAFAS.engine_english.pdf
https://www.hacon.de/fileadmin/user_upload/Portfolio/Factsheets/HAFAS/HAFAS.engine_english.pdf
https://transmodel-cen.eu/index.php/history/
https://data.public.lu/en/datasets/horaires-et-arrets-des-transport-publics-gtfs/
https://data.public.lu/en/datasets/horaires-et-arrets-des-transport-publics-gtfs/
https://www.wikidata.org/wiki/Property:P954
https://www.wikidata.org/wiki/Property:P954
https://www.wikidata.org/wiki/Q5988215
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P31
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf

wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-
THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf

JourneyPattern (Abstract in EPIP), ServicePattern - NeTEx Pro�l Österre-
ich - Mobilitätsverbünde. (2025, September 15). Retrieved September
15, 2025, from https : / /mobilitaetsverbuende . atlassian . net /wiki /
spaces / NET / pages / 180715593 / JourneyPattern +Abstract + in +
EPIP+ServicePattern

JUIL 2025_Carte reseau CFL_EN_A3_PRINT. (2025). Retrieved Septem-
ber 17, 2025, from https://www.c�.lu/getattachment/50fc8908-06be-
462f-a8ba-8c49eb1f3927/juil-2025_carte-reseau-c�_en_a3_print.
pdf

Key:ref:IFOPT � OpenStreetMap Wiki. (2025). Retrieved September 21, 2025,
from https://wiki.openstreetmap.org/wiki/Key:ref:IFOPT

Key:uic_ref � OpenStreetMap Wiki. (2025, September 8). Retrieved Septem-
ber 8, 2025, from https://wiki.openstreetmap.org/wiki/Key:uic_ref

Knowles, N. (2024). Outline comparison and Mapping between NeTEx &
GTFS. https://transmodel-cen.eu/index.php/papers/

Maria, E., Budiman, E., Haviluddin, & Taruk, M. (2020). Measure distance
locating nearest public facilities using Haversine and Euclidean Meth-
ods. Journal of Physics: Conference Series, 1450 (1), 012080. https:
//doi.org/10.1088/1742-6596/1450/1/012080

MVO - Datenbereitstellungsplattform. (2025, September 8). Retrieved Septem-
ber 8, 2025, from https://data.mobilitaetsverbuende.at/de/data-sets

National Access Points - European Commission. (2025). Retrieved September
19, 2025, from https://transport.ec.europa.eu/transport- themes/
smart-mobility/road/its-directive-and-action-plan/national-access-
points_en

NeTEx � Transmodel. (2025, April 29). Retrieved April 29, 2025, from https:
//transmodel-cen.eu/index.php/netex/

Nicholas JS Knowles. (2015, October). 04.NeTEx-Framework-WhitePaper_1.07.
Retrieved September 8, 2025, from https://transmodel-cen.eu/wp-
content/uploads/2024/07/04.NeTEx-Framework-WhitePaper_1.07.
pdf

NORWAY Train Travel Information | railcc. (2025). Retrieved September 17,
2025, from https://rail.cc/norway/xno

ÖBB Open Data Datensätze. (2025, September 8). ÖBB Open Data. Re-
trieved September 8, 2025, from https://data.oebb.at/de/datensaetze

Open data about railway stations. (2025). Retrieved September 11, 2025, from
https://www.rijdendetreinen.nl/en/open-data/stations

49

https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://www.unife.org/wp-content/uploads/2021/05/INTERNATIONAL-STANDARDISATION-THE-EUROPEAN-RAIL-ASSOCIATIONS-VISION.pdf
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180715593/JourneyPattern+Abstract+in+EPIP+ServicePattern
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180715593/JourneyPattern+Abstract+in+EPIP+ServicePattern
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180715593/JourneyPattern+Abstract+in+EPIP+ServicePattern
https://www.cfl.lu/getattachment/50fc8908-06be-462f-a8ba-8c49eb1f3927/juil-2025_carte-reseau-cfl_en_a3_print.pdf
https://www.cfl.lu/getattachment/50fc8908-06be-462f-a8ba-8c49eb1f3927/juil-2025_carte-reseau-cfl_en_a3_print.pdf
https://www.cfl.lu/getattachment/50fc8908-06be-462f-a8ba-8c49eb1f3927/juil-2025_carte-reseau-cfl_en_a3_print.pdf
https://wiki.openstreetmap.org/wiki/Key:ref:IFOPT
https://wiki.openstreetmap.org/wiki/Key:uic_ref
https://transmodel-cen.eu/index.php/papers/
https://doi.org/10.1088/1742-6596/1450/1/012080
https://doi.org/10.1088/1742-6596/1450/1/012080
https://data.mobilitaetsverbuende.at/de/data-sets
https://transport.ec.europa.eu/transport-themes/smart-mobility/road/its-directive-and-action-plan/national-access-points_en
https://transport.ec.europa.eu/transport-themes/smart-mobility/road/its-directive-and-action-plan/national-access-points_en
https://transport.ec.europa.eu/transport-themes/smart-mobility/road/its-directive-and-action-plan/national-access-points_en
https://transmodel-cen.eu/index.php/netex/
https://transmodel-cen.eu/index.php/netex/
https://transmodel-cen.eu/wp-content/uploads/2024/07/04.NeTEx-Framework-WhitePaper_1.07.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/07/04.NeTEx-Framework-WhitePaper_1.07.pdf
https://transmodel-cen.eu/wp-content/uploads/2024/07/04.NeTEx-Framework-WhitePaper_1.07.pdf
https://rail.cc/norway/xno
https://data.oebb.at/de/datensaetze
https://www.rijdendetreinen.nl/en/open-data/stations

Ovenhagen, L. (2021). A design vision towards seamless European train jour-
neys. Retrieved September 19, 2025, from https://repository.tudelft.
nl/record/uuid:01a0e501-2e1a-469d-b1c3-03df7abae737

Overview - General Transit Feed Speci�cation. (2025, April 30). Retrieved
April 30, 2025, from https://gtfs.org/documentation/overview/

Pandas.DataFrame.merge � pandas 2.3.2 documentation. (2025, Septem-
ber 10). https ://pandas .pydata .org/docs/reference/api/pandas .
DataFrame.merge.html

Pandas.read_csv � pandas 2.3.2 documentation. (2025). Retrieved Septem-
ber 29, 2025, from https://pandas.pydata.org/docs/reference/api/
pandas.read_csv.html

PointinJourneyPattern (Abstract in EPIP), StopPointInJourneyPattern -
NeTEx Pro�l Österreich - Mobilitätsverbünde. (2025). Retrieved Septem-
ber 15, 2025, from https://mobilitaetsverbuende.atlassian.net/wiki/
spaces/NET/pages/181141601/PointinJourneyPattern+Abstract+
in+EPIP+StopPointInJourneyPattern

Protocol Bu�ers. (2025, April 30). Retrieved April 30, 2025, from https :
//protobuf.dev/

Publish - General Transit Feed Speci�cation. (2025, September 22). Retrieved
September 22, 2025, from https://gtfs.org/getting-started/publish/

Ra�ael Rittmeier. (2016, August 24). VDV-Schnittstellenparameter. Retrieved
September 10, 2025, from https://www.zvbn.de/media/data/06_
20160824_Anlage-6-VDV-Schnittstellenparameter.pdf

Railway station. (2025, September 12). Retrieved September 12, 2025, from
https://www.wikidata.org/wiki/Q55488

railways, U.-I. union of. (2015, July 30). Country Codes. UIC - International
union of railways. Retrieved September 11, 2025, from https://uic.
org/support-activities/it/article/country-codes

Reference - General Transit Feed Speci�cation. (2025, September 8). Re-
trieved September 8, 2025, from https://gtfs .org/documentation/
schedule/reference/

ScheduledStopPoint, ServiceLink - NeTEx Pro�l Österreich - Mobilitätsver-
bünde. (2025). Retrieved September 15, 2025, from https://mobilitaetsverbuende.
atlassian.net/wiki/spaces/NET/pages/180944962/ScheduledStopPoint+
ServiceLink

Skille, E. (2024). Standards for public transport data.
Soares, I., & Martins, P. M. (2013). PUBLIC TRANSPORT STANDARD-

IZATION.
Stop Places - NeTEx Pro�l Österreich - Mobilitätsverbünde. (08/09/2025,

18:06:33). Retrieved September 8, 2025, from https://mobilitaetsverbuende.
atlassian.net/wiki/spaces/NET/pages/181272577/Stop+Places

50

https://repository.tudelft.nl/record/uuid:01a0e501-2e1a-469d-b1c3-03df7abae737
https://repository.tudelft.nl/record/uuid:01a0e501-2e1a-469d-b1c3-03df7abae737
https://gtfs.org/documentation/overview/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.merge.html
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181141601/PointinJourneyPattern+Abstract+in+EPIP+StopPointInJourneyPattern
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181141601/PointinJourneyPattern+Abstract+in+EPIP+StopPointInJourneyPattern
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181141601/PointinJourneyPattern+Abstract+in+EPIP+StopPointInJourneyPattern
https://protobuf.dev/
https://protobuf.dev/
https://gtfs.org/getting-started/publish/
https://www.zvbn.de/media/data/06_20160824_Anlage-6-VDV-Schnittstellenparameter.pdf
https://www.zvbn.de/media/data/06_20160824_Anlage-6-VDV-Schnittstellenparameter.pdf
https://www.wikidata.org/wiki/Q55488
https://uic.org/support-activities/it/article/country-codes
https://uic.org/support-activities/it/article/country-codes
https://gtfs.org/documentation/schedule/reference/
https://gtfs.org/documentation/schedule/reference/
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180944962/ScheduledStopPoint+ServiceLink
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180944962/ScheduledStopPoint+ServiceLink
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/180944962/ScheduledStopPoint+ServiceLink
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181272577/Stop+Places
https://mobilitaetsverbuende.atlassian.net/wiki/spaces/NET/pages/181272577/Stop+Places

Stops - Håndbok N801 (SIRI/NeTEX) - Entur. (2024, October 17). Retrieved
September 8, 2025, from https://enturas.atlassian.net/wiki/spaces/
PUBLIC/pages/728727661/stops#StopPlace

Stops - Håndbok N801 (SIRI/NeTEX) - Entur. (2025). Retrieved September
15, 2025, from https://enturas.atlassian.net/wiki/spaces/PUBLIC/
pages/728727661/stops#StopPlace.1

Stops- and Timetable data. (2025, September 8). Retrieved September 8,
2025, from https://developer.entur.org/stops-and-timetable-data

Subclass of. (2025, September 12). Retrieved September 12, 2025, from https:
//www.wikidata.org/wiki/Property:P279

Timetable - Håndbok N801 (SIRI/NeTEX) - Entur. (2025, September 15).
Retrieved September 15, 2025, from https://enturas.atlassian.net/
wiki/spaces/PUBLIC/pages/728760393/timetable#ServiceJourney

Trans-European Transport Network (TEN-T) - European Commission. (2025).
Retrieved September 8, 2025, from https://transport.ec.europa.eu/
transport - themes/ infrastructure - and- investment/trans - european-
transport-network-ten-t_en

UIC station code. (2025, September 11). Retrieved September 11, 2025, from
https://www.wikidata.org/wiki/Property:P722

UIC Vademecum. (2025). Retrieved September 11, 2025, from https : / /
vademecum.uic.org/

Unlocking the potential of mobility data | Shaping Europe's digital future.
(2025). Retrieved September 19, 2025, from https://digital-strategy.
ec.europa.eu/en/policies/mobility-data

Verkehrsverbünde in Österreich. (2025, September 8). Retrieved September 8,
2025, from https://www.bmimi.gv.at/themen/mobilitaet/transport/
nahverkehr/verkehrsverbuende/oesterreich.html

What is GTFS? - General Transit Feed Speci�cation. (2025, April 30). Re-
trieved April 30, 2025, from https://gtfs.org/getting-started/what-
is-GTFS/

Why use GTFS? - General Transit Feed Speci�cation. (2025, September 8).
Retrieved September 8, 2025, from https://gtfs.org/getting-started/
why-use-GTFS/

Wien Hauptbahnhof. (2025, September 8). Retrieved September 8, 2025, from
https://www.wikidata.org/wiki/Q697300

wtw. (2025, September 2). Essential Google Maps Statistics & Trends to
Watch in 2025. Retrieved September 22, 2025, from https://www.
loopexdigital.com/blog/google-maps-statistics

Xml.etree.ElementTree � The ElementTree XML API. (2025). Python docu-
mentation. Retrieved September 29, 2025, from https://docs.python.
org/3/library/xml.etree.elementtree.html

51

https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728727661/stops#StopPlace
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728727661/stops#StopPlace
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728727661/stops#StopPlace.1
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728727661/stops#StopPlace.1
https://developer.entur.org/stops-and-timetable-data
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P279
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728760393/timetable#ServiceJourney
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728760393/timetable#ServiceJourney
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://transport.ec.europa.eu/transport-themes/infrastructure-and-investment/trans-european-transport-network-ten-t_en
https://www.wikidata.org/wiki/Property:P722
https://vademecum.uic.org/
https://vademecum.uic.org/
https://digital-strategy.ec.europa.eu/en/policies/mobility-data
https://digital-strategy.ec.europa.eu/en/policies/mobility-data
https://www.bmimi.gv.at/themen/mobilitaet/transport/nahverkehr/verkehrsverbuende/oesterreich.html
https://www.bmimi.gv.at/themen/mobilitaet/transport/nahverkehr/verkehrsverbuende/oesterreich.html
https://gtfs.org/getting-started/what-is-GTFS/
https://gtfs.org/getting-started/what-is-GTFS/
https://gtfs.org/getting-started/why-use-GTFS/
https://gtfs.org/getting-started/why-use-GTFS/
https://www.wikidata.org/wiki/Q697300
https://www.loopexdigital.com/blog/google-maps-statistics
https://www.loopexdigital.com/blog/google-maps-statistics
https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html

Zahlen, Daten, Fakten. (2025, September 8). ÖBB-Infrastruktur AG. Re-
trieved September 8, 2025, from https://infrastruktur.oebb.at/de/
unternehmen/zahlen-daten-fakten

52

https://infrastruktur.oebb.at/de/unternehmen/zahlen-daten-fakten
https://infrastruktur.oebb.at/de/unternehmen/zahlen-daten-fakten

List of Abbreviations

GTFS General Transit Feed Speci�cation

NeTEx Network Timetable Exchange

ÖBB Österreichische Bundes Bahnen

IBNR Interne Bahnhofsnummer

IFOPT Identi�cation of Fixed Objects in Public Transport

CEN Comité Européen de Normalisation

IFOPT Identi�cation of Fixed Objects in Public Transport

SIRI Standard Interface for Real-time Information

UIC Union Internationale des Chemins de fer

MMTIS Multi Model Travel Information

TEN-T Trans-European Transport Network

XML Extensible Markup Language

CSV Comma Separated Values)

53

List of Aids / Tools

54

Table 2: Overview of aids and tools used in the thesis

Aid / Tool Usage Relevant Sec-
tions / Chap-
ters

Documentation

Python Data prepro-
cessing, analysis
and visualiza-
tion

Chapter Meth-
odes, Chapter
Analysis

Python Docs

Jupyter Notebook Interactive envi-
ronment for ex-
ecuting Python
code

Chapter ?? Jupyter Project

LaTeX Thesis writing,
typesetting, and
references

All chapters LaTeX Project

DeepL Write Thesis writing All chapters DeepL Write
DeepL Understanding

and transla-
tion of English
sources

All chapters DeepL Transla-
tor

ChatGPT Coding support,
error detection
and plot cre-
ation

Chapter Meth-
odes, Chapter
Analysis, Addi-
tional Material

ChatGPT

PowerPoint Creating �gures Chapter Ex-
traction of
Station, Chap-
ter GTFS Trip
Extraction,
Chapter NeTEx
Journey Ex-
traction

Microsoft Pow-
erPoint

55

https://docs.python.org/3/
https://jupyter.org/
https://www.latex-project.org/
https://www.deepl.com/de/write
https://www.deepl.com/de/translator
https://www.deepl.com/de/translator
https://chat.openai.com/
https://www.microsoft.com/de-at/microsoft-365/powerpoint
https://www.microsoft.com/de-at/microsoft-365/powerpoint

6 Additional Material

6.1 Notebook: Third Source

56

Wiki Data
WIKI Data set: One request per country (collecting all entries in a
single request)

• extract the stations from the wiki data base with identifable ids if available
• drawbacks: if we do not have an ID which is also represented in the netex or gtfs

datasets, we cannot sort the correct station
• benefits: one single request

For the Sparkql querry we only request subjects with the following entities:

• which are a train station/ train stop (small train station)
• which have an id codes (UIC, IFOPT, IBNR...)
• which have coordinates

from SPARQLWrapper import SPARQLWrapper, JSON
import pandas as pd

def sparl_ql_querry_request(country_code,country_name,limit):

 sparql = SPARQLWrapper("https://query.wikidata.org/sparql")
 sparql.setQuery(f"""
 SELECT ?station ?stationLabel ?coordinate ?ifopt ?ibnr ?uic WHERE
{{
 ?station wdt:P31/wdt:P279* wd:Q55488 ; # instance or subclass
of train station
 wdt:P17 wd:Q{country_code} . # located in
Austria (Q40)

 OPTIONAL {{ ?station wdt:P7824 ?ifopt. }} # IFOPT code
 OPTIONAL {{ ?station wdt:P954 ?ibnr. }} # IBNR
 OPTIONAL {{ ?station wdt:P722 ?uic. }} # UIC
 OPTIONAL {{ ?station wdt:P625 ?coordinate. }} # Coordinates

 SERVICE wikibase:label {{ bd:serviceParam wikibase:language
"[AUTO_LANGUAGE],de,en". }}
 }}
 LIMIT {limit}t
 """)
 sparql.setReturnFormat(JSON)
 wiki_data_query_results = sparql.query().convert()

 #print(wiki_data_query_results)

 # create a list ot store the result

 wiki_data_querry_results_list = []

 # iterate through the json format to extract information
 for result in wiki_data_query_results["results"]["bindings"]:

 # extract name
 name = result.get("stationLabel",{}).get("value")

 ifopt = result.get("ifopt",{}).get("value")

 # extract ibnr
 ibnr = result.get("ibnr", {}).get("value")

 # extract uic
 uic = result.get("uic", {}).get("value")

 # coordinates
 # make sure it is a string to apply later the replace function
otherwise issues will appear
 coordinate = str(result.get("coordinate", {}).get("value")) #
"Point(lon lat)"

 # if the value is not None we extract the lat and lon
 if coordinate != "None":
 lon, lat = map(float, coordinate.replace("Point(",
"").replace(")", "").split(" "))

 # otherwise it will be None as value for lat and lon
 else:
 lon = lat = None

 # add to the list
 wiki_data_querry_results_list.append({"name_wiki": name,
"UIC_wiki": uic, "IBNR_wiki": ibnr, "IFOPT_wiki": ifopt,"lat_wiki":
lat, "lon_wiki": lon})

 wiki_data_querry_results_df =
pd.DataFrame(wiki_data_querry_results_list)

 # Drop rows where 'name_wiki' and 'lat_wiki'/'lon_wiki' appear
more than once, but keep the first
 # it appears that same train station which have also tram stations
have two ifopt numbers
 df_cleaned =
wiki_data_querry_results_df[~wiki_data_querry_results_df.duplicated(su
bset=['name_wiki', 'lat_wiki', 'lon_wiki'], keep='first')]

 # saving the dataframe in order to use for the second part
2_compare

 df_cleaned.to_csv(country_name+ "_" + 'wiki_data_df.csv')

 return (df_cleaned,wiki_data_query_results)

Set up query parameters
country_code = "40"
country_name = "austria"
limit = 1031 + 1000

wiki_data_df, wiki_data_query_results =
sparl_ql_querry_request(country_code, country_name, limit)

country codes:
luxembourg q32
norway q20
austria q40

6.2 Notebook: Extraction

60

Data Extraction: Netex and GTFS
load necessary packages
#!pip install partridge
#!pip install pandas
#!pip install shapely
#!pip install osmium #open street maps tool
#!pip install sparkql
#!pip install geopandas

GTFS load
GTFS extraction
import partridge as ptg
import zipfile
import pandas as pd

def load_gtfs(gtfs_zip_path):

 # Load the entire GTFS feed (no filters)
 feed = ptg.load_feed(gtfs_zip_path, view={})

 # extract all files within the zipped

 gtfs_list = []

 # loop trough all the files and save them in a list
 with zipfile.ZipFile(gtfs_zip_path, 'r') as z:
 for file_name in z.namelist():
 if file_name.endswith('.txt'):
 #print("Reading:",file_name)

 with z.open(file_name) as f:
 df = pd.read_csv(f,low_memory=False)
 #print(df.head())

 # create a tulpe to store them into a list
(dictionary does not work: df is not hashable)
 tulpe = (file_name,df)
 gtfs_list.append(tulpe)

 return gtfs_list

Netex load
• It appears that each netex file is not well standardised because the netex files of

other countries have different structures and hierarchies which make it really
difficult to work with them

• Therefore a more robust approach is needed: recursive function which identifies
each single xml file in nested deep structures

import zipfile
import io
import xml.etree.ElementTree as ET
import os

def extract_xml_from_zip(zip_data, zip_path=""):
 """Recursively extracts all .xml files from a zip (bytes or file),
including nested zips."""
 xml_files = []

 with zipfile.ZipFile(io.BytesIO(zip_data)) if isinstance(zip_data,
bytes) else zipfile.ZipFile(zip_data, 'r') as zip_ref:
 for item_name in zip_ref.namelist():
 full_path = os.path.join(zip_path, item_name)

 # Skip directories
 if item_name.endswith('/'):
 continue

 with zip_ref.open(item_name) as file:
 data = file.read()

 # another xml file was identified
 if item_name.endswith('.xml'):
 xml_files.append((full_path, data))

 # another zip folder was identified
 elif item_name.endswith('.zip'):
 # Recursive call
 xml_files.extend(extract_xml_from_zip(data,
zip_path=full_path))

 return xml_files

def load_netex(netex_path):
 """Load Netex .zip and extract all .xml files including those
inside nested zips and folders."""
 all_xml_files = []

 # Outer zip
 with zipfile.ZipFile(netex_path, 'r') as outer_zip:
 for file_name in outer_zip.namelist():

 # another folder was identified
 if file_name.endswith('/'):

 continue # Skip directory names

 with outer_zip.open(file_name) as file:
 file_data = file.read()

 # another zipped was identified
 if file_name.endswith('.zip'):
 # Recurse into nested zip

all_xml_files.extend(extract_xml_from_zip(file_data,
zip_path=file_name))

 # another xml file was identified
 elif file_name.endswith('.xml'):
 all_xml_files.append((file_name, file_data))

 return all_xml_files

Extraction Station: Modul 1
GTFS extraction: Stops (Station)
Since we focus on railway, the gtfs data sets do not include any simple solution as netex to differ
between bus stations and rail stations. Therefore we need to filter the data over following
connection:

Stop (Stop_ID) -> Stop_times (stop_id, trip_id) -> trips (trip_id, route_id) -> route (route_id,
route_type)

Our goal is the route_type which defines wether a trip is operated by bus or train

source: https://gtfs.org/documentation/schedule/reference/#routestxt

def stop_extract_gtfs(gtfs_list):

 # use the data set above for extraction
 for gtfs_data in gtfs_list:

 if gtfs_data[0] == "stops.txt":
 stop_df = gtfs_data[1]

 # Filtering the stop list by their type of trips

 if gtfs_data[0] == "stop_times.txt":
 stop_times_df = gtfs_data[1]

 if gtfs_data[0] == "trips.txt":
 trips_df = gtfs_data[1]

 if gtfs_data[0] == "routes.txt":
 route_df = gtfs_data[1]

 # Filter the stations which are no train staitions
 # 1. Keep only the needed columns
 stop_df_filterd = stop_df[["stop_id"]] # or stop_df if named
like that
 stop_times_df = stop_times_df[["stop_id", "trip_id"]]
 trips_df = trips_df[["trip_id", "route_id"]]
 route_df = route_df[["route_id", "route_type"]]

 # 2. Merge step by step with reduced data
 stop_trips = pd.merge(stop_times_df, trips_df, on="trip_id",
how="inner")
 stop_routes = pd.merge(stop_trips, route_df, on="route_id",
how="inner")
 stop_modes = pd.merge(stop_routes, stop_df_filterd,on="stop_id",
how="inner")

 # 3. Final: stop_id ↔ route_type
 result = stop_modes[["stop_id", "route_type"]].drop_duplicates()
 result["route_type"] = result["route_type"].astype(str)

 # filter the results by their route_type
 # also we consider norways special type of numbers
 result_filterd = result[
 (
 result["route_type"].str.startswith(("1", "4")) &
 (result["route_type"].str.len() == 3)
)
 |
 (result["route_type"].isin(["1","2", "12", "5", "7"]))
]

 stop_final_df = pd.merge(result_filterd, stop_df, on="stop_id",
how="inner")

 # rename them to make them better readable
 stop_final_df = stop_final_df.rename(columns={
 'stop_id': 'id_gtfs',
 'stop_name': 'name_gtfs',
 "stop_lat":"lat_gtfs",
 "stop_lon":"lon_gtfs",

 "parent_station":"parent_station_gtfs",
 "wheelchair_boarding":"wheelchair_boarding_gtfs",
 "platform_code":"platform_code_gtfs",
 "route_type":"route_type_gtfs"})

 return stop_final_df

Netex extraction: StopPlace (Station)
• Netex files can consist of multiple xml files, each single file will be applied to the function

as xml_content
• as the result a list of dictionaries (each entry is a dictionary) the content is provided for

each xml file
• thats why the extraction of netex is so complicated because you need to iterate over a list

of xml files to extract information

import pandas as pd
import geopandas as gpd
from shapely.geometry import Point

def stop_extract_netex(xml_content, ns):
 netex_stops_list = [] # Collect dictionaries here

 # Parse the XML content
 tree = ET.parse(io.BytesIO(xml_content))
 root = tree.getroot()

 for stop_place in root.findall('.//netex:StopPlace', ns):

 # reset all the variables in the case that no value was found
for some variables
 netex_id = PublicCode = name = latitude = longitude =
Wheelchair_access_list = AssistanceFacility = AssistanceAvailability =
AccessFacility = EVA_Nr = None

 # extract ID
 netex_id = stop_place.attrib.get('id')

 # exract PublicCode

 PublicCode_elem = stop_place.find("netex:PublicCode",ns)
 PublicCode = PublicCode_elem.text if PublicCode_elem is not
None else None

 # extract name
 name_elem = stop_place.find('netex:Name', ns)
 name = name_elem.text if name_elem is not None else None

 # extract the StopPlace type e.g. rail, bus, taxi
 StopPlaceType_elm = stop_place.find("netex:StopPlaceType",ns)
 StopPlaceType = StopPlaceType_elm.text if StopPlaceType_elm is
not None else None

 # {http://www.netex.org.uk/netex}StopPlaceType: railStation

 # extract coordinates

 # clear coordinate values
 latitude = longitude = None

 # extract the coordinates of the station
 centroid = stop_place.find('netex:Centroid', ns)
 if centroid is not None:
 location = centroid.find('netex:Location', ns)
 if location is not None:
 lat_elem = location.find('netex:Latitude', ns)
 lon_elem = location.find('netex:Longitude', ns)
 latitude = float(lat_elem.text) if lat_elem is not
None else None
 longitude = float(lon_elem.text) if lon_elem is not
None else None

 # extract the each referenced key from the netex data set
 keyList = stop_place.find('netex:keyList', ns)
 if keyList is not None:

 # iterate through the list of keys
 for KeyValue in keyList:
 if (KeyValue.find("netex:Key",ns)).text == "EVA-Nr":
 EVA_Nr_elem = KeyValue.find("netex:Value",ns)

 if EVA_Nr_elem is not None:
 EVA_Nr = EVA_Nr_elem.text

 """
 Quays
 """
 # wheel chair access

 quays = stop_place.find('netex:quays', ns)
 if quays is not None:

 # findall to get all entries for all quays
 Quay = quays.findall('netex:Quay', ns)

 # iterate through the list to find the Quay to find

 # and if possible the uic code and quay id
 # the wheel chair information (Quay == Gleis, Plattform)

 Wheelchair_access_list = []
 quay_id_list = []

 # iterate the the entries of quay (quay = Bahngleis)
 for x in Quay:

 """
 Quay ID and UIC code
 """
 # reset each time to avoid error
 quay_id = uicCode = None

 quay_id = x.attrib.get('id')
 quay_id_list.append(quay_id)

 keyList = x.find('netex:keyList', ns)
 if keyList is not None:

 KeyValue = keyList.findall('netex:KeyValue', ns)

 for y in KeyValue:

 key_elem = y.find('netex:Key', ns)

 if key_elem is not None and key_elem.text ==
"uicCode":

 uicCode_elem = y.find('netex:Value', ns)

 if uicCode_elem is not None:

 uicCode = uicCode_elem.text

 """
 Wheelchair access
 """

 # case: if no label was found but the wheelchair
access information is still found
 Label = WheelchairAccess = None

 StopPlaceSpaceGroup =
x.find('netex:StopPlaceSpaceGroup', ns)
 if StopPlaceSpaceGroup is not None:

 # store the information where the wheelchair
access is true or unknown
 Label_elem =
StopPlaceSpaceGroup.find('netex:Label', ns)
 if Label_elem is not None:
 Label = str(Label_elem.text)

 SiteComponentGroup =
StopPlaceSpaceGroup.find('netex:SiteComponentGroup', ns)
 if SiteComponentGroup is not None:

 SiteElementObjectElementGroup =
SiteComponentGroup.find('netex:SiteElementObjectElementGroup', ns)
 if SiteElementObjectElementGroup is not None:

 SiteElementInternalGroup =
SiteElementObjectElementGroup.find('netex:SiteElementInternalGroup',
ns)
 if SiteElementInternalGroup is not None:

 AccessibilityAssessment =
SiteElementInternalGroup.find("netex:AccessibilityAssessment", ns)
 if AccessibilityAssessment is not
None:

 limitations =
AccessibilityAssessment.find('netex:limitations', ns)
 if limitations is not None:

 AccessibilityLimitation =
limitations.find('netex:AccessibilityLimitation', ns)
 if AccessibilityLimitation is
not None:

 MobilityLimitationGroup =
AccessibilityLimitation.find('netex:MobilityLimitationGroup', ns)

 if MobilityLimitationGroup
is not None:

 WheelchairAccess_elem
= MobilityLimitationGroup.find('netex:WheelchairAccess', ns)
 if
WheelchairAccess_elem is not None:

 WheelchairAccess =
str(WheelchairAccess_elem.text)
 # store the result

as a tuple of WheelchairAccess and label (where is the wheelchair
access)

Wheelchair_access_list.append((WheelchairAccess,Label))

 """
 People with reduced mobility (PWRM)
 """

 facilities = stop_place.find("netex:facilities",ns)
 if facilities is not None:
 SiteFacilitySet =
facilities.find("netex:SiteFacilitySet",ns)

 if SiteFacilitySet is not None:

 CommonFacilityGroup =
SiteFacilitySet.find("netex:CommonFacilityGroup",ns)
 if CommonFacilityGroup is not None:

 # AssistanceFacility: stations with staff to
provide aid for people
 AssistanceFacilityList =
CommonFacilityGroup.find("netex:AssistanceFacilityList",ns)
 if AssistanceFacilityList is not None:

 AssistanceFacility_elem =
AssistanceFacilityList.find("netex:AssistanceFacility",ns)

 if AssistanceFacility_elem is not None:
 AssistanceFacility =
str(AssistanceFacility_elem.text)

 # AssistanceAvailability: staff which are
providing for poeple but must be booked previously
 AssistanceAvailability_elem =
CommonFacilityGroup.find("netex:AssistanceAvailability",ns)
 if AssistanceAvailability_elem is not None:

 AssistanceAvailability =
str(AssistanceAvailability_elem.text)

 # AccessFacility: if the facility is accessable with a
wheelchair (Hebeliftbühne)

 SiteFacilityGroup =
SiteFacilitySet.find("netex:SiteFacilityGroup",ns)
 if SiteFacilityGroup is not None:

 AccessFacilityList =
SiteFacilityGroup.find("netex:AccessFacilityList",ns)

 if AccessFacilityList is not None:
 AccessFacility_elem =
AccessFacilityList.find("netex:AccessFacility",ns)

 if AccessFacility_elem is not None:
 AccessFacility = str(AccessFacility_elem.text)

 # add structured data
 netex_stops_list.append({
 "id_netex": netex_id,
 "ref_id_netex":PublicCode,
 "StopPlaceType_netex": StopPlaceType,
 "name_netex": name,
 "lat_netex": latitude,
 "lon_netex": longitude,
 "EVA_Nr_netex":EVA_Nr,
 "UIC_Code_netex":uicCode,
 "Quay_ids_netex": quay_id_list,
 "WheelchairAccess_netex": Wheelchair_access_list,
 "AssistanceFacility_netex": AssistanceFacility,
 "AssistanceAvailability_netex": AssistanceAvailability,
 "AccessFacility_netex": AccessFacility
 })

 # return the list
 return netex_stops_list

Combine netex and gtfs
• Load: first load the data -> results gtfs a list of list, netex a list of xml files
• Extraction: gtfs find the correct list in our case "stops", netex search through all the

different xml files for the root you need in our case StopPlace)

Labeling issues within netex and gtfs
Is the labeling the same for each station/ stop (is the id the same) compare with Netex and other
data sets?

Austria case:

GTFS has a longer version of the IFOPT number which including a more detailed entries of each
location of a train stop:

• xy:41:3087:0:2 is the IFOPT ID for the Bad Sauerbrunn Bahnhof but the train station have
multiple other facilitys under the same ID core (xy:41:3087) e.g. Bus Stop, Entrance, Parc
and ride

• in our case we need to filter the core ids and summarize them into a single row in order
to merge the netex and the gtfs data set together

General case:

• each id of each data format can be different as the austrian data set had shwon
• each id of each data format can have a different pattern
• Also we cannot assume that each id is even closely similar to each other or the same

=> Either automatic pattern recognition is required

ID issues in Netex and GTFS
this function identifies the ID pattern and sort them to the right
measures

import re

def identify_id_pattern(id_str):
 if pd.isna(id_str):
 return 'unknown'

 if re.match(r'^[a-z]{2}:\d+:\d+(?::\d+)*$', id_str) or
re.match(r'^[a-z]{2}-\d+-\d+', id_str):
 return 'austria' # ifopt_style

 elif id_str.startswith('NSR:StopPlace:') or
id_str.startswith('NSR:Quay:'):
 return 'norway'

 elif re.match(r'^\d+$', id_str):
 return 'numeric_id' # Luxembourg, simple numeric IDs

 else:
 return 'unknown'

special case if the ids of netex or gtfs have different data types
like number and string
import re

def extract_digit_number(id_str, length):

 if isinstance(id_str, int):
 id_str = str(id_str)

 pattern = rf'(\d{{{length}}})' # Removed \b to allow matches next
to colons, underscores, etc.
 match = re.search(pattern, str(id_str))

 return int(match.group(1)) if match is not None else None

def combine_gtfs_netex_by_ID(gtfs_stops_df,netex_stops_df):

 """
 Identify the id pattern of GTFS and NETEX
 There will be issues within netex and gtfs because it appears the
do not use the same ids
 """

 # we take the first entry of the gtfs and netex data set
 gtfs_id_list = gtfs_stops_df["id_gtfs"]
 netex_id_list = netex_stops_df["id_netex"]

 for id_gtfs, id_netex in zip(gtfs_id_list, netex_id_list):
 print("id_type gtfs:",id_gtfs)
 print("id_type netex:",id_netex)

 # provide the id's as strings in order to identify their
patterns
 id_pattern_netex = identify_id_pattern(str(id_netex))
 id_pattern_gtfs = identify_id_pattern(str(id_gtfs))

 # in the case that the id pattern is known and the patterns
are the same in both data formats
 if id_pattern_netex != "unknown" and id_pattern_gtfs !=
"unknown" and id_pattern_netex == id_pattern_gtfs:
 # then we can proceed the following measures
 id_pattern = id_pattern_netex = id_pattern_gtfs
 break

 # in the case that one id is unknown and one id is numeric but
the patterns have different types
 # idea: the numeric values must appear in the string
 # identify the length of the id in order to find the same
length if integers within the other type of id
 elif id_pattern_netex == "numeric_id" or id_pattern_gtfs ==
"numeric_id" and id_pattern_netex != id_pattern_gtfs:

 print("IDs have different types:")
 print("GTFS:",id_pattern_gtfs)
 print("Netex:",id_pattern_netex)

 # the netex data set contains the numeric values -> the
gtfs data set must be adapted
 if id_pattern_netex == "numeric_id":

 length = len(str(id_netex))

 # call for each entry the extract_digit_number in
order to extract a number with the same length as the other id
 gtfs_stops_df["id_gtfs"] =
gtfs_stops_df["id_gtfs"].apply(lambda x: extract_digit_number(x,
length))

 # change the id patter to numeric in order to perform
the right measures
 id_pattern = "numeric_id"
 break

 # the gtfs data set contains the numeric values -> the
netex data set must be adapted
 elif id_pattern_gtfs == "numeric_id":

 # only strings have length, no integer
 length = len(str(id_gtfs))

 # call for each entry the extract_digit_number in
order to extract a number with the same length as the other id
 netex_stops_df["id_netex"] =
netex_stops_df["id_netex"].apply(lambda x: extract_digit_number(x,
length))

 # change the id patter to numeric in order to perform
the right measures
 id_pattern = "numeric_id"
 break

 """
 Measures to match the id type
 """
 print("ID type country:",id_pattern)

 """
 Austria Type ID: IFOPT
 gtfs: xy:43:1001:1:0
 NEtex: xy:43:1001

 Issue: xy:4001:1 -> also exist
 """

 if id_pattern == "austria":

 # Extract the common part (e.g., 'xy:41:3087') from GTFS and
NeTEx IDs
 # because netex and gtfs contain different stations from other
countries
 gtfs_stops_df['id_gtfs'] =
gtfs_stops_df['id_gtfs'].str.extract(r'^([a-z]{2}:\d+:\d+)',
expand=False)
 netex_stops_df['id_netex'] =
netex_stops_df['ref_id_netex'].str.extract(r'^([a-z]{2}:\d+:\d+)',
expand=False)

 # Group by this prefix and take the first entry for name, lat,
lon
 # this does only work if the gtfs data set is sorted that the
first entry is actually the correct entry
 gtfs_stops_df = gtfs_stops_df.groupby('id_gtfs',
as_index=False).first()

 # merge both data sets together by their IFOPT ID
 merged_df = pd.merge(gtfs_stops_df, netex_stops_df,
 left_on= "id_gtfs",
 right_on= "id_netex",
 how= "outer"
)

 """
 Norway
 GTFS: NSR:Quay:100140/ NSR:StopPlace:890
 Netex: NSR:StopPlace:1 / NSR:Quay:100
 """

 if id_pattern == "norway":

 # replace all " " to make them more comparable
 gtfs_stops_df["id_gtfs"] =
gtfs_stops_df["id_gtfs"].apply(lambda x: x.replace(" ",""))
 netex_stops_df["id_netex"] =
netex_stops_df["id_netex"].apply(lambda x: x.replace(" ",""))

 # the
 gtfs_stops_df = (
 gtfs_stops_df.groupby("parent_station_gtfs").agg(
 parent_station_list_gtfs=("id_gtfs", list),

list of quays
 route_type_gtfs=("route_type_gtfs", list),
 name_gtfs=("name_gtfs", "first"),
keep first name
 lat_gtfs=("lat_gtfs", "first"),
 lon_gtfs=("lon_gtfs", "first"),
 stop_desc=("stop_desc", list),
 wheelchair_boarding_gtfs=("wheelchair_boarding_gtfs",
list),
 stop_timezone=("stop_timezone", list),
 vehicle_type=("vehicle_type", list),
 platform_code_gtfs=("platform_code_gtfs", list)
)
 .reset_index()
)
 gtfs_stops_df =
gtfs_stops_df.rename(columns={"parent_station_gtfs": "id_gtfs"})

 # merge both data sets together by their IFOPT ID
 merged_df = pd.merge(gtfs_stops_df,netex_stops_df,
 left_on="id_gtfs",
 right_on="id_netex",
 how="outer")

 """
 numeric ids (Luxembourg)
 GTFS: 10172
 Netex: 1257
 """

 if id_pattern == "numeric_id":
 # convert both strings to integers

 gtfs_stops_df["id_gtfs"] =
gtfs_stops_df["id_gtfs"].apply(lambda x: int(x))
 netex_stops_df["id_netex"] =
netex_stops_df["id_netex"].apply(lambda x: int(x))

 # only if the id pattern was sorted the merging process will start
 if id_pattern != "unknown":

 # merge both data sets together by their IFOPT ID
 merged_df = pd.merge(gtfs_stops_df,netex_stops_df,
 left_on="id_gtfs",
 right_on="id_netex",

 how="outer")

 return merged_df

#merged_df = combine_gtfs_netex_by_ID(gtfs_stops_reduced_df_3,
all_netex_stops_df_3)

Combine function
def combine_gtfs_netex(gtfs_zip_path, netex_path, ns, country_name):

 """
 Load
 """
 # load the gtfs data
 gtfs_list = load_gtfs(gtfs_zip_path)

 # load the netex data
 parsed_xml_files = load_netex(netex_path)

 print("Load completed")
 """
 Extraction netex

 Why do we must iterate here?
 - Netex consist of mulitple xml files stored in a list
 - We need to iterate through all the files to extract the
information of each single xml file (because the information is not
seperate as in gtfs)
 """
 # extract the netex train stop
 if len(parsed_xml_files) != 0:

 # create a list to store all results
 all_netex_stops_list = []

 # iterate through each single xml file and search for a
StopPlace
 for xml_name, xml_bytes in parsed_xml_files:

 # start the extraction function
 netex_stops_list = stop_extract_netex(xml_bytes, ns)

 # only if the extraction function find a StopPlace, we
will add it to a list
 if len(netex_stops_list) != 0:
 all_netex_stops_list.append(netex_stops_list)
 #print(netex_stops_list)

 # Flatten the list of lists into a single list because we have
list in list in lists
 # in order to proceed it into the dataframe
 flat_netex_stop_list = [item for sublist in
all_netex_stops_list for item in sublist]

 # Create a DataFrame
 all_netex_stops_df = pd.DataFrame(flat_netex_stop_list)
 print("Extraction: netex completed")
 """
 Extraction gtfs
 """

 # extract the gtfs train stop
 if len(gtfs_list) != 0:

 # gtfs extraction
 gtfs_stops_reduced_df = stop_extract_gtfs(gtfs_list)
 print("Extraction: gtfs completed")

 """
 combination of both gtfs and netex by id if possible
 """

 # elimate all double values by their ids
 gtfs_stops_reduced_df =
gtfs_stops_reduced_df.drop_duplicates(subset="id_gtfs")
 all_netex_stops_df =
all_netex_stops_df.drop_duplicates(subset='id_netex')

 # if a railStation type exist in the StopPlaceType, we will filter
the dataframe by railStation
 # we asssume here that at least on value exist the whole data set
is supposed to have such value
 if (all_netex_stops_df["StopPlaceType_netex"] ==
"railStation").any() == True:
 all_netex_stops_df =
all_netex_stops_df[all_netex_stops_df["StopPlaceType_netex"] ==
"railStation"]

 # only if both loading functions where sucessfull, the merge
function should be applied
 if (len(gtfs_list) != 0) and (len(parsed_xml_files) != 0):

 # merge both data sets
 merged_df = combine_gtfs_netex_by_ID(gtfs_stops_reduced_df,
all_netex_stops_df)
 print("Merging completed")

 # if one of the data formats was not sucessfully extracted
 else:
 merged_df = None

 # saving the dataframe in order to use for the second part
2_compare
 merged_df.to_csv(country_name + "_" + 'station_merged_df.csv')

 return merged_df, gtfs_stops_reduced_df, all_netex_stops_df

country_name = "luxembourg"

Path to your GTFS zip file
gtfs_zip_path = "./data_sets/"+ country_name + "_gtfs.zip"

Path to your outer zip file
netex_path = "./data_sets/"+ country_name +"_netex.zip"

define the path of the netex xml tree in order to find the stop
places
ns = {'netex': 'http://www.netex.org.uk/netex'}

merged_df, gtfs_df, netex_df = combine_gtfs_netex(gtfs_zip_path,
netex_path, ns, country_name)

Load completed
Extraction: netex completed
Extraction: gtfs completed
id_type gtfs: 500000079
id_type netex: DE::StopPlace:220401001_::
IDs have different types:
GTFS: numeric_id
Netex: unknown
ID type country: numeric_id
Merging completed

Extraction Trips: Modul 2
goals of extraction which information would be necessary for a trip

• stops of trips
• end stop
• start point
• Rail number like (RE 123)

Issue file size:

GTFS Files include often all kinds of trips like bus, train, taxi etc.

It appears that the gtfs files contain a variable to filter each trip by their mode of transportation.
This means you can filter the data set over the route_mode variable which is defined by a
identifable id for each mode of transport
(https://ipeagit.github.io/gtfstools/reference/filter_by_route_type.html)

All numbers according starting with a 1 and have 3 characters are consider as trains

Role of Route and Trip:

Route is the blue print: which tracks exist in norway/luxenburg at all

GTFS Extraction: Trips
1. Issue: Connecting stops of a trip to a matching trip

 The stop for each trips are in a seperated list stop_times therefore we will extract
the information and merge these list together

 Solution: We will extract from the stop_time dataframe all trips which have the id of
trip dataframe therefore we iterate through the rows of the trip_df in order to take
each single id and search for all entries with the same id in the stop_time dataframe.

2. Issue: Process time The data sets are too big to calculate every entry. Also, we do
only focus on the rail ways therefore we will filter the data set before apply the
Solution of 1. Issue.

E.g. the norway data set contains over 345.019 rows of trips by filtering it was reduced to 47.439
rows

2.1 Issue: Some data sets use the documantation provided by google the
other one use the documentation provided by gtfs
https://ipeagit.github.io/gtfstools/reference/filter_by_route_type.htm
l

2.1 We also need to filter the stop_times_df because it has over
7.398.243 entries and after filtering it by the trip_id 535.075
entries which is an enormous reducing of processing time

How can we link the route and the trip:

The route have an column which defines the route_type in our case rail way is in our interest.

Route_Id provides the type of route Stop_times provides the stop per trip the trip provides each
single trip

Route (route_id, route_type) -> trip (route_id) -> stop_times (route_id)

def trip_extract_gtfs(gtfs_list, country_name):

 # extract the trip dataframes
 for trip_list in gtfs_list:

 if trip_list[0] == "trips.txt":
 trip_df = trip_list[1]
 break

 # extracting the stops per trip
 for stop_times_list in gtfs_list:

 if stop_times_list[0] == "stop_times.txt":
 stop_times_df = stop_times_list[1]
 break

 # extracting the routes in order to filter the trips df
 for route_list in gtfs_list:

 if route_list[0] == "routes.txt":
 route_df = route_list[1]
 break

 # rename them to make them better readable
 # add to all columns "_gtfs"
 for column in trip_df:
 new_column_name = (column + "_gtfs")
 trip_df = trip_df.rename(columns={column: new_column_name})

 # rename them to make them better readable
 # add to all columns "_gtfs"
 for column in stop_times_df:
 new_column_name = (column + "_gtfs")
 stop_times_df = stop_times_df.rename(columns={column:
new_column_name})

 "Before we connect the stops of a trip to the an trip id we will
filter the dataframe in order to enhance the performance"

 # not all gtfs files use the same documentation to identify their
route_type
 # convert all at once instead of each single one

 route_df["route_type_str"] = route_df["route_type"].astype(str)

 route_df = route_df[
 (
 route_df["route_type_str"].str.startswith(("1", "4")) &
 (route_df["route_type_str"].str.len() == 3)
)
 |
 (route_df["route_type_str"].isin(["2", "12", "5", "7"]))
]

 """
 We filter all trips by their route_id and then we filter all
stop_times by ther trip_id which was filter before by the route_id
 """
 # convert the column into a list to use it as a filter
 filter_for_trip = list(route_df.route_id)

 # we already changed the name with an _gfts at the end
 trip_df = trip_df[trip_df['route_id_gtfs'].isin(filter_for_trip)]

 # convert the column into a list to use it as a filter
 trip_id_filter_for_stop_times = list(trip_df.trip_id_gtfs)

 # we already changed the name with an _gfts at the end
 stop_times_df =
stop_times_df[stop_times_df['trip_id_gtfs'].isin(trip_id_filter_for_st
op_times)]

 "Now we connect the stops per trip to an trip id"

 # create a dictionary to store the stops and a unique id in order
to make it better sortable
 # create a dictionary with lists as containers
 stops_of_trips_dic = {"trip_id_gtfs": [],
 "stops_on_trip": []}

 for index, row in trip_df.iterrows():

 # Filter all rows where trip_id is the same as from trip_df

 if not (stop_times_df[stop_times_df['trip_id_gtfs'] ==
row.trip_id_gtfs]).empty:
 # append to the lists of the dictionaries

stops_of_trips_dic["trip_id_gtfs"].append(row.trip_id_gtfs)

stops_of_trips_dic["stops_on_trip"].append(stop_times_df[stop_times_df
['trip_id_gtfs'] == row.trip_id_gtfs])
 else:

stops_of_trips_dic["trip_id_gtfs"].append(row.trip_id_gtfs)
 stops_of_trips_dic["stops_on_trip"].append(None)

 # create a dataframe of the dictionary in order to merge it with
the trip_df
 stops_of_trips_df = pd.DataFrame(stops_of_trips_dic)

 # merge both data sets together by their ID
 trip_merged_df = pd.merge(trip_df, stops_of_trips_df,
 left_on= "trip_id_gtfs",
 right_on= "trip_id_gtfs",
 how= "inner")

 return trip_merged_df

"""
This function is for norways special gtfs structure: it is changing
inside the nested dataframes name from stop_id_gtfs" to "quay_id_gtfs
and
add from the stations dataframe the following Quay which are refering
to the actual stop_ids
"""

def norway_Quay_to_StopPlace(trip_merged_gtfs_df, station_df):

 def process_stops(stops_on_trip):
 # rename stop_id_gtfs -> quay_id_gtfs
 stops_on_trip = stops_on_trip.rename(columns={"stop_id_gtfs":
"quay_id_gtfs"})

 stop_id_gtfs_list = []
 for index, entry in stops_on_trip.iterrows():
 match = station_df[station_df["parent_station_list_gtfs"]
== entry.quay_id_gtfs]

 if not match.empty:
 stop_id_gtfs_list.append(match.id_gtfs.iloc[0])
 else:
 stop_id_gtfs_list.append(None)

 # assign the new list as a column
 stops_on_trip["stop_id_gtfs"] = stop_id_gtfs_list

 return stops_on_trip

 # apply the function to each row's stops_on_trip DataFrame
 trip_merged_gtfs_df["stops_on_trip"] =
trip_merged_gtfs_df["stops_on_trip"].apply(process_stops)

 return trip_merged_gtfs_df

def start_trip_extraction_gtfs(country_name,gtfs_zip_path,
station_df):

 # load gtfs
 gtfs_list = load_gtfs(gtfs_zip_path)
 print("gtfs loading completed")

 # extract the trips
 trip_merged_gtfs_df = trip_extract_gtfs(gtfs_list,country_name)
 print("gtfs extraction completed")

 # For the norway GTFS data set the refered station within the
stops_on_trip are actually Quay not a Station therefore we need to
transform them to stations
 if country_name == "norway":
 # first we prepare the station_df: defining columns and
filtering unecessary data
 station_df =
station_df[["id_gtfs","parent_station_list_gtfs"]]
 station_df =
station_df[station_df["parent_station_list_gtfs"].notna()]

 # flaten the embedded Quay list to single entries
 station_df["parent_station_list_gtfs"] =
station_df["parent_station_list_gtfs"].apply(ast.literal_eval) #
safely convert string → list
 station_df = station_df.explode("parent_station_list_gtfs",
ignore_index=True)

 trip_merged_gtfs_df =
norway_Quay_to_StopPlace(trip_merged_gtfs_df, station_df)

 # saving the dataframe in order to use for the second part
2_compare
 trip_merged_gtfs_df.to_json(country_name + "_" +
'trip_gtfs_df.json',
 orient = "records", # row-wise list
of dicts
 lines=False, # single JSON array
 force_ascii=False) # # keep special

characters readable

 return trip_merged_gtfs_df

country_name = "norway"

gtfs_zip_path = "./data_sets/"+ country_name+"_gtfs.zip"

#trip_merged_gtfs_df =
start_trip_extraction_gtfs(country_name,gtfs_zip_path)

Netex extraction: SERVICE JOURNEY (Trips)
According to this: https://transmodel-cen.eu/wp-content/uploads/2024/06/2024-
June_DATA4PT_GTFS-NeTEx-Mapping_vf.pdf, the trips are supposed to be located in the
ServiceJourney section of the tree, however it appears that there is no guarantee that the
ServiceJourney or the link to the StopPlace is included into the Netex dataframe

Where is ServiceJourney not included?

• Austria

It appears that austria is a geo data only data set which does not include any journeys. However
the track line switches are included but no journey which could connect the track line switches
together to a stop in a journey. There is one austria data set which includes all ÖBB journeys:
https://data.mobilitaetsverbuende.at/de/data-sets

Where is the link not included?

• Luxenburg
• Norway

This should be where the information is stored in netex and gtfs

Concept GTFS file/field NeTEx element/attribute

Trip trips.txt (trip_id) <ServiceJourney> (with an id)

Stops in
trip

stop_times.txt (trip_id,
stop_id, stop_sequence)

<ServiceJourneyPattern> →
<StopPointInJourneyPattern> (ordered
list of stops)

Stop
definition
s

stops.txt (stop_id, lat/lon,
name)

<StopPlace> / <Quay> (defines location,
name, ID)

Route routes.txt (route_id) <Route>

Link trip
 route↔

trips.txt.route_id <ServiceJourney> references a
<JourneyPattern> which belongs to a
<Route>

source: https://transmodel-cen.eu/wp-content/uploads/2024/06/2024-June_DATA4PT_GTFS-
NeTEx-Mapping_vf.pdf

This is supposed to be the "standard" link from the Trip to StopPlace,
however it does not appear in any data set:

ServiceJourney (JourneyPatternRef) -> Service JourneyPattern
(ScheduledStopPointRef) -> ScheduledStopPoint (ScheduledStopPlaceRef) or
PassengerStopAssignment (ScheduledStopPlaceRef, StopPlaceRef) -> StopPlace

However this connection is not given in each single xml file

How do we solve this missing connection issue?

It appears that within the netex data standard, there is no common way to structure your data.
The structure for the xml file itself is the same thanks to the xml file standard however as we
learned the netex files appears in many ways. There is not only one xml file where all
information is stored, there can be multiple folders with different amounts of xml files. This
makes the netex standard the xml files more individual and matching to the specification and
purpose that multiple organizations at different levels could use netex exchange format.

https://transmodel-cen.eu/wp-content/uploads/2024/07/04.NeTEx-Framework-
WhitePaper_1.07.pdf

According to the netex handbook there might be another way how to get the connection from
ScheduledStopPoint to StopPlace via PassengerStopAssignment (source:
https://enturas.atlassian.net/wiki/spaces/PUBLIC/pages/728563886/network)

In the following we will search for each single xml file by following tags of the xml files:

1. ServiceJourney
2. ServiceJourneyPattern
3. ScheduledStopPoint
4. PassengerStopAssignment (a link between ScheduledStopPoint and StopPlace)
5. StopPlace (would not be necessary because we already extract this part) (Norway: Quay

within the Station dataframe)

to discover the structure of an xml file
def explore_element(elem, level=0):
 indent = " " * level
 attrs = ", ".join([f'{k}="{v}"' for k, v in elem.attrib.items()])
 tag_str = f"{elem.tag} [{attrs}]" if attrs else elem.tag
 print(f"{indent}{tag_str}: {elem.text.strip() if elem.text else
''}")
 for child in elem:
 explore_element(child, level + 1)

Extraction of each following elements:

1. ServiceJourney

def ServiceJourney_extraction_netex(xml_content, ns):
 ServiceJourney_list = [] # Collect dictionaries here

 # Parse the XML content
 tree = ET.parse(io.BytesIO(xml_content))
 root = tree.getroot()

 for ServiceJourney in root.findall('.//netex:ServiceJourney', ns):

 # reset all the variables in the case that no value was found
for some variables
 netex_service_id = TransportMode = StartPointInPatternRef =
EndPointInPatternRef = TrainNumberRef = TimetabledPassingTime_list =
None

 # extract ID
 netex_service_id = ServiceJourney.attrib.get('id')

 # extract the type of the journey (e.g. bus, train)
 TransportMode_elem =
ServiceJourney.find('netex:TransportMode', ns)
 if TransportMode_elem is not None:

 TransportMode = TransportMode_elem.text

 # extract the the start and end point of each journey
 noticeAssignments =
ServiceJourney.find('netex:noticeAssignments', ns)

 if noticeAssignments is not None:
 NoticeAssignment_b =
noticeAssignments.find('netex:NoticeAssignment', ns)

 StartPointInPatternRef = EndPointInPatternRef = None

 # extract the start and ending point of the journey
 if NoticeAssignment_b is not None:
 #start_elem =
NoticeAssignment_b.find('netex:StartPointInPatternRef', ns)
 #end_elem =
NoticeAssignment_b.find('netex:EndPointInPatternRef', ns)

 start_elem =
NoticeAssignment_b.find('./netex:StartPointInPatternRef', ns)
 end_elem =
NoticeAssignment_b.find('./netex:EndPointInPatternRef', ns)

 if start_elem is not None:
 StartPointInPatternRef =
start_elem.attrib.get('ref')
 if end_elem is not None:
 EndPointInPatternRef = end_elem.attrib.get('ref')

 # extract the train reference
 trainNumbers = ServiceJourney.find('netex:trainNumbers', ns)
 if trainNumbers is not None:

 TrainNumberRef_elem =
trainNumbers.find('netex:TrainNumberRef', ns)
 if TrainNumberRef_elem is not None:
 TrainNumberRef = TrainNumberRef_elem.attrib.get('ref')

 """
 Extraction of stops within the journey
 """

 # extract all stops of the journey
 passingTimes = ServiceJourney.find('netex:passingTimes', ns)
 if passingTimes is not None:

 # findall to get all entries for all TimetabledPassingTime
 TimetabledPassingTime =
passingTimes.findall('netex:TimetabledPassingTime', ns)

 # iterate through the list of passingtimes (stops on the
journey)

 # following information will be extracted
 # "DE::StopPointInJourneyPattern:321018_1_0::"
 # "14:33:00"

 # the results will be stored in a list of dictionaries
 TimetabledPassingTime_list = []
 for x in TimetabledPassingTime:

 # reset the values to ensure that no error appears if
one of these information is missing

 StopPointInJourneyPatternRef = ArrivalTime =
DepartureTime = None

 # extract the stop in the journey
 StopPointInJourneyPatternRef_elem =
x.find('netex:StopPointInJourneyPatternRef', ns)
 if StopPointInJourneyPatternRef_elem is not None:

 StopPointInJourneyPatternRef =
StopPointInJourneyPatternRef_elem.attrib.get('ref')

 # extract the arrival time of the stop
 ArrivalTime_elem = x.find('netex:ArrivalTime', ns)
 if ArrivalTime_elem is not None:

 ArrivalTime = str(ArrivalTime_elem.text)

 # extract the departure time of the stop
 DepartureTime_elem = x.find('netex:DepartureTime', ns)
 if DepartureTime_elem is not None:

 DepartureTime = str(DepartureTime_elem.text)

 # create a dictionary to store the values and add it
to the list

TimetabledPassingTime_list.append({"Stop":StopPointInJourneyPatternRef
,
 "Arrival_Time:":
ArrivalTime,
 "Departure_Time":
DepartureTime})

 # add structured data
 ServiceJourney_list.append({
 "id_service_netex": netex_service_id,
 "journey_type_netex":TransportMode, # luxenburg data set
includes this
 "start_point_netex":StartPointInPatternRef,
 "end_point_netex": EndPointInPatternRef,
 "journey_number_netex": TrainNumberRef,
 "TimetabledPassingTime_netex": TimetabledPassingTime_list
 })

 # return the list
 return ServiceJourney_list

2. ServiceJourneyPattern

It appears that in the Norway data set the ServiceJourneyPattern is named JourneyPattern that
is why this function needs an specific tag

def ServiceJourneyPattern_extraction_netex(xml_content, ns,tag_name):
 ServiceJourneyPattern_list = [] # Collect dictionaries here

 # Parse the XML content
 tree = ET.parse(io.BytesIO(xml_content))
 root = tree.getroot()

 for ServiceJourneyPattern in root.findall('.//netex:'+ tag_name ,
ns):

 # reset all the variables in the case that no value was found
for some variables
 ServiceJourneyPattern_id = RouteView = LineRef = DirectionRef
= StopPointInJourneyPattern_results = None

 # extract ID
 ServiceJourneyPattern_id =
ServiceJourneyPattern.attrib.get('id')

 # extract routeView
 RouteView_elem = ServiceJourneyPattern.find('netex:RouteView',
ns)
 if RouteView_elem is not None:

 RouteView = RouteView_elem.attrib.get('id')

 LineRef_elem = RouteView_elem.find('netex:LineRef', ns)

 if LineRef_elem is not None:
 LineRef = LineRef_elem.attrib.get('ref')

 # extract the direction if the journey
 DirectionRef_elem =
ServiceJourneyPattern.find('netex:DirectionRef', ns)

 if DirectionRef_elem is not None:

 DirectionRef = DirectionRef_elem.attrib.get('ref')

 # extract all stops of the journey
 pointsInSequence =
ServiceJourneyPattern.find('netex:pointsInSequence', ns)

 if pointsInSequence is not None:

 StopPointInJourneyPattern_list =
pointsInSequence.findall('netex:StopPointInJourneyPattern', ns)

 if StopPointInJourneyPattern_list is not None:

 # create dictionary to store results
 StopPointInJourneyPattern_results = []
 # iterate through the list of
StopPointInJourneyPattern
 for x in StopPointInJourneyPattern_list:

 # reset the values to None to avoid errors if the
information was not found
 ForBoarding = ScheduledStopPointRef =
StopPointInJourneyPattern_id = None

 # extract the id of the STopPoint in
JourneyPattern
 StopPointInJourneyPattern_id = x.attrib.get("id")

 # extract the id of ScheduledStopPointRef
 ScheduledStopPointRef_elem =
x.find('netex:ScheduledStopPointRef', ns)

 if ScheduledStopPointRef_elem is not None:
 ScheduledStopPointRef =
ScheduledStopPointRef_elem.attrib.get("ref")

 ForBoarding_elem = x.find('netex:ForBoarding', ns)

 if ForBoarding_elem is not None:
 ForBoarding = ForBoarding_elem.text

 # add new values to the list of in the dictionary

StopPointInJourneyPattern_results.append({"StopPointInJourneyPattern_i
d":StopPointInJourneyPattern_id,

"ScheduledStopPointRef": ScheduledStopPointRef,
 "Departure_Time":
ForBoarding})

 # add structured data
 ServiceJourneyPattern_list.append({
 "ServiceJourneyPattern_id": ServiceJourneyPattern_id,
 "RouteView": RouteView,
 "LineRef": LineRef,

 "DirectionRef": DirectionRef,

"StopPointInJourneyPattern":StopPointInJourneyPattern_results,
 })

 # return the list
 return ServiceJourneyPattern_list

3. ScheduledStopPoint

def ScheduledStopPoint_extraction_netex(xml_content, ns):
 ScheduledStopPoint_list = [] # Collect dictionaries here

 # Parse the XML content
 tree = ET.parse(io.BytesIO(xml_content))
 root = tree.getroot()

 for ScheduledStopPoint in
root.findall('.//netex:ScheduledStopPoint', ns):

 # reset all the variables in the case that no value was found
for some variables
 ScheduledStopPoint_id = Key = Value = keyList_results = None

 # extract ID
 ScheduledStopPoint_id = ScheduledStopPoint.attrib.get('id')

 # extract all stops of the journey
 keyList = ScheduledStopPoint.find('netex:keyList', ns)
 if keyList is not None:

 KeyValue_list = keyList.findall('netex:KeyValue', ns)

 if KeyValue_list is not None:

 keyList_results = []
 for x in KeyValue_list:

 Key_elem = x.find('netex:Key', ns)

 Value_elem = x.find('netex:Value', ns)

 if Value_elem is not None and Key_elem.text ==
"StopPlaceRef":

 Value = Value_elem.text

 Key = Key_elem.text

 keyList_results.append((Key, Value))

 # add structured data
 ScheduledStopPoint_list.append({
 "id_service_netex": ScheduledStopPoint_id,
 "StopPlaceRef":keyList_results
 })

 # return the list
 return ScheduledStopPoint_list

4. PassengerStopAssignment
PassengerStopAssignment extraction

def PassengerStopAssignment_extraction_netex(xml_content, ns):
 PassengerStopAssignment_list = [] # Collect dictionaries here

 # Parse the XML content
 tree = ET.parse(io.BytesIO(xml_content))
 root = tree.getroot()

 for PassengerStopAssignment in
root.findall('.//netex:PassengerStopAssignment', ns):

 # reset all the variables in the case that no value was found
for some variables
 PassengerStopAssignment_id = ScheduledStopPointRef =
StopPlaceRef = QuayRef = None

 # extract the id
 PassengerStopAssignment_id =
PassengerStopAssignment.attrib.get('id')

 # extract scheduledstoppoint reference
 ScheduledStopPointRef_elem =
PassengerStopAssignment.find('netex:ScheduledStopPointRef', ns)

 if ScheduledStopPointRef_elem is not None:
 ScheduledStopPointRef =
ScheduledStopPointRef_elem.attrib.get("ref")

 StopPlaceRef_elem =
PassengerStopAssignment.find('netex:StopPlaceRef', ns)

 if StopPlaceRef_elem is not None:
 StopPlaceRef = StopPlaceRef_elem.attrib.get("ref")

 QuayRef_elem = PassengerStopAssignment.find('netex:QuayRef',
ns)
 if QuayRef_elem is not None:

 QuayRef = QuayRef_elem.attrib.get("ref")

 # add structured data
 PassengerStopAssignment_list.append({
 "PassengerStopAssignment_id": PassengerStopAssignment_id,
 "ScheduledStopPointRef":ScheduledStopPointRef,
 "StopPlaceRef": StopPlaceRef,
 "QuayRef":QuayRef
 })

 # return the list
 return PassengerStopAssignment_list

Testing and extraction: Selection of Extraction Methode
def testing_extraction_netex(xml_files, ns):

 # here are the tags of our interest
 tags_of_interest = {
 "ServiceJourney": ".//netex:ServiceJourney",
 "ServiceJourneyPattern": ".//netex:ServiceJourneyPattern",
 "JourneyPattern": ".//netex:JourneyPattern",
 "ScheduledStopPoint": ".//netex:ScheduledStopPoint",
 "PassengerStopAssignment":".//netex:PassengerStopAssignment"
 }

 # store results in list
 ScheduledStopPoint_all_list = []
 ServiceJourney_all_list = []
 ServiceJourneyPattern_all_list = []
 PassengerStopAssignment_all_list = []

 # we iterate through the list of xml files
 for xml_name, xml_content in xml_files:
 tree = ET.parse(io.BytesIO(xml_content))

 root = tree.getroot()

 # then we iterate through the each single xml file
 # e.g.: tag name = ServiceJourney, path =
//netex:ServiceJourneyPattern"
 for tag_name, xpath in tags_of_interest.items():
 #print("current loop:", tag_name)
 # we use the findall function to test if on of the three
paths does found a match
 found_elements = root.findall(xpath, ns)

 if found_elements:
 #print(f"Found {len(found_elements)} {tag_name}
elements")

 # optional: explore only the first one to check
structure
 #explore_element(found_elements[0])

 # run the extraction functions (collect all)
 if tag_name == "ScheduledStopPoint":
 ScheduledStopPoint_list =
ScheduledStopPoint_extraction_netex(xml_content, ns)

 # after each extraction we will add the results to
list
 # Otherwise would the loop cause error because we
would try to add a result to a list which was not defined in the
current loop
 # because it would be in the next one for example

ScheduledStopPoint_all_list.append(ScheduledStopPoint_list)

 if tag_name == "ServiceJourney":
 ServiceJourney_list =
ServiceJourney_extraction_netex(xml_content, ns)

ServiceJourney_all_list.append(ServiceJourney_list)

 if tag_name == "ServiceJourneyPattern" or tag_name ==
"JourneyPattern":
 ServiceJourneyPattern_list =
ServiceJourneyPattern_extraction_netex(xml_content, ns, tag_name)

ServiceJourneyPattern_all_list.append(ServiceJourneyPattern_list)

 if tag_name == "PassengerStopAssignment":
 PassengerStopAssignment_list =
PassengerStopAssignment_extraction_netex(xml_content, ns)

PassengerStopAssignment_all_list.append(PassengerStopAssignment_list)

 # flaten each list in order to create a df

 ScheduledStopPoint_all_flat_list = [item for sublist in
ScheduledStopPoint_all_list for item in sublist]
 ServiceJourney_all_flat_list = [item for sublist in
ServiceJourney_all_list for item in sublist]
 ServiceJourneyPattern_all_flat_list = [item for sublist in
ServiceJourneyPattern_all_list for item in sublist]
 PassengerStopAssignment_all_flat_list = [item for sublist in
PassengerStopAssignment_all_list for item in sublist]

 ScheduledStopPoint_df =
pd.DataFrame(ScheduledStopPoint_all_flat_list)
 ServiceJourney_df = pd.DataFrame(ServiceJourney_all_flat_list)
 ServiceJourneyPattern_df =
pd.DataFrame(ServiceJourneyPattern_all_flat_list)
 PassengerStopAssignment_df =
pd.DataFrame(PassengerStopAssignment_all_flat_list)

 return ScheduledStopPoint_df, ServiceJourney_df,
ServiceJourneyPattern_df, PassengerStopAssignment_df

Merging Process of ServiceJourney and StopPlace
import ast

def
connecting_StopPointInJourneyPattern_to_StopPlace(ServiceJourney_df,
ServiceJourneyPattern_df, PassengerStopAssignment_df,
station_df ,country_name):

 # clean all values which does not have TimetabledPassingTime_netex
because this might causes error and takes process time
 ServiceJourney_df =
ServiceJourney_df[ServiceJourney_df["TimetabledPassingTime_netex"].not
na()]

 # sometimes we can filter the dataframe by its mode of transport
(column: journey_type_netex)
 # this is only the case if not all values in journey_type_netex
are None
 # Only then we will filter

 all_none = ServiceJourney_df["journey_type_netex"].isna().all()

 if all_none == False: # True if all values are NaN/None, False
otherwise

 ServiceJourney_df =
ServiceJourney_df[ServiceJourney_df["journey_type_netex"] == "rail"]

 """
 Following link exists between the ServiceJourney and StopPlace:
 ServiceJourney_df (ScheduledStopPointinJourney_ref) ->
ServiceJourneyPattern_df(ScheduledStopPoint_ref) ->
PassengerStopAssignment_df (StopPlaces_ref)
 this function will connect each StopPointInJourneyPattern_id with
an matching StopPlaceRef
 """

 if country_name != "norway":

 # first we create a dictionary where we store the connection
from StopPointInJourneyPattern to ScheduledStopPoint
 stop_point_to_scheduled = {}
 for index, row in ServiceJourneyPattern_df.iterrows():

 for stop_points in row["StopPointInJourneyPattern"]:
 # add the StopPointInJourneyPattern_id as the key and
the ScheduledStopPointRef as the value in the dictionary

stop_point_to_scheduled[stop_points.get("StopPointInJourneyPattern_id"
)] = stop_points.get("ScheduledStopPointRef")

 # second we filter the connection from ScheduledStopPoint to
StopPlace
 scheduled_to_stop_place =
PassengerStopAssignment_df.groupby("ScheduledStopPointRef")
["StopPlaceRef"].first().to_dict()

 # third we will iterate through each row of the
ServiceJourney_df in order to iterate over each nested list of
dictionaries or dict
 for index, row in ServiceJourney_df.iterrows():

 for stop_entry in row.TimetabledPassingTime_netex:

 # now we iterate through the stop_entry list or
dictionary
 # each trip can consist multiple stops on a journey or

sometimes only one

 ScheduledStopPointRef =
stop_point_to_scheduled.get(stop_entry["Stop"], None)

 # if the entry was found in the
stop_point_to_scheduled dictionary and contains a value
 if ScheduledStopPointRef is not None:
 StopPlaceRef =
scheduled_to_stop_place.get(ScheduledStopPointRef)

 if ScheduledStopPointRef is None:
 # if there is no value, None will be added
 StopPlaceRef = None

 stop_entry["StopPlaceRef"] = StopPlaceRef # modifies
in place

 if country_name == "norway":

 # first we prepare the station_df: defining columns and
filtering unecessary data
 station_df = station_df[["id_netex","Quay_ids_netex"]]
 station_df = station_df[station_df["Quay_ids_netex"].notna()]

 # flaten the embedded Quay list to single entries
 station_df["Quay_ids_netex"] =
station_df["Quay_ids_netex"].apply(ast.literal_eval) # safely convert
string → list
 station_df = station_df.explode("Quay_ids_netex",
ignore_index=True)

 # PassengerStopAssignment_df -> define the dataframe as well
 PassengerStopAssignment_df =
PassengerStopAssignment_df[["ScheduledStopPointRef","QuayRef"]]

 # merge the station_df and the PassengerStopAssignment_df by
their shared column: QuayRef/ Quay
 merge_1 = pd.merge(PassengerStopAssignment_df, station_df,
 left_on="QuayRef",
 right_on="Quay_ids_netex",
 how="inner")

 # define the ServiceJourneyPattern_df_test
 ServiceJourneyPattern_df =
ServiceJourneyPattern_df[["StopPointInJourneyPattern"]]

 # create a dataframe from all the StopPointInJourneyPattern id
and matching ScheduledStopPointRef within the ServiceJourneyPattern
 records = []

 for index, row in ServiceJourneyPattern_df.iterrows():
 for sp in row["StopPointInJourneyPattern"]:
 records.append({
 "StopPointInJourneyPattern_id":
sp.get("StopPointInJourneyPattern_id"),
 "ScheduledStopPointRef":
sp.get("ScheduledStopPointRef")
 })

 df_flat = pd.DataFrame(records)

 ServiceJourneyPattern_df =
df_flat.drop_duplicates(subset=['StopPointInJourneyPattern_id',
'ScheduledStopPointRef'])

 # merge now the ServiceJourneyPattern with the merged
station_df and PassangerStopAssignment (merge_1)
 merge_2 = pd.merge(merge_1, ServiceJourneyPattern_df,
 on="ScheduledStopPointRef",
 how="inner")

 # finally: we will now iterate through each nested list of
dictionaries and check if there is a StopPlaceRef for each
StopPointinJourneyPattern
 for index, row in ServiceJourney_df.iterrows():

 for Stop_list in row["TimetabledPassingTime_netex"]:

 # if the current StopPointInJourneyPattern id in the
merge_2 where the connection from StopPointInJourneyPattern to
StopPlace is safed
 if (merge_2["StopPointInJourneyPattern_id"] ==
Stop_list.get("Stop")).any() == True:
 # the relationship from StopPlace to
StopPointInJourneyPattern_id is 1:n
 Stop_list["StopPlaceRef"] =
merge_2[merge_2["StopPointInJourneyPattern_id"] ==
Stop_list.get("Stop")]["id_netex"].iloc[0]

 else:

 Stop_list["StopPlaceRef"] = None

 return ServiceJourney_df

Start Netex Journey extraction
def start_journey_extration_netex(netex_path, ns, country_name,
station_df):

 # load the netex files
 xml_files = load_netex(netex_path)
 print("netex load completed")
 # start the extraction from four different roots of each netex xml
tree
 ScheduledStopPoint_df, ServiceJourney_df,
ServiceJourneyPattern_df, PassengerStopAssignment_df =
testing_extraction_netex(xml_files, ns)
 print("netex extraction completed")
 #print("Length of ServiceJourney_df:",len(ServiceJourney_df))

 # link each topPointInJourneyPattern_id a each StopPlaceRef
 journey_netex_df =
connecting_StopPointInJourneyPattern_to_StopPlace(ServiceJourney_df,
ServiceJourneyPattern_df, PassengerStopAssignment_df,
station_df ,country_name)

 # saving the dataframe in order to use for the second part
2_compare
 journey_netex_df.to_json(country_name + "_" +
'journey_netex_df.json',
 orient = "records", # row-wise list
of dicts
 lines=False, # single JSON array
 force_ascii=False) # # keep special
characters readable

 print("netex file stored")

 return journey_netex_df

Start Extraction of trips/journey for netex and
gtfs
country_name = "luxembourg"

GTFS: Trip Extraction
gtfs_zip_path = "./data_sets/"+ country_name +"_gtfs.zip"

station_df = pd.read_csv(country_name +"_station_merged_df.csv",
index_col = 0)

trip_merged_gtfs_df =
start_trip_extraction_gtfs(country_name,gtfs_zip_path,station_df)

gtfs loading completed
gtfs extraction completed

Netex: Journey Extraction
Path to your outer zip file

if country_name != "austria":

 netex_path = "./data_sets/" + country_name + "_netex.zip"

elif country_name == "austria":

 netex_path = "./data_sets/" + country_name + "_journey_netex.zip"

station_df = pd.read_csv(country_name +"_station_merged_df.csv",
index_col = 0)

identify the structure of the NeTEx data
ns = {'netex': 'http://www.netex.org.uk/netex'}

start the whole process might take 7 - 10 minutes
journey_netex_df = start_journey_extration_netex(netex_path, ns,
country_name, station_df)

netex load completed
netex extraction completed
netex file stored

6.3 Notebook: Comparing

101

Compare: GTFS and Netex
• How much of the data is the same, which is not and how much is missing?

Compare Stations: Modul 1
install necessary packages

#!pip install upsetplot
#!pip install matplotlib-venn

Merge the three sources together: Netex, GTFS and Wiki Data
def merge_gtfs_netex_wiki(station_df, wiki_data_df, country_name):

 # if no merging with the wiki data set is possible then the
station_df is None

 merged_wiki_df = pd.DataFrame()

 """
 Austria: IBNR
 """

 if country_name == "austria":

 # clear the data sets before merging them (drop duplicates and
non values)
 # ordered_wiki_data_df =
ordered_wiki_data_df.drop_duplicates(subset=["lat_wiki","lon_wiki"])

 ordered_station_df =
station_df.drop_duplicates(subset=["EVA_Nr_netex"])
 # Drop duplicates and NaNs safely without inplace
modifications
 ordered_wiki_data_df =
(wiki_data_df.drop_duplicates(subset=["lat_wiki",
"lon_wiki"]).dropna(subset=["lat_wiki","lon_wiki","IBNR_wiki"]))

 # Step 2: Merge only on rows with valid IBNR/EVA numbers
 merged_wiki_df = pd.merge(
 ordered_station_df,
 ordered_wiki_data_df,
 left_on="EVA_Nr_netex",
 right_on="IBNR_wiki",

 how="outer"
)

 # drop all duplicates after the merge
 merged_wiki_df =
merged_wiki_df.drop_duplicates(subset=['EVA_Nr_netex',"IBNR_wiki"])

 """
 Luxembourg/ Norway: UIC Code
 """

 # check if we have the austrian country and whether the netex file
contains uic codes
 # If all colums are
 if country_name != "austria" and
station_df["UIC_Code_netex"].isna().all() == False:

 # clear the data sets before merging them (drop duplicates and
non values)
 # ordered_wiki_data_df =
ordered_wiki_data_df.drop_duplicates(subset=["lat_wiki","lon_wiki"])

 ordered_station_df =
station_df.drop_duplicates(subset=["UIC_Code_netex"])
 # Drop duplicates and NaNs safely without inplace
modifications
 ordered_wiki_data_df =
(wiki_data_df.drop_duplicates(subset=["lat_wiki",
"lon_wiki"]).dropna(subset=["lat_wiki","lon_wiki","UIC_wiki"]))

 # Step 2: Merge only on rows with valid IBNR/EVA numbers
 merged_wiki_df = pd.merge(
 ordered_station_df,
 ordered_wiki_data_df,
 left_on="UIC_Code_netex",
 right_on="UIC_wiki",
 how="outer"
)
 # drop all duplicates after the merge
 merged_wiki_df =
merged_wiki_df.drop_duplicates(subset=['UIC_Code_netex',"UIC_wiki"])

 #if country_name == "luxembourg":

 return (merged_wiki_df)

Visualize the difference between gtfs and netex and netex
and wiki data
Why can we not compare the wiki data with the gtfs data?

Austria, Luxembourg and Norway

• labeling issues: gtfs does not include a IBNR or UIC any other referenced ID for their
stations, therefore it is not possible to merge them together with the wiki data set
because of the missing key

• Netex contains an IBNR nummer (EVA_Nr_netex) which is really commen in wiki data for
austria train station therefore we can compare them

import matplotlib.pyplot as plt
from matplotlib_venn import venn2

def venn_plot(merged_df, first_key, second_key, country_name,
actual_station_number, first_name, second_name):

 # IBNR_wiki and EVA_Nr_netex or gtfs and netex
 first_df = set(merged_df[first_key].dropna())
 second_df = set(merged_df[second_key].dropna())

 plt.figure(figsize=(7, 7))
 venn = venn2([first_df, second_df], set_labels=(first_key,
second_key))

 # Change colors: light red, light green, light blue

 # check if there is even a set which can be colored otherwise
error will appear
 for region, color in {'10': 'lightcoral', '01': 'lightgreen',
'11': 'lightblue'}.items():
 patch = venn.get_patch_by_id(region)
 if patch: # only if this region exists
 patch.set_color(color)

 #venn.get_patch_by_id('10').set_color('lightcoral') # left
circle only
 #venn.get_patch_by_id('01').set_color('lightgreen') # right
circle only
 #venn.get_patch_by_id('11').set_color('lightblue') #
intersection

 # Add title with two lines
 plt.title(
 f"Overlap between the shares of {country_name}'s Railway
Stations {first_key} and {second_key}.\n"
 f"Actual number of stations: {actual_station_number}"

)

 # Save plot
 filename =
f"{country_name}_stations_{first_name}_{second_name}.png"
 plt.tight_layout()
 plt.savefig(filename, dpi=300, bbox_inches="tight")

 # Show plot
 plt.show()
 plt.close()

 # create dataframe for non matched values
 # Rows with NeTEx ID only
 wiki_only = merged_df[merged_df[first_key].notna() &
merged_df[second_key].isna()]

 # Rows with GTFS ID only
 netex_only = merged_df[merged_df[second_key].notna() &
merged_df[first_key].isna()]

 # Combine them
 not_shared_df = pd.concat([wiki_only, netex_only])

 return not_shared_df

Compare the stations
def compare_station_gtfs_netex_wiki(station_df, wiki_data_df,
 first_column_a, second_column_a,
 first_column_b, second_column_b,
 country_name,
actual_station_number):

 # merge the three sources together
 # if it was succesfull: merged_wiki_df is not empty
 # otherewise it is
 merged_wiki_df = merge_gtfs_netex_wiki(station_df,
wiki_data_df,country_name)

 # if the merged wiki is empty, we have no commen key between netex
and wiki
 if merged_wiki_df.empty == False:

 """
 Plot: Venn
 """
 # plot the difference via venn plot

 # difference wiki data and netex: a
 first_name_a = country_name + "_" + first_column_a
 second_name_a = country_name + "_" + second_column_a

 not_shared_wiki_netex_df = venn_plot(merged_wiki_df,
 first_column_a,
second_column_a, # column to compare (first wiki, second netex)
 country_name,
 actual_station_number, #
actual number

first_name_a,second_name_a)

 # saving the dataframe in order to use for the third part
3_data_quality
 merged_wiki_df.to_csv(country_name + "_station_+_wiki_df.csv")

 print(" ")

 # difference between netex and gtfs: b
 first_name_b = country_name + "_" + first_column_b
 second_name_b = country_name + "_" + second_column_b

 not_shared_netex_gtfs_df = venn_plot(station_df,
 first_column_b,
second_column_b,
 country_name, # column to
compare (netex and gtfs)
 actual_station_number, #
actual number of stations
 first_name_b,second_name_b)

 # we can only return a list of not matching values if we can merge
the wiki data with the netex or gtfs data
 if merged_wiki_df.empty == False:

 return (merged_wiki_df, not_shared_wiki_netex_df,
not_shared_netex_gtfs_df)

 else:
 not_shared_wiki_netex_df = None
 return (merged_wiki_df, not_shared_wiki_netex_df,
not_shared_netex_gtfs_df)

Not shared station mapping
import folium

def mapping_not_shared_stations(not_shared_netex_gtfs_df):
 # center map around the mean of coordinates
 center_lat = not_shared_netex_gtfs_df[["lat_gtfs",
"lat_netex"]].stack().mean()
 center_lon = not_shared_netex_gtfs_df[["lon_gtfs",
"lon_netex"]].stack().mean()

 # create base map
 m = folium.Map(location=[center_lat, center_lon], zoom_start=6)

 # add GTFS stops (blue)
 for _, row in not_shared_netex_gtfs_df.iterrows():
 if not pd.isna(row["lat_gtfs"]) and not
pd.isna(row["lon_gtfs"]):
 folium.CircleMarker(
 location=[row["lat_gtfs"], row["lon_gtfs"]],
 radius=5,
 color="blue",
 fill=True,
 fill_color="blue",
 popup=f"GTFS: {row['name_gtfs']} ({row['id_gtfs']})"
).add_to(m)

 # add NeTEx stops (red)
 for _, row in not_shared_netex_gtfs_df.iterrows():
 if not pd.isna(row["lat_netex"]) and not
pd.isna(row["lon_netex"]):
 folium.CircleMarker(
 location=[row["lat_netex"], row["lon_netex"]],
 radius=5,
 color="red",
 fill=True,
 fill_color="red",
 popup=f"NeTEx: {row['name_netex']}
({row['id_netex']})"
).add_to(m)

 # save map
 m.save(country_name+"not_shared_map.html")

Start the Station comparison
country_name = "austria"

norway 400
luxembourg 70
austria 1031

actual_station_number = 1031

load the merged gtfs and netex data set from 1_Extraction
import pandas as pd

station_df = pd.read_csv(country_name
+"_station_merged_df.csv",index_col = 0, low_memory=False)

load the wiki data for the matching country from
1.1_Wiki_Data_Querry
wiki_data_df = pd.read_csv(country_name+"_wiki_data_df.csv",index_col
= 0)

IBNR
if country_name == "austria":

 merged_wiki_df, not_shared_wiki_netex_df, not_shared_netex_gtfs_df
= compare_station_gtfs_netex_wiki(station_df, wiki_data_df,

"IBNR_wiki","EVA_Nr_netex",

"id_netex", "id_gtfs",

country_name, actual_station_number)
IIC Code
if country_name != "austria":
 merged_wiki_df, not_shared_wiki_netex_df, not_shared_netex_gtfs_df
= compare_station_gtfs_netex_wiki(station_df, wiki_data_df,

"UIC_wiki","UIC_Code_netex",

"id_netex", "id_gtfs",

country_name, actual_station_number)
map the not shared stations
mapping_not_shared_stations(not_shared_netex_gtfs_df)

not_shared_netex_gtfs_df[['id_gtfs',"name_gtfs",
'id_netex',"name_netex","lat_netex","lon_netex","lat_gtfs","lon_gtfs"]
]

not_shared_wiki_netex_df[['UIC_wiki',"name_wiki",
'UIC_Code_netex',"name_netex"]]

Module 2: Analyze the trips
Questions:

1. How many stops on a trip are assigned to a stop id?
a. Is the stop assigned with an id from the matching data set?

import pandas as pd

How many stops on a trip are assigned to a stop id?
def facts_about_gtfs_trips(trips_gtfs_df, station_df, country_name):

 amount_of_stops_per_trip_list = []
 amount_of_stops_with_ids_per_trip_list = []

 # iterate through the rows
 for index, row in trips_gtfs_df.iterrows():
 # we select only the stops_on_trip column
 stop_list = row["stops_on_trip"]

 amount_of_stops_per_trip = 0
 amount_of_stops_with_ids_per_trip = 0

 # iterate through the values of this column "stops_on_trip"
 for stop in stop_list:

 stop_id = stop.get("stop_id_gtfs")
 #print(stop_id)
 # each trip is iterated

 # Only if the have an ID, we test if the id is also into
the station df
 if stop_id != None:

 """
 Austria
 Each Country has its own ids:
 ID at:43:1322:0:1
 StopPlace ID: 43:1322
 """
 # if the len of the filtered station_df is greater
than 0: we have a match
 if station_df[station_df["id_gtfs"] ==

(":".join(str(stop_id).split(":")[:3]))].empty == False and
country_name == "austria":
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip
 amount_of_stops_with_ids_per_trip = 1 +
amount_of_stops_with_ids_per_trip
 #print("find:",amount_of_stops_per_trip,
amount_of_stops_with_ids_per_trip)

 # if the len of the filtered station_df is 0: we
have we do not have a match and will add another stop
 if station_df[station_df["id_gtfs"] ==
(":".join(str(stop_id).split(":")[:3]))].empty == True and
country_name == "austria":
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip

 """
 Others: Luxembourg, Norway
 """

 # if the len of the filtered station_df is greater
than 0: we have a match
 if station_df[station_df["id_gtfs"] == stop_id].empty
== False and country_name != "austria":
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip
 amount_of_stops_with_ids_per_trip = 1 +
amount_of_stops_with_ids_per_trip
 #print("find:",amount_of_stops_per_trip,
amount_of_stops_with_ids_per_trip)

 # if the len of the filtered station_df is
0: we have we do not have a match and will add another stop
 if station_df[station_df["id_gtfs"] == stop_id].empty
== True and country_name != "austria":
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip

 # if the second loop is over, we will add the numbers to the
list
 amount_of_stops_per_trip_list.append(amount_of_stops_per_trip)

amount_of_stops_with_ids_per_trip_list.append(amount_of_stops_with_ids
_per_trip)

 #break

 # if the loop is finsihed, we will add the list as a column to the
dataframe: trips_gtfs_df

 trips_gtfs_df["stops_per_trip"] = amount_of_stops_per_trip_list
 trips_gtfs_df["stops_per_trip_with_id"] =
amount_of_stops_with_ids_per_trip_list

 return trips_gtfs_df

we use the same function as we used in the extraction modul:
1_Extraction

import re

def extract_digit_number(id_str, length):

 if isinstance(id_str, int):
 id_str = str(id_str)

 pattern = rf'(\d{{{length}}})' # Removed \b to allow matches next
to colons, underscores, etc.
 match = re.search(pattern, str(id_str))

 return int(match.group(1)) if match is not None else None

import pandas as pd
def facts_about_netex_journey(journey_netex_df,station_df,
country_name):

 """
 Luxembourg Label issue: as already known for the extraction the
netex data StopPlace id appears as "DE::StopPlace:200101007_CdT::"
 For the extraction and merging process with the gtfs data I
reduced this id by extracted the number of the string like this
200101007

 Therefore we need to do the same for her as well as we did in the
ectraction part

 We assume here that the ids will always have the same length
 """

 if country_name == "luxembourg":
 # we will filter the dataset for columns which have a netex id
and choose the first entry ofter position to calculate the length of
the first entry
 length =
len(str(station_df[station_df["id_netex"].notna()].iloc[0]
["id_netex"]).replace(".0",""))

 # How many stops on a trip are assigned to a stop id?
 #def facts_about_netex_journeys(journey_netex_df):

 amount_of_stops_per_trip_list = []
 amount_of_stops_with_ids_per_trip_list = []

 # iterate through the rows
 for index, row in journey_netex_df.iterrows():
 # we select only the stops_on_trip column
 stop_list = row["TimetabledPassingTime_netex"]

 # reset each counter before each iteration of a trip
 amount_of_stops_per_trip = 0
 amount_of_stops_with_ids_per_trip = 0

 # iterate through the values of this column
 for stop in stop_list:

 StopPlaceRef = stop["StopPlaceRef"]

 # what kind of country Luxembourg as special case with
different stop ids
 if country_name == "luxembourg":
 StopPlaceRef = extract_digit_number(StopPlaceRef,
length)

 # the Stop on the trip has no stopplace reference
 if StopPlaceRef == None:
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip

 # a StopPlaceRef exists
 if StopPlaceRef != None:

 """Luxembourg"""
 # if a StopPlaceRef contains in the station_df
 if station_df[station_df["id_netex"] ==
StopPlaceRef].empty == False and country_name == "luxembourg":
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip
 amount_of_stops_with_ids_per_trip = 1 +
amount_of_stops_with_ids_per_trip

 # if the StopPlaceRef does not contain within the
station_df, we will add only a another stop
 if station_df[station_df["id_netex"] ==
StopPlaceRef].empty == True and country_name == "luxembourg":
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip

 """Others"""

 # if a StopPlaceRef contains in the station_df
 if station_df[station_df["id_netex"] ==
StopPlaceRef].empty == False and country_name != "luxembourg":
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip
 amount_of_stops_with_ids_per_trip = 1 +
amount_of_stops_with_ids_per_trip

 # if the StopPlaceRef does not contain within the
station_df, we will add only a another stop
 if station_df[station_df["id_netex"] ==
StopPlaceRef].empty == True and country_name != "luxembourg":
 amount_of_stops_per_trip = 1 +
amount_of_stops_per_trip

 # add the values per trip (per row) to the lists
 amount_of_stops_per_trip_list.append(amount_of_stops_per_trip)

amount_of_stops_with_ids_per_trip_list.append(amount_of_stops_with_ids
_per_trip)

 #break

 # if the loop is finsihed, we will add the list as a column to the
dataframe: trips_gtfs_df
 journey_netex_df["stops_per_trip"] = amount_of_stops_per_trip_list
 journey_netex_df["stops_per_trip_with_id"] =
amount_of_stops_with_ids_per_trip_list

 return journey_netex_df

import matplotlib.pyplot as plt

stops_per_trip, stops_per_trip_with_id, id_service_netex
journey_netex_df
def bar_plot_trips_with_id_or_without(dataset, trip_id, country_name,
gtfs_or_netex):

 # stops_per_trip, stops_per_trip_with_id, id_service_netex
 # journey_netex_df

 x = range(len(dataset)) # positions for bars

 plt.figure(figsize=(24, 12))

 # Background bars (stops_per_trip)
 plt.bar(

 x,
 dataset["stops_per_trip"],
 width=0.8,
 color="lightgreen",
 label="Stops per trip"
)

 # Foreground bars (stops_per_trip_with_id)
 plt.bar(
 x,
 dataset["stops_per_trip_with_id"],
 width=0.5,
 color="steelblue",
 label="Stops per Trip with ID",
 zorder=3
)

 # X-axis labels (trip_id_gtfs)
 #plt.xticks(x, journey_netex_df[trip_id], rotation=90)

 plt.ylabel("Number of stops", fontsize=24)
 plt.xlabel("Number of Trips", fontsize=24)
 plt.title(gtfs_or_netex + ":" + " Stops per trip vs. stops with ID
within the "+ country_name + " data set", fontsize=24)
 plt.legend(loc="upper right", fontsize=24)
 plt.tight_layout()

 filename =
f"{country_name}_{gtfs_or_netex}_ID_comparison_plot.png"
 plt.savefig(filename, dpi=300, bbox_inches="tight")

 plt.show()
 plt.close() # closes the figure so memory isn’t clogged

Start the Trip Analysis
def start_trip_analysis(journey_netex_df, trips_gtfs_df, station_df,
country_name):

 # this might take a while ca. 10 min

 # caculate the stops
 journey_netex_df = facts_about_netex_journey(journey_netex_df,
station_df,country_name)

 trips_gtfs_df = facts_about_gtfs_trips(trips_gtfs_df,
station_df,country_name)

 print("Stops count completed")

 # plot the results

 bar_plot_trips_with_id_or_without(trips_gtfs_df, "trip_id_gtfs",
country_name,"GTFS")

 bar_plot_trips_with_id_or_without(journey_netex_df,
"id_service_netex", country_name,"NeTex")

 return journey_netex_df, trips_gtfs_df

import pandas as pd
import os

country_name = "norway"
loading the two data sets from the extraction
journey_netex_df = pd.read_json(country_name
+"_journey_netex_df.json", orient = "records")

load the wiki data for the matching country from
1.1_Wiki_Data_Querry
trips_gtfs_df = pd.read_json(country_name +"_trip_gtfs_df.json",orient
= "records")

load the reference data frame for the stations
station_df = pd.read_csv(country_name
+"_station_merged_df.csv",index_col = 0)

journey_netex_df, trips_gtfs_df =
start_trip_analysis(journey_netex_df, trips_gtfs_df, station_df,
country_name)

How many stations of the trips are missing?
print("Trips in total:",len(trips_gtfs_df))
print("Trips which were not successfully
refered:",len(trips_gtfs_df[trips_gtfs_df["stops_per_trip"] !=
trips_gtfs_df["stops_per_trip_with_id"]]))

not_succesfully_refered_trips =
trips_gtfs_df[trips_gtfs_df["stops_per_trip"] !=
trips_gtfs_df["stops_per_trip_with_id"]]

print("Avereage missing stops per
trip",not_succesfully_refered_trips["stops_per_trip_with_id"].mean(),"
from",len(not_succesfully_refered_trips),"trips
and",not_succesfully_refered_trips["stops_per_trip"].mean(),"stops on

average")
print("Median of Missing stops per
trip",not_succesfully_refered_trips["stops_per_trip_with_id"].median()
,"from",len(not_succesfully_refered_trips),"trips
and",not_succesfully_refered_trips["stops_per_trip"].median(),"stops
on median")

Trips in total: 47439
Trips which were not successfully refered: 0
Avereage missing stops per trip nan from 0 trips and nan stops on
average
Median of Missing stops per trip nan from 0 trips and nan stops on
median

print("Journeys in total:",len(journey_netex_df))
print("Journeys which were not successfully
refered:",len(journey_netex_df[journey_netex_df["stops_per_trip"] !=
journey_netex_df["stops_per_trip_with_id"]]))

not_succesfully_refered_journey =
journey_netex_df[journey_netex_df["stops_per_trip"] !=
journey_netex_df["stops_per_trip_with_id"]]

print("Avereage missing stops per
Journey",not_succesfully_refered_journey["stops_per_trip_with_id"].mea
n(),"from",len(not_succesfully_refered_journey),"Journey
and",not_succesfully_refered_journey["stops_per_trip"].mean(),"stops
on average")
print("Median of Missing stops per
Journey",not_succesfully_refered_journey["stops_per_trip_with_id"].med
ian(),"from",len(not_succesfully_refered_journey),"Journey
and",not_succesfully_refered_journey["stops_per_trip"].median(),"stops
on median")

Journeys in total: 26852
Journeys which were not successfully refered: 0
Avereage missing stops per Journey nan from 0 Journey and nan stops on
average
Median of Missing stops per Journey nan from 0 Journey and nan stops
on median

Results: Overview
load the wiki data for the matching country from
1.1_Wiki_Data_Querry
wiki_data_df = pd.read_csv("luxembourg"+"_wiki_data_df.csv",index_col
= 0)

print(len(wiki_data_df[wiki_data_df["IBNR_wiki"].notna()]),
 len(wiki_data_df[wiki_data_df["UIC_wiki"].notna()]),
 len(wiki_data_df[wiki_data_df["IFOPT_wiki"].notna()]))

37 50 0

results = {"Applications": ["Extraction: Stops","Extraction: Trips",
"Wiki data", "Compare: stations", "Compare: Info trips","Data Quality:
Distance","Wiki IBNR entries","Wiki UIC entries","Wiki IFOPT
entries"],
 "Austria": [True, True, True, True, True, True,
1210,142,0],
 "Norway": [True, True, True, True, True, True, 151, 420,
0],
 "Luxembourg": [True, True, True, "Only gtfs and netex",
True, False,37 ,50 ,0],

 }

results_df = pd.DataFrame(results)

results_df

6.4 Notebook: Data Quality

118

Data Quality:
• Are the coordinates provide by netex or gtfs correct compared to a third source

#!pip install -U kaleido
#!pip install pyarrow
#!pip install plotly

Calculate distance
calculate the distance between both coordinates by using the
Haversine formula
https://www.movable-type.co.uk/scripts/latlong.html#:~:text=This
%20uses%20the%20'haversine'%20formula,where:

from math import sin, cos, sqrt, atan2, radians

def distance_between_coordinates(lat1, lon1, lat2, lon2):
 R = 6371 # Radius of Earth in kilometers

 lat1_rad = radians(lat1)
 lon1_rad = radians(lon1)
 lat2_rad = radians(lat2)
 lon2_rad = radians(lon2)

 dlon = lon2_rad - lon1_rad
 dlat = lat2_rad - lat1_rad

 a = sin(dlat / 2)**2 + cos(lat1_rad) * cos(lat2_rad) * sin(dlon /
2)**2
 c = 2 * atan2(sqrt(a), sqrt(1 - a))

 distance = R * c
 return distance

Plot the distance from gtfs and netex and Wiki
import numpy as np
import matplotlib.pyplot as plt

def distance_wiki_netex_gtfs_barchart(output_df, station_name,
country_name):
 x = np.arange(len(output_df[station_name])) # numeric x-axis
positions
 width = 0.4 # width of each bar

 plt.figure(figsize=(32, 16))

 # Bars for Netex and GTFS

 # if the gtfs columns does contain non values -> then we only plot
the netex column
 if output_df["distancen_between_gtfs_to"].isna().all() == True:
 plt.bar(x - width/2, output_df["distancen_between_netex_to"],
width, label="Netex", alpha=0.7)

 # the gtfs columns does not contain non values
 if output_df["distancen_between_gtfs_to"].isna().all() == False:
 plt.bar(x + width/2, output_df["distancen_between_gtfs_to"],
width, label="GTFS", alpha=0.7)
 plt.bar(x - width/2, output_df["distancen_between_netex_to"],
width, label="Netex", alpha=0.7)

 plt.title("Distance Comparison per Station between Wiki Data
Station: "+ country_name, fontsize=40)
 plt.xlabel("Stations",fontsize=40)
 plt.ylabel("Distance in meters to the wiki coordinates",
fontsize=40)
 plt.legend(fontsize=40)

 # Hide x labels (too many stations)
 plt.xticks([], [])

 plt.tight_layout()
 plt.grid(axis="y", linestyle="--", alpha=0.7)
 plt.savefig(country_name +"_station_distances_barchart.png",
dpi=300)
 plt.show()
 plt.close()

Plot the distance from gtfs and netex
import numpy as np
import matplotlib.pyplot as plt

def distance_gtfs_netex(output_df, station_name, country_name):
 x = np.arange(len(output_df[station_name])) # numeric x-axis
positions
 width = 0.4 # width of each bar

 plt.figure(figsize=(32, 16))

 # Bars for Netex and GTFS

 plt.bar(x - width/2, output_df["distancen_between_netex_to_gtfs"],
width, label="Distance GTFS and Netex", alpha=0.7)

 plt.title("Distance Comparison per Station between NeTex and GTFS:
"+ country_name, fontsize=40)
 plt.xlabel("Stations",fontsize=40)
 plt.ylabel("Distance in meters", fontsize=40)
 plt.legend(fontsize=40)

 # Hide x labels (too many stations)
 plt.xticks([], [])

 plt.tight_layout()
 plt.grid(axis="y", linestyle="--", alpha=0.7)
 plt.savefig(country_name
+"_station_distances_gtfs_netex_barchart.png", dpi=300)
 plt.show()
 plt.close()

Calculate the distancen between GTFS and Netex and Wiki
import matplotlib.pyplot as plt
import plotly.express as px

def distance_calculator(input_df, lat_name_third_source,
lon_name_third_source, station_name, country_name):

 # create a list to store the results
 distance_list_gtfs = []
 distance_list_netex = []
 distance_list_netex_gtfs = []

 # iterate through the merged dataframe to calculate each distance
between the two coordinates
 for index, row in input_df.iterrows():

 # calculate the distance between each coordinate pair
 distance_in_meter_gtfs =
distance_between_coordinates(row["lat_gtfs"], row["lon_gtfs"],
row[lat_name_third_source], row[lon_name_third_source]) *1000
 distance_in_meter_netex =
distance_between_coordinates(row["lat_netex"], row["lon_netex"],
row[lat_name_third_source], row[lon_name_third_source]) *1000
 distance_in_meter_gtfs_netex =
distance_between_coordinates(row["lat_netex"], row["lon_netex"],
row["lat_gtfs"], row["lon_gtfs"]) *1000

 # add values to list
 distance_list_gtfs.append(distance_in_meter_gtfs)
 distance_list_netex.append(distance_in_meter_netex)
 distance_list_netex_gtfs.append(distance_in_meter_gtfs_netex)

 # create a new column in a new dataframe input
 input_df.loc[:, "distancen_between_gtfs_to"] = distance_list_gtfs
 input_df.loc[:, "distancen_between_netex_to"] =
distance_list_netex
 input_df.loc[:, "distancen_between_netex_to_gtfs"] =
distance_list_netex_gtfs

 # filter all NaN values for the gtfs OR the netex
 # why do we use "or" instead of "and": because if we would use an
"and" we would filter all values because both conditions must be true
 output_df = input_df[input_df["distancen_between_gtfs_to"].notna()
| input_df["distancen_between_netex_to"].notna()]

 print("number of matches between netex, gtfs and third source by
their coordinates:", len(output_df))

 # print the result as an interactive plot
 df_melted = output_df.melt(id_vars= station_name,
 value_vars=['distancen_between_netex_to',
'distancen_between_gtfs_to'],
 var_name='Distance Type', value_name='Distance
in meter')

 fig = px.line(df_melted, x= station_name, y='Distance in meter',
color='Distance Type',
 title='Distance Comparison per Station')

 fig.update_layout(xaxis_tickangle=1000, xaxis_tickfont_size=9)
 fig.show()

 # also create a bar chart
 distance_wiki_netex_gtfs_barchart(output_df, station_name,
country_name)

 # create a plot for the distance between netex and gtfs
 distance_gtfs_netex(output_df, station_name, country_name)

 # calculate the mean difference between the stations
 mean_netex = output_df["distancen_between_netex_to"].mean()
 mean_gtfs = output_df["distancen_between_gtfs_to"].mean()

 print("avearage distance netex to third source:",mean_netex)

 print("avearage distance gtfs to third source:",mean_gtfs)

 # return the df back
 return (output_df, mean_netex, mean_gtfs)

Mapping the stations
import folium

map the stations
def mapping_far_stations(stations_over_400):

 # center map around the mean of coordinates
 center_lat = stations_over_400[["lat_gtfs",
"lat_netex","lat_wiki"]].stack().mean()
 center_lon = stations_over_400[["lon_gtfs",
"lon_netex","lon_wiki"]].stack().mean()

 # create base map
 m = folium.Map(location=[center_lat, center_lon], zoom_start=6)

 # add GTFS stops (blue)
 for _, row in stations_over_400.iterrows():
 if not pd.isna(row["lat_gtfs"]) and not
pd.isna(row["lon_gtfs"]):
 folium.CircleMarker(
 location=[row["lat_gtfs"], row["lon_gtfs"]],
 radius=5,
 color="blue",
 fill=True,
 fill_color="blue",
 popup=f"GTFS: {row['name_gtfs']} ({row['id_gtfs']})"
).add_to(m)

 # add NeTEx stops (red)
 for _, row in stations_over_400.iterrows():
 if not pd.isna(row["lat_netex"]) and not
pd.isna(row["lon_netex"]):
 folium.CircleMarker(
 location=[row["lat_netex"], row["lon_netex"]],
 radius=5,
 color="red",
 fill=True,
 fill_color="red",
 popup=f"NeTEx: {row['name_netex']}
({row['id_netex']})"
).add_to(m)

 # add wiki stops (red)
 for _, row in stations_over_400.iterrows():
 if not pd.isna(row["lat_wiki"]) and not
pd.isna(row["lon_wiki"]):
 folium.CircleMarker(
 location=[row["lat_wiki"], row["lon_wiki"]],
 radius=5,
 color="green",
 fill=True,
 fill_color="red",
 popup=f"WIKI: {row['name_wiki']})"
).add_to(m)

 # save map
 m.save(country_name+"_distance_map.html")

load the merged gtfs and netex data set from 2_Compare
import pandas as pd

country_name = "norway"

station_wiki_df = pd.read_csv(country_name +
"_station_+_wiki_df.csv",index_col = 0)

merged_wiki_distance_df, mean_netex, mean_gtfs =
distance_calculator(station_wiki_df ,"lat_wiki",
"lon_wiki","name_wiki", country_name)

number of matches between netex, gtfs and third source by their
coordinates: 140

{"config":{"plotlyServerURL":"https://plot.ly"},"data":
[{"hovertemplate":"Distance
Type=distancen_between_netex_to
name_wiki=%{x}
Distance in
meter=%{y}<extra></extra>","legendgroup":"distancen_between_netex_to",
"line":{"color":"#636efa","dash":"solid"},"marker":
{"symbol":"circle"},"mode":"lines","name":"distancen_between_netex_to"
,"orientation":"v","showlegend":true,"type":"scatter","x":["Oslo
Sentralstasjon","Bryn Station","Grorud Station","Høybråten
Station","Fjellhamar Station","Strømmen Station","Lillestrøm
station","Leirsund Station","Frogner Station","Bahnhof
Kløfta","Jessheim Station","Hauerseter Station","Dal
Station","Eidsvoll station","Nordstrand station","Ljan
station","Hauketo station","Kolbotn station","Myrvoll
station","Oppegård station","Langhus station","Ås station","Vestby
station","Kambo station","Moss station","Rygge station","Råde
station","Fredrikstad station","Bahnhof Sarpsborg","Kråkstad

station","Skotbu station","Tomter station","Knapstad
station","Spydeberg station","Askim station","Slitu station","Mysen
station","Eidsberg station","Heia station","Rakkestad
station","Bahnhof Halden","Kjelsås Station","Monsrud Station","Lunner
Station","Gjøvik Station","Tangen Station","Stange Station","Bahnhof
Hamar","Brumunddal Station","Moelv Station","Lillehammer
Station","Ringebu station","Vinstra Station","Kvam Station","Otta
Station","Dovre Station","Dombås Station","Lesja Station","Lesjaverk
Station","Bjorli Station","Ilseng Station","Løten Station","Elverum
station","Rena Station","Steinvik Station","Opphus Station","Evenstad
Station","Stai Station","Koppang Station","Atna Station","Hanestad
Station","Bellingmo Station","Os Station","Bahnhof Røros","Bahnhof
Glåmos","Reitan Station","Bahnhof Ålen","Singsås Station","Hjerkinn
Station","Kongsvoll Station","Oppdal Station","Bahnhof Støren","Hovin
Station","Lundamo Station","Ler Station","Kvål Station","Melhus
Station","Heimdal station","Selsbakk station","Lademoen
station","Leangen station","Bahnhof Hell","Stjørdal station","Bahnhof
Røra","Drevvatn station","Bahnhof Bodø","Skøyen station","Lysaker
station","Stabekk station","Høvik station","Sandvika
station","Billingstad station","Hvalstad station","Asker
station","Heggedal station","Spikkestad station","Brakerøya
station","Drammen station","Holmestrand station","Hokksund
station","Vestfossen station","Darbu station","Kongsberg
station","Nordagutu station","Bø station","Neslandsvatn
station","Bahnhof Kristiansand","Bahnhof Flaten","Bøylestad
Station","Froland Station","Bråstad
Station","Stoa","Arendal","Marnardal station","Forus station","Hinna
station","Haugastøl","Bahnhof Finse","Bahnhof Myrdal","Upsete
station","Voss station","Bulken station","Evanger
station","Bolstadøyri station","Bahnhof Dale","Stanghelle
station","Vaksdal station","Trengereid station","Bahnhof
Bergen","Bahnhof Flåm"],"xaxis":"x","y":
{"bdata":"h+9EKEuBM0DMFP7lHgwzQCwzMA2LGi1Ahy9xQyR3CEDZzEF5gUYgQIbtqsA5
vVVARbqyOcZ2NkC8OdOR9fY5QMIEdEH7dDxAkK0a0KcxUEBM2/9Y9stLQC9gECtxHUpA0L
li2XVCS0DcTjECmtFGQPlBxJLBPjNAQ232az37RUBvE8phqelMQGDBGFk+/
jJAdZrHPfSXC0AC52XVuR1+QAYau5lXSFBAdfLA2Pk5I0AJ1nc7+sgiQFvFkXWL6EJANxS
0zRaKLEAUyfi3a5o6QESOP6ltm0FArCliaRxbOkAcGZa+6eQxQHSY4pVsiEJAvWPruYhiX
ECjQXfvjXcwQFvz7dL35WlAerK8jW0lQECL21Vm4/ExQAg+Es1mQD9AtEjAaJ/
NTkCPVU3GoJ5TQNzXUDHRslJAvTRQRAfqNEAFGC5oEkgyQITNTIX35UVALHtoj1eFl0BVp
OXO3S9AQJ7j9mxxFxNAN32eEu1EEUCh6EL+tnpbQPNE6zLbiFpAkkhvR4KWKEDTrDp1E0B
WQOnAJEqyiE5AiWKf7n65QEDKEGzSvBw8QAB/8++5JRhAGNUy/
8StJEBtvGZPsrtOQPxcaFLFMFJAIW/
OpaxDMUBcCG9Q0JhCQJw9hhhdNktAYEQ+vYlPPkDzTkT/
vIJiQDuOkTENl0ZAimTOJY30Q0Aim/
hvDoRFQJnV0bvh7SdAmLQuAtHfNUAATFwuDbM+QKP/
QsAwuTxA+6ZGRi96UEDtUwjtEJooQOmPMGtASTZATwGIRCsxOECzhdQB8rVUQFv3unjNZB
BAsCitl6vSH0ClYkmiX/FmQPwDn9U/NTFAweVN/
NNdJECTwSbm4MJAQN9zmzH3f0lA05sGWlbmPUCXnAKSbKRjQBR1vi8AlkBAF5vlZJYXWUD
nRR4aSr1dQA6KhRVkoYJAEzZp169rKUBHlSwc2292QFirnXYEeYhAY1MlMycAZEAjkyUto

t5YQO97+kS/2itAFSAjX5whU0A+P6r8/lY1QCSYJc8DsDxALOeqAY/
KLUBQtkmqYjpUQDsLxkJFhQtAQmyRVPuxYEDLaZh7VIMxQJYQQFB4MEpAxvmNMVY7GkCwy
vLjF4RDQAUe72BsOEBAdFsx2wXjZ0DI57XB+pc0QGS4ZAYu5EZAw+POZ+qfaEAFHFE7ild
AQEIvSgjcJzNAeWRKTu12P0A+bTZoiNEwQNYEzCMMoUJASNyn4J7kLUB20WqJpURHQGCvd
mG2xkFAzjZQou4idkD1na+Y5DViQFXCK4iYukhAXx3uaOpjLEB4bnAODM0yQAW+HPUf1Dh
ALCgW+Sn4R0DT7GOsI7CTQFkWVwKTco1Ahj6k1trfKUCoW3NtLoEoQK0avODbvjpAI3onV
/v8TEBO0AUQmKU3QPIO1fre2V5AHE6bSdbqKkALEZl5AB85QMqAZCanukBAfXq3/
AczUEDO0AxTeNExQEw/
CAnReChAzixAmHRjHUAP3OeyIHtVQA==","dtype":"f8"},"yaxis":"y"},
{"hovertemplate":"Distance
Type=distancen_between_gtfs_to
name_wiki=%{x}
Distance in meter=
%{y}<extra></extra>","legendgroup":"distancen_between_gtfs_to","line":
{"color":"#EF553B","dash":"solid"},"marker":
{"symbol":"circle"},"mode":"lines","name":"distancen_between_gtfs_to",
"orientation":"v","showlegend":true,"type":"scatter","x":["Oslo
Sentralstasjon","Bryn Station","Grorud Station","Høybråten
Station","Fjellhamar Station","Strømmen Station","Lillestrøm
station","Leirsund Station","Frogner Station","Bahnhof
Kløfta","Jessheim Station","Hauerseter Station","Dal
Station","Eidsvoll station","Nordstrand station","Ljan
station","Hauketo station","Kolbotn station","Myrvoll
station","Oppegård station","Langhus station","Ås station","Vestby
station","Kambo station","Moss station","Rygge station","Råde
station","Fredrikstad station","Bahnhof Sarpsborg","Kråkstad
station","Skotbu station","Tomter station","Knapstad
station","Spydeberg station","Askim station","Slitu station","Mysen
station","Eidsberg station","Heia station","Rakkestad
station","Bahnhof Halden","Kjelsås Station","Monsrud Station","Lunner
Station","Gjøvik Station","Tangen Station","Stange Station","Bahnhof
Hamar","Brumunddal Station","Moelv Station","Lillehammer
Station","Ringebu station","Vinstra Station","Kvam Station","Otta
Station","Dovre Station","Dombås Station","Lesja Station","Lesjaverk
Station","Bjorli Station","Ilseng Station","Løten Station","Elverum
station","Rena Station","Steinvik Station","Opphus Station","Evenstad
Station","Stai Station","Koppang Station","Atna Station","Hanestad
Station","Bellingmo Station","Os Station","Bahnhof Røros","Bahnhof
Glåmos","Reitan Station","Bahnhof Ålen","Singsås Station","Hjerkinn
Station","Kongsvoll Station","Oppdal Station","Bahnhof Støren","Hovin
Station","Lundamo Station","Ler Station","Kvål Station","Melhus
Station","Heimdal station","Selsbakk station","Lademoen
station","Leangen station","Bahnhof Hell","Stjørdal station","Bahnhof
Røra","Drevvatn station","Bahnhof Bodø","Skøyen station","Lysaker
station","Stabekk station","Høvik station","Sandvika
station","Billingstad station","Hvalstad station","Asker
station","Heggedal station","Spikkestad station","Brakerøya
station","Drammen station","Holmestrand station","Hokksund
station","Vestfossen station","Darbu station","Kongsberg
station","Nordagutu station","Bø station","Neslandsvatn
station","Bahnhof Kristiansand","Bahnhof Flaten","Bøylestad

Station","Froland Station","Bråstad
Station","Stoa","Arendal","Marnardal station","Forus station","Hinna
station","Haugastøl","Bahnhof Finse","Bahnhof Myrdal","Upsete
station","Voss station","Bulken station","Evanger
station","Bolstadøyri station","Bahnhof Dale","Stanghelle
station","Vaksdal station","Trengereid station","Bahnhof
Bergen","Bahnhof Flåm"],"xaxis":"x","y":
{"bdata":"qNRw3zXxX0C+cJQTCF8oQL4LRqz8IxlAJfG8Ib5CE0B9rJ0RsiAeQKx2Zl+n
KVJAAC8DWFKvQECYCxBKo4tIQG1LMAPqXkBAnUUf8iZ1UUDQiKO+JNtUQMpRPaBF+ENA6o
+6Sa/+TEA0Zj511y9UQAAAAAAAAPh/
MRm6MQokT0Ak8lVlHTdIQM80JfB+wDVAzLmgcV7cGUCkYl0zmgl7QLXFa1CrTlBAn7IJe4
qoGEA0hE/SvKsbQFIFKJ7uizJA90d6V0A4OUAVCvYpBpY1QCAEvBVh4TxA/6ms/
vVfMEDw7nV9OOM3QDu3JMY9NEFAruBLMM/
1W0CRURndKE0kQFvz7dL35WlAv0d1RPXbPkAdxU34QSU2QAg+Es1mQD9Aru6+K+f4QkCPV
U3GoJ5TQNzXUDHRslJAPsBxS7saKkARyl1M3aEmQJAOnzqNIE9Ak5cN4vT2l0DAMTS63b5
KQF9YvrHppTJAjlJpGophNUDD8Dj4Ypg6QH32FTiwg19AONUA/
vBsOEBPphmONNxVQPe1sACkYkVAu9MQexhqLUA2k/
w59Uk2QHPhjAIzfDJACQTWU6KzNkB+R1qABbBWQC7t0UINEWFABTi37ulTMUAoJlQApco9
QPoJdZnGtVBA7WG5Ebg7L0D7UDBQNIZjQPwKtPKfVkhAhHO55DZGS0DfskVFARk5QNbvza
M8AxdAJJFU1rrcH0CTxE/
hP4FBQKWfPfcqMDNAWWBGESKIT0B0vbcvW5IpQOmPMGtASTZA/
sQRA56uKUCjPqniVBFOQAutcO64EyZAVc+Ct2AjBUBqXV4b38hlQBb54BPbPz1Aaaotvf+
TGUBqPMAh6R0zQFTn+vfp6ipAvR78aPIqGkC9T3AYsk9iQO7eY5legkFAQXR6oZWfWUDYP
VigB7JdQHbN3h4KpoJA93ZHqRSoKkAlz01K9Jt2QJSSR7NxgIhAaGoxfp4OZEDqYZynx/
JbQCu/kj6YXCtAZzabfkkaQEBYLGZ31fUzQPuCo2X/wjpAMS8GIyyZLkA/
+bycAXxUQFrjFHfbOSFApM5yoO7PYEBg61ebxzs5QFQQyizZMEpA/
7TdSRBZJUBxazD7LjZBQDGRG1h9oDxAA+o2D7YZaEAGsFjP1UU8QH+hukqtlUdAQsWRDjd
VaUDY+oNc4EtAQOJMP+Ng6UNAypvIySx+REA+AY4Fx6k9QEsSM82L+ERAtecbvDmSC0Dsn
tqhht03QEUiyVCSCkdAzjZQou4idkB1ACHyQ+1iQDmqMsz0lENAl/xZ/
IJcJEB4bnAODM0yQFuIVSwHjUVAMyj6Pfi+R0DpXhap0yOUQNCQ0BmGVY1AP4xiWf90GkA
O9o/
BsUE4QAoC4OBYuS1AfJGLTeX+TEAfDlDejvM+QGFybz3xN1dAqJggb9ReNEDH2V8OvuYsQ
FCjVM9/RTxAbo/
ZGLJxUEBrAx4VBSZmQDudQ3FsS11Ab835skYtN0AGSrCW3MtVQA==","dtype":"f8"},"
yaxis":"y"}],"layout":{"legend":{"title":{"text":"Distance
Type"},"tracegroupgap":0},"template":{"data":{"bar":[{"error_x":
{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":
{"color":"#E5ECF6","width":0.5},"pattern":
{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"barpo
lar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":
{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"
carpet":[{"aaxis":
{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","min
orgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":
{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","min
orgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"ch
oropleth":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"choropleth"}],"contour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":

[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],
[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],
[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],
[0.8888888888888888,"#fdca26"],
[1,"#f0f921"]],"type":"contour"}],"contourcarpet":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"contourcarpet"}],"heatmap":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],
[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],
[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],
[0.8888888888888888,"#fdca26"],
[1,"#f0f921"]],"type":"heatmap"}],"histogram":[{"marker":{"pattern":
{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],
"histogram2d":[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],
[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],
[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],
[0.8888888888888888,"#fdca26"],
[1,"#f0f921"]],"type":"histogram2d"}],"histogram2dcontour":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],
[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],
[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],
[0.8888888888888888,"#fdca26"],
[1,"#f0f921"]],"type":"histogram2dcontour"}],"mesh3d":[{"colorbar":
{"outlinewidth":0,"ticks":""},"type":"mesh3d"}],"parcoords":[{"line":
{"colorbar":{"outlinewidth":0,"ticks":""}},"type":"parcoords"}],"pie":
[{"automargin":true,"type":"pie"}],"scatter":[{"fillpattern":
{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"sc
atter3d":[{"line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":
{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatter3d"}],"scattercarpet":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattercarpet"}],"scattergeo":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattergeo"}],"scattergl":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattergl"}],"scattermap":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattermap"}],"scattermapbox":
[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scattermapbox"}],"scatterpolar"
:[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterpolar"}],"scatterpolargl
":[{"marker":{"colorbar":

{"outlinewidth":0,"ticks":""}},"type":"scatterpolargl"}],"scatterterna
ry":[{"marker":{"colorbar":
{"outlinewidth":0,"ticks":""}},"type":"scatterternary"}],"surface":
[{"colorbar":{"outlinewidth":0,"ticks":""},"colorscale":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],
[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],
[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],
[0.8888888888888888,"#fdca26"],
[1,"#f0f921"]],"type":"surface"}],"table":[{"cells":{"fill":
{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":
{"color":"#C8D4E3"},"line":
{"color":"white"}},"type":"table"}]},"layout":{"annotationdefaults":
{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"autotypenumbers
":"strict","coloraxis":{"colorbar":
{"outlinewidth":0,"ticks":""}},"colorscale":{"diverging":
[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],
[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],
[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequential":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],
[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],
[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],
[0.8888888888888888,"#fdca26"],[1,"#f0f921"]],"sequentialminus":
[[0,"#0d0887"],[0.1111111111111111,"#46039f"],
[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],
[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],
[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],
[0.8888888888888888,"#fdca26"],[1,"#f0f921"]]},"colorway":
["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692"
,"#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"geo":
{"bgcolor":"white","lakecolor":"white","landcolor":"#E5ECF6","showlake
s":true,"showland":true,"subunitcolor":"white"},"hoverlabel":
{"align":"left"},"hovermode":"closest","mapbox":
{"style":"light"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","po
lar":{"angularaxis":
{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF
6","radialaxis":
{"gridcolor":"white","linecolor":"white","ticks":""}},"scene":
{"xaxis":
{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"lineco
lor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}
,"yaxis":
{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"lineco
lor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}
,"zaxis":
{"backgroundcolor":"#E5ECF6","gridcolor":"white","gridwidth":2,"lineco
lor":"white","showbackground":true,"ticks":"","zerolinecolor":"white"}
},"shapedefaults":{"line":{"color":"#2a3f5f"}},"ternary":{"aaxis":

{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":
{"gridcolor":"white","linecolor":"white","ticks":""},"bgcolor":"#E5ECF
6","caxis":
{"gridcolor":"white","linecolor":"white","ticks":""}},"title":
{"x":5.0e-2},"xaxis":
{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"",
"title":
{"standoff":15},"zerolinecolor":"white","zerolinewidth":2},"yaxis":
{"automargin":true,"gridcolor":"white","linecolor":"white","ticks":"",
"title":
{"standoff":15},"zerolinecolor":"white","zerolinewidth":2}}},"title":
{"text":"Distance Comparison per Station"},"xaxis":
{"anchor":"y","domain":[0,1],"tickangle":-80,"tickfont":
{"size":9},"title":{"text":"name_wiki"}},"yaxis":
{"anchor":"x","domain":[0,1],"title":{"text":"Distance in meter"}}}}

avearage distance netex to third source: 87.98512639957524
avearage distance gtfs to third source: 90.94894419626833

stations_over_400 =
merged_wiki_distance_df[(merged_wiki_distance_df["distancen_between_ne
tex_to"] > 400) |
 (merged_wiki_distance_df["distancen_between_gtfs_to"] > 400)]

mapping_far_stations(stations_over_400)

	Introduction
	The Benefits of Data Standards
	Data Standards in the European Union
	NeTEx - the EU standard
	NeTEx Structure

	GTFS: the defacto standard

	Methodes
	Loading the Data
	Extraction of Stations
	Extracted Information

	Comparison of Stations
	Key Issues to Identify the Stations in Both Formats
	Merging Process

	Wiki Data Base
	How to Connect the Third Source with NeTEx or GTFS

	Distance Calculation
	Extraction Trips
	GTFS Trips Extraction
	NeTex Journey Extraction

	Analysis
	Station Comparison - How many stations are shared?
	Station Verfication via third Source

	Data Quality - Distance between Stations
	Trips and Journeys - Identifable stations
	Results of the Analysis
	Possible Explanations

	Summary
	Additional Material
	Notebook: Third Source
	Notebook: Extraction
	Notebook: Comparing
	Notebook: Data Quality

